JP2009169188A - Optical modulator - Google Patents

Optical modulator Download PDF

Info

Publication number
JP2009169188A
JP2009169188A JP2008008535A JP2008008535A JP2009169188A JP 2009169188 A JP2009169188 A JP 2009169188A JP 2008008535 A JP2008008535 A JP 2008008535A JP 2008008535 A JP2008008535 A JP 2008008535A JP 2009169188 A JP2009169188 A JP 2009169188A
Authority
JP
Japan
Prior art keywords
electro
electrode
crystal
optic crystal
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008008535A
Other languages
Japanese (ja)
Other versions
JP4926985B2 (en
Inventor
Toshio Ito
敏夫 伊藤
Ikutake Yagi
生剛 八木
Kazuo Fujiura
和夫 藤浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2008008535A priority Critical patent/JP4926985B2/en
Publication of JP2009169188A publication Critical patent/JP2009169188A/en
Application granted granted Critical
Publication of JP4926985B2 publication Critical patent/JP4926985B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical modulator which is high in reliability and includes electrode structure without causing any deflection operation. <P>SOLUTION: The optical modulator includes: electro-optical crystal 11 having an electro-optical effect; and a pair of electrodes 12, 13 formed opposite to surface of the electro-optical crystal in parallel with each other in order to apply an electric field perpendicular to an optical axis of light transmitting the electro-optical crystal, wherein at least two or more metals are laminated, and a work function of a metal contacting the electro-optical crystal is larger than a work function of the electro-optical crystal on the pair of the electrodes. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、光変調器に関し、より詳細には、電気光学結晶を用いて電気信号により光の位相を変える光変調器に関する。   The present invention relates to an optical modulator, and more particularly to an optical modulator that changes the phase of light by an electrical signal using an electro-optic crystal.

従来、電気光学結晶を用いた様々な光機能部品が実用化されている。これら光機能部品は、電気光学結晶に電圧を印加すると、電気光学効果により結晶の屈折率が変化することを利用している。例えば、KTa1-xNbx3(0<x<1、以下、KTNという)結晶では、常誘電体から強誘電体への相転移時の温度領域では、比誘電率が発散して10,000に達し、誘電率の2乗に比例する2次の電気光学効果が極めて大きくなる。 Conventionally, various optical functional parts using electro-optic crystals have been put into practical use. These optical functional parts utilize the fact that when a voltage is applied to the electro-optic crystal, the refractive index of the crystal changes due to the electro-optic effect. For example, in a KTa 1-x Nb x O 3 (0 <x <1, hereinafter referred to as KTN) crystal, the relative permittivity diverges in the temperature region during the phase transition from paraelectric to ferroelectric. 2nd order electro-optic effect that is proportional to the square of the dielectric constant is extremely large.

電気光学結晶を用いた光位相変調器は、結晶の屈折率の変化により、結晶を通過する光の速度を変化させて、光の位相を変化させる。変調器の構造は、例えば、平行平板型、平行ストリップ型、櫛形電極型、貫通電極型がある。櫛形電極型の電極は、電極の幅が最も狭く、1μm程度である。   An optical phase modulator using an electro-optic crystal changes the phase of light by changing the speed of light passing through the crystal by changing the refractive index of the crystal. The structure of the modulator includes, for example, a parallel plate type, a parallel strip type, a comb electrode type, and a through electrode type. The comb-shaped electrode has the smallest electrode width of about 1 μm.

