JPH11132414A - Super low nox burner - Google Patents

Super low nox burner

Info

Publication number
JPH11132414A
JPH11132414A JP30050197A JP30050197A JPH11132414A JP H11132414 A JPH11132414 A JP H11132414A JP 30050197 A JP30050197 A JP 30050197A JP 30050197 A JP30050197 A JP 30050197A JP H11132414 A JPH11132414 A JP H11132414A
Authority
JP
Japan
Prior art keywords
gas
flame stabilizer
internal flame
burner
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30050197A
Other languages
Japanese (ja)
Inventor
Shinichiro Nomura
伸一郎 野村
Kunio Okiura
邦夫 沖浦
Noriyuki Oyatsu
紀之 大谷津
Noboru Takarayama
登 宝山
Miki Mori
三紀 森
Satohiko Mine
聡彦 嶺
Shunichi Tsumura
俊一 津村
Yoshinobu Kobayashi
啓信 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP30050197A priority Critical patent/JPH11132414A/en
Publication of JPH11132414A publication Critical patent/JPH11132414A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent an interior flame holder and a bridging part from being worn out during the operation of a burner, which results in sticking of ash to these, and also to prevent the interior flame holder and the bridging part from being damaged from heat and burn during the operation shutdown of the burner, in the burner which is provided with the interior flame holder and the bridging part. SOLUTION: An outer peripheral flame holding ring 7 and an interior flame holder 8, both of which become a bluff body that is perpendicular to the pulverized coal flow in the primary passageway 1, are disposed at the outlet of a burner, so that a recirculation zone is formed at the back of the stream by the vortex of turbulent flow to involve the pulverized coal particles in. The kindling of a high temperature gas is generated by the combustion of the pulverized coal which has flown in, so as to serve to promote the ignition of the pulverized coal passing nearby. At this time, a bridging part 10 is set between the outer peripheral flame holding ring 7 and the interior flame holder 8. If the gas is ejected from a gas ejection hole at the tip of the interior flame holder 8 through the bridging part 10 and the inside of the interior flame holder 8, after introduced from a supply gas nozzle 11, the high temperature gas of 1000 deg.C or higher at the side of the outer peripheral flame holding ring positively flows in the direction of the interior flame holder 8. Thereby, a fuel combustion zone near the interior flame holder 8 is maintained in a high temperature condition stably, so as to serve to promote the ignition of fuel.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、微粉炭などの粉末
固体燃料の燃焼用バーナに係り、特に低NOx燃焼の要
求されるバーナにおいて、より低NOxで、かつ安定に
燃焼させるに好適な微粉炭燃焼用バーナに関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a burner for combustion of pulverized solid fuel such as pulverized coal, and more particularly to a burner requiring low NOx combustion, which is suitable for burning stably at lower NOx and lower NOx. It relates to a burner for charcoal combustion.

【0002】[0002]

【従来の技術】従来のボイラに用いられる微粉炭などの
粉末固体燃料の燃焼システムには、分級機を内蔵した微
粉炭機(以下ミルと称す)で石炭を粉砕し、粉砕した石
炭を分級し、所定の大きさ以下の微粉炭を搬送用空気で
バーナ部へ直接供給する燃焼システムが実用化されてい
る。
2. Description of the Related Art A conventional pulverized coal or other solid fuel combustion system used in a boiler includes a pulverized coal machine having a built-in classifier (hereinafter referred to as a "mill"). A combustion system for directly supplying pulverized coal having a size equal to or less than a predetermined size to a burner unit using conveying air has been put to practical use.

【0003】この微粉炭燃焼システムの低NOx化技術
としては、2段燃焼法が代表的である。この2段燃焼法
には外部式と内部式があり、外部式2段燃焼法は燃焼炉
内に設けられた全バーナによるバーナゾーンでの空気比
(燃料に対する必要空気の割合のことあり、空気比=1
が量論的当量を表す)を1以下の燃料リッチな条件に保
つことで、燃焼ガス中で生成するNOxを還元して低N
Ox化を図り、未燃焼燃料については、バーナゾーン後
流に設置している空気挿入口から空気を投入し、燃焼さ
せる方式である。また内部式2段燃焼法は、バーナにお
ける二次空気又は三次空気に旋回をかけて、一次空気
(微粉炭搬送用空気)のみで着火燃焼しているバーナ噴
流とその外部から火炉内へ噴出される二次空気又は三次
空気の混合を遅らせ、個々のバーナによるバーナゾーン
で2段燃焼させる方法であり、低NOxバーナ(特開昭
60−176315号公報、特開昭62−172105
号公報)として実用化されている。
[0003] As a technique for reducing NOx in this pulverized coal combustion system, a two-stage combustion method is typical. The two-stage combustion method includes an external system and an internal system. The external two-stage combustion method employs an air ratio in a burner zone by all burners provided in a combustion furnace. Ratio = 1
Represents a stoichiometric equivalent) under a fuel-rich condition of 1 or less to reduce NOx generated in the combustion gas to reduce the N
In this system, Ox is formed, and for unburned fuel, air is injected from an air insertion port installed downstream of the burner zone and burned. In the internal two-stage combustion method, the secondary air or the tertiary air in the burner is swirled to ignite and burn only with the primary air (pulverized coal conveying air), and the burner jet is injected into the furnace from outside. This is a method in which mixing of secondary air or tertiary air is delayed and two-stage combustion is performed in a burner zone using individual burners, and a low NOx burner (JP-A-60-176315, JP-A-62-172105).
Gazette).

【0004】上述の外部式および内部式2段燃焼法の併
用による微粉炭バーナの低NOx燃焼技術により、ボイ
ラ出口でのNOx排出量が100〜150ppm前後
(燃料比=固定炭素/揮発分の値が2、石炭中の窒素
(N)含有量が1.5%の基準炭で、灰中の未燃分が5
%以下に相当する)まで下げられるようになった。
[0004] By the low NOx combustion technology of the pulverized coal burner by the combined use of the above-mentioned external and internal two-stage combustion methods, the NOx emission at the boiler outlet is about 100 to 150 ppm (fuel ratio = fixed carbon / volatile matter value). Is 2, the standard coal whose nitrogen (N) content in coal is 1.5%, and the unburned content in ash is 5
%).

【0005】しかしながら、環境対策としての燃焼排ガ
スに含まれるNOx排出量の規制は厳しくなる一方で、
ボイラ出口NOx排出濃度も100ppm以下の低い値
が要求されている。これに加えて、石炭の輸入依存度が
100%に近い我が国では炭種に依らず安定した微粉炭
バーナの低NOx化燃焼の技術の確立は必要不可欠であ
る。
[0005] However, while regulations on the amount of NOx contained in combustion exhaust gas as environmental measures have become stricter,
A low boiler outlet NOx emission concentration of 100 ppm or less is required. In addition, in Japan, where the dependence on coal imports is close to 100%, it is essential to establish a technology for stable NOx reduction combustion of pulverized coal burners regardless of coal type.

【0006】NOx排出量100ppm以下の低NOx
対策としては、個々のバーナ部での内部式2段燃焼法の
さらなる強化をねらって、フューエルノズル(以下、一
次流路と言うことがある)内の粉末固体燃料(微粉炭)
と搬送用気体(一次空気)の混合流体の流れに直交する
方向に内部保炎器を設置する方法(特開平8−1359
19号公報)またはフューエルノズル外周の保炎リング
(以下、外周保炎器と称することがある)と内部保炎器
の間を橋渡しするような橋渡し部を設置して内部保炎器
での保炎をさらに強化する方法(特願平9−26615
号)が考えられている。
Low NOx with NOx emission of 100 ppm or less
As a countermeasure, powder solid fuel (pulverized coal) in a fuel nozzle (hereinafter sometimes referred to as a primary flow path) is aimed at further strengthening the internal two-stage combustion method in each burner section.
Method of installing an internal flame stabilizer in a direction perpendicular to the flow of a mixed fluid of a gas and a carrier gas (primary air) (Japanese Patent Laid-Open No. 8-1359)
No. 19) or a bridging portion that bridges between a flame holding ring on the outer periphery of the fuel nozzle (hereinafter, may be referred to as an outer flame holding device) and the internal flame holding device is installed to hold the fuel in the internal flame holding device. How to further enhance the flame (Japanese Patent Application No. 9-26615)
No.) is considered.

【0007】微粉炭を搬送している一次空気の流れの中
に前述のような内部保炎器や橋渡し部を設置すると、そ
の後流に高温の再循環域が形成され、燃料の着火保炎を
促進し、火炉内におけるバーナ近傍の微粉炭燃焼領域の
中のNOx還元域が拡大し、燃焼排ガスの低NOx化が
達成されるものである。
[0007] If the above-mentioned internal flame stabilizing device or bridging portion is installed in the flow of the primary air carrying pulverized coal, a high-temperature recirculation zone is formed in the subsequent flow, and the ignition and flame holding of the fuel is prevented. This promotes the expansion of the NOx reduction zone in the pulverized coal combustion zone near the burner in the furnace, thereby achieving the reduction of NOx in the combustion exhaust gas.

【0008】[0008]

【発明が解決しようとする課題】前述のフューエルノズ
ル内に内部保炎器と橋渡し部を共に設置したバーナ構造
においては、いかに内部保炎器の後流に形成される再循
環域の負圧を高めるかが燃料の着火保炎の促進とバーナ
近傍でのNOx還元域の拡大を図る上で重要な課題とな
る。すなわち、前記再循環域の負圧が十分大きくなれ
ば、橋渡し部を介して内部保炎器側へ外周保炎器側から
の高温ガス流入が多くなり、強力な着火保炎が確保され
て燃焼排ガスのNOx低減が達成されるからである。
In the burner structure in which the internal flame stabilizer and the bridging portion are both installed in the above-described fuel nozzle, how the negative pressure in the recirculation zone formed downstream of the internal flame stabilizer is reduced. It is important to promote the ignition and flame holding of the fuel and to expand the NOx reduction region near the burner. That is, if the negative pressure in the recirculation region becomes sufficiently large, the flow of high-temperature gas from the outer flame stabilizer to the inner flame stabilizer through the bridge portion increases, and a strong ignition flame holding is secured. This is because NOx reduction of exhaust gas is achieved.

【0009】また、このような燃焼排ガスの低NOx化
のために設けられる内部保炎器と橋渡し部はバーナ運転
中は流速20m/sといった高速の微粉炭の流れの中に
あり、内部保炎器と橋渡し部が微粉炭により摩耗し、ま
たこれらに灰が付着する問題がある。しかもバーナの運
転中および運転停止中のいずれの場合にも1500℃以
上の火炉内からの放射熱により内部保炎器と橋渡し部が
高温にさらされる。しかし内部保炎器と橋渡し部の表面
温度はバーナ運転中はヒューエルノズル内を流れる約8
0℃の微粉炭流の強制対流による冷却効果と微粉炭流に
よる放射熱遮蔽効果で200〜300℃程度である。
Further, the internal flame stabilizer and the bridging portion provided for reducing the NOx of the combustion exhaust gas are in the flow of high-speed pulverized coal having a flow velocity of 20 m / s during the burner operation. There is a problem that the vessel and the bridging part are worn by the pulverized coal and ash adheres to them. In addition, in both cases when the burner is operating and when the operation is stopped, the internal flame stabilizer and the bridging portion are exposed to high temperatures due to radiant heat from the furnace at 1500 ° C. or higher. However, during the burner operation, the surface temperature of the internal flame stabilizer and the bridging part was about 8 flowing through the fuel nozzle.
The cooling effect by forced convection of the pulverized coal stream at 0 ° C. and the radiant heat shielding effect by the pulverized coal stream are about 200 to 300 ° C.

