JP2009170808A - 有機電界発光素子 - Google Patents

有機電界発光素子 Download PDF

Info

Publication number
JP2009170808A
JP2009170808A JP2008009905A JP2008009905A JP2009170808A JP 2009170808 A JP2009170808 A JP 2009170808A JP 2008009905 A JP2008009905 A JP 2008009905A JP 2008009905 A JP2008009905 A JP 2008009905A JP 2009170808 A JP2009170808 A JP 2009170808A
Authority
JP
Japan
Prior art keywords
group
layer
light emitting
organic electroluminescent
substituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008009905A
Other languages
English (en)
Inventor
Yoshiyuki Toya
由之 戸谷
Takahiko Ochi
貴彦 越智
Yoshimitsu Tanabe
良満 田辺
Masakatsu Nakatsuka
正勝 中塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2008009905A priority Critical patent/JP2009170808A/ja
Publication of JP2009170808A publication Critical patent/JP2009170808A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

【課題】発光層に燐光発光材料を含有する「燐光発光材料を用いた有機電界発光素子」の、発光効率および耐久性を向上させることを目的とする。
【解決手段】一対の電極間に、発光層を含む機能層を挟持してなる有機電界発光素子であって、前記発光層は燐光発光材料を含有し、前記機能層のいずれかの層は、一般式(1)で表される化合物の少なくとも1種を含有する、有機電界発光素子。
【化1】
Figure 2009170808