図1に、従来の多層構造の電極構造を示す。半導体またはガラスからなる基板101に電極を形成する際、多層構造の電極とするのが一般的である。典型的には、基板101に接するTi電極102a,bと、Pt電極103a,bと、Au電極104a,bの3層構造の電極を用いる。Tiは、密着性にすぐれているため、接着剤として用いられる。他に密着性の優れた金属として、Mo、Al、Cr等がある。ただし、Moは耐水性に劣るため信頼性に欠け、Alは耐アルカリ性に劣り、Crは環境問題を有している。   FIG. 1 shows a conventional multilayer electrode structure. When an electrode is formed on a substrate 101 made of a semiconductor or glass, it is generally a multi-layered electrode. Typically, an electrode having a three-layer structure of Ti electrodes 102a and 102b in contact with the substrate 101, Pt electrodes 103a and 103b, and Au electrodes 104a and 104b is used. Ti is used as an adhesive because it has excellent adhesion. Other metals having excellent adhesion include Mo, Al, Cr, and the like. However, since Mo is inferior in water resistance, it lacks reliability, Al is inferior in alkali resistance, and Cr has an environmental problem.

Auは、電気抵抗率が低いために、電極材料としては最も優れている。他に電気抵抗率の低い金属として、Ag、Cu等がある。いずれも膜酸化により耐熱変化を起こす点で、Auの方が優れている。Ptは、仕事関数が大きく、Auから電子が半導体に入り込まないようにブロック層として機能する。以上述べたように、Ti/Pt/Au層は、順に接着層/ブロック層/電極本体として機能している。   Au is the most excellent electrode material because of its low electrical resistivity. Other metals with low electrical resistivity include Ag and Cu. In any case, Au is superior in that it causes a heat resistance change by film oxidation. Pt has a large work function and functions as a block layer so that electrons do not enter the semiconductor from Au. As described above, the Ti / Pt / Au layer functions in order as an adhesive layer / block layer / electrode body.

半導体またはガラス基板に接する層にTiを使わない場合、電極がはがれることがある。図2に、Pt/Ti/Au層からなる電極を作製したときの基板表面の写真を示す。図2(a),(c)は、ガラス基板上にパターン化された電極を形成した場合を示す。図2(b),(d)は、シリコン基板上にパターン化された電極を形成した場合を示す。それぞれの基板上に、様々な大きさ、形状のパターンにより電極を形成した。このうち、図2(c)の符号111で示す矢印から右側に形成された電極(白丸囲いの部分)、および図2(d)の符号112で示す矢印から右側に形成された電極(黒丸囲いの部分)は、基板からはがれている部分(図を見ると薄く消えかかっているように見える部分)を示している。この部分のパターンは、幅2μmのパターンであるにもかかわらず、剥離が生じている。従って、基板に接する層にTiを使わない場合、幅1μmの櫛形電極を形成することは、困難である。   When Ti is not used for the layer in contact with the semiconductor or the glass substrate, the electrode may be peeled off. FIG. 2 shows a photograph of the substrate surface when an electrode composed of a Pt / Ti / Au layer is produced. 2A and 2C show the case where a patterned electrode is formed on a glass substrate. FIGS. 2B and 2D show the case where a patterned electrode is formed on a silicon substrate. Electrodes were formed on each substrate with patterns of various sizes and shapes. Among these, an electrode formed on the right side from the arrow indicated by reference numeral 111 in FIG. 2C (a white circled portion), and an electrode formed on the right side from the arrow indicated by reference numeral 112 in FIG. ) Shows a portion peeled off from the substrate (a portion that appears to be fading away when seen in the figure). Although the pattern of this portion is a pattern having a width of 2 μm, peeling occurs. Therefore, when Ti is not used for the layer in contact with the substrate, it is difficult to form a comb electrode having a width of 1 μm.

国際公開第06/137408号International Publication No. 06/137408

一方、KTN結晶を用いた光変調器において、KTN結晶からなる基板に接する層にTiを用いると、電子がKTN結晶に注入され、偏向作用を生ずるという問題があった(例えば、特許文献1参照)。偏向作用は、偏向器として用いる場合には有効であるが、変調器として用いる場合には不要であり、光変調器を透過する光ビームの位置は変動しないことが好ましい。   On the other hand, in an optical modulator using a KTN crystal, when Ti is used for a layer in contact with the substrate made of the KTN crystal, there is a problem that electrons are injected into the KTN crystal and cause a deflection action (see, for example, Patent Document 1). ). The deflection action is effective when used as a deflector, but is not necessary when used as a modulator, and it is preferable that the position of the light beam transmitted through the optical modulator does not vary.