【0010】一方、バーナの運転停止中にはフューエル
ノズル(一次流路)内には火炉内負圧によるリークエア
(リークエアはリークエア専用の配管がない場合でも、
熱伸び差吸収用のジョイント付近からの隙間から外気を
吸い込むことにより生じる)を流すことで冷却を図る
が、リークエア量は多くなく、内部保炎器と橋渡し部の
火炉に対向した部分の表面では、その温度が700〜8
00℃に達し、熱により焼損しやすい環境にある。した
がって、内部保炎器と橋渡し部はバーナ運転中の摩耗、
灰付着および運転停止中の熱焼損、灰付着といった問題
を抱えている。
On the other hand, when the operation of the burner is stopped, the fuel nozzle (primary flow path) contains leak air due to negative pressure inside the furnace (even if there is no leak air piping,
Cooling is achieved by flowing outside air from the gap from the vicinity of the joint for absorbing the difference in thermal expansion), but the amount of leak air is not large, and the surface of the internal flame stabilizer and the bridge facing the furnace The temperature is 700-8
It is in an environment where it reaches 00 ° C and is easily burned by heat. Therefore, the internal flame stabilizer and bridging part will wear during burner operation,
There are problems such as ash adhesion, thermal burnout during operation shutdown, and ash adhesion.

【0011】そこで、本発明の課題は内部保炎器と橋渡
し部を備えたバーナにおいて、燃焼排ガスの低NOx化
を図りながら、バーナ運転中に前記内部保炎器と橋渡し
部が摩耗することおよびこれらに灰が付着することをで
きるだけ防ぐことであり、またバーナ運転停止中に前記
内部保炎器と橋渡し部が熱焼損することおよびこれらに
灰が付着することを防ぐことである。
Accordingly, an object of the present invention is to provide a burner having an internal flame stabilizer and a bridging portion, wherein the internal flame stabilizer and the bridging portion are worn during burner operation while reducing NOx of combustion exhaust gas. The purpose is to prevent ash from adhering to these as much as possible, and to prevent the internal flame stabilizer and the bridging portion from being thermally burned while the burner is stopped, and to prevent ash from adhering to them.

【0012】[0012]

【課題を解決するための手段】次のような構成を採用す
ることで、上記本発明の課題は解決される。すなわち、
固体燃料と搬送用気体からなる固気二相流(微粉炭流)
を火炉に投入するための一次流路と、該一次流路の外側
に単一または複数の燃焼用含酸素気体を供給する流路を
有するバーナにおいて、一次流路の出口先端部の外周部
に設けられた外周保炎器と、一次流路の出口先端部の内
部に設けられた内部保炎器と、前記外周保炎器と前記内
部保炎器の間に設けられる両者を橋渡しする少なくとも
一つの橋渡し部と、前記橋渡し部と前記内部保炎器の内
部に気体を通す気体通路を設け、一つ以上の橋渡し部ま
たは内部保炎器の少なくともいずれかに前記気体の噴出
孔を設けた超低NOxバーナである。
The above object of the present invention can be attained by adopting the following constitution. That is,
Gas-solid two-phase flow consisting of solid fuel and carrier gas (pulverized coal flow)
In the burner having a primary flow path for charging the furnace with a flow path for supplying a single or a plurality of oxygen-containing gases for combustion outside the primary flow path, an outer peripheral portion of an outlet end of the primary flow path is provided. The provided outer flame stabilizer, an inner flame stabilizer provided inside the outlet end of the primary flow path, and at least one bridge between the outer flame stabilizer and the inner flame stabilizer provided between the outer flame stabilizer and the inner flame stabilizer. Two bridging parts, a gas passage for passing a gas inside the bridging part and the internal flame stabilizer, and a gas ejection hole provided in at least one of one or more bridging parts or the internal flame stabilizer. It is a low NOx burner.

【0013】上述のように内部保炎器および橋渡し部の
内部に気体を通す気体通路を設置し、その気体通路中の
空気を内部保炎器に設けた気体噴出孔(図2の気体噴出
孔16)または橋渡し部に設けた気体噴出孔(図4の気
体排出孔15)から噴出させる。
As described above, a gas passage for passing a gas is provided inside the internal flame stabilizer and the bridging portion, and the air in the gas passage is provided to the gas flame outlet (FIG. 2). 16) Alternatively, the gas is ejected from the gas ejection holes (gas ejection holes 15 in FIG. 4) provided in the bridge portion.

【0014】粉末固体燃料として微粉炭を例に説明する
と、一次空気によって搬送される微粉炭はバーナ出口の
外部保炎器(図1の外周保炎リング7)と内部保炎器の
後流に形成される高温再循環域によって着火保炎がなさ
れて燃焼する。
If pulverized coal is explained as an example of the solid fuel powder, the pulverized coal conveyed by the primary air flows downstream of the external flame stabilizer (outer flame stabilizer ring 7 in FIG. 1) and the internal flame stabilizer at the burner outlet. Ignition flame holding is performed by the formed high-temperature recirculation zone, and the fuel is burned.

【0015】例えば図1に示すように、微粉炭流に対
し、L字型またはくの字型になる外周保炎リング7と内
部保炎器8をバーナ出口に配置すると、その後流に乱流
うずによる再循環領域13(図2参照)が形成され、粒
径20μm以下の比較的小さい微粉炭粒子を巻き込み、
その流れ込んだ微粉炭の燃焼によって高温ガスの火種
(高温再循環域13)となって、近傍を通過する微粉炭
の着火促進に役立っている。このとき外周保炎リング7
と内部保炎器8の間にさらに微粉炭流に直角に橋渡し部
10を設置すると、外周保炎リング7側の1000℃以
上の高温ガスが橋渡し部を介して内部保炎器8方向へ流
れこみ、内部保炎器8付近での燃料燃焼領域を安定に高
温状態に維持し、かつ燃料の着火促進に役立つ。
For example, as shown in FIG. 1, when an outer flame holding ring 7 and an inner flame stabilizer 8 which are L-shaped or U-shaped are arranged at the burner outlet with respect to the pulverized coal stream, turbulent A vortex recirculation zone 13 (see FIG. 2) is formed, entraining relatively small pulverized coal particles having a particle size of 20 μm or less,
The combustion of the pulverized coal that has flowed in becomes a high-temperature gas ignition source (high-temperature recirculation zone 13), which helps to promote the ignition of the pulverized coal passing nearby. At this time, the outer flame holding ring 7
When the bridging portion 10 is further installed at right angles to the pulverized coal flow between the inner flame stabilizer 8 and the inner flame stabilizer 8, the high-temperature gas of 1000 ° C. or more on the outer flame stabilizer ring 7 side flows toward the inner flame stabilizer 8 through the bridging portion. As a result, the fuel combustion area near the internal flame stabilizer 8 is stably maintained at a high temperature, and is useful for promoting the ignition of fuel.

【0016】このとき内部保炎器8に設けた前記気体の
噴出孔(図2の気体噴出孔16)から空気などの気体を
噴出させると前記再循環領域13の形成が一層確実にな
る。さらに気体噴出孔(図2の気体噴出孔16)からの
気体噴出速度は微粉炭流の流速より速くすることが望ま
しい。
At this time, when a gas such as air is blown out from the gas blowout hole (the gas blowout hole 16 in FIG. 2) provided in the internal flame stabilizer 8, the formation of the recirculation region 13 is further ensured. Further, it is desirable that the gas ejection speed from the gas ejection holes (the gas ejection holes 16 in FIG. 2) be faster than the flow rate of the pulverized coal stream.

【0017】また、内部保炎器8の微粉炭流の流れ方向
の断面形状を、その外周側は燃料の流れ方向に平行な壁
面を有する形状とし、その内周側はテーパー状とする。
こうして内部保炎器8の外周側は円筒状となるので、外
周保炎リング7側の流れを整流する作用が生じ、外周保
炎リング7での着火保炎をより強化する。また内部保炎
器8の内周側はテーパー状に微粉炭流の流れ方向に徐々
に流路を狭めることにより微粉炭流の直接の打撃を角度
を持たせて避けることで、摩耗を防止する構造になって
いる。また、内部保炎火器のガス流れ方向の傾斜角度θ
(図11)の大きさを調整することによりバーナ中心部
への微粉炭流量を多く、外周部への微粉炭流量を少なく
することができる。
The cross-sectional shape of the internal flame stabilizer 8 in the flow direction of the pulverized coal flow is such that its outer peripheral side has a wall surface parallel to the fuel flow direction, and its inner peripheral side has a tapered shape.
Since the outer peripheral side of the inner flame stabilizer 8 is thus cylindrical, an effect of rectifying the flow on the outer peripheral flame stabilizer ring 7 side is generated, and the ignition flame holding in the outer peripheral flame stabilizer ring 7 is further strengthened. Also, the inner peripheral side of the internal flame stabilizer 8 is tapered to gradually narrow the flow path in the flow direction of the pulverized coal stream, thereby avoiding direct impact of the pulverized coal stream at an angle to prevent wear. It has a structure. In addition, the inclination angle θ of the gas flow direction of the internal flame holding firearm
By adjusting the size of (FIG. 11), the flow rate of pulverized coal to the center of the burner can be increased, and the flow rate of pulverized coal to the outer peripheral portion can be reduced.

【0018】また橋渡し部10を微粉炭流の流れの上流
側から下流側に向けて末広がり形状(断面V型またはU
型形状など)としているので微粉炭流による摩耗防止が
図れる。さらに、橋渡し部10の前記末広がり形状の傾
斜平面の表面積(投影面積は同じ)を大きくすること
で、傾斜表面の冷却が促進される作用がある。
Further, the bridging portion 10 has a divergent shape (V-shaped cross section or U-shaped section) from the upstream side to the downstream side of the pulverized coal stream.
Shape, etc.) to prevent wear due to pulverized coal flow. Further, by increasing the surface area (projected area is the same) of the flared inclined plane of the bridging portion 10, the cooling of the inclined surface is promoted.