【選択図】なし

Description

本発明は、有機電界発光素子に関する。
電界発光現象を利用する電界発光素子は、液晶表示に比べて自発光型であるために視認性が高く、さらに高速な応答性が得られるため、ディスプレイ等に使用すると鮮明な画像表示が可能であり、また、全固体型素子であるために耐衝撃性に優れている等の特徴を有している。そのため、近年、薄型ディスプレイ、液晶ディスプレイのバックライト、あるいは平面光源などに広く使用されることが期待されている。
電界発光素子は、構成する材料により無機電界発光素子と、有機電界発光素子とに大別することができる。無機電界発光素子は硫化亜鉛等の無機材料を用いた分散型電界発光素子であるが、この分散型電界発光素子の駆動方式は高電界の印加により、加速された電子が発光中心を衝突励起して発光させるという所謂「衝突励起型発光」であるため、高い交流電圧で駆動させる必要がある。そのため、駆動回路が複雑であったり、また、輝度が低い等の課題を有している。
一方、有機電界発光素子(有機エレクトロルミネッセンス素子:有機EL素子)は、電極から注入された電荷(正孔および電子)が有機化合物からなる発光層中で再結合して発光するという所謂「注入型発光」であるため、低電圧駆動することが可能である(非特許文献1及び特許文献1)。また、有機化合物の分子設計を変更することによって、任意の発光色、特性を容易に変化させることが可能であるという利点もある。このため現在では、種々の材料や素子構成等が提案され、研究開発が活発化している。
その一方で、これまでに提案された材料を用いる有機電界発光素子には、まだ様々な問題・課題が残されている。例えば、駆動状態、あるいは非駆動状態にも関わらず、保存するだけで素子の機能が劣化して発光輝度が低下するという発光寿命上の問題が存在する。また、一般的に発光輝度がまだ低く、実用上充分ではない。
発光輝度を向上させる方法として発光層にホスト材料としてトリス(8−キノリノラート)アルミニウム等を使用し、ゲスト化合物としてクマリン誘導体、ピラン誘導体を使用した有機電界発光素子(非特許文献2)、ゲスト化合物としてN,N−ジメチルキナクリドンを使用した有機電界発光素子(例えば、非特許文献3)、ゲスト化合物としてルブレンを使用した有機電界発光素子(例えば、非特許文献4)が提案されている。
これらの有機電界発光は、有機分子が電場より注入されたキャリア電子及び正孔の再結合により励起状態を形成し、基底状態に落ちる際に発光が生じる。この場合、励起された有機分子は高いエネルギーの励起一重項状態(電子が逆スピン)と低いエネルギーの励起三重項状態(電子が同スピン)をとる。
さらに近年、有機電界発光素子の研究において、発光効率を高める材料として、有機燐光発光物質が注目されている。そして有機EL素子の発光層のゲスト材料として、燐光材料を利用することも提案されている(非特許文献5、非特許文献6)。一般に燐光の発光過程は、基底状態から一重項励起状態に有機分子が励起され、続いて一重項励起状態から三重項励起状態へ項間交差(intersystem crossing)と称される無放射遷移が起こり、燐光発光は三重項励起状態→基底状態の発光を示す。
有機電界発光素子の発光層において、有機燐光発光物質の一重項励起状態と三重項励起状態とを利用すれば、高い発光効率が達成されると予想されている。三重項励起状態を利用する理由としては、有機電界発光素子内で電子と正孔が再結合する際にはスピン多重度の違いから一重項励起子と三重項励起子とが3:1の割合で生成すると考えられているので、蛍光を使った素子の3倍の発光効率の達成が考えられているためである。
近年、燐光発光を用いた有機電界発光素子の発光効率および耐久性を向上させる目的で、有機発光層のホスト材料や、発光層に隣接する層の材料の改良が盛んに行われている。例えば、燐光発光材料を含む発光層に、4,4'-ビス(N-カルバゾリル)-1,1'-ビフェニル(「CBP」ともいう)や、1,3-ビス(N-カルバゾリル)ベンゼン(「m-CP」ともいう)に代表されるカルバゾール誘導体をホスト材料として用いることがよく知られている。しかしながら、まだ十分な性能を有しているとは言い難く、さらなる高効率化および耐久性の向上が望まれている(例えば、特許文献2及び3参照)。
さらに、有機電界発光素子の発光層などにフルオレニル骨格を有するアミン化合物を含有させる技術も知られている(例えば、特許文献4参照)。
Appl.Phys.Lett.,51,913(1987) J.Appl.Phys.,65,3610(1989) Appl.Phys.Lett.,70,1665(1997) Jpn.J.Appl.Phys.,34,L824(1995) Appl.Phys.Lett.,74,442(1999) Appl.Phys.Lett.,75,4(1999) 特開昭63−264692号公報 国際公開第03/80760号パンフレット 国際公開第04/74399号パンフレット 特開平11−162842号公報
本発明は、発光層に燐光発光材料を含有する「燐光発光材料を用いた有機電界発光素子」の、発光効率および耐久性を向上させることを目的とする。
本発明者は、発光層に燐光発光材料を含有する「燐光発光材料を用いた有機電界発光素子」において、特定の化合物を、発光層に含まれるホスト化合物として含有させるか、または発光層の陽極側に隣接する正孔注入輸送層に含有させると、有機電界発光素子の発光効率や耐久性が向上することを見出した。
すなわち、本発明は以下に示す有機電界発光素子に関する。
[1]一対の電極間に、発光層を含む機能層を挟持してなる有機電界発光素子であって、
前記発光層は燐光発光材料を含有し、
前記機能層のいずれかの層は、一般式(1)で表される化合物の少なくとも1種を含有する、有機電界発光素子。
Figure 2009170808
(式(1)において、
Ar〜Arは、置換または未置換のアリール基を表し、
ArとAr、およびArとArは、結合している窒素原子と共に含窒素複素環を形成していてもよく、
およびRは、水素原子、直鎖、分岐または環状のアルキル基、置換または未置換のアリール基、あるいは置換または未置換アラルキル基を表し、
およびZは、水素原子、ハロゲン原子、直鎖、分岐または環状のアルキル基、直鎖、分岐または環状のアルコキシ基、あるいは置換または未置換のアリール基を表し、
Xは置換または未置換のアリーレン基を表す)
[2]一般式(1)で表される化合物を含有する層が、発光層、または正孔注入輸送層である、[1]に記載の有機電界発光素子。
本発明により、発光効率や耐久性などが優れた、燐光発光材料を用いた有機電界発光素子を提供することができる。
本発明の有機電界発光素子は一対の電極を有し、前記一対の電極間に少なくとも発光層を有する機能層が狭持される。前記発光層には、燐光発光材料が含有される。前記一対の電極間に狭持される機能層には、発光層に含まれる化合物の正孔注入機能や正孔輸送機能、および電子注入機能や電子輸送機能に応じて、電荷注入輸送層が含まれうる。電荷注入輸送層とは、正孔注入成分を含有する正孔注入輸送層(発光層の陽極側に配置される)や、電子注入輸送成分を含有する電子注入輸送層(発光層の陰極側に配置される)などである。
発光層に含まれる化合物の正孔注入機能や正孔輸送機能、および電子注入機能や電子輸送機能が高い場合には、発光層だけの一層型素子(電子注入輸送層がない)とすることができる。一層型素子では、発光層が正孔注入輸送層および/または電子注入輸送層の機能を兼ね備える。
また、発光層に含まれる化合物の正孔注入機能や正孔輸送機能が十分でない場合には、発光層の陽極側に正孔注入輸送層を設けた二層型の素子とすることが好ましい。一方、発光層に含まれる化合物の電子注入機能や電子輸送機能が十分でない場合には、発光層の陰極側に電子注入輸送層を設けた二層型の素子とすることができる。もちろん、発光層を、正孔注入輸送層と電子注入輸送層で挟み込んだ三層型の素子とすることもできる。
また、正孔注入輸送層、電子注入輸送層、および発光層のそれぞれの層は、一層構造であっても多層構造であってもよい。正孔注入輸送層および電子注入輸送層はそれぞれ、注入機能を有する層と、輸送機能を有する層とを別々に有していてもよい。
より具体的に、本発明の有機発光素子の構造の例が図1〜図8に示されるが、特にこれらに限定されるわけではない。
図1には、基板1/陽極2/正孔注入輸送層3/発光層4/電子注入輸送層5/陰極6と、電源7を含む素子(EL−1)が;図2には、基板1/陽極2/正孔注入輸送層3/発光層4/陰極6と、電源7を含む素子(EL−2)が;図3には、基板1/陽極2/発光層4/電子注入輸送層5/陰極6と、電源7を含む素子(EL−3)が;図4には、基板1/陽極2/発光層4/陰極型6と、電源7を含む素子(EL−4)が示される。
図5Aには、基板1/陽極2/正孔注入層3’/正孔輸送層3”/発光層4/電子注入輸送層5/陰極6と、電源7を含む素子(EL−5A)が示される。
一方、図5Bには、基板1/陽極2/正孔注入輸送層3/発光層4/正孔阻止層(電子輸送層)5’/電子注入輸送層5/陰極6と、電源7を含む素子(EL−5B)が示される。
さらに、図5Cには、基板1/陽極2/正孔注入層3’/正孔輸送層3”/発光層4/正孔阻止層(電子輸送層)5’/電子注入輸送層5/陰極6と、電源7を含む素子(EL−5C)が示される。
また、図6〜図8には、EL−4に類似する素子が示される。つまり、図6には、正孔注入輸送成分3aと、発光成分4aと、電子注入成分5aとを混合させた発光層を一対の電極間に挟持させた型の素子(EL−6)が;図7には、正孔注入輸送成分3aと、発光成分4aとを混合させた発光層を、一対の電極間に挟持させた型の素子(EL−7)が;図8には、発光層として発光成分4aと、電子注入輸送成分5aを混合させた発光層を、一対の電極間に挟持させた型の素子(EL−8)が示される。
本発明の有機電界発光素子の好ましい素子構成は、(EL−1)型素子、(EL−2)型素子、(EL−3)型素子、(EL−5A)型素子、(EL−5B)型素子、(EL−5C)型素子、(EL−6)型素子または(EL−7)型素子であり、より好ましくは、(EL−1)型素子、(EL−2)型素子、(EL−5A)型素子、(EL−5B)型素子、(EL−5C)型素子または(EL−7)型素子である。
もちろん、本発明の有機電界発光素子の素子構成は、これらに限定されるものではない。それぞれの型の素子において、正孔注入輸送層、発光層、電子注入輸送層をそれぞれ、複数設けてもよい。また、それぞれの型の素子において、正孔注入輸送層と発光層との間に、発光成分と正孔注入輸送成分の混合層を設けてもよく、電子注入輸送層と発光層との間に、発光成分と電子注入輸送成分の混合層を設けてもよい。
燐光発光材料
本発明の有機発光素子の発光層は、燐光発光材料を含む。燐光発光材料は、発光層においてドーパント材料(またはゲスト材料)として作用することが好ましい。発光層に含有される燐光発光材料は、一種単独でも、二種以上の組合せでもよい。燐光発光材料は、特に限定されないが、遷移金属錯体であることが好ましい。遷移金属錯体の例には、下記一般式(a−1)または一般式(a−2)で表される化合物が含まれる。
Figure 2009170808
一般式(a−1)におけるMは、m価の金属原子を表し、好ましくは、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金または金を表す。
一般式(a−1)におけるAは、5員または6員の含窒素複素環を形成するための原子群を表す。形成される含窒素複素環は、置換基を有していてもよい。含窒素複素環の好ましい例には、ピリジル、ピリミジル、ピラジン、トリアジン、ベンゾチアゾール、ベンゾオキサゾール、ベンゾイミダゾール、キノリル、イソキノリル、キノキサリン、およびフェナントリレンなどが含まれる。
一般式(a−1)におけるAは、5員または6員の環状構造を形成するための原子群を表す。形成される環状構造は、芳香族炭化水素環または芳香族複素環であり、置換基を有していてもよい。芳香族炭化水素環または芳香族複素環の好ましい例には、フェニル、ビフェニル、ナフチル、アントリル、チエニル、ピリジル、キノリル、およびイソキノリルなどが含まれる。
一般式(a−1)におけるAまたはAが有する置換基の例には、フッ素原子等のハロゲン原子;メチル基、エチル基等の炭素数1〜6のアルキル基;ビニル基、アリル基等の炭素数2〜6のアルケニル基;メトキシカルボニル基、エトキシカルボニル基等の炭素数2〜6のアルコキシカルボニル基;メトキシ基、エトキシ基等の炭素数1〜6のアルコキシ基;フェノキシ基、ベンジルオキシ基などのアリールオキシ基;ジメチルアミノ基、ジエチルアミノ基等のジアルキルアミンオ基;アセチル基等のアシル基;トリフルオロメチル基等のハロアルキル基;シアノ基などが含まれる。
LおよびL’はMに配位可能な原子を表し、LおよびL’を繋ぐ点線は結合を形成していても、分離していてもよいことを表す。また、nは1〜mの整数を表す。
一方、一般式(a−2)において、V〜Vは水素原子または、アルキル基、あるいは、アリール基から選ばれる置換基を表し;Y〜Yは、C−V(Vは水素原子、アルキル基、またはアリール基を表す)、あるいは窒素原子を表し;Mは金属原子を表す。
一般式(a−1)または一般式(a−2)で表される燐光発光材料の具体例を以下に示すが、下記の化合物に限定されるものではない。
Figure 2009170808
燐光材料を含む発光層に、ホスト化合物として一般式(1)で表される化合物および/または一般式(1)で表される化合物以外の発光機能を有する化合物が含まれる場合には、燐光発光材料の含有量は、ホスト化合物に対して、0.001から40重量%であることが好ましく、0.01〜30重量%であることがより好ましく、0.1〜20重量%であることがさらに好ましい。
発光層における一般式(1)以外の発光機能を有する化合物の含有量は、一般式(1)で表される化合物に対して、0.001〜40重量%であることが好ましく、0.05〜30重量%であることがより好ましく、0.1〜20重量%であることがさらに好ましい。
一般式(1)で表される化合物
本発明の有機電界発光素子は、一対の電極に狭持される機能層の、少なくともいずれかの一層に、一般式(1)で表される化合物を含む。一般式(1)で表される化合物は、正孔注入輸送層および/または発光層に含まれることが好ましく、発光層に含まれることがより好ましい。発光層に含まれる一般式(1)で表される化合物は、ホスト材料として作用することが好ましい。
Figure 2009170808