本発明は、このような問題に鑑みてなされたもので、その目的とするところは、信頼性が高く、偏向作用の生じない電極構造を有する光変調器を提供することにある。   The present invention has been made in view of such problems, and an object of the present invention is to provide an optical modulator having an electrode structure that is highly reliable and does not cause a deflection action.

本発明は、このような目的を達成するために、請求項1に記載の発明は、電気光学効果を有する電気光学結晶と、該電気光学結晶を透過する光の光軸に対して垂直に電界を印加するために、互いに平行な前記電気光学結晶の面に対向して形成された電極対とを備え、該電極対は、少なくとも2以上の金属が積層され、前記電気光学結晶に接する金属の仕事関数が前記電気光学結晶の仕事関数より大きいことを特徴とする。   In order to achieve such an object, the present invention provides an electro-optic crystal having an electro-optic effect and an electric field perpendicular to the optical axis of light transmitted through the electro-optic crystal. To the electrode pair formed opposite to the surfaces of the electro-optic crystal parallel to each other, wherein the electrode pair is formed by laminating at least two metals and is made of a metal in contact with the electro-optic crystal. The work function is larger than the work function of the electro-optic crystal.

前記電気光学結晶は、KTa1-xNbx3(0<x<1)またはK1-yLiyTa1-xNbx3(0<x<1、0<y<1)が好適であり、このとき、前記電極対の前記電気光学結晶に接する金属は、Ptが好ましい。また、前記電極対は、前記電気光学結晶に接する面から順にPtおよびAuを積層してもよいし、前記電気光学結晶に接する面から順にPt、TiおよびAuを積層してもよい。さらに、前記電極対の前記電気光学結晶に接する金属は、Co、Ge、Pd、Ni、Ir、Pt、Seのいずれかとすることができる。 The electro-optic crystal has KTa 1-x Nb x O 3 (0 <x <1) or K 1-y Li y Ta 1-x Nb x O 3 (0 <x <1, 0 <y <1). In this case, the metal in contact with the electro-optic crystal of the electrode pair is preferably Pt. The electrode pair may be laminated with Pt and Au in order from the surface in contact with the electro-optic crystal, or may be laminated with Pt, Ti and Au in order from the surface in contact with the electro-optic crystal. Furthermore, the metal in contact with the electro-optic crystal of the electrode pair can be any one of Co, Ge, Pd, Ni, Ir, Pt, and Se.

以上説明したように、本発明によれば、電極対は、少なくとも2以上の金属が積層され、電気光学結晶に接する金属の仕事関数が電気光学結晶の仕事関数より大きいので、キャリアの注入効率が低くなり、偏向作用が小さくなる。また、電極対と電気光学結晶との密着性がよいので、信頼性の高い変調器を構成することができる。   As described above, according to the present invention, at least two or more metals are stacked and the work function of the metal in contact with the electro-optic crystal is larger than the work function of the electro-optic crystal. The deflection action is reduced. In addition, since the adhesiveness between the electrode pair and the electro-optic crystal is good, a highly reliable modulator can be configured.

以下、図面を参照しながら本発明の実施形態について詳細に説明する。特許文献1によれば、KTN結晶からなる基板に接する層にTiを用いると、理想的なオーミック接触が実現され、注入効率が最大となる。電極材料の仕事関数が大きくなるにつれて、ショットキー接触に近づき、キャリアの注入効率は減少する。すなわち、伝導電子の注入が抑えられ、偏向作用が小さくなる。KTN結晶の仕事関数が5.0eVであることから、電気光学結晶の電気伝導に寄与するキャリアが電子の場合には、基板に接する層の電極材料の仕事関数は、5.0eV以上であることが好ましい。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. According to Patent Document 1, when Ti is used for a layer in contact with a substrate made of a KTN crystal, ideal ohmic contact is realized, and injection efficiency is maximized. As the work function of the electrode material increases, the Schottky contact is approached and the carrier injection efficiency decreases. That is, conduction electron injection is suppressed, and the deflection action is reduced. Since the work function of the KTN crystal is 5.0 eV, when the carrier contributing to the electric conduction of the electro-optic crystal is an electron, the work function of the electrode material of the layer in contact with the substrate is 5.0 eV or more. Is preferred.