【0019】また、橋渡し部10と内部保炎部8の内部
には共に気体(例えば、空気)が通る気体通路17が設
けられていて、該気体通路17から空気などの気体を投
入し、内部保炎器8の気体噴出孔16(図2参照)から
排出する構造または橋渡し部に設けた気体排出孔15
(図4参照)から排出する構造になっている。橋渡し部
10から入った気体(空気)は内部保炎器8において火
炉に面した平面のエッジ部およびその近傍などに複数個
が設けられた気体噴出孔16から微粉炭流に向かって噴
出する。
A gas passage 17 through which a gas (for example, air) passes is provided in both the bridging portion 10 and the internal flame holding portion 8, and a gas such as air is supplied from the gas passage 17 to the inside. A structure for discharging the gas from the gas ejection holes 16 (see FIG. 2) of the flame stabilizer 8 or a gas discharge hole 15 provided in the bridging portion
(See FIG. 4). The gas (air) entering from the bridging portion 10 is jetted toward the pulverized coal flow from the gas jet holes 16 provided in the internal flame stabilizer 8 at a plurality of gas jet holes 16 at the edge of the plane facing the furnace and in the vicinity thereof.

【0020】前記気体噴出孔16からの噴出気体(空
気)は外周保炎リング後流に存在する再循環域13内の
高温ガスを同伴して微粉炭の着火を促進するだけでな
く、再循環域13内の負圧を高め、外周保炎リング7と
内部保炎器8間の差圧を大きくする。そして、外周保炎
リング7側から橋渡し部10を介して内部保炎器8側へ
高温ガスの流入を促進する効果がある。この気体噴出孔
16からの噴出気体の流速は微粉炭流の流速より速く、
好ましくは50m/s以上であれば高温ガスの同伴量も
多く、かつ噴出気体(空気)が微粉炭流中を貫通して流
れるので微粉炭の着火に役立つ。また気体(空気)噴出
速度を高めることは外周保炎リング7と内部保炎器8の
付着灰を吹き飛ばして灰の付着を防止する上でも有効で
ある。
The gas (air) ejected from the gas ejection holes 16 accompanies the high-temperature gas in the recirculation zone 13 existing downstream of the outer flame holding ring, not only to promote the ignition of the pulverized coal, but also to recirculate it. The negative pressure in the region 13 is increased, and the differential pressure between the outer flame holding ring 7 and the inner flame stabilizer 8 is increased. Then, there is an effect that the inflow of high-temperature gas from the outer peripheral flame holding ring 7 side to the internal flame stabilizer 8 side via the bridging portion 10 is promoted. The flow rate of the gas ejected from the gas ejection holes 16 is faster than the flow rate of the pulverized coal stream,
Preferably, if it is 50 m / s or more, the entrained amount of high-temperature gas is large, and the ejected gas (air) flows through the pulverized coal stream, which is useful for igniting the pulverized coal. Increasing the gas (air) ejection speed is also effective in blowing off ash adhered to the outer flame holding ring 7 and the internal flame stabilizer 8 to prevent ash from adhering.

【0021】また前記気体噴出孔(図2の気体噴出孔1
6と図4の橋渡し部10の気体噴出孔15)からの噴出
気体(空気)量を一次空気の1〜2%以内に調整すれ
ば、バーナ出口の空気量の増加による燃焼ガス中のNO
x濃度上昇は抑えられる。
Further, the gas ejection holes (the gas ejection holes 1 in FIG. 2)
If the amount of gas (air) ejected from the gas ejection holes 15) of the bridging portion 10 of FIG. 6 and FIG. 4 is adjusted to be within 1 to 2% of the primary air, NO in the combustion gas due to an increase in the amount of air at the burner outlet is increased.
The increase in x concentration is suppressed.

【0022】この気体(空気)はPAF(Primary Air
Fan)で加圧された空気の一部を利用するが、バーナ運
転中には加熱された気体(空気)を導入し、バーナ運転
停止時には加熱されていない気体(空気)を導入する。
バーナ運転中での加熱気体(空気)は着火保炎に有効で
あり、バーナ運転停止中には加熱されない気体(空気)
を流せば、橋渡し部10および内部保炎器8を冷却し、
これらの焼損防止に役立つ。
This gas (air) is PAF (Primary Air).
A part of the air pressurized by Fan) is used, but heated gas (air) is introduced during burner operation, and unheated gas (air) is introduced when burner operation is stopped.
Heated gas (air) during burner operation is effective for ignition flame holding, and gas (air) that is not heated when burner operation is stopped
To cool the bridging part 10 and the internal flame stabilizer 8,
Helps prevent these burnouts.

【0023】また、当然であるが、バーナ運転中および
バーナ停止時に内部保炎器8と橋渡し部10内部に気体
(空気)を流すことは、内部保炎器8の気体噴出孔16
が微粉炭または灰によって閉塞されることも防止する。
Naturally, the flow of gas (air) into the internal flame stabilizer 8 and the bridging portion 10 during the operation of the burner and when the burner is stopped is controlled by the gas ejection holes 16 of the internal flame stabilizer 8.
Is also prevented from being clogged by pulverized coal or ash.

【0024】前記橋渡し部10または内部保炎器8に流
す気体の導入部に、本発明のバーナの運転中は微粉炭搬
送用気体供給系統の高温部から気体を導入して,燃料の
着火の確実化、燃料の燃焼促進を図り、またバーナ運転
停止中は微粉炭搬送用気体供給系統の低温部から供給し
て、バーナ内部の冷却を図る。このバーナ内部の冷却は
バーナ内部に濃縮器19(図10)が無い場合はリーク
エアのみで十分行えるが、濃縮器19がある場合は強制
冷却する必要があり、気体排出孔15(図4)または気
体噴出孔16(図2)から冷却用気体を供給して、バー
ナ内部を冷却する。
During operation of the burner of the present invention, gas is introduced from the high temperature section of the gas supply system for pulverized coal transport into the bridge section 10 or the gas introduction section flowing into the internal flame stabilizer 8 to ignite the fuel. In order to ensure the reliability and promote the combustion of the fuel, while the burner operation is stopped, the burner is supplied from the low temperature part of the gas supply system for pulverized coal transport to cool the inside of the burner. When the concentrator 19 (FIG. 10) is not inside the burner, the inside of the burner can be sufficiently cooled only by the leak air. However, when the concentrator 19 is provided, it is necessary to perform forced cooling, and the gas discharge hole 15 (FIG. 4) or Cooling gas is supplied from the gas ejection holes 16 (FIG. 2) to cool the inside of the burner.

【0025】一般に、外部保炎器の後流側に形成される
高温の再循環流のガスをバーナ中心部に誘導するには、
微粉炭流の流れからバーナ出口での外周部と内周部の間
の差圧が十分に確保することが必要である。バーナ出口
での外周部と内周部の間の差圧が十分に確保できれば、
外周部から内周部への流れが起き、外周保炎器後方周辺
の高温ガスはバーナ中心部へと流れ込み、着火がさらに
良くなるが、そのために、内部保炎器の一次流路上流側
の端部に分配器(図11の分配器20)を設置する。
In general, in order to guide the hot recirculating gas formed downstream of the external flame stabilizer to the center of the burner,
From the flow of the pulverized coal stream, it is necessary to sufficiently secure the pressure difference between the outer peripheral portion and the inner peripheral portion at the burner outlet. If the pressure difference between the outer and inner circumferences at the burner outlet is sufficient,
A flow from the outer peripheral portion to the inner peripheral portion occurs, and the high-temperature gas around the outer periphery of the flame stabilizer flows into the central portion of the burner, and the ignition is further improved. The distributor (the distributor 20 in FIG. 11) is installed at the end.

【0026】分配器によって外周保炎器付近での流速
が遅くなり、バーナ外周部での微粉炭の着火性が向上す
る。バーナ外周部とバーナ中心部での流速の差が大き
くなることにより、バーナ外周部とバーナ中心部との差
圧が大きくなり、バーナ外周部からバーナ中心部へのガ
スの流れ込み量が増える(橋渡し作用の増大)の2つの
効果がある。
The distributor reduces the flow velocity in the vicinity of the outer flame holder and improves the ignitability of the pulverized coal at the outer periphery of the burner. As the difference in flow velocity between the burner outer periphery and the burner center increases, the differential pressure between the burner outer periphery and the burner center increases, and the amount of gas flowing from the burner outer periphery to the burner center increases (bridge) (Increase of action).

【0027】バーナ中心部での微粉炭流の流速に対して
バーナ外周部の微粉炭流の流速を60〜80%となるよ
うにすることにより、分配器を設けない場合、すなわち
流速が100%の場合に比較して個々のバーナゾーンで
のNOx低減率が大きくなることがわかった(図1
2)。
By setting the flow rate of the pulverized coal stream at the outer periphery of the burner to 60 to 80% of the flow rate of the pulverized coal stream at the center of the burner, when a distributor is not provided, that is, the flow rate is 100%. It was found that the NOx reduction rate in each burner zone was larger than in the case of FIG.
2).

【0028】また、一次流路の内部保炎器の設置部の上
流側に一次流路の狭あい部を設け、該狭あい部と内部保
炎器の間の一次流路内に粉末固体粒子の搬送用気体より
高温の気体を導入する高温気体導入管を設置すること
で、高温気体導入管から導入される高温気体ガスは一次
流路内で一次流路中心部へ向う流れとなる。従って、高
温気体が導入された狭あい部の流速は遅くなり、前記
と同様の作用によりに微粉炭流の着火・保炎性を高め
る。
Also, a narrow portion of the primary flow path is provided upstream of the installation portion of the internal flame stabilizer in the primary flow path, and the powder solid particles are contained in the primary flow path between the narrow portion and the internal flame stabilizer. By installing a high-temperature gas introduction pipe for introducing a gas higher in temperature than the carrier gas, the high-temperature gas gas introduced from the high-temperature gas introduction pipe flows in the primary flow path toward the center of the primary flow path. Accordingly, the flow velocity in the narrow portion into which the high-temperature gas is introduced is reduced, and the ignition and flame holding properties of the pulverized coal stream are enhanced by the same action as described above.