式(1)において、Ar〜Arは置換または未置換のアリール基を表し、ArとAr、およびArとArは結合している窒素原子と共に含窒素複素環を形成していてもよい。
Ar〜Arは置換または未置換のアリール基を表す。アリール基の例には、フェニル基、ナフチル基、アントリル基などの炭素環式芳香族基や、フリル基、チエニル基、ピリジル基などの複素環式芳香族基が含まれる。Ar〜Arは、縮合環ではなく、単環のアリール基であることが好ましい。
Ar〜Arはアリール基を示すが、未置換のアリール基であるか;あるいはハロゲン原子、アルキル基、アルコキシ基、またはアリール基などで単置換または多置換されているアリール基であることが好ましい。またアリール基は、総炭素数6〜20の炭素環式芳香族基または総炭素数3〜20の複素環式芳香族基であることが好ましい。
より好ましいアリール基は、未置換であるか;あるいはハロゲン原子、炭素数1〜14のアルキル基、炭素数1〜14のアルコキシ基、もしくは炭素数6〜10のアリール基で単置換または多置換されている、総炭素数6〜20の炭素環式芳香族基である。
さらに好ましいアリール基は、未置換であるか;あるいはハロゲン原子、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、または炭素数6〜10のアリール基で単置換もしくは多置換されている、総炭素数6〜16の炭素環式芳香族基である。
Ar〜Arの第1の具体例は、未置換または置換基を有するフェニル基である。つまり、Ar〜Arの例には、未置換のフェニル基;アルキル基を有するフェニル基;アルコキシ基を有するフェニル基;アリール基を有するフェニル基;ハロゲン原子を有するフェニル基などが含まれる。
アルキル基を有するフェニル基の例には、4-メチルフェニル基、3-メチルフェニル基、2-メチルフェニル基、4-エチルフェニル基、3-エチルフェニル基、2-エチルフェニル基、4-n-プロピルフェニル基、4-イソプロピルフェニル基、2-イソプロピルフェニル基、4-n-ブチルフェニル基、4-イソブチルフェニル基、4-sec-ブチルフェニル基、2-sec-ブチルフェニル基、4-tert-ブチルフェニル基、3-tert-ブチルフェニル基、2-tert-ブチルフェニル基、4-n-ペンチルフェニル基、4-イソペンチルフェニル基、2-ネオペンチルフェニル基、4-tert-ペンチルフェニル基、4-n-ヘキシルフェニル基、4-(2'-エチルブチル)フェニル基、4-n-ヘプチルフェニル基、4-n-オクチルフェニル基、4-(2'-エチルヘキシル)フェニル基、4-tert-オクチルフェニル基、4-n-デシルフェニル基、4-n-ドデシルフェニル基、4-n-テトラデシルフェニル基、4-シクロペンチルフェニル基、4-シクロヘキシルフェニル基、4-(4'-メチルシクロヘキシル)フェニル基、4-(4'-tert-ブチルシクロヘキシル)フェニル基、3-シクロヘキシルフェニル基、2-シクロヘキシルフェニル基、4-エチル-1-ナフチル基、6-n-ブチル-2-ナフチル基、2,4-ジメチルフェニル基、2,5-ジメチルフェニル基、3,4-ジメチルフェニル基、3,5-ジメチルフェニル基、2,6-ジメチルフェニル基、2,4-ジエチルフェニル基、2,3,5-トリメチルフェニル基、2,3,6-トリメチルフェニル基、3,4,5-トリメチルフェニル基、2,6-ジエチルフェニル基、2,5-ジイソプロピルフェニル基、2,6-ジイソブチルフェニル基、2,4-ジ-tert-ブチルフェニル基、2,5-ジ-tert-ブチルフェニル基、4,6-ジ-tert-ブチル-2-メチルフェニル基、5-tert-ブチル-2-メチルフェニル基、4-tert-ブチル-2,6-ジメチルフェニル基などが含まれる。
アルコキシ基を有するフェニル基の例には、4-メトキシフェニル基、3-メトキシフェニル基、2-メトキシフェニル基、4-エトキシフェニル基、3-エトキシフェニル基、2-エトキシフェニル基、4-n-プロポキシフェニル基、3-n-プロポキシフェニル基、4-イソプロポキシフェニル基、2-イソプロポキシフェニル基、4-n-ブトキシフェニル基、4-イソブトキシフェニル基、2-sec-ブトキシフェニル基、4-n-ペンチルオキシフェニル基、4-イソペンチルオキシフェニル基、2-イソペンチルオキシフェニル基、4-ネオペンチルオキシフェニル基、2-ネオペンチルオキシフェニル基、4-n-ヘキシルオキシフェニル基、2-(2'-エチルブチル)オキシフェニル基、4-n-オクチルオキシフェニル基、4-n-デシルオキシフェニル基、4-n-ドデシルオキシフェニル基、4-n-テトラデシルオキシフェニル基、4-シクロヘキシルオキシフェニル基、2-シクロヘキシルオキシフェニル基、2-メチル-4-メトキシフェニル基、2-メチル-5-メトキシフェニル基、3-メチル-5-メトキシフェニル基、3-エチル-5-メトキシフェニル基、2-メトキシ-4-メチルフェニル基、3-メトキシ-4-メチルフェニル基、2,4-ジメトキシフェニル基、2,5-ジメトキシフェニル基、2,6-ジメトキシフェニル基、3,4-ジメトキシフェニル基、3,5-ジメトキシフェニル基、3,5-ジエトキシフェニル基、3,5-ジ-n-ブトキシフェニル基、2-メトキシ-4-エトキシフェニル基、2-メトキシ-6-エトキシフェニル基、3,4,5-トリメトキシフェニル基などが含まれる。
アリール基を有するフェニル基の例には、4-フェニルフェニル基、3-フェニルフェニル基、2-フェニルフェニル基、4-(4'-メチルフェニル)フェニル基、4-(3'-メチルフェニル)フェニル基、4-(4'-メトキシフェニル)フェニル基、4-(4’-n-ブトキシフェニル)フェニル基、2-(2'-メトキシフェニル)フェニル基、4-(4'-クロロフェニル)フェニル基、3-メチル-4-フェニルフェニル基、3-メトキシ-4-フェニルフェニル基などが含まれる。
ハロゲン原子を有するフェニル基の例には、 4-フルオロフェニル基、3-フルオロフェニル基、2-フルオロフェニル基、4-クロロフェニル基、3-クロロフェニル基、2-クロロフェニル基、4-ブロモフェニル基、2-ブロモフェニル基、2,3-ジフルオロフェニル基、2,4-ジフルオロフェニル基、2,5-ジフルオロフェニル基、2,6-ジフルオロフェニル基、3,4-ジフルオロフェニル基、3,5-ジフルオロフェニル基、2,3-ジクロロフェニル基、2,4-ジクロロフェニル基、2,5-ジクロロフェニル基、3,4-ジクロロフェニル基、3,5-ジクロロフェニル基、2,5-ジブロモフェニル基、2,4,6-トリクロロフェニル基、2-フルオロ-4-メチルフェニル基、2-フルオロ-5-メチルフェニル基、3-フルオロ-2-メチルフェニル基、3-フルオロ-4-メチルフェニル基、2-メチル-4-フルオロフェニル基、2-メチル-5-フルオロフェニル基、3-メチル-4-フルオロフェニル基、2-クロロ-4-メチルフェニル基、2-クロロ-5-メチルフェニル基、2-クロロ-6-メチルフェニル基、2-メチル-3-クロロフェニル基、2-メチル-4-クロロフェニル基、3-メチル-4-クロロフェニル基、2-クロロ-4,6-ジメチルフェニル基、2-メトキシ-4-フルオロフェニル基、2-フルオロ-4-メトキシフェニル基、2-フルオロ-4-エトキシフェニル基、2-フルオロ-6-メトキシフェニル基、3-フルオロ-4-エトキシフェニル基、3-クロロ-4-メトキシフェニル基、2-メトキシ-5-クロロフェニル基、3-メトキシ-6-クロロフェニル基、5-クロロ-2,4-ジメトキシフェニル基などが含まれる。
Ar〜Arの第2の具体例は、未置換または置換基を有するナフチル基である。ナフチル基の例には、1-ナフチル基、2-ナフチル基、2-メトキシ-1-ナフチル基、4-メトキシ-1-ナフチル基、4-n-ブトキシ-1-ナフチル基、5-エトキシ-1−ナフチル基、6-メトキシ-2-ナフチル基、6-エトキシ-2-ナフチル基、6-n-ブトキシ-2-ナフチル基、6-n-ヘキシルオキシ-2-ナフチル基、7-メトキシ-2-ナフチル基、7-n-ブトキシ-2-ナフチル基、4-クロロ-1-ナフチル基、4-クロロ-2-ナフチル基、6-ブロモ-2-ナフチル基、2,4-ジクロロ-1-ナフチル基、1,6-ジクロロ-2-ナフチル基などが含まれる。
Ar〜Arの第3の具体例は、未置換または置換基を有するフルオレニル基である。フルオレニル基の例には、2-フルオレニル基、9-メチル-2-フルオレニル基、9-エチル-2-フルオレニル基、9-n-ヘキシル-2-フルオレニル基、9,9-ジメチル-2-フルオレニル基、9,9-ジエチル-2-フルオレニル基、9,9-ジ-n-プロピル-2-フルオレニル基、9-フェニル-2-フルオレニル基などが含まれる。
Ar〜Arの他の具体例には、2-アントリル基、9-アントリル基、4-キノリル基、4-ピリジル基、3-ピリジル基、2-ピリジル基、3-フリル基、2-フリル基、3-チエニル基、2-チエニル基、2-オキサゾリル基、2-チアゾリル基、2-ベンゾオキサゾリル基、2-ベンゾチアゾリル基、2-ベンゾイミダゾリル基などが含まれ、これらは置換基を有していてもよい。
一般式(1)における−NArArまたは−NArArは、窒素原子と共に含窒素複素環を形成していてもよい。−NArArまたは−NArArが形成する含窒素複素環は、置換または未置換の−N−カルバゾイル基、置換または未置換の−N−フェノキサジイル基、あるいは置換または未置換の−N−フェノチアジイル基であることが好ましい。
−NArArまたは−NArArは、未置換であるか;あるいはハロゲン原子、炭素数1〜10のアルキル基、炭素数1〜10のアルコキシ基、または炭素数6〜10のアリール基などで単置換または多置換されている、−N−カルバゾイル基、−N−フェノキサジイル基、または−N−フェノチアジイル基であることがより好ましい。
−NArArまたは−NArArは、未置換であるか;あるいはハロゲン原子、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、または炭素数6〜10のアリール基などで単置換あるいは多置換されている、−N−カルバゾイル基、−N−フェノキサジイル基、または−N−フェノチアジイル基であることがさらに好ましい。
−NArArまたは−NArArは、未置換の−N−カルバゾイル基、未置換の−N−フェノキサジイル基、あるいは未置換の−N−フェノチアジイル基であることが特に好ましく、なかでも未置換の−N−カルバゾイル基が好ましい。
−NArArまたは−NArArが示す含窒素複素環の置換基の具体例には、-N-カルバゾイル基、2-メチル-N-カルバゾイル基、3-メチル-N-カルバゾイル基、4-メチル-N-カルバゾイル基、3-n-ブチル-N-カルバゾイル基、3-n-ヘキシル-N-カルバゾイル基、3-n-オクチル-N-カルバゾイル基、3-n-デシル-N-カルバゾイル基、3,6-ジメチル-N-カルバゾイル基、2-メトキシ-N-カルバゾイル基、3-メトキシ-N-カルバゾイル基、3-エトキシ-N-カルバゾイル基、3-イソプロポキシ-N-カルバゾイル基、3-n-ブトキシ-N-カルバゾイル基、3-n-オクチルオキシ-N-カルバゾイル基、3-n-デシルオキシ-N-カルバゾイル基、3-フェニル-N-カルバゾイル基、3-(4'-メチルフェニル)-N-カルバゾイル基、3-(4'-tert-ブチルフェニル)-N-カルバゾイル基、3-クロロ-N-カルバゾイル基、-N-フェノキサジイル基、-N-フェノチアジイル基、2-メチル-N-フェノチアジイル基などが含まれる。
一般式(1)におけるRおよびRは、水素原子、直鎖、分岐または環状のアルキル基、置換または未置換のアリール基、あるいは置換または未置換アラルキル基を表す。RおよびRは、水素原子、炭素数1〜16の直鎖、分岐または環状のアルキル基、炭素数4〜16の置換または未置換のアリール基、あるいは炭素数5〜16の置換または未置換のアラルキル基であることが好ましく;水素原子、炭素数1〜8の直鎖、分岐または環状のアルキル基、炭素数6〜12の置換または未置換のアリール基、あるいは炭素数7〜12の置換または未置換のアラルキル基であることがより好ましく;炭素数1〜8の直鎖、分岐または環状のアルキル基、炭素数6〜10の炭素環式芳香族基、あるいは炭素数7〜10の炭素環式アラルキル基であることがさらに好ましい。
一般式(1)におけるRおよびRで示されるアリール基の具体例は、Ar〜Arの具体例と同様の置換または未置換のアリール基である。
およびRで示されるアルキル基の具体例には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、シクロペンチル基、n-ヘキシル基、2-エチルブチル基、3,3-ジメチルブチル基、シクロヘキシル基、n-ヘプチル基、シクロヘキシルメチル基、n-オクチル基、tert-オクチル基、2-エチルヘキシル基、n-ノニル基、n-デシル基、n-ドデシル基、n-テトラデシル基、n-ヘキサデシル基などが含まれるが、これらに限定されるものではない。
およびRで示されるアラルキル基の具体例には、ベンジル基、フェネチル基、α-メチルベンジル基、α,α-ジメチルベンジル基、1-ナフチルメチル基、2-ナフチルメチル基、フルフリル基、2-メチルベンジル基、3-メチルベンジル基、4-メチルベンジル基、4-エチルベンジル基、4-イソプロピルベンジル基、4-tert-ブチルベンジル基、4-n-ヘキシルベンジル基、4-ノニルベンジル基、3,4-ジメチルベンジル基、3-メトキシベンジル基、4-メトキシベンジル基、4-エトキシベンジル基、4-n-ブトキシベンジル基、4-n-ヘキシルオキシベンジル基、4-ノニルオキシベンジル基、4-フルオロベンジル基、3-フルオロベンジル基、2-クロロベンジル基、4-クロロベンジル基などが含まれるが、これらに限定されるものではない。
一般式(1)におけるZおよびZは、水素原子、ハロゲン原子、直鎖、分岐または環状のアルキル基、直鎖、分岐または環状のアルコキシ基、あるいは置換または未置換のアリール基を表す。
およびZは、水素原子、ハロゲン原子、炭素数1〜16の直鎖、分岐または環状のアルキル基、炭素数1〜16の直鎖、分岐または環状のアルコキシ基、あるいは炭素数4〜20の置換または未置換のアリール基であることが好ましく;水素原子、ハロゲン原子、炭素数1〜8の直鎖、分岐または環状のアルキル基、炭素数1〜8の直鎖、分岐または環状のアルコキシ基、あるいは炭素数6〜12の置換または未置換のアリール基であることがより好ましく;水素原子であることがさらに好ましい。
およびZで示されるハロゲン原子の例には、フッ素原子、塩素原子、臭素原子などが含まれる。ZおよびZで示されるアルキル基の具体例は、RおよびRの具体例と同様の直鎖、分岐または環状のアルキル基である。ZおよびZで示されるアリール基の具体例は、Ar〜Arの具体例と同様の置換または未置換のアリール基である。