仕事関数が5.0eV以上の電極材料として、Co(5.0)、Ge(5.0)、Au(5.1)、Pd(5.12)、Ni(5.15)、Ir(5.27)、Pt(5.65)、Se(5.9)を用いることができる。ただし、Auは、接着層として用いる場合に加工性が悪いので、これ以外の材料がより好ましい。また、上記材料を複数用いた合金であってもよいし、複数の材料を積層してもよい。   As an electrode material having a work function of 5.0 eV or more, Co (5.0), Ge (5.0), Au (5.1), Pd (5.12), Ni (5.15), Ir (5 .27), Pt (5.65), Se (5.9) can be used. However, since Au has poor processability when used as an adhesive layer, other materials are more preferable. Moreover, an alloy using a plurality of the above materials may be used, or a plurality of materials may be laminated.

また、2次の電気光学定数が大きい電気光学結晶として、K1-yLiyTa1-xNbx3(0<x<1、0<y<1、以下、KLTNという)を用いることもできる。KLTN結晶の仕事関数も5.0eVであり、上記材料を基板に接する層に用いることにより、伝導電子の注入が抑えられ、偏向作用が小さくなる。 Further, as an electro-optic crystal having a large second-order electro-optic constant, K 1-y Li y Ta 1-x Nb x O 3 (0 <x <1, 0 <y <1, hereinafter referred to as KLTN) is used. You can also. The work function of the KLTN crystal is also 5.0 eV. By using the above material for the layer in contact with the substrate, injection of conduction electrons is suppressed and the deflection action is reduced.

図3に、本発明の一実施形態にかかる光強度変調器を示す。光位相変調器と偏光子および検光子とを組み合わせた光強度変調器である。図3(a)に示すように、KTN結晶からなる基板1には、対向する面に正極2と負極3とが形成されている。基板1の入射側に偏光子4を配置し、出射側に検光子5を配置する。偏光子4を通過した光の電界成分のうち、x軸に平行な成分をEx、y軸に平行な成分をEyとする。偏光子4の偏光角が、基板1のx軸に対して45度の場合には、Ex=Eyである。   FIG. 3 shows a light intensity modulator according to an embodiment of the present invention. It is a light intensity modulator combining an optical phase modulator, a polarizer, and an analyzer. As shown in FIG. 3A, a positive electrode 2 and a negative electrode 3 are formed on opposite surfaces of a substrate 1 made of KTN crystal. A polarizer 4 is disposed on the incident side of the substrate 1 and an analyzer 5 is disposed on the exit side. Of the electric field components of the light that has passed through the polarizer 4, let Ex be the component parallel to the x-axis and Ey be the component parallel to the y-axis. When the polarization angle of the polarizer 4 is 45 degrees with respect to the x-axis of the substrate 1, Ex = Ey.

正極2と負極3との間に電圧Vを印加したときのExおよびEyの位相の変化は、それぞれ式(1),(2)で与えられる。検光子5の偏光角が、基板1のx軸に対して45度の場合、検光子5を通過した出射光の強度は、次式で与えられる。   Changes in the phases of Ex and Ey when a voltage V is applied between the positive electrode 2 and the negative electrode 3 are given by equations (1) and (2), respectively. When the polarization angle of the analyzer 5 is 45 degrees with respect to the x-axis of the substrate 1, the intensity of the outgoing light that has passed through the analyzer 5 is given by the following equation.