【0029】[0029]

【発明の実施の形態】本発明の実施の形態について説明
する。図5に本発明のバーナが適用される微粉炭焚きボ
イラの燃焼系統図を示す。石炭はボイラなどの燃焼装置
の負荷に応じて図示しない経路から石炭粉砕機(ミル)
38に送られて粉砕される。また、微粉炭搬送用空気は
FDF(Force DraftFan)31で加圧され、空気予熱器
34に入る加熱空気流路35と空気予熱器34に入らな
い冷空気流路32の各流路に分配され、その後、前記加
熱空気と冷却空気が混合によって温度調整されてミル3
8に送られる。
Embodiments of the present invention will be described. FIG. 5 shows a combustion system diagram of a pulverized coal-fired boiler to which the burner of the present invention is applied. Coal is crushed from a coal crusher (mill) through a path (not shown) according to the load of a combustion device such as a boiler.
It is sent to 38 and crushed. The pulverized coal conveying air is pressurized by an FDF (Force Draft Fan) 31 and distributed to each of a heated air flow path 35 entering the air preheater 34 and a cold air flow path 32 not entering the air preheater 34. Then, the temperature of the heated air and the cooled air is adjusted by mixing, and
8

【0030】ボイラの火炉30の微粉炭バーナ部40の
図示しない内部保炎器および橋渡し部内部へ供給される
空気はFDF31により導入され、空気予熱器34で加
熱されて加熱空気流路35を通る加熱空気と空気予熱器
34を経由しない冷空気流路32を通る冷却空気とが、
加熱空気流路35の分岐流路35’と冷空気流路32の
分岐流路32’を経て、切り換えバルブ28がある合流
部で合流するが、合流した空気は流量調整バルブ27に
より流量が調整されてバーナ部40の気体供給用ヘッダ
12へ導かれる。
The air supplied to the internal flame stabilizer and the bridging section (not shown) of the pulverized coal burner section 40 of the furnace 30 of the boiler is introduced by the FDF 31, heated by the air preheater 34 and passed through the heated air flow path 35. The heated air and the cooling air passing through the cold air passage 32 that does not pass through the air preheater 34 are
Through the branch flow path 35 ′ of the heated air flow path 35 and the branch flow path 32 ′ of the cold air flow path 32, they merge at the junction where the switching valve 28 is provided. Then, it is guided to the gas supply header 12 of the burner section 40.

【0031】ミル38で粉砕された微粉炭とその搬送用
空気の混合流体は微粉炭バーナ40に搬送される。微粉
炭の燃焼用空気はFDF(Force Draft Fan)41から
熱交換器34を経て風箱44に入り、バーナ40の図示
しない二次流路、三次流路へ搬送される。
The mixed fluid of the pulverized coal pulverized by the mill 38 and the air for transporting the pulverized coal is transported to the pulverized coal burner 40. Air for combustion of pulverized coal enters a wind box 44 from a Force Draft Fan (FDF) 41 via a heat exchanger 34, and is conveyed to a secondary flow path and a tertiary flow path (not shown) of the burner 40.

【0032】バーナ部40の側断面図を図1(a)に示
し、その火炉側から見た平面図を図1(b)に示す。微
粉炭と搬送用空気の混合流体が流れる一次流路1の外側
に燃焼用空気供給用の二次流路2及び三次流路3が設け
られている。また、一次流路1の軸心部にはバーナ起動
時などに使用する重油バーナ4が設けられている。ま
た、二次流路2には二次空気旋回器5を、そして三次流
路3には三次空気旋回器6がそれぞれ設けられている。
FIG. 1A is a side sectional view of the burner section 40, and FIG. 1B is a plan view of the burner section 40 as viewed from the furnace side. A secondary flow path 2 and a tertiary flow path 3 for supplying combustion air are provided outside the primary flow path 1 through which a mixed fluid of pulverized coal and carrier air flows. A heavy oil burner 4 used at the time of starting the burner or the like is provided at the axial center of the primary flow path 1. The secondary flow path 2 is provided with a secondary air swirler 5, and the tertiary flow path 3 is provided with a tertiary air swirler 6.

【0033】一次流路1の出口(管壁)先端には外周保
炎リング7が設けられ、その内側に内部保炎器8が設け
られる。外周保炎リング7と内部保炎器8の間には橋渡
し部10が設けられている。図1に示すバーナの場合に
は橋渡し部10は放射状に90度間隔で4個設けられて
いる例を示しているが、橋渡し部10の設置個数と設置
間隔は適宜設定可能である。
An outer flame holding ring 7 is provided at the end of the outlet (tube wall) of the primary flow path 1, and an internal flame holding device 8 is provided inside the ring. A bridging portion 10 is provided between the outer flame holding ring 7 and the inner flame holder 8. In the case of the burner shown in FIG. 1, an example is shown in which four bridging portions 10 are provided radially at 90 ° intervals, but the number of bridging portions 10 and the spacing between them can be set as appropriate.

【0034】内部保炎器8は、その火炉30に面した表
面から見ると環状形状であり、バーナ側断面(図1
(a))から見ると、その環状の外側は燃料の流れ方向
に平行な壁面を有する円筒形状であるので、外周保炎リ
ング7側の流れを整流する作用が生じ、外周保炎リング
7での着火保炎をより強化する。また、内部保炎器8の
環状の内側はバーナ出口に向かってテーパー状に縮小さ
れた形状であり、前記テーパー状に燃料流体の流れ方向
に徐々に流路を狭めることにより燃料流体の流れの圧力
損失が大きくならないようにすると同時に微粉炭流の直
接の打撃を避けて摩耗を防止する構造になっている。
The internal flame stabilizer 8 has an annular shape when viewed from the surface facing the furnace 30 and has a burner side cross section (FIG. 1).
When viewed from (a)), the outer side of the annular shape is a cylindrical shape having a wall surface parallel to the flow direction of the fuel. To further enhance the flame holding. Further, the inner side of the annular shape of the internal flame stabilizer 8 has a shape tapered toward the burner outlet, and the flow path of the fuel fluid is gradually reduced in the tapered shape in the flow direction of the fuel fluid. The structure is such that pressure loss is not increased and wear is prevented by avoiding direct impact of the pulverized coal stream.

【0035】一次流路1の内部に供給気体ノズル9があ
り、橋渡し部10に接続されている。橋渡し部10の内
部と内部保炎器8の内部の気体流路はつながっていて、
内部保炎器8の火炉側の側面のエッジ部またはその近傍
に複数個の気体噴出孔16が設けられている(図2参
照)。加熱空気(バーナ運転時)または冷却空気(バー
ナ運転停止時)は供給気体配管11から気体供給用ヘッ
ダ12を経て供給気体ノズル9に入り、図2に示した橋
渡し部10の内部の気体流路17を通り、内部保炎器8
の内部の気体通路17へ導かれ、気体噴出孔16から噴
出される。
A supply gas nozzle 9 is provided inside the primary flow path 1, and is connected to a bridge 10. The gas passages inside the bridging part 10 and the inside of the internal flame stabilizer 8 are connected,
A plurality of gas ejection holes 16 are provided at or near the edge of the furnace side of the internal flame stabilizer 8 (see FIG. 2). Heated air (when the burner is operating) or cooling air (when the burner is stopped) enters the supply gas nozzle 9 from the supply gas pipe 11 via the gas supply header 12, and the gas flow path inside the bridge 10 shown in FIG. 17 and internal flame stabilizer 8
The gas is guided to the gas passage 17 in the inside, and is ejected from the gas ejection hole 16.

【0036】図5の微粉炭焚きボイラの燃焼系統図にお
いて、燃焼用空気はFDF(ForceDraft Fan)41から
空気予熱器34内で約350℃に加熱された後、風箱4
4に入り、微粉炭バーナ部40の二次流路2と三次流路
3へ搬送される。ミル38で粉砕された微粉炭は一次空
気ファン(PAF)31からの微粉炭搬送用空気によっ
て微粉炭バーナ部40に搬送され、図1に示した一次流
路1へ導かれる。そして、バーナ出口の外周保炎リング
7と内部保炎器8の後流に形成される高温再循環域13
(図2)によって着火保炎がなされて燃焼する。
In the combustion system diagram of the pulverized coal-fired boiler shown in FIG. 5, the combustion air is heated from an FDF (Force Draft Fan) 41 to about 350 ° C. in an air preheater 34,
4 and is conveyed to the secondary flow path 2 and the tertiary flow path 3 of the pulverized coal burner section 40. The pulverized coal pulverized by the mill 38 is conveyed to the pulverized coal burner 40 by pulverized coal conveying air from a primary air fan (PAF) 31 and guided to the primary flow path 1 shown in FIG. Then, a high-temperature recirculation zone 13 formed downstream of the outer flame holding ring 7 and the internal flame stabilizer 8 at the burner outlet.
(FIG. 2) causes ignition flame holding and burns.

【0037】外周保炎リング7と内部保炎器8近傍で
は、その後流に乱流うずによる高温再循環領域(図2に
は内部保炎器8近傍での高温再循環領域13を示す)が
形成され、20μm以下の比較的小さい微粉炭粒子を巻
き込み、高温再循環領域13に流れ込んだ微粉炭の燃焼
によって高温ガスの火種となって、高温再循環領域13
の近傍を通過する微粉炭の着火促進に役立つ。このとき
外周保炎リング7と内部保炎器8の間に微粉炭流と対向
するように橋渡し部10を設置し、外周保炎リング7側
の流れが整流され、外周保炎リング7での着火保炎をよ
り強化している。
In the vicinity of the outer flame holding ring 7 and the inner flame stabilizer 8, there is a high-temperature recirculation region (FIG. 2 shows a high temperature recirculation region 13 near the inner flame stabilizer 8) due to turbulent turbulence in the wake. The formed pulverized coal particles having a relatively small size of 20 μm or less are entrained, and the pulverized coal flowing into the high-temperature recirculation region 13 becomes a kind of high-temperature gas by burning the pulverized coal.
Helps to promote the ignition of pulverized coal passing near. At this time, the bridging portion 10 is installed between the outer flame holding ring 7 and the inner flame stabilizer 8 so as to face the pulverized coal flow, and the flow on the outer flame holding ring 7 side is rectified, and Ignition flame is further strengthened.

【0038】また内部保炎器8と橋渡し部10とも内部
に気体通路17があり、バーナ運転時には図5の切り換
えバルブ28(図5)を加熱空気供給側に切り換え、加
熱空気を図1の供給気体配管11と供給気体用ヘッダ1
2と供給気体ノズル9を経由して橋渡し部10から内部
保炎器8へと導入する。
Further, both the internal flame stabilizer 8 and the bridging portion 10 have gas passages 17 inside. When the burner is operated, the switching valve 28 (FIG. 5) in FIG. 5 is switched to the heating air supply side to supply the heating air in FIG. Gas piping 11 and supply gas header 1
It is introduced into the internal flame stabilizer 8 from the bridging part 10 via the supply gas nozzle 9 and 2.

【0039】図2に示すように、内部保炎器8の後流に
は再循環域13が形成されるが、その再循環域13側の
内部保炎器8の側面のエッジ部またはその付近には微粉
炭流へ向けて気体(空気)を噴出する気体噴出孔16が
複数個、ほぼ上下方向に対象的に設けられており、各気
体(空気)噴出孔16から高速で気体(空気)が噴出す
る。気体噴出孔16は末広がり状に気体(空気)の噴出
ジェット14を吹き出し、再循環域13内の負圧を高
め、外周保炎リング7側からの高温ガスの流入も促し、
微粉炭の着火を早める。また、バーナ運転停止時には図
5の切り換えバルブ28を冷却用空気側にして、冷却空
気を橋渡し部10および内部保炎器8の内部に供給し
て、橋渡し部10および内部保炎器8を冷却する。
As shown in FIG. 2, a recirculation zone 13 is formed downstream of the internal flame stabilizer 8, and the edge of the side of the internal flame stabilizer 8 on the recirculation zone 13 side or in the vicinity thereof A plurality of gas ejection holes 16 for ejecting gas (air) toward the pulverized coal stream are provided symmetrically in a substantially vertical direction, and the gas (air) is spouted from each gas (air) ejection hole 16 at high speed. Squirts. The gas ejection holes 16 blow out the ejection jet 14 of gas (air) in a divergent manner, increase the negative pressure in the recirculation zone 13, and also promote the inflow of high-temperature gas from the outer peripheral flame holding ring 7 side.
Hasten ignition of pulverized coal. When the burner operation is stopped, the switching valve 28 in FIG. 5 is set to the cooling air side, and cooling air is supplied to the inside of the bridging portion 10 and the internal flame stabilizer 8 to cool the bridging portion 10 and the internal flame stabilizer 8. I do.