およびZで示されるアルコキシ基の具体例には、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、n-ペンチルオキシ基、イソペンチルオキシ基、ネオペンチルオキシ基、シクロペンチルオキシ基、n-ヘキシルオキシ基、2-エチルブトキシ基、3,3-ジメチルブトキシ基、シクロヘキシルオキシ基、n-ヘプチルオキシ基、シクロヘキシルメチルオキシ基、n-オクチルオキシ基、2-エチルヘキシルオキシ基、n-ノニルオキシ基、n-デシルオキシ基、n-ドデシルオキシ基、n-テトラデシルオキシ基、n-ヘキサデシルオキシ基などが含まれる。
一般式(1)におけるXは、置換または未置換のアリーレン基を表すが、好ましくは、一般式(2)で表されるアリーレン基を表す。
−(A−X11−A− (2)
式(2)におけるAおよびAは、置換または未置換のフェニレン基、置換または未置換のナフチレン基、あるいは置換または未置換のフルオレン−ジイル基を表す。AおよびAは、好ましくは置換または未置換のフェニレン基を表す。
およびAは、置換または未置換の1,3-フェニレン基、置換または未置換の1,4-フェニレン基であることがより好ましい。
一般式(2)におけるX11は、単結合、酸素原子または硫黄原子を表す。
一般式(2)におけるmは、0または1を表す。一般式(2)において、mが1を表すとき、Aは置換または未置換の1,4-フェニレン基であることがより好ましい。
一般式(1)におけるXのより好ましい例には、一般式(2−a)〜一般式(2−h)で表されるアリーレン基が含まれる。
Figure 2009170808
式(2−a)におけるZ11およびZ12は、水素原子、ハロゲン原子、直鎖、分岐または環状のアルキル基、直鎖、分岐または環状のアルコキシ基、あるいは置換または未置換のアリール基を表す。
Figure 2009170808
式(2−b)におけるZ21およびZ22は、水素原子、ハロゲン原子、直鎖、分岐または環状のアルキル基、直鎖、分岐または環状のアルコキシ基、あるいは置換または未置換のアリール基を表す。
Figure 2009170808
式(2−c)におけるZ31およびZ32は、水素原子、ハロゲン原子、直鎖、分岐または環状のアルキル基、直鎖、分岐または環状のアルコキシ基、あるいは置換または未置換のアリール基を表す。
Figure 2009170808
式(2−d)におけるZ41およびZ42は、水素原子、ハロゲン原子、直鎖、分岐または環状のアルキル基、直鎖、分岐または環状のアルコキシ基、あるいは置換または未置換のアリール基を表す。
Figure 2009170808
式(2−e)におけるZ51およびZ52は、水素原子、ハロゲン原子、直鎖、分岐または環状のアルキル基、直鎖、分岐または環状のアルコキシ基、あるいは置換または未置換のアリール基を表す。
Figure 2009170808
式(2−f)におけるZ61およびZ62は、水素原子、ハロゲン原子、直鎖、分岐または環状のアルキル基、直鎖、分岐または環状のアルコキシ基、あるいは置換または未置換のアリール基を表す。式(2−f)におけるR11およびR12は、水素原子、直鎖、分岐または環状のアルキル基、置換または未置換のアリール基、あるいは置換または未置換アラルキル基を表す。
Figure 2009170808
式(2−g)におけるZ71およびZ72は、水素原子、ハロゲン原子、直鎖、分岐または環状のアルキル基、直鎖、分岐または環状のアルコキシ基、あるいは置換または未置換のアリール基を表す。
Figure 2009170808
式(2−h)におけるZ81およびZ82は、水素原子、ハロゲン原子、直鎖、分岐または環状のアルキル基、直鎖、分岐または環状のアルコキシ基、あるいは置換または未置換のアリール基を表す。
一般式(2−a)〜一般式(2−h)におけるZ11、Z12、Z21、Z22、Z31、Z32、Z41、Z42、Z51、Z52、Z61、Z62、Z71、Z72、Z81およびZ82(以下において、これらを「Z11〜Z82」と総称する)は、前記の通り、水素原子;ハロゲン原子;直鎖、分岐または環状のアルキル基;直鎖、分岐または環状のアルコキシ基;あるいは置換または未置換のアリール基を表す。
11〜Z82は、水素原子、ハロゲン原子、炭素数1〜16の直鎖、分岐または環状のアルキル基、炭素数1〜16の直鎖、分岐または環状のアルコキシ基、あるいは炭素数4〜20の置換または未置換のアリール基であることが好ましく;水素原子、ハロゲン原子、炭素数1〜8の直鎖、分岐または環状のアルキル基、炭素数1〜8の直鎖、分岐または環状のアルコキシ基、あるいは炭素数6〜12の置換または未置換のアリール基であることがより好ましく;水素原子であることがさらに好ましい。
11〜Z82のアルキル基の具体例は、RおよびRの具体例と同様の直鎖、分岐または環状のアルキル基である。Z11〜Z82のアリール基の具体例は、Ar〜Arの具体例と同様の置換または未置換のアリール基である。
11〜Z82のハロゲン原子の例には、フッ素原子、塩素原子、臭素原子などが含まれる。Z11〜Z82のアルコキシ基の具体例には、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、n-ペンチルオキシ基、イソペンチル¥オキシ基、ネオペンチルオキシ基、シクロペンチルオキシ基、n-ヘキシルオキシ基、2-エチルブトキシ基、3,3-ジメチルブトキシ基、シクロヘキシルオキシ基、n-ヘプチルオキシ基、シクロヘキシルメチルオキシ基、n-オクチルオキシ基、2-エチルヘキシルオキシ基、n-ノニルオキシ基、n-デシルオキシ基、n-ドデシルオキシ基、n-テトラデシルオキシ基、n-ヘキサデシルオキシ基などが含まれる。
一般式(2−f)におけるR11およびR12は、水素原子、炭素数1〜16の直鎖、分岐または環状のアルキル基、炭素数4〜16の置換または未置換のアリール基、あるいは炭素数5〜16の置換または未置換のアラルキル基であることが好ましく;水素原子、炭素数1〜8の直鎖、分岐または環状のアルキル基、炭素数6〜12の置換または未置換のアリール基、あるいは炭素数7〜12の置換または未置換のアラルキル基であることがより好ましく;炭素数1〜8の直鎖、分岐または環状のアルキル基、炭素数6〜10の炭素環式芳香族基、あるいは炭素数7〜10の炭素環式アラルキル基であることがさらに好ましい。
11およびR12の置換または未置換のアリール基の具体例は、Ar〜Arの具体例と同様の置換または未置換のアリール基である。R11およびR12の直鎖、分岐または環状のアルキル基の具体例は、RおよびRの具体例と同様の置換または未置換のアルキル基である。R11およびR12の置換または未置換のアラルキル基の具体例は、RおよびRの具体例と同様の置換または未置換のアラルキル基である。
一般式(1)において、Xは好ましくは、(2−a)、(2−e)、(2−g)および(2−h)であり、より好ましくは、(2−a)、(2−g)および(2−h)である。
一般式(1)で表される化合物の具体例には、以下の化合物が含まれるが、これらに限定されるわけではない。式中、Phはフェニル基を、Bzはベンジル基を表す。
Figure 2009170808
Figure 2009170808
Figure 2009170808
Figure 2009170808
Figure 2009170808
Figure 2009170808
Figure 2009170808
Figure 2009170808
Figure 2009170808
Figure 2009170808
Figure 2009170808
Figure 2009170808
Figure 2009170808
Figure 2009170808
Figure 2009170808
Figure 2009170808
Figure 2009170808
Figure 2009170808
Figure 2009170808
Figure 2009170808
Figure 2009170808
Figure 2009170808
Figure 2009170808
一般式(1)で表される化合物は、公知の方法により製造することができる。例えば、特開平11−162642号公報を参照することができる。例えば、一般式(3)で表される化合物と、一般式(4)(化35)で表される化合物を、銅化合物の存在下で反応(ウルマン反応)させることにより製造することができる。一般式(3)で表される化合物は、2,7-ジハロゲノフルオレン誘導体と、−NH(Ar)(Ar)とから製造することができる。
Figure 2009170808
式(3)〜(4)におけるYおよびYはハロゲン原子を表し、Ar〜Ar、R、R、Z、ZおよびXは、一般式(1)のそれと同様に定義される。
また、上記の式(3)あるいは式(4)で表される化合物のYあるいはYをホウ酸またはホウ酸エステル基へ変換した後、パラジウム触媒を用いてカップリング反応を行う、所謂鈴木カップリング反応によっても製造することができる。
前述の通り、有機電界発光素子は、一対の電極と、当該電極対に狭持された機能層を有する。機能層には、少なくとも発光層が含まれ、さらに正孔注入輸送層や電子注入輸送層などが含まれていてもよい。
有機電界発光素子の各構成要素について、図1に示された基板1/陽極2/正孔注入輸送層3/発光層4/電子注入輸送層5/陰極6を有する(EL−1)型素子を参照して説明する。図1において7は電源を示す。
本発明の有機電界発光素子は、基板1に支持されていることが好ましい。基板は、透明ないし半透明であることが好ましい。基板の材質の例には、ソーダライムガラス、ボロシリケートガラスなどのガラス、およびポリエステル、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、ポリアクリレート、ポリメチルメタクリレート、ポリプロピレン、ポリエチレンなどの透明性高分子が含まれる。
また基板は、半透明プラスチックシート、石英、透明セラミックスあるいはこれらを組み合わせた複合シートからなる基板であってもよい。さらに、基板に、例えば、カラーフィルター膜、色変換膜、誘電体反射膜を組み合わせて、発光色をコントロールすることもできる。
陽極2の電極材料は、仕事関数の比較的大きい金属、合金または導電性化合物であることが好ましい。陽極2の電極材料の例には、金、白金、銀、銅、コバルト、ニッケル、パラジウム、バナジウム、タングステン、酸化インジウム(In)、酸化錫(SnO)、酸化亜鉛、ITO(インジウム・チン・オキサイド:Indium Tin Oxide)、ポリチオフェン、ポリピロールなどが含まれる。これらの電極材料は単独で使用してもよく、あるいは複数併用してもよい。
また、陽極は一層構造であってもよく、多層構造であってもよい。陽極のシート電気抵抗は、好ましくは、数百Ω/□以下、より好ましくは、5〜50Ω/□程度に設定する。陽極の厚みは、使用する電極材料の材質にもよるが、一般に約5〜1000nm、好ましくは約10〜500nmである。
陽極2は、電極材料を蒸着法、スパッタリング法などの方法により、基板の上に形成することができる。
正孔注入輸送層3は、陽極からの正孔(ホール)の注入を容易にする機能、および注入された正孔を輸送する機能を有する。本発明の電界発光素子の正孔注入輸送層3は、一般式(1)で表される化合物および/または他の正孔注入輸送機能を有する化合物を含む。他の正孔注入輸送機能を有する化合物の例には、フタロシアニン誘導体、トリアリールアミン誘導体、トリアリールメタン誘導体、オキサゾール誘導体、ヒドラゾン誘導体、スチルベン誘導体、ピラゾリン誘導体、ポリシラン誘導体、ポリフェニレンビニレンおよびその誘導体、ポリチオフェンおよびその誘導体、ポリ−N−ビニルカルバゾールなどが含まれる。正孔注入輸送機能を有する化合物は、単独で使用してもよく、または複数併用してもよい。
一般式(1)で表される化合物以外の、正孔注入輸送機能を有する化合物の具体例には、トリアリールアミン誘導体、ポリチオフェンおよびその誘導体、ポリ−N−ビニルカルバゾールおよびその誘導体が含まれる。
トリアリールアミン誘導体の例には、4,4'-ビス〔N-フェニル-N-(4’’-メチルフェニル)アミノ〕-1,1'-ビフェニル、4,4'-ビス〔N-フェニル-N-(3’’-メチルフェニル)アミノ〕-1,1'-ビフェニル、4,4'-ビス〔N-フェニル-N-(3’’-メトキシフェニル)アミノ〕-1,1'-ビフェニル、4,4'-ビス〔N-フェニル-N-(1’’-ナフチル)アミノ〕-1,1'-ビフェニル、3,3'-ジメチル-4,4'-ビス〔N-フェニル-N-(3''-メチルフェニル)アミノ〕-1,1'-ビフェニル、1,1-ビス〔4'-[N,N-ジ(4''-メチルフェニル)アミノ]フェニル〕シクロヘキサン、9,10-ビス〔N-(4'-メチルフェニル)-N-(4''-n-ブチルフェニル)アミノ〕フェナントレン、3,8-ビス(N,N-ジフェニルアミノ)-6-フェニルフェナントリジン、4-メチル-N,N-ビス〔4'',4'''-ビス[N',N'-ジ(4-メチルフェニル)アミノ]ビフェニル-4-イル〕アニリン、N,N'-ビス〔4-(ジフェニルアミノ)フェニル〕-N,N'-ジフェニル-1,3-ジアミノベンゼン、N,N'-ビス〔4-(ジフェニルアミノ)フェニル〕-N,N'-ジフェニル-1,4-ジアミノベンゼン、5,5''-ビス〔4-(ビス[4-メチルフェニル]アミノ〕フェニル-2,2’:5',2’’-ターチオフェン、1,3,5-トリス(ジフェニルアミノ)ベンゼン、4,4',4''-トリス(N-カルバゾリイル)トリフェニルアミン、4,4',4''-トリス〔N,N-ビス(4'''-tert-ブチルビフェニル-4''''-イル)アミノ〕トリフェニルアミン、1,3,5-トリス〔N-(4'-ジフェニルアミノ〕ベンゼンなどが含まれる。
一般式(1)で表される化合物と、その他の正孔注入機能を有する化合物を併用する場合には、正孔注入輸送層中に占める一般式(1)で表される化合物の含有量は、0.1重量%以上であることが好ましく、0.5〜99.9重量%であることがより好ましく、3〜97重量%であることがさらに好ましい。
発光層4は、正孔および電子の注入機能、それらの輸送機能、正孔と電子の再結合により励起子を生成させる機能を有する化合物を含有する層である。