ExとEyとが等しい場合には、   If Ex and Ey are equal,

として、次式で与えられる。 Is given by the following equation.

このようにして、図3(b)に示したように、電圧Vに応じて、検光子5を通過した出射光の強度を0%〜100%の間で変調することができる。   In this way, as shown in FIG. 3B, the intensity of the emitted light that has passed through the analyzer 5 can be modulated between 0% and 100% according to the voltage V.

図3に示した光強度変調器の電極材料として、Pt、Tiの2種類を用意する。KTN結晶において電気伝導に寄与するキャリアは電子である。図4に、電極材料Tiの光強度変調器の動作特性を示す。印加電圧が増大するのに伴って、出射光の強度は変化するが、オンオフ時の光強度の比(以下、消光比という)が劣化しているのがわかる。これは、電気光学結晶に電圧を印加することにより、電気光学結晶の内部に空間電荷が生じ、電圧の印加方向に電界の傾斜が生じるためにビームが偏向し、垂直偏光と水平偏光との間でずれ角が生じるからである。結晶に印加する電圧の増加に伴って、垂直偏光と水平偏光のずれ角が大きくなり、図4に示したように、消光比が劣化する。   Two types of Pt and Ti are prepared as electrode materials for the light intensity modulator shown in FIG. Carriers contributing to electrical conduction in the KTN crystal are electrons. FIG. 4 shows the operating characteristics of the light intensity modulator of the electrode material Ti. As the applied voltage increases, the intensity of the emitted light changes, but it can be seen that the ratio of the light intensity during on / off (hereinafter referred to as the extinction ratio) is deteriorated. This is because when a voltage is applied to the electro-optic crystal, a space charge is generated inside the electro-optic crystal, and an electric field is tilted in the direction of voltage application, so that the beam is deflected between the vertically polarized light and the horizontally polarized light. This is because a deviation angle occurs. As the voltage applied to the crystal increases, the deviation angle between the vertically polarized light and the horizontally polarized light increases, and the extinction ratio deteriorates as shown in FIG.

図5に、電極材料Ptの光強度変調器の動作特性を示す。Ptは、Tiと比較して電極材料の仕事関数が大きく、KTN結晶の仕事関数より大きいので、電極からKTN結晶へのキャリアの注入効率は減少する。キャリアの注入効率が低くなるほど、電界の傾斜が小さくなるので、偏向作用も小さくなる。正負電極間に58Vの電圧を印加したとき、出射光の偏光方向が入射光の偏光方向に対して、90度回転する。正極2と負極3との間の印加電圧が増大するのに伴って、出射光がオンオフを繰り返す。   FIG. 5 shows the operating characteristics of the light intensity modulator of the electrode material Pt. Since Pt has a larger work function of the electrode material than Ti and is larger than the work function of the KTN crystal, the efficiency of carrier injection from the electrode to the KTN crystal decreases. The lower the carrier injection efficiency, the smaller the gradient of the electric field, and the smaller the deflection effect. When a voltage of 58 V is applied between the positive and negative electrodes, the polarization direction of the emitted light rotates 90 degrees with respect to the polarization direction of the incident light. As the applied voltage between the positive electrode 2 and the negative electrode 3 increases, the emitted light repeatedly turns on and off.

図6に、実施例1にかかる電極の多層構造を示す。KTN結晶からなる基板11に接するPt電極12a,bと、Au電極13a,bの2層構造の電極を用いる。Ptは、仕事関数がKTN結晶からなる基板よりも大きく、キャリアの注入効率は減少し、偏向作用を生じない。   FIG. 6 shows a multilayer structure of the electrode according to the first example. A two-layer electrode of Pt electrodes 12a and 12b in contact with the substrate 11 made of KTN crystal and Au electrodes 13a and 13b is used. Pt has a work function larger than that of a substrate made of a KTN crystal, the carrier injection efficiency is reduced, and no deflection action occurs.