【0040】気体噴出孔16へ供給する加熱空気または
冷却空気などの気体は流量調整バルブ27によって、バ
ーナ運転停止時にはPAF31の圧力に応じて冷却に必
要な量を入れて冷却を図る。バーナ運転時には一次空気
量の1〜2%程度を入れて、気体噴出孔16からの噴出
ジェット14の噴出速度が一次微粉炭流より速い50m
/s以上にする。この噴出ジェット14は内部保炎器8
の後流の再循環域13内の負圧を高めて外周保炎リング
7からの高温ガス流入の促進作用がある。それと同時
に、気体噴出孔16へ供給する加熱空気または冷却空気
は内部保炎器8および橋渡し部10表面に付着しようと
する飛散灰を吹き飛ばし、その付着防止にも役立ち、微
粉炭による気体噴出孔16の閉塞を防止する。
The gas such as the heated air or the cooling air supplied to the gas ejection holes 16 is cooled by a flow control valve 27 in an amount necessary for cooling according to the pressure of the PAF 31 when the burner operation is stopped. During burner operation, about 1 to 2% of the primary air amount is introduced, and the ejection speed of the ejection jet 14 from the gas ejection hole 16 is 50 m faster than the primary pulverized coal flow.
/ S or more. This jet 14 is used for the internal flame stabilizer 8.
The negative pressure in the recirculation zone 13 in the wake is increased to promote the inflow of high-temperature gas from the outer peripheral flame holding ring 7. At the same time, the heated air or the cooling air supplied to the gas ejection holes 16 blows off the fly ash that tends to adhere to the surfaces of the internal flame stabilizer 8 and the bridging portion 10 and also helps to prevent the adhesion, and the gas ejection holes 16 made of pulverized coal are used. To prevent clogging.

【0041】図1では、一次流路1の中心部には重油バ
ーナ4を設けただけであるが、図8に示すように一次流
路1内壁には微粉炭流の絞りにより逆火防止用にベンチ
ュリー部18と共に一次流路1の出口の内壁面側の微粉
炭濃度を高めるなどの機能を奏する濃縮器19を重油バ
ーナ4の外周部に設ける構成を採用しても良い。濃縮器
19の微粉炭流上流側の傾斜部により一次流路1の出口
の内壁面側の微粉炭濃度を高めて内部保炎器8付近での
内壁面側の微粉炭濃度を上げ、微粉炭流の着火性能を高
め、また濃縮器19の微粉炭流下流側の傾斜部により一
次流路1の出口付近での微粉炭流の流速を徐々に遅くし
て微粉炭流が濃縮器19の下流側の終端部壁面との間で
剥離を生じないようにすることができる。
In FIG. 1, only the heavy oil burner 4 is provided at the center of the primary flow path 1, but as shown in FIG. A concentrator 19 having a function of increasing the concentration of pulverized coal on the inner wall surface of the outlet of the primary flow path 1 together with the venturi section 18 may be provided on the outer peripheral portion of the heavy oil burner 4. The pulverized coal concentration on the inner wall side at the outlet of the primary flow path 1 is increased by the inclined portion on the upstream side of the pulverized coal flow of the concentrator 19, and the pulverized coal concentration on the inner wall side near the internal flame stabilizer 8 is increased. The flow of the pulverized coal flow near the outlet of the primary flow path 1 is gradually reduced by the inclined portion of the concentrator 19 on the downstream side of the pulverized coal flow, so that the pulverized coal flow is downstream of the concentrator 19. It is possible to prevent peeling from occurring between the side end wall surface.

【0042】本発明のバーナ運転中における橋渡し部1
0と内部保炎器8内の気体通路17を通過させる気体は
微粉炭搬送用気体供給系統の高温部から導入している
が、替わりにミル38へ供給する温度調整された空気の
一部を利用することも可能である。
Bridge section 1 during burner operation of the present invention
The gas passing through the gas passage 17 in the internal flame stabilizer 8 and 0 is introduced from the high temperature section of the gas supply system for conveying pulverized coal, but a part of the temperature-adjusted air supplied to the mill 38 is used instead. It is also possible to use it.

【0043】図1では、もし橋渡し部10が複数個ある
場合には全ての橋渡し部10から空気を供給して内部保
炎器8へ通し、内部保炎器8の気体噴出孔16から噴出
させるバーナを例に挙げたが、図3のバーナの場合には
供給気体配管11から気体供給用ヘッダ12に気体供給
ノズル9を介して気体は一部の橋渡し部10に導入さ
れ、内部保炎器8を通過した後、残りの橋渡し部10か
ら気体排出ノズル15を介して二次流路2へ排出され
る。二次流路2へ排出された気体(空気)が加熱空気で
あると、燃料の着火の確実化、燃料の燃焼促進が図れ、
冷却空気であるときはバーナ内部の冷却が図れる。
In FIG. 1, if there are a plurality of bridging portions 10, air is supplied from all bridging portions 10, passes through the internal flame stabilizer 8, and is ejected from the gas blowing holes 16 of the internal flame stabilizer 8. Although the burner is taken as an example, in the case of the burner shown in FIG. 3, gas is introduced from the supply gas pipe 11 to the gas supply header 12 through the gas supply nozzle 9 to a part of the bridging portion 10, and the internal flame stabilizer is used. After passing through 8, the gas is discharged from the remaining bridge 10 to the secondary flow path 2 via the gas discharge nozzle 15. If the gas (air) discharged into the secondary flow path 2 is heated air, the ignition of the fuel can be ensured, and the combustion of the fuel can be promoted.
When the cooling air is used, the inside of the burner can be cooled.

【0044】図4には供給気体ノズル9が内部保炎器8
に接続されていて、供給気体入口11から気体供給ノズ
ル9を介して内部保炎器8に導入された気体はすべての
橋渡し部10から気体排出ノズル15を介して二次流路
2へ排出される例を示している。図3と図4のその他の
部材は図1、図2に示すものと同一部材には同一番号を
付して、その説明は省略する。図6と図7はそれぞれ図
3と図4に対応したもので、供給気体の排出を一次流路
1内に行うものである。
FIG. 4 shows that the supply gas nozzle 9 has the internal flame stabilizer 8.
The gas introduced from the supply gas inlet 11 to the internal flame stabilizer 8 via the gas supply nozzle 9 is discharged from all the bridge portions 10 to the secondary flow path 2 via the gas discharge nozzle 15. An example is shown. 3 and 4, the same members as those shown in FIGS. 1 and 2 are denoted by the same reference numerals, and description thereof will be omitted. 6 and 7 correspond to FIGS. 3 and 4, respectively, in which the supply gas is discharged into the primary flow path 1.

【0045】また図8、図10、図11に示す実施例に
は一次流路内にベンキュリー18と重油バーナ4に濃縮
器19を設けているが、このうち、図10に示す例では
内部保炎器8の一次流路1の上流側端部には分配器20
を取り付けたのものであり、さらにバーナ出口部分での
着火保炎が良くなる。分配器20の役割はバーナ中心部
への微粉炭流の流量を多く、外周部への微粉炭流の流量
を少なくすることである。
In the embodiment shown in FIGS. 8, 10 and 11, a venturi 18 and a concentrator 19 are provided in the heavy oil burner 4 in the primary flow path. Of these, in the example shown in FIG. A distributor 20 is provided at the upstream end of the primary channel 1 of the flame 8.
Is attached, and the flame holding at the burner outlet is further improved. The role of the distributor 20 is to increase the flow rate of the pulverized coal stream to the center of the burner and to reduce the flow rate of the pulverized coal stream to the outer peripheral portion.

【0046】一般に、外周保炎リング7の後流側に形成
される高温の再循環流のガスをバーナ中心部に誘導する
には、微粉炭流の流れによりバーナ出口での外周部と内
周部の間の差圧を十分に確保することが必要であるが、
バーナ出口での外周部と内周部の間の差圧が十分に確保
できれば、外周部から内周部への流れが起き、外周保炎
リング7周辺の高温ガスはバーナ中心部へと流れ込み、
着火がさらに良くなる。
Generally, in order to guide the high-temperature recirculated gas formed on the downstream side of the outer flame holding ring 7 to the center of the burner, the outer peripheral portion at the burner outlet and the inner peripheral portion at the burner outlet are introduced by the flow of the pulverized coal flow. It is necessary to ensure a sufficient differential pressure between the parts,
If the differential pressure between the outer peripheral portion and the inner peripheral portion at the burner outlet can be sufficiently ensured, a flow from the outer peripheral portion to the inner peripheral portion occurs, and the high-temperature gas around the outer peripheral flame holding ring 7 flows into the burner central portion,
Ignition is better.

【0047】分配器20の設置によって外周保炎リン
グ7付近での流速が遅くなり、バーナ外周部での微粉炭
の着火性が向上する。バーナ外周部とバーナ中心部で
の流速の差が大きくなることにより、バーナ外周部とバ
ーナ中心部との差圧が大きくなり、バーナ外周部からバ
ーナ中心部へのガスの流れ込み量が増える(橋渡し作用
の増大)の2つの効果がある。 図11に図10のバー
ナ出口部の拡大図に示すように、内部保炎器8のガス流
れ方向の傾斜角度θの大きさによりバーナ中心部への微
粉炭流量を多くするように調整することができる。ただ
し微粉炭は濃縮器19の微粉炭流上流側の傾斜部により
一次流路1の出口の内壁面側の微粉炭濃度が高められて
いるのでそのまま外周部へ送られる。図9には図8のバ
ーナの内部保炎器部の一次流路側端部分の曲げ角度と摩
耗速度との関係を示す。
The installation of the distributor 20 reduces the flow velocity near the outer flame holding ring 7 and improves the ignitability of the pulverized coal at the outer periphery of the burner. As the difference in flow velocity between the burner outer periphery and the burner center increases, the differential pressure between the burner outer periphery and the burner center increases, and the amount of gas flowing from the burner outer periphery to the burner center increases (bridge) (Increase of action). As shown in the enlarged view of the burner outlet portion in FIG. 11 in FIG. 11, the flow rate of pulverized coal to the center of the burner is adjusted to be increased by the angle of inclination θ in the gas flow direction of the internal flame stabilizer 8. Can be. However, the pulverized coal is directly sent to the outer peripheral portion because the pulverized coal concentration on the inner wall surface side of the outlet of the primary flow path 1 is increased by the inclined portion of the concentrator 19 on the upstream side of the pulverized coal flow. FIG. 9 shows the relationship between the bending angle of the end portion of the internal flame stabilizer of the burner of FIG. 8 on the primary flow path side and the wear rate.