発光層は、前述の燐光発光材料(燐光発光機能を有する化合物)の少なくとも一種を含む。さらに発光層は、一般式(1)で表される化合物か、一般式(1)で表される化合物以外の発光機能を有する化合物の、いずれか一方または両方を含む。本発明の有機電界発光素子の発光層は、一般式(1)で表される化合物を含有していることが好ましい。
発光層において、燐光発光材料はドーパント材料(またはゲスト材料)として機能する。一方、一般式(1)で表される化合物および/または一般式(1)で表される化合物以外の発光機能を有する化合物はホスト材料として機能する。
一般式(1)で表される化合物以外の発光機能を有する化合物の例には、トリアリールアミン誘導体、有機金属錯体、ベンゾチアゾール誘導体、ベンゾオキサゾール誘導体、ベンゾイミダゾール誘導体、ピラジン誘導体、ケイ皮酸エステル誘導体、ポリ−N−ビニルカルバゾールおよびその誘導体、ポリチオフェンおよびその誘導体、ポリフェニレンおよびその誘導体、ポリフルオレンおよびその誘導体、ポリフェニレンビニレンおよびその誘導体、ポリビフェニレンビニレンおよびその誘導体、ポリターフェニレンビニレンおよびその誘導体、ポリナフチレンビニレンおよびその誘導体、ポリチエニレンビニレンおよびその誘導体などが含まれる。
一般式(1)で表される化合物以外の発光機能を有する化合物は、トリアリールアミン誘導体および有機金属錯体が好ましい。トリアリールアミン誘導体の例には、正孔注入輸送機能を有する化合物として例示した化合物が含まれる。有機金属策体の例には、トリス(8-キノリノラート)アルミニウム、ビス(10-ベンゾ[h]キノリノラート)ベリリウム、2-(2'-ヒドロキシフェニル)ベンゾチアゾールの亜鉛塩などが含まれる。
有機電界発光素子の発光層に、一般式(1)で表される芳香族炭化水素化合物と、一般式(1)で表される化合物以外の発光機能を有する化合物との両方が含有される場合には、両方の化合物の合計に占める一般式(1)で表される化合物の割合は、60〜99.999重量%であることが好ましい。
本発明の有機電界発光素子の発光層の陰極側には電子注入輸送層が形成される。電子注入輸送層は、発光層に隣接して形成されてもよく、または発光層と電子注入輸送層との間に電子輸送層(正孔阻止層)が形成されていてもよい。
正孔阻止層は、発光層に注入された正孔を発光層中に効率よく蓄積する。それにより、正孔と電子とが再結合する確立を向上させて、発光の高効率化を達成する。正孔阻止層には、例えば、フェアントロリン誘導体、トリアゾール誘導体、ビス(2-メチルキノリノラト)(4-フェニルフェノラート)アルミニウムなどが含まれる。
電子注入輸送層5は、陰極からの電子の注入を容易にする機能および/または注入された電子を輸送する機能を有する化合物を含有する層である。
本発明の有機電界発光素子の電子注入輸送層には、一般式(1)の化合物が含まれていてもよく、他の電子注入輸送機能を有する化合物が含まれていてもよい。他の電子注入輸送機能を有する化合物の例には、有機金属錯体、オキサジアゾール誘導体、トリアゾール誘導体、トリアジン誘導体、ペリレン誘導体、キノリン誘導体、キノキサリン誘導体、ジフェニルキノン誘導体、ニトロ置換フルオレノン誘導体、チオピランジオキサイド誘導体などが含まれる。電子注入輸送層には、電子注入機能を有する化合物の一種が含まれていてもよく、また複数種が含まれていてもよい。
有機金属錯体の例には、トリス(8-キノリノラート)アルミニウム等の有機アルミニウム錯体、ビス(10-ベンゾ[h]キノリノラート)ベリリウム等の有機ベリリウム錯体、5-ヒドロキシフラボンのベリリウム塩、5-ヒドロキシフラボンのアルミニウム塩などが含まれる。
電子注入輸送層は、好ましくは一般式(1)で表される化合物または有機アルミニウム錯体を含む。ここで有機アルミニウム錯体とは、置換または未置換の8-キノリノラート配位子を有する有機アルミニウム錯体である。置換または未置換の8-キノリラート配位子を有する有機アルミニウム錯体の例には、一般式(a)〜一般式(c)で表される化合物が含まれる。
(Q)−Al ・・・(a)
(式(a)におけるQは、置換または未置換の8-キノリノラート配位子を表す)
(Q)−Al−O−L’ ・・・(b)
(式(b)におけるQは、置換または未置換の8-キノリノラート配位子を表し、O−L’はフェノラート配位子を表し、L’はフェニル基を有する炭素数6〜24の炭化水素基を表す)
(Q)−Al−O−Al−(Q) ・・・(c)
(式(c)におけるQは、置換または未置換の8-キノリノラート配位子を表す)
電子注入輸送層に含まれる置換または未置換の8-キノリノラート配位子を有する有機アルミニウム錯体の具体例には、トリス(8-キノリノラート)アルミニウム、トリス(4-メチル-8-キノリノラート)アルミニウム、トリス(5-メチル-8-キノリノラート)アルミニウム、トリス(3,4-ジメチル-8-キノリノラート)アルミニウム、トリス(4,5-ジメチル-8-キノリノラート)アルミニウム、トリス(4,6-ジメチル-8-キノリノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(フェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2-メチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(3-メチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(4-メチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2-フェニルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(3-フェニルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(4-フェニルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,3-ジメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,6-ジメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(3,4-ジメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(3,5-ジメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(3,5-ジ-tert-ブチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,6-ジフェニルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,4,6-トリフェニルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,4,6-トリメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,4,5,6-テトラメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(1-ナフトラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2-ナフトラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)(2-フェニルフェノラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)(3-フェニルフェノラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)(4-フェニルフェノラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)(3,5-ジメチルフェノラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)(3,5-ジ-tert-ブチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2-メチル-8-キノリノラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2,4-ジメチル-8-キノリノラート)アルミニウム、ビス(2-メチル-4-エチル-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2-メチル-4-エチル-8-キノリノラート)アルミニウム、ビス(2-メチル-4-メトキシ-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2-メチル-4-メトキシ-8-キノリノラート)アルミニウム、ビス(2-メチル-5-シアノ-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2-メチル-5-シアノ-8-キノリノラート)アルミニウム、ビス(2-メチル-5-トリフルオロメチル-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2-メチル-5-トリフルオロメチル-8-キノリノラート)アルミニウムなどが含まれる。
陰極6の電極材料は、比較的仕事関数の小さい金属、合金または導電性化合物であることが好ましい。陰極6の電極材料の例には、リチウム、リチウム−インジウム合金、リチウムフルオライド、有機酸リチウム塩(安息香酸リチウム、酢酸リチウムなど)、ナトリウム、ナトリウム−カリウム合金、カルシウム、マグネシウム、マグネシウム−銀合金、マグネシム−インジウム合金、インジウム、ルテニウム、チタニウム、マンガン、イットリウム、アルミニウム、アルミニウム−リチウム合金、アルミニウム−カルシウム合金、アルミニウム−マグネシウム合金、グラファイト薄などが含まれる。これらの電極材料を単独で使用しても、また複数種を併用してもよい。
陰極は、一層構造であってもよく、多層構造であってもよい。陰極のシート電気抵抗は数百Ω/□以下であることが好ましい。陰極の厚みは、使用する電極材料にもよるが、通常5〜1000nm、好ましくは10〜500nmである。有機電界発光素子の発光を効率よく取り出すために、陽極または陰極の少なくとも一方の電極は、透明または半透明であることが好ましい。陽極または陰極の発光光の透過率が、70%以上となるように、電極材料、電極の厚みを設定することが好ましい。
陰極は、これらの電極材料の層を蒸着法、スパッタリング法、イオン蒸着法、イオンプレーティング法、クラスターイオンビーム法などにより電子注入輸送層の上に形成することによって、作製することができる。
正孔注入輸送層、発光層または電子注入輸送層は、真空蒸着法、イオン化蒸着法、溶液塗布法(例えば、スピンコート法、キャスト法、デイップコート法、バーコート法、ロールコート法、ラングミュア・ブロジェット法、インクジェット法)を使用して形成することができるが、特にこれらの手段に限定されない。
真空蒸着法により、正孔注入輸送層、発光層、電子注入輸送層等の各層を形成する場合、真空蒸着の条件は通常、10−3Pa程度以下の真空下で、ボート温度(蒸着源温度)を約50〜500℃、基板温度を−50〜300℃程度、蒸着速度を約0.005〜50nm/secとすることが好ましいが、特に限定されない。
正孔注入輸送層、発光層、電子注入輸送層等の各層を真空蒸着法で形成する場合は、真空下で、各層を連続して形成することが好ましい。連続で形成することにより諸特性に優れた有機電界発光素子を製造することが可能となる。正孔注入輸送層、発光層、電子注入輸送層等の各層を、複数の化合物を使用して真空蒸着法により形成する場合、化合物を入れた各ボートを個別に温度制御して、蒸着することが好ましい。
溶液塗布法により各層を形成する場合、各層を形成する成分、および必要に応じてバインダー樹脂などを、溶媒に溶解または分散させて塗布液とする。
溶媒は、有機溶媒でも水でもよい。有機溶媒の例には、ヘキサン、オクタン、デカン、トルエン、キシレン、エチルベンゼン、1-メチルナフタレンなどの炭化水素系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン系溶媒;ジクロロメタン、クロロホルム、テトラクロロメタン、ジクロロエタン、トリクロロエタン、テトラクロロエタン、クロロベンゼン、ジクロロベンゼン、クロロトルエンなどのハロゲン化炭化水素系溶媒;酢酸エチル、酢酸ブチル、酢酸アミル、乳酸エチルなどのエステル系溶媒;メタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、メチルセロソルブ、エチルセロソルブ、エチレングリコールなどのアルコール系溶媒;ジブチルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン、アニソールなどのエーテル系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、1-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、ジメチルスルホキシドなどの極性溶媒が含まれる。溶媒は単独で使用してもよく、また複数併用してもよい。
正孔注入輸送層、発光層、電子注入輸送層の各層の成分を溶媒に分散させるには、ボールミル、サンドミル、ペイントシェーカー、アトライター、ホモジナイザーなどを使用して、各成分を微粒子状に分散させることができる。
溶液塗布法に用いる塗布液に含まれるバインダー樹脂の例には、ポリ-N-ビニルカルバゾール、ポリアリーレート、ポリスチレン、ポリエステル、ポリシロキサン、ポリメチルメタクリレート、ポリメチルアクリレート、ポリエーテル、ポリカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、ポリパラキシレン、ポリエチレン、ポリフェニレンオキサイド、ポリエーテルスルホン、ポリアニリンおよびその誘導体、ポリチオフェンおよびその誘導体、ポリフェニレンビニレンおよびその誘導体、ポリフルオレンおよびその誘導体、ポリチエニレンビニレンおよびその誘導体などの高分子化合物が含まれる。バインダー樹脂は単独で使用してもよく、また、複数併用してもよい。
塗布液の固体成分濃度は特に限定されず、所望の厚みを得るために適した濃度範囲に設定する。通常は0.1〜50重量%、好ましくは1〜30重量%である。