また、KTN結晶は、半導体基板、ガラス基板と比較すると、基板表面に微小な凹凸があり、そこにPtが入り込むように固着するために密着性がよく、電極の剥離が生じにくい。具体例は、実施例2を参照して説明する。従って、基板に接する層にTiを使う必要がなく、信頼性の高い光変調器を構成することができる。   In addition, the KTN crystal has minute irregularities on the substrate surface compared to the semiconductor substrate and the glass substrate, and is fixed so that Pt enters the substrate, so that the adhesion is good and the electrode is hardly peeled off. A specific example will be described with reference to the second embodiment. Therefore, it is not necessary to use Ti for the layer in contact with the substrate, and a highly reliable optical modulator can be configured.

図7に、実施例2にかかる電極の多層構造を示す。KTN結晶からなる基板21に接するPt電極22a,bと、Ti電極23a,bと、Au電極24a,bの3層構造の電極を用いる。Ptは、金属との密着性がわるいために、Auとの密着性を確保するために、Tiを用いた。また、Ptは、ブロック層としても機能するので、TiおよびAuからの電子がKTN結晶に入り込まないようにする。   FIG. 7 shows a multilayer structure of an electrode according to Example 2. A Pt electrode 22a, b in contact with the substrate 21 made of KTN crystal, a Ti electrode 23a, b, and an Au electrode 24a, b are used in a three-layer structure. Since Pt has poor adhesion to metal, Ti was used to ensure adhesion to Au. Further, since Pt also functions as a block layer, electrons from Ti and Au are prevented from entering the KTN crystal.

図8に、実施例2にかかる電極を作製したときの基板表面の写真を示す。Pt/Ti/Au層からなる電極を、EB蒸着により、100/70/200nmの厚さで形成する。符号「.55」は、幅0.55μmの複数のパターンからなる電極を示し、符号「.65」は、幅0.65μmの複数のパターンからなる電極を示している。一部変形しているものの剥離は生じていない。符号「.7」は、幅0.70μmの複数のパターンからなる電極を示し、幅0.7μm以上の電極では、剥離も変形もない。剥離を生じているのは、符号「.5」の幅0.50μmの電極だけである。従って、幅0.7μmを超える電極を形成することができるので、櫛形電極も問題なく形成することができる。   FIG. 8 shows a photograph of the substrate surface when the electrode according to Example 2 was produced. An electrode made of a Pt / Ti / Au layer is formed with a thickness of 100/70/200 nm by EB vapor deposition. The symbol “.55” indicates an electrode composed of a plurality of patterns having a width of 0.55 μm, and the symbol “.65” indicates an electrode composed of a plurality of patterns having a width of 0.65 μm. Although it is partially deformed, no peeling occurs. The symbol “0.7” indicates an electrode composed of a plurality of patterns having a width of 0.70 μm, and the electrode having a width of 0.7 μm or more is neither peeled nor deformed. Only the electrode having a width of 0.50 μm and having a reference sign “0.5” causes the peeling. Accordingly, since an electrode having a width exceeding 0.7 μm can be formed, a comb-shaped electrode can be formed without any problem.

従来の多層構造の電極構造を示す断面図である。It is sectional drawing which shows the electrode structure of the conventional multilayer structure. Pt/Ti/Au層からなる電極を作製したときの基板表面を示す図である。It is a figure which shows the board | substrate surface when producing the electrode which consists of a Pt / Ti / Au layer. 本発明の一実施形態にかかる光強度変調器を示す図である。It is a figure which shows the light intensity modulator concerning one Embodiment of this invention. 電極材料Tiの光強度変調器の動作特性を示す図である。It is a figure which shows the operating characteristic of the light intensity modulator of electrode material Ti. 電極材料Ptの光強度変調器の動作特性を示す図である。It is a figure which shows the operating characteristic of the light intensity modulator of electrode material Pt. 実施例1にかかる電極の多層構造を示す断面図である。1 is a cross-sectional view showing a multilayer structure of an electrode according to Example 1. FIG. 実施例2にかかる電極の多層構造を示す断面図である。6 is a cross-sectional view showing a multilayer structure of an electrode according to Example 2. FIG. 実施例2にかかる電極を作製したときの基板表面を示す図である。It is a figure which shows the substrate surface when the electrode concerning Example 2 is produced.