【0048】図12に示すように、本発明では、一次流
路1内での微粉炭流の流速が遅い程、バーナ外周部とバ
ーナ中心部での微粉炭流の流速の差が大きくなることに
より、差圧も大きくなり、バーナ外周部からバーナ中心
部への高温ガスの流れ込み量が増え、還元燃焼領域が拡
大し、低NOx燃焼が行える。図12に示す結果からバ
ーナ中心部での微粉炭流の流速に対してバーナ外周部の
微粉炭流の流速を60〜80%となるようにすることに
より、分配器20を設けない場合、すなわち、流速が1
00%の場合よりもNOx低減率が大きくなる。ここで
NOx値は、ボイラ出口部に設置されたNOx計により
測定される。また、一次流速は一次流量がきまっている
一次流路1の径の中心部の油バーナ4を取り除いた面積
で割り、これを0℃のときとするミル出口温度を80℃
として温度補正して求める。
As shown in FIG. 12, in the present invention, the difference in the flow rate of the pulverized coal flow between the outer peripheral portion of the burner and the central portion of the burner increases as the flow speed of the pulverized coal flow in the primary flow path 1 decreases. As a result, the differential pressure also increases, the amount of high-temperature gas flowing from the outer peripheral portion of the burner to the central portion of the burner increases, the reduction combustion region expands, and low NOx combustion can be performed. From the results shown in FIG. 12, when the flow rate of the pulverized coal stream at the outer peripheral portion of the burner is 60 to 80% of the flow rate of the pulverized coal stream at the central portion of the burner, the case where the distributor 20 is not provided, , The flow rate is 1
The NOx reduction rate becomes larger than the case of 00%. Here, the NOx value is measured by a NOx meter installed at the boiler outlet. The primary flow rate is divided by the area of the diameter of the primary flow path 1 where the primary flow rate is fixed, excluding the oil burner 4 at the center, and the mill outlet temperature is defined as 0 ° C.
And temperature-corrected.

【0049】また、図10に示すバーナでは、さらに一
次流路1のベンチュリー部18の後流側から高温ガスを
導入する高温ガス配管22を設け、高温ガス配管22か
ら導入される高温ガスは一次流路1内で膨張して流速を
落とし前記と同様の作用により微粉炭流の着火・保炎性
を高める。
In the burner shown in FIG. 10, a high-temperature gas pipe 22 for introducing a high-temperature gas from the downstream side of the venturi section 18 of the primary flow path 1 is further provided. It expands in the flow path 1 to reduce the flow velocity, and the same action as described above enhances the ignition and flame holding of the pulverized coal stream.

【0050】以上述べたように、外部保炎リング部7、
内部保炎器8及び橋渡し部10さらには分配器20を設
けたバーナは従来バーナに比べ、大幅なNOxの低減化
及び未燃分の低減化が図れる。
As described above, the external flame holding ring 7,
The burner provided with the internal flame stabilizer 8, the bridging portion 10, and the distributor 20 can significantly reduce NOx and unburned fuel as compared with the conventional burner.

【0051】図示していないが図1、図3、図4、図
6、図7、図8及び図10に示した本発明のバーナで
は、橋渡し部10および内部保炎器8の微粉炭流の直撃
を受ける部分に耐摩耗性の高いの耐火性物質を被覆して
も良い。耐摩耗性物質としては、 (1)溶射被覆(自溶性合金、13クロム鋼またはセラ
ミックスなどによる溶射被覆) (2)アルミニウム拡散処理 などを用いることができる。
Although not shown, in the burner of the present invention shown in FIGS. 1, 3, 4, 6, 7, 8 and 10, the pulverized coal stream of the bridging portion 10 and the internal flame stabilizer 8 is formed. May be coated with a highly wear-resistant refractory material. Examples of the wear-resistant substance include (1) thermal spray coating (self-fluxing alloy, thermal spray coating with 13 chrome steel or ceramics), and (2) aluminum diffusion treatment.

【0052】また、橋渡し部10および内部保炎器8の
火炉30の火炎に対向する部分に耐摩耗性の高い耐火性
物質を被覆しても良い。耐火性物質としてはセラミック
スなどを用いるが、セラミックスを用いる場合のセラミ
ックスの種類としてはアルミナ、マグネシア、ジルコニ
アなどの酸化物系と酸化ケイ素、窒化ケイ素などの非酸
化物に分類される。表1にセラミックスの種類と特徴を
示す。
Further, the bridging portion 10 and the portion of the internal flame stabilizer 8 facing the flame of the furnace 30 may be coated with a refractory material having high wear resistance. Ceramics and the like are used as the refractory substance. When ceramics are used, the types of ceramics are classified into oxides such as alumina, magnesia and zirconia and non-oxides such as silicon oxide and silicon nitride. Table 1 shows the types and characteristics of ceramics.

【表1】 [Table 1]

【0053】これら耐火材を一次流路1内に設置する部
材の火炎に対向する部分または微粉炭流に対向する部分
に被覆する際、いかに素地金属に接合するかが問題とな
る。一次流路1内に設置する部材に取り付ける方法とし
ては直接接着剤で取り付ける化学的接着法とボルト止め
等の機械的接合法の2種類がある。機械的接合法はセラ
ミックスへの応力集中防止またはがたつき防止などの工
夫をすることにより、厳しい条件に耐え得る有効な方法
となる。また、化学的接着法においても高熱下における
素材と接着剤の間の熱膨張差によるひずみ発生および素
材からの剥離や接着剤の耐熱温度などの問題点がある
が、耐熱温度1200℃のシリカを主成分とする無機系
接着剤を用い、接着剤の間にひずみを吸収する耐熱クロ
スを介在させることにより、改善することができる。
When these refractory materials are coated on a portion facing the flame or a portion facing the pulverized coal flow of a member provided in the primary flow path 1, how to join the base metal is a problem. As a method of attaching to a member installed in the primary flow channel 1, there are two types of a chemical bonding method of directly attaching with an adhesive and a mechanical joining method such as bolting. The mechanical joining method is an effective method that can withstand severe conditions by devising measures such as preventing stress concentration or rattling on ceramics. Also, in the chemical bonding method, there are problems such as generation of strain due to a difference in thermal expansion between the material and the adhesive under high heat, separation from the material, and a heat resistant temperature of the adhesive. This can be improved by using an inorganic adhesive as a main component and interposing a heat-resistant cloth that absorbs strain between the adhesives.

【0054】本発明では、これら耐火材を内部保炎器8
をはじめとする一次流路1内の設置物の火炎に対向する
部分に被覆することにより、バーナの運転を休止してい
るときにおいても、一次流路1内の火炎輻射による焼損
を防ぐことができる。また、本発明は火炉30内の火炎
の輻射による焼損対策について主に述べたが、微粉炭粒
子の摩耗に対する考慮は前述のように一次流路1内に設
置する部材の微粉炭流に対向する部分に耐摩耗性物質の
被覆をすることでなされているが、一次流路1内に設置
する部材の構造にも反映させている。すなわち、図面に
示した本発明の実施の形態の微粉炭バーナでは、内部保
炎器8、橋渡し部10及び分配器20は全て一次流前流
から後流に行くに従って幅広くなる末広がり形状を持っ
ており、この微粉炭流の流れ方向に対して傾斜角度を4
5℃以下とすることによって、微粉炭などの粒子による
摩耗にも耐えうる構造となっている。
In the present invention, these refractory materials are used in the internal flame stabilizer 8.
And other parts of the primary flow path 1 facing the flame can be prevented from being damaged by flame radiation in the primary flow path 1 even when the operation of the burner is suspended. it can. Although the present invention has mainly described the measures against burning due to the radiation of the flame in the furnace 30, the consideration for the wear of the pulverized coal particles is opposed to the pulverized coal flow of the member installed in the primary flow path 1 as described above. This is done by coating the parts with a wear-resistant substance, but this is also reflected in the structure of the members installed in the primary flow path 1. That is, in the pulverized coal burner according to the embodiment of the present invention shown in the drawings, the internal flame stabilizing unit 8, the bridging unit 10, and the distributor 20 all have a divergent shape that becomes wider from the upstream of the primary flow to the downstream. And the inclination angle is 4 with respect to the flow direction of this pulverized coal stream.
By setting the temperature to 5 ° C. or lower, the structure can withstand wear caused by particles such as pulverized coal.

【0055】また、内部保炎器8と橋渡し部10の断面
末広がり形状は、a)V型、b)U型、c)コの字型及
びd)半円型とすることができる。また、橋渡し部10
の形状は固気混合流体(微粉炭流)の流れの上流側から
下流側に向けて、V字型またはU字型などの断面を有す
る末広がり形状とし、微粉炭による摩耗防止を図ってい
る。
The shape of the inner flame stabilizer 8 and the bridging portion 10 at the end of the cross section can be a) V-shaped, b) U-shaped, c) U-shaped, and d) semicircular. In addition, bridging part 10
Is a divergent shape having a V-shaped or U-shaped cross section from the upstream side to the downstream side of the flow of the solid-gas mixed fluid (pulverized coal flow) to prevent wear due to pulverized coal.

【0056】[0056]

【発明の効果】本発明によれば、通常の微粉炭バーナで
なし得なかったバーナ部での超低NOx化が図れ、同時
に内部保炎器の焼損、灰付着がなくなる。また低NOx
化により排ガスの脱硝装置におけるアンモニア消費量を
削減できる。
According to the present invention, it is possible to reduce the amount of NOx in the burner section, which cannot be achieved by a conventional pulverized coal burner, and at the same time, eliminate the burning of the internal flame stabilizer and the adhesion of ash. Also low NOx
Thus, ammonia consumption in the exhaust gas denitration device can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態の橋渡し部から気体を供
給し、内部保炎器で該気体をジェット噴出させる超低N
Oxバーナ断面図である。
FIG. 1 is a diagram showing an ultra-low N gas in which a gas is supplied from a bridging portion according to an embodiment of the present invention and the gas is jetted by an internal flame stabilizer.
It is an Ox burner sectional view.

【図2】 図1のバーナの内部保炎器部の気体噴出孔か
らの気体噴出状態を示す内部保炎器部部分の断面拡大図
と斜視図である。
FIG. 2 is an enlarged cross-sectional view and a perspective view of an internal flame stabilizer portion showing a gas ejection state from a gas ejection hole of the internal flame stabilizer portion of the burner in FIG. 1;

【図3】 本発明の実施の形態のいくつかの橋渡し部か
ら気体を供給し、内部保炎器を通過して他の橋渡し部か
ら二次流路へ排出する超低NOxバーナ断面図である。
FIG. 3 is a cross-sectional view of an ultra-low NOx burner in which gas is supplied from some bridges and discharged from another bridge to a secondary flow passage through an internal flame stabilizer according to an embodiment of the present invention. .