バインダー樹脂を使用する場合、塗布液におけるその含有量は特に限定されない。正孔注入輸送層、発光層、電子注入輸送層等の各層を形成する成分の合計に対するバインダー樹脂の含有率は、通常は5〜99.9重量%であり、好ましくは10〜99重量%である。
正孔注入輸送層、発光層、電子注入輸送層等の各層の膜厚は、特に限定されるものではないが、通常は5nm〜5μmである。
有機電界発光素子は、酸素や水分などの浸入を防止する目的で、保護層(封止層)を有することが好ましい。保護層の材質は、有機高分子材料または無機材料などである。有機高分子材料の例には、フッ素樹脂、エポキシ樹脂、シリコーン樹脂、エポキシシリコーン樹脂、ポリスチレン、ポリエステル、ポリカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、ポリパラキシレン、ポリエチレン、ポリフェニレンオキサイドなどが含まれ、光硬化性樹脂であってもよい。無機材料の例には、ダイアモンド薄膜、アモルファスシリカ、電気絶縁性ガラス、金属酸化物、金属窒化物、金属炭化物、金属硫化物などが含まれる。保護層に使用する材料は単独で使用してもよく、また複数併用してもよい。保護層は一層構造であってもよく、また多層構造であってもよい。
また有機電界発光素子は、不活性物質中に封入されて、保護されてもよい。不活性物質の例には、パラフィン、流動パラフィン、シリコンオイル、フルオロカーボン油、ゼオライト含有フルオロカーボン油などが含まれる。
有機電界発光素子の電極に、保護膜として金属酸化物膜(例えば、酸化アルミニウム膜)、金属フッ化膜を設けてもよい。
有機電界発光素子の陽極の表面に界面層(中間層)を設けることもできる。界面層の材質の例には、有機リン化合物、ポリシラン、芳香族アミン誘導体、フタロシアニン誘導体などが含まれる。さらに、電極(例えば陽極)の表面は、酸、アンモニア/過酸化水素、あるいはプラズマで処理してもよい。
有機電界発光素子は、通常、直流駆動型の素子として使用することができるが、交流駆動型の素子として使用してもよい。また、本発明の有機電界発光素子は、セグメント型、単純マトリックス駆動型等のパッシブ駆動型であってもよく、TFT(薄膜トランジスタ)型、MIM(メタル−インスレーター−メタル)型等のアクティブ駆動型であってもよい。駆動電圧は通常、2〜30Vである。有機電界発光素子は、パネル型光源(例えば、時計、液晶パネル等のバックライト)、各種の発光素子(例えば、LED等の発光素子の代替)、照明装置(平面照明、特殊照明等)、各種の表示素子〔例えば、情報表示素子(パソコンモニター、携帯電話・携帯端末用表示素子)〕、各種の標識、各種のセンサーなどに使用することができる。
[実施例1]
厚さ150nmのITO透明電極(陽極)を有するガラス基板を、中性洗剤、セミコクリーン(フルウチ化学製)、超純水、アセトン、イソプロパノールを用いて超音波洗浄し、さらに窒素ガスにより乾燥し、さらにUV/オゾン洗浄した。洗浄された基板を、蒸着装置の基板ホルダーに固定し、蒸着槽を1×10−5Paに減圧した。
先ず、ITO透明電極上に、ビス〔N−フェニル−N−(1−ナフチル)〕−4,4’−ジアミノ−1,1’−ビフェニルを、蒸着速度0.1nm/secで蒸着して、膜厚40nmの正孔注入層を設けた。
1,3−ビス(N−カルバゾリル)ベンゼン(以下、m−CPと略記する)を、蒸着速度0.1nm/secで、正孔注入層の上に蒸着して、膜厚10nmの正孔輸送層を設けた。
Figure 2009170808
例示化合物A−11と、式(a1−1)で表される燐光発光材料であるトリス(フェニルピリジル)イリジウム錯体〔以下、Ir(ppy)と略記する〕を、それぞれ蒸着速度0.2nm/sec、0.016nm/secで、前記正孔輸送層上に蒸着して、膜厚25nmの発光層を設けた。
Figure 2009170808
さらに、4,7−ジフェニル−1,10−フェナントロリン(以下、BPhenと略記する)を、蒸着速度0.1nm/secで、前記発光層の上に蒸着して、膜厚15nmの正孔阻止層(電子輸送層)を設けた。
Figure 2009170808
さらにトリス(8−キノリノラート)アルミニウムを、蒸着速度0.1nm/secで、前記正孔阻止層の上に蒸着して、厚さ25nmの電子輸送層を設けた。蒸着時の基板温度は室温であった。
引き続き、リチウムフルオライドを、蒸着速度0.02nm/secで、0.5nmの厚さに蒸着した。最後に、陰極としてアルミニウムを、蒸着速度2.0nm/secで、100nmの厚さに蒸着して有機電界発光素子を作製した。蒸着は、蒸着槽の減圧状態を保ったまま実施した。
作製した有機電界発光素子に直流電圧を印加し、室温、乾燥雰囲気下、10mA/cmの定電流密度で連続駆動させた。初期には、電圧値は6.1Vであり、輝度2500cd/mの緑色の発光が確認された。輝度の半減期は4500時間であった。
[比較例1]
実施例1において、例示化合物A−11の化合物を使用する代わりに、下記のCBPの化合物を使用して発光層を形成した以外は、実施例1に記載の操作と同様に、有機電界発光素子を作製した。
Figure 2009170808
作製した有機電界発光素子に直流電圧を印加し、室温、乾燥雰囲気下、10mA/cmの定電流密度で連続駆動させた。初期には、電圧値は6.2Vであり、輝度1800cd/mの緑色の発光が確認された。輝度の半減期は600時間であった。
[実施例2]
実施例1において、例示化合物A−11の化合物を使用する代わりに、例示化合物A−17の化合物を使用して発光層を形成したこと以外は、実施例1に記載の操作と同様に、有機電界発光素子を作製した。
作製した有機電界発光素子に直流電圧を印加し、室温、乾燥雰囲気下、10mA/cmの定電流密度で連続駆動させた。初期には、電圧値は6.2Vであり、輝度2400cd/mの緑色の発光が確認された。輝度の半減期は4100時間であった。
[比較例2]
実施例1において、例示化合物A−11の化合物を使用する代わりに、下記の4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル(α−NPD)を使用して発光層を形成したこと以外は、実施例1に記載の操作と同様に有機電界発光素子を作製した。
作製した有機電界発光素子に直流電圧を印加し、室温、乾燥雰囲気下、10mA/cmの定電流密度で連続駆動させた。初期には、電圧値は6.1Vであり、輝度900cd/mの緑色の発光が確認された。輝度の半減期は120時間であった。
Figure 2009170808
[実施例3]
実施例1において、例示化合物A−11の化合物を使用する代わりに、例示化合物A−19の化合物を使用して発光層を形成したこと以外は、実施例1に記載の操作と同様にして有機電界発光素子を作製した。
作製した有機電界発光素子に直流電圧を印加し、室温、乾燥雰囲気下、10mA/cmの定電流密度で連続駆動させた。初期には、電圧値は6.1Vであり、輝度2200cd/mの緑色の発光が確認された。輝度の半減期は3800時間であった。
[実施例4]
実施例1において、例示化合物A−11の化合物を使用する代わりに、例示化合物E−8の化合物を使用して発光層を形成すること以外は、実施例1に記載の操作と同様にして、有機電界発光素子を作製した。
作製した有機電界発光素子に直流電圧を印加し、室温、乾燥雰囲気下、10mA/cmの定電流密度で連続駆動させた。初期には、電圧値は6.5Vであり、輝度2600cd/mの緑色の発光が確認された。輝度の半減期は4300時間であった。
[実施例5]
厚さ150nmのITO透明電極(陽極)を有するガラス基板を、中性洗剤、セミコクリーン(フルウチ化学製)、超純水、アセトン、イソプロパノールを用いて超音波洗浄し、さらに窒素ガスにより乾燥し、UV/オゾン洗浄した。洗浄した基板を、蒸着装置の基板ホルダーに固定し、蒸着槽を1×10−5Paに減圧した。
先ず、ITO透明電極上に、銅フタロシアニンを蒸着速度0.1nm/secで蒸着し、膜厚10nmの正孔注入層を成膜した。さらに、ビス〔N−フェニル−N−(1−ナフチル)〕−4,4’−ジアミノ−1,1’−ビフェニルを、蒸着速度0.1nm/secで蒸着し、膜厚30nmの正孔注入層を設けた。
次に、m−CPを蒸着速度0.1nm/secで蒸着し、膜厚10nmの正孔輸送層を設けた。
例示化合物E−15と、上記式(a1−13)で表される燐光発光材料であるイリジウム錯体とを、それぞれ蒸着速度0.2nm/sec、0.016nm/secで、前記正孔輸送層上に蒸着して、膜厚25nmの発光層を設けた。
さらに、BPhenを、蒸着速度0.1nm/secで、前記発光層の上に蒸着して、膜厚15nmの正孔阻止層(電子輸送層)を設けた。
さらにトリス(8−キノリノラート)アルミニウムを蒸着速度0.1nm/secで前記正孔阻止層の上に蒸着して厚さ25nmの電子輸送層を設けた。なお蒸着時の基板温度は室温であった。
引き続き、リチウムフルオライドを蒸着速度0.02nm/secで、0.5nmの厚さに蒸着した。最後に、陰極としてアルミニウムを蒸着速度2.0nm/secで100nmの厚さに蒸着して、有機電界発光素子を作製した。蒸着は、蒸着槽の減圧状態を保ったまま実施した。
作製した有機電界発光素子に直流電圧を印加し、室温、乾燥雰囲気下、10mA/cmの定電流密度で連続駆動させた。初期には、電圧値は6.1Vであり、輝度1200cd/mの赤色の発光が確認された。輝度の半減期は3500時間であった。
[実施例6]
実施例5において、例示化合物E−15の化合物を使用する変わりに、例示化合物E−17の化合物を使用した以外は、実施例5に記載の操作に従い、有機電界発光素子を作製した。
作製した有機電界発光素子に直流電圧を印加し、室温、乾燥雰囲気下、10mA/cmの定電流密度で連続駆動させた。初期には、電圧値は6.5Vであり、輝度1300cd/mの赤色の発光が確認された。輝度の半減期は3300時間であった。
[実施例7]
実施例5において、例示化合物E−15の化合物を使用する変わりに、例示化合物E−18の化合物を使用した以外は、実施例5に記載の操作に従い、有機電界発光素子を作製した。
作製した有機電界発光素子に直流電圧を印加し、室温、乾燥雰囲気下、10mA/cmの定電流密度で連続駆動させた。初期には、電圧値は6.2Vであり、輝度1100cd/mの赤色の発光が確認された。輝度の半減期は3200時間であった。
[実施例8]
実施例5において、例示化合物E−15の化合物を使用する変わりに、例示化合物E−19の化合物を使用した以外は、実施例5に記載の操作に従い、有機電界発光素子を作製した。
作製した有機電界発光素子に直流電圧を印加し、室温、乾燥雰囲気下、10mA/cmの定電流密度で連続駆動させた。初期には、電圧値は6.4Vであり、輝度1400cd/mの赤色の発光が確認された。輝度の半減期は3500時間であった。
[実施例9]
実施例5において、例示化合物E−15の化合物を使用する変わりに、例示化合物F−28の化合物を使用した以外は、実施例5に記載の操作に従い、有機電界発光素子を作製した。
作製した有機電界発光素子に直流電圧を印加し、室温、乾燥雰囲気下、10mA/cmの定電流密度で連続駆動させた。初期には、電圧値は6.1Vであり、輝度1300cd/mの赤色の発光が確認された。輝度の半減期は3200時間であった。
[実施例10]
実施例5において、例示化合物E−15の化合物を使用する変わりに、例示化合物G−4の化合物を使用した以外は、実施例5に記載の操作に従い、有機電界発光素子を作製した。
作製した有機電界発光素子に直流電圧を印加し、室温、乾燥雰囲気下、10mA/cmの定電流密度で連続駆動させた。初期には、電圧値は6.5Vであり、輝度1250cd/mの緑色の発光が確認された。輝度の半減期は3000時間であった。
[実施例11]
厚さ110nmのITO透明電極(陽極)を有するガラス基板を、中性洗剤、セミコクリーン(フルウチ化学製)、超純水、アセトン、イソプロパノールを用いて超音波洗浄した。この基板を窒素ガスにより乾燥し、さらにUV/オゾン洗浄した後、蒸着装置の基板ホルダーに固定し、蒸着槽を1×10−5Paに減圧した。
先ず、ITO透明電極上にビス〔N−フェニル−N−(1−ナフチル)〕−4,4’−ジアミノー1,1’−ビフェニルを蒸着速度0.1nm/secで蒸着し、膜厚40nmの正孔注入層を設けた。
次に、例示化合物E−19を蒸着速度0.1nm/secで蒸着し、膜厚10nmの正孔輸送層を設けた。
上記CBPと、式(a1−1)で表される燐光発光材料であるIr(ppy)をそれぞれ蒸着速度0.2nm/sec、0.016nm/secで前記正孔輸送層上に蒸着して膜厚25nmの発光層を設けた。BPhenを蒸着速度0.1nm/sec、で前記発光層の上に蒸着して膜厚15nmの正孔阻止層(電子輸送層)を設けた。
さらにトリス(8−キノリノラート)アルミニウムを蒸着速度0.1nm/secで前記正孔阻止層の上に蒸着して厚さ25nmの電子輸送層を設けた。なお蒸着時の基板温度は室温であった。
引き続き、リチウムフルオライドを蒸着速度0.02nm/secで0.5nmの厚さに蒸着し、最後に陰極としてアルミニウムを蒸着速度2.0nm/secで100nmの厚さに蒸着して有機電界発光素子を作製した。尚、蒸着は、蒸着槽の減圧状態を保ったまま実施した。
作製した有機電界発光素子に直流電圧を印加し、室温、乾燥雰囲気下、10mA/cmの定電流密度で連続駆動させた。初期には、電圧値は5.8Vであり、輝度2200cd/mの緑色の発光が確認された。輝度の半減期は1200時間であった。
比較例1の有機電界発光素子と比較して本発明の化合物を正孔輸送材料に使用することで、駆動電圧が低電圧化し、発光輝度が向上し、輝度の半減期も永くなることが分かる。
本発明により、燐光発光材料からの発光を利用した有機電界発光素子の、発光効率や安定性、耐久性を高めることができる。
有機電界発光素子の層構造の一例を示す概略図である。 有機電界発光素子の層構造の一例を示す概略図である。 有機電界発光素子の層構造の一例を示す概略図である。 有機電界発光素子の層構造の一例を示す概略図である。 有機電界発光素子の層構造の一例を示す概略図である。 有機電界発光素子の層構造の一例を示す概略図である。 有機電界発光素子の層構造の一例を示す概略図である。 有機電界発光素子の層構造の一例を示す概略図である。 有機電界発光素子の層構造の一例を示す概略図である。 有機電界発光素子の層構造の一例を示す概略図である。
符号の説明
1 基板
2 陽極
3 正孔注入輸送層
3’ 正孔注入層
3” 正孔輸送層
3a 正孔注入輸送成分
4 発光層
4a 発光成分
5 電子注入輸送層
5’ 正孔阻止層(電子輸送層)
5a 電子注入輸送成分
6 陰極
7 電源