【図4】 本発明の実施の形態の内部保炎器から気体を
供給して橋渡し部から二次流路へ排出する超低NOxバ
ーナ断面図である。
FIG. 4 is a cross-sectional view of an ultra-low NOx burner for supplying gas from the internal flame stabilizer and discharging the gas from the bridging portion to the secondary flow channel according to the embodiment of the present invention.

【図5】 微粉炭燃焼装置系統図である。FIG. 5 is a system diagram of a pulverized coal combustion device.

【図6】 本発明の実施の形態のいくつかの橋渡し部か
ら気体を供給し内部保炎器を通過して他の橋渡し部から
一次流路内へ排出する超低NOxバーナ断面図である。
FIG. 6 is a cross-sectional view of an ultra-low NOx burner that supplies gas from some bridges and passes through an internal flame stabilizer and discharges from another bridge into a primary flow channel according to an embodiment of the present invention.

【図7】 本発明の実施の形態の内部保炎器から気体を
供給し橋渡し部から一次流路内へ排出する超低NOxバ
ーナ断面図である。
FIG. 7 is a cross-sectional view of an ultra-low NOx burner for supplying gas from the internal flame stabilizer and discharging the gas from the bridging portion into the primary flow channel according to the embodiment of the present invention.

【図8】 本発明の実施の形態の橋渡し部から気体を供
給し、内部保炎器で該気体をジェット噴出させる耐火物
を被覆した内部保炎器と橋渡し部を備えた超低NOxバ
ーナ断面図と正面図である。
FIG. 8 is a cross-sectional view of an ultra-low NOx burner provided with an internal flame stabilizer coated with a refractory material for supplying gas from a bridge portion and jetting the gas with an internal flame stabilizer according to an embodiment of the present invention and a bridge portion. It is a figure and a front view.

【図9】 図8のバーナの内部保炎器部の一次流路側端
部分の曲げ角度と摩耗速度との関係を示す図である。
9 is a view showing a relationship between a bending angle and a wear rate of a primary flow path side end portion of the internal flame stabilizer of the burner of FIG. 8;

【図10】 本発明の実施の形態のいくつかの橋渡し部
から気体を供給し、内部保炎器前流側端部に分配器を配
置し、さらに一次流路のベンチュリー部の後流側から高
温ガスを導入した超低NOxバーナ断面図と正面図であ
る。
FIG. 10 is a view showing a state in which gas is supplied from several bridges according to an embodiment of the present invention, a distributor is arranged at the upstream end of the internal flame stabilizer, and further, from the downstream side of the venturi section of the primary flow path. It is a sectional view and a front view of an ultra-low NOx burner into which a high-temperature gas is introduced.

【図11】 図10の一部断面拡大図である。FIG. 11 is an enlarged partial cross-sectional view of FIG. 10;

【図12】 図8のバーナの微粉炭流れの一次流速と燃
焼ガスのNOx濃度(相対値)の関係を示す図である。
12 is a diagram showing the relationship between the primary flow velocity of the pulverized coal flow of the burner of FIG. 8 and the NOx concentration (relative value) of the combustion gas.

【符号の説明】[Explanation of symbols]

1 一次流路 2 二次流路 3 三次流路 4 重油バーナ 5 二次空気旋回器 6 三次空気旋回器 7 外周保炎リング 8 内部保炎器 9 供給気体ノズル 10 橋渡し部 11 供給気体配管 12 気体供給用ヘ
ッダ 13 高温再循環域 14 噴出ジェット 15 気体排出孔 16 気体(空気)
噴出孔 17 気体通路 18ベンチュリー部 19 濃縮器 20 分配器 22 高温ガス配管 27 流量調整バル
ブ 28 切り換えバルブ 30 火炉 31 FDF 32 冷空気流路 34 空気予熱器(熱交換器) 35 加熱空気流路 38 ミル 40 微粉炭バーナ
部 41 FDF 44 風箱
DESCRIPTION OF SYMBOLS 1 Primary flow path 2 Secondary flow path 3 Tertiary flow path 4 Heavy oil burner 5 Secondary air swirler 6 Tertiary air swirler 7 Peripheral flame holding ring 8 Internal flame holding device 9 Supply gas nozzle 10 Bridge section 11 Supply gas pipe 12 Gas Supply header 13 High temperature recirculation area 14 Jet jet 15 Gas exhaust hole 16 Gas (air)
Outlet 17 Gas passage 18 Venturi section 19 Concentrator 20 Distributor 22 High-temperature gas pipe 27 Flow control valve 28 Switching valve 30 Furnace 31 FDF 32 Cold air flow path 34 Air preheater (heat exchanger) 35 Heated air flow path 38 Mil 40 Pulverized coal burner 41 FDF 44 Wind box

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年11月5日[Submission date] November 5, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項13[Correction target item name] Claim 13

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項14[Correction target item name] Claim 14

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項15[Correction target item name] Claim 15

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項16[Correction target item name] Claim 16

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宝山 登 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内 (72)発明者 森 三紀 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内 (72)発明者 嶺 聡彦 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内 (72)発明者 津村 俊一 広島県呉市宝町6番9号 バブコック日立 株式会社呉工場内 (72)発明者 小林 啓信 茨城県日立市大みか町7丁目1番1号 株 式会社日立製作所日立研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Noboru Takayama 3-36 Takaracho, Kure-shi, Hiroshima Pref. Inside the Kure Laboratory (72) Miki Mori Inventor 3-36 Takaracho Kure-shi, Hiroshima Pref. Babcock Hitachi, Ltd. Inside the Kure Research Institute (72) Inventor Toshihiko Mine 3-36 Takara-cho, Kure City, Hiroshima Prefecture Inside Kure Laboratory, Babcock Hitachi Co., Ltd. (72) Inventor Shunichi Tsumura 6-9 Takara-cho, Kure City, Hiroshima Prefecture Inside Babcock Hitachi Kure Factory ( 72) Inventor Hironobu Kobayashi 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Within Hitachi Research Laboratory, Hitachi, Ltd.