Claims (8)

  1. 一対の電極間に、発光層を含む機能層を挟持してなる有機電界発光素子であって、
    前記発光層は燐光発光材料を含有し、
    前記機能層のいずれかの層は、一般式(1)で表される化合物の少なくとも1種を含有する、有機電界発光素子。
    Figure 2009170808
    (式(1)において、
    Ar〜Arは、置換または未置換のアリール基を表し、
    ArとAr、およびArとArは、結合している窒素原子と共に含窒素複素環を形成していてもよく、
    およびRは、水素原子、直鎖、分岐または環状のアルキル基、置換または未置換のアリール基、あるいは置換または未置換アラルキル基を表し、
    およびZは、水素原子、ハロゲン原子、直鎖、分岐または環状のアルキル基、直鎖、分岐または環状のアルコキシ基、あるいは置換または未置換のアリール基を表し、
    Xは置換または未置換のアリーレン基を表す)
  2. 前記燐光発光材料は、遷移金属錯体である、請求項1に記載の有機電界発光素子。
  3. 前記遷移金属は、イリジウムまたは白金である、請求項2に記載の有機電界発光素子。
  4. 一般式(1)におけるXが、下記一般式(2)で表される基である、請求項1に記載の有機電界発光素子。
    −(A−X11−A− ・・・(2)
    (式中、AおよびAは、置換または未置換のフェニレン基を表し、
    11は、単結合、酸素原子または硫黄原子を表し、
    mは、0または1を表す)
  5. 一般式(1)で表される化合物を含有する層が、正孔注入輸送層である、請求項1〜4のいずれか一項に記載の有機電界発光素子。
  6. 一般式(1)で表される化合物を含有する層が、発光層である、請求項1〜4のいずれか一項に記載の有機電界発光素子。
  7. 前記一対の電極間に狭持される機能層は、電子注入輸送層をさらに有する、請求項1〜6のいずれか一項に記載の有機電界発光素子。
  8. 前記一対の電極間に、少なくとも一層の正孔輸送層、発光層、および電子輸送層が狭持される、請求項1〜7のいずれか一項に記載の有機電界発光素子。

JP2008009905A 2008-01-18 2008-01-18 有機電界発光素子 Pending JP2009170808A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008009905A JP2009170808A (ja) 2008-01-18 2008-01-18 有機電界発光素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008009905A JP2009170808A (ja) 2008-01-18 2008-01-18 有機電界発光素子

Publications (1)

Publication Number Publication Date
JP2009170808A true JP2009170808A (ja) 2009-07-30

Family

ID=40971632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008009905A Pending JP2009170808A (ja) 2008-01-18 2008-01-18 有機電界発光素子

Country Status (1)

Country Link
JP (1) JP2009170808A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104073241A (zh) * 2013-03-26 2014-10-01 海洋王照明科技股份有限公司 有机电致磷光材料及其制备方法与有机电致发光器件
KR20150088295A (ko) * 2012-11-23 2015-07-31 메르크 파텐트 게엠베하 전자 소자용 재료

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150088295A (ko) * 2012-11-23 2015-07-31 메르크 파텐트 게엠베하 전자 소자용 재료
JP2016507475A (ja) * 2012-11-23 2016-03-10 メルク パテント ゲーエムベーハー 電子素子のための材料
KR102254278B1 (ko) * 2012-11-23 2021-05-20 메르크 파텐트 게엠베하 전자 소자용 재료
CN104073241A (zh) * 2013-03-26 2014-10-01 海洋王照明科技股份有限公司 有机电致磷光材料及其制备方法与有机电致发光器件

Similar Documents

Publication Publication Date Title
JP4776639B2 (ja) ピリジン誘導体、およびそれを含む有機電界発光素子
JP3856546B2 (ja) 有機電界発光素子
JP3838766B2 (ja) 有機電界発光素子
JP3824385B2 (ja) 有機電界発光素子
JP3835917B2 (ja) 有機電界発光素子
JP4825816B2 (ja) 化合物、およびそれを含む有機電界発光素子
JP3884557B2 (ja) 有機電界発光素子
JP2009170819A (ja) フルオレン誘導体、およびそれを含む有機電界発光素子
JP3877419B2 (ja) 有機電界発光素子
JP3801326B2 (ja) 有機電界発光素子
JP2009170818A (ja) キノキサリン誘導体、およびそれを含む有機電界発光素子
JP3792027B2 (ja) 有機電界発光素子
JP2009170813A (ja) 有機電界発光素子
JP2009170814A (ja) キノキサリン誘導体、およびそれを含む有機電界発光素子
JP3792029B2 (ja) 有機電界発光素子
JP3856550B2 (ja) 有機電界発光素子
JP3792036B2 (ja) 有機電界発光素子
JP3792035B2 (ja) 有機電界発光素子
JP4832451B2 (ja) フルオレン誘導体、およびそれを含む有機電界発光素子
JP3858951B2 (ja) 有機電界発光素子
JP3739184B2 (ja) 有機電界発光素子
JP2009170809A (ja) 有機電界発光素子
JP4873436B2 (ja) 有機電界発光素子
JP3659781B2 (ja) 有機電界発光素子
JP3835918B2 (ja) 有機電界発光素子