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 固体燃料と搬送用気体からなる固気二相
流を火炉に投入するための一次流路と、該一次流路の外
側に単一または複数の燃焼用含酸素気体を供給する流路
を有するバーナにおいて、 一次流路の出口先端部の外周部に設けられた外周保炎器
と、一次流路の出口先端部の内部に設けられた内部保炎
器と、前記外周保炎器と前記内部保炎器の間に設けられ
る両者を橋渡しする少なくとも一つの橋渡し部と、前記
橋渡し部と前記内部保炎器の内部に気体を通す気体通路
を設け、一つ以上の橋渡し部または内部保炎器の少なく
ともいずれかに前記気体の噴出孔を設けたことを特徴と
する超低NOxバーナ。
1. A primary flow path for introducing a solid-gas two-phase flow composed of a solid fuel and a carrier gas into a furnace, and a single or a plurality of oxygen-containing gases for combustion supplied outside the primary flow path. In a burner having a flow path, an outer flame stabilizer provided on an outer peripheral portion of an outlet end of a primary flow path, an inner flame stabilizer provided inside an outlet end of a primary flow path, and At least one bridging part provided between the vessel and the internal flame stabilizer, and at least one bridging part, and a gas passage for passing gas inside the bridging part and the internal flame stabilizer, and one or more bridging parts or An ultra-low NOx burner, characterized in that at least one of the internal flame stabilizers is provided with the gas ejection hole.
【請求項2】 気体通路は少なくとも一つの橋渡し部か
ら内部保炎器に向けて気体が流れるように設けられ、内
部保炎器の火炉側の部分にはバーナから火炉内に噴出す
る固気二相流に向かって内部保炎器内部を流れる気体を
噴出させる噴出孔を設けたことを特徴とする請求項1記
載の超低NOxバーナ。
2. A gas passage is provided so that gas flows from at least one bridging portion toward the internal flame stabilizing device. A solid-gas gas jetted from a burner into the furnace is provided at a portion of the internal flame stabilizing device on the furnace side. 2. The ultra-low NOx burner according to claim 1, further comprising an ejection hole for ejecting a gas flowing inside the internal flame stabilizer toward the phase flow.
【請求項3】 気体通路は少なくとも一つの橋渡し部か
ら導入されて内部保炎器に向けて気体が流れるように設
けられ、内部保炎器内部を流れる気体が前記気体が導入
された橋渡し部以外の橋渡し部を経由して一次流路また
は燃焼用含酸素気体流路に排出するように前記橋渡し部
には気体噴出孔を備えた流路が設けられたことを特徴と
する請求項1記載の超低NOxバーナ。
3. The gas passage is provided so as to be introduced from at least one bridging portion so that the gas flows toward the internal flame stabilizer, and the gas flowing inside the internal flame stabilizer is a portion other than the bridging portion into which the gas is introduced. The flow path provided with a gas ejection hole is provided in the bridging section so as to be discharged to the primary flow path or the oxygen-containing gas flow path for combustion via the bridging section. Ultra low NOx burner.
【請求項4】 内部保炎器内部を流れる気体をバーナか
ら火炉内に噴出する固気二相流に向かって噴出させる噴
出孔を内部保炎器の火炉側の部分に設けたことを特徴と
する請求項3記載の超低NOxバーナ。
4. An exhaust hole for injecting a gas flowing inside the internal flame stabilizer toward a solid-gas two-phase flow from a burner into the furnace is provided in a portion of the internal flame stabilizer on the furnace side. An ultra-low NOx burner according to claim 3.
【請求項5】 気体通路は内部保炎器から導入されて全
ての橋渡し部を経由して一次流路または燃焼用含酸素気
体流路に排出するように設けられたことを特徴とする請
求項1記載の超低NOxバーナ。
5. The gas passage is provided so as to be introduced from the internal flame stabilizer and discharged to the primary flow passage or the oxygen-containing gas flow passage for combustion through all bridge portions. 2. The ultra-low NOx burner according to 1.
【請求項6】 橋渡し部および内部保炎器の固気二相流
の流れ方向に対して上流側部分の断面形状が下流側に向
けて末広がり形状であることを特徴とする請求項1記載
の超低NOxバーナ。
6. The cross-sectional shape of the upstream portion of the bridging portion and the internal flame stabilizer in the flow direction of the solid-gas two-phase flow is divergent toward the downstream side. Ultra low NOx burner.
【請求項7】 内部保炎器の固気二相流の流れ方向の断
面形状を、その外周側は燃料の流れ方向に平行な壁面を
有する形状とし、その内周側はテーパー状とすることを
特徴とする請求項6記載の超低NOxバーナ。
7. The cross-sectional shape of the internal flame stabilizer in the flow direction of the solid-gas two-phase flow is such that its outer peripheral side has a wall surface parallel to the fuel flow direction, and its inner peripheral side has a tapered shape. 7. The ultra-low NOx burner according to claim 6, wherein:
【請求項8】 内部保炎器に設けられる気体噴出孔は末
広がり形状の気体噴出流を形成するように複数個が内部
保炎器の火炉側の部分に設けられることを特徴とする請
求項1記載の超低NOxバーナ。
8. A plurality of gas ejection holes provided in the internal flame stabilizer are provided at a furnace side portion of the internal flame stabilizer so as to form a divergent gas ejection flow. Ultra low NOx burner as described.
【請求項9】 橋渡し部または内部保炎器内部の気体通
路に流す気体の導入部には粉末固体燃料搬送用の気体供
給系統の低温部もしくは高温部からの気体流路を接続し
たことを特徴とする請求項1記載の超低NOxバーナ。
9. A gas flow passage from a low-temperature section or a high-temperature section of a gas supply system for conveying solid fuel powder is connected to a bridge section or a gas introduction section flowing into a gas passage inside the internal flame stabilizer. The ultra-low NOx burner according to claim 1, wherein:
【請求項10】 橋渡し部または内部保炎器内部の気体
通路に流す気体の導入部に接続する粉末固体燃料搬送用
の気体供給系統の低温部もしくは高温部からの気体流路
には固体燃料搬送用の気体供給系統の低温部もしくは高
温部からの何れかの気体を前記橋渡し部または内部保炎
器気体の導入部に切り換えて供給できる切換手段を備え
たことを特徴とする請求項9記載の超低NOxバーナ。
10. A solid fuel carrier is supplied to a gas flow path from a low temperature part or a high temperature part of a gas supply system for conveying a solid fuel powder, which is connected to a bridge part or a gas introduction part flowing into a gas passage inside an internal flame stabilizer. 10. A switching means for switching and supplying any gas from a low temperature section or a high temperature section of the gas supply system for use to the bridging section or the introduction section of the internal flame stabilizer gas. Ultra low NOx burner.
【請求項11】 内部保炎器または橋渡し部の固気二相
流の流れ方向に対向する部分に耐摩耗性を有する物質を
被覆したことを特徴とする請求項1記載の超低NOxバ
ーナ。
11. The ultra-low NOx burner according to claim 1, wherein a portion of the internal flame stabilizer or the bridge portion facing the flow direction of the solid-gas two-phase flow is coated with a material having wear resistance.
【請求項12】 内部保炎器または橋渡し部の火炉内の
火炎に対向する部分に耐火性を有する物質を被覆したこ
とを特徴とする請求項1記載の超低NOxバーナ。
12. The ultra-low NOx burner according to claim 1, wherein a portion of the internal flame stabilizer or the bridging portion facing the flame in the furnace is coated with a refractory substance.
【請求項13】 橋渡し部または内部保炎器に流す気体
の導入部に、請求項10記載の超低NOxバーナの運転
中は微粉炭搬送用気体供給系統の高温部からの気体を供
給し、前記バーナ運転休止中は微粉炭搬送用気体供給系
統の低温部からの気体を供給することを特徴とする超低
NOxバーナの運転方法。
13. A gas from a high-temperature section of a gas supply system for conveying pulverized coal during the operation of the ultra-low NOx burner according to claim 10, wherein the gas is supplied to a bridge section or an introduction section of a gas flowing to an internal flame stabilizer. The method for operating an ultra-low NOx burner, wherein a gas is supplied from a low-temperature portion of a gas supply system for pulverized coal transport during the pause of the burner operation.
【請求項14】 内部保炎器の一次流路のガス流れ方向
の上流側の端部に一次流路出口断面の外周部の固気二相
流の流速が一次流路出口断面の中心部の固気二相流の流
速より遅くなるように固気二相流を分配する分配器を設
けたことを特徴とする請求項1記載の超低NOxバー
ナ。
14. The flow rate of the solid-gas two-phase flow at the outer peripheral portion of the cross section of the primary flow passage at the upstream end of the primary flow passage in the gas flow direction of the internal flame stabilizer, 2. The ultra-low NOx burner according to claim 1, further comprising a distributor for distributing the solid-gas two-phase flow so as to be slower than the solid-gas two-phase flow.
【請求項15】 一次流路の内部保炎器の設置部のガス
流れ方向の上流側に一次流路の狭あい部を設け、該狭あ
い部と内部保炎器の間の一次流路内に粉末固体粒子の搬
送用気体より高温の気体を導入する高温気体導入管を設
置することを特徴とする請求項14記載の超低NOxバ
ーナ。
15. A narrow portion of the primary flow path is provided on the upstream side in the gas flow direction of the installation portion of the internal flame stabilizer in the primary flow path, and a primary flow path between the narrow portion and the internal flame stabilizer is provided. 15. The ultra-low NOx burner according to claim 14, further comprising a high-temperature gas introduction pipe for introducing a gas higher in temperature than the carrier gas for the powder solid particles.
【請求項16】 前記高温気体導入管には粉末固体燃料
の燃焼用空気の供給路に接続したことを特徴とする請求
項の14記載の超低NOxバーナ。
16. The ultra-low NOx burner according to claim 14, wherein the high-temperature gas introduction pipe is connected to a supply path of combustion air for powdered solid fuel.
JP30050197A 1997-10-31 1997-10-31 Super low nox burner Pending JPH11132414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30050197A JPH11132414A (en) 1997-10-31 1997-10-31 Super low nox burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30050197A JPH11132414A (en) 1997-10-31 1997-10-31 Super low nox burner

Publications (1)

Publication Number Publication Date
JPH11132414A true JPH11132414A (en) 1999-05-21

Family

ID=17885584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30050197A Pending JPH11132414A (en) 1997-10-31 1997-10-31 Super low nox burner

Country Status (1)

Country Link
JP (1) JPH11132414A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002012791A1 (en) * 2000-08-04 2002-02-14 Babcock-Hitachi Kabushiki Kaisha Solid fuel burner and combustion method using solid fuel burner
JP2009204256A (en) * 2008-02-28 2009-09-10 Mitsubishi Heavy Ind Ltd Pulverized coal burner
JP2014085050A (en) * 2012-10-23 2014-05-12 Mitsubishi Heavy Ind Ltd Boiler
JP2015180848A (en) * 2015-06-11 2015-10-15 三菱重工業株式会社 combustion burner
WO2016093341A1 (en) * 2014-12-12 2016-06-16 川崎重工業株式会社 Combustion system
JP2016156530A (en) * 2015-02-23 2016-09-01 三菱日立パワーシステムズ株式会社 Combustion burner, boiler, and combustion method of fuel gas
US9671108B2 (en) 2011-04-01 2017-06-06 Mitsubishi Heavy Industries, Ltd. Combustion burner, solid-fuel-combustion burner, solid-fuel-combustion boiler, boiler, and method for operating boiler
CN114135864A (en) * 2021-12-03 2022-03-04 上海发电设备成套设计研究院有限责任公司 Biomass combustion system device and operation method thereof
WO2023120701A1 (en) * 2021-12-24 2023-06-29 三菱重工業株式会社 Burner and boiler equipped with same, and burner operation method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002012791A1 (en) * 2000-08-04 2002-02-14 Babcock-Hitachi Kabushiki Kaisha Solid fuel burner and combustion method using solid fuel burner
US6715432B2 (en) 2000-08-04 2004-04-06 Babcock-Hitachi Kabushiki Kaisha Solid fuel burner and method of combustion using solid fuel burner
CN100453901C (en) * 2000-08-04 2009-01-21 巴布考克日立株式会社 Solid fuel burner and combustion method using solid fuel burner
JP4969015B2 (en) * 2000-08-04 2012-07-04 バブコック日立株式会社 Solid fuel burner and combustion method using solid fuel burner
JP2009204256A (en) * 2008-02-28 2009-09-10 Mitsubishi Heavy Ind Ltd Pulverized coal burner
US9671108B2 (en) 2011-04-01 2017-06-06 Mitsubishi Heavy Industries, Ltd. Combustion burner, solid-fuel-combustion burner, solid-fuel-combustion boiler, boiler, and method for operating boiler
JP2014085050A (en) * 2012-10-23 2014-05-12 Mitsubishi Heavy Ind Ltd Boiler
JP2016114268A (en) * 2014-12-12 2016-06-23 川崎重工業株式会社 Combustion system
WO2016093341A1 (en) * 2014-12-12 2016-06-16 川崎重工業株式会社 Combustion system
CN107110494A (en) * 2014-12-12 2017-08-29 川崎重工业株式会社 Combustion system
CN107110494B (en) * 2014-12-12 2019-08-23 川崎重工业株式会社 Combustion system
US10563863B2 (en) 2014-12-12 2020-02-18 Kawasaki Jukogyo Kabushiki Kaisha Combustion system
JP2016156530A (en) * 2015-02-23 2016-09-01 三菱日立パワーシステムズ株式会社 Combustion burner, boiler, and combustion method of fuel gas
JP2015180848A (en) * 2015-06-11 2015-10-15 三菱重工業株式会社 combustion burner
CN114135864A (en) * 2021-12-03 2022-03-04 上海发电设备成套设计研究院有限责任公司 Biomass combustion system device and operation method thereof
WO2023120701A1 (en) * 2021-12-24 2023-06-29 三菱重工業株式会社 Burner and boiler equipped with same, and burner operation method

Similar Documents

Publication Publication Date Title
JP4235218B2 (en) Combustion burner and combustion apparatus provided with the burner
US5944507A (en) Oxy/oil swirl burner
US7553153B2 (en) Burner and combustion method for solid fuels
AU708109B2 (en) Combustion burner and combustion apparatus provided with said burner
JP2004205161A (en) Solid fuel boiler and boiler combustion method
JPS60226609A (en) Combustion device for coal
JPS58136909A (en) Industrial burner and method of feeding secondary air into industrial burner
JP5386230B2 (en) Fuel burner and swirl combustion boiler
JPH11281010A (en) Solid fuel combustion burner and solid fuel combustor
JPH11132414A (en) Super low nox burner
JPH01500049A (en) Annular nozzle burner and method of using the annular nozzle burner
JPH10220707A (en) Burner for powdery solid fuel and combustion apparatus therewith
WO2007105335A1 (en) In-furnace gas injection port
JP2638040B2 (en) Pulverized coal combustion equipment
JPH04214102A (en) Pulverized coal boiler, pulverized coal boiler system, and pulverized coal burner
JPH11148610A (en) Solid fuel combustion burner and solid fuel combustion apparatus
JPH09196310A (en) Finely powdered coal burner and finery powdered coal boiler, and method for combustion of finely powdered coal
JPH10318504A (en) High capacity pulverized solid fuel burner
JP2006162208A (en) Burner, and its operating method
JP2000039108A (en) LOW NOx BURNER
JPH11211010A (en) Method for combustion in pulverized coal-fired boiler
WO2022024552A1 (en) Cyclone burner, cyclone burner unit, nozzle unit, and modification method for cyclone burner
JPS6370009A (en) Pulverized coal burning equipment
JP2001012703A (en) Burner, and combustor equipped therewith
JPS6237606A (en) Solid fuel burning device with low nox concentration