符号の説明Explanation of symbols

11,21,101 基板
12,22,103 Pt電極
13,24,104 Au電極
23,102 Ti電極
11, 21, 101 Substrate 12, 22, 103 Pt electrode 13, 24, 104 Au electrode 23, 102 Ti electrode

Claims (7)

電気光学効果を有する電気光学結晶と、
該電気光学結晶を透過する光の光軸に対して垂直に電界を印加するために、互いに平行な前記電気光学結晶の面に対向して形成された電極対とを備え、
該電極対は、少なくとも2以上の金属が積層され、前記電気光学結晶に接する金属の仕事関数が前記電気光学結晶の仕事関数より大きいことを特徴とする光変調器。
An electro-optic crystal having an electro-optic effect;
An electrode pair formed to face the surfaces of the electro-optic crystal parallel to each other in order to apply an electric field perpendicular to the optical axis of the light transmitted through the electro-optic crystal;
The electrode pair is formed by stacking at least two metals, and a work function of a metal in contact with the electro-optic crystal is larger than a work function of the electro-optic crystal.
前記電気光学結晶は、KTa1-xNbx3(0<x<1)であることを特徴とする請求項1に記載の光変調器。 The electro-optical crystal, KTa 1-x Nb x O 3 (0 <x <1) optical modulator according to claim 1, characterized in that a. 前記電気光学結晶は、K1-yLiyTa1-xNbx3(0<x<1、0<y<1)であることを特徴とする請求項1に記載の光変調器。 2. The optical modulator according to claim 1, wherein the electro-optic crystal is K 1-y Li y Ta 1-x Nb x O 3 (0 <x <1, 0 <y <1). 前記電極対の前記電気光学結晶に接する金属は、Ptであることを特徴とする請求項2または3に記載の光変調器。   4. The optical modulator according to claim 2, wherein the metal in contact with the electro-optic crystal of the electrode pair is Pt. 前記電極対は、前記電気光学結晶に接する面から順にPtおよびAuが積層されていることを特徴とする請求項4に記載の光変調器。   The optical modulator according to claim 4, wherein the electrode pair is formed by sequentially stacking Pt and Au from a surface in contact with the electro-optic crystal. 前記電極対は、前記電気光学結晶に接する面から順にPt、TiおよびAuが積層されていることを特徴とする請求項4に記載の光変調器。   The optical modulator according to claim 4, wherein the electrode pair is formed by sequentially stacking Pt, Ti, and Au from a surface in contact with the electro-optic crystal. 前記電極対の前記電気光学結晶に接する金属は、Co、Ge、Pd、Ni、Ir、Pt、Seのいずれかであることを特徴とする請求項2または3に記載の光変調器。   4. The optical modulator according to claim 2, wherein the metal in contact with the electro-optic crystal of the electrode pair is any one of Co, Ge, Pd, Ni, Ir, Pt, and Se.
JP2008008535A 2008-01-17 2008-01-17 Light modulator Active JP4926985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008008535A JP4926985B2 (en) 2008-01-17 2008-01-17 Light modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008008535A JP4926985B2 (en) 2008-01-17 2008-01-17 Light modulator

Publications (2)

Publication Number Publication Date
JP2009169188A true JP2009169188A (en) 2009-07-30
JP4926985B2 JP4926985B2 (en) 2012-05-09

Family

ID=40970413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008008535A Active JP4926985B2 (en) 2008-01-17 2008-01-17 Light modulator

Country Status (1)

Country Link
JP (1) JP4926985B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015158531A (en) * 2014-02-21 2015-09-03 日本電信電話株式会社 Electro-optical device
CN111448508A (en) * 2017-12-05 2020-07-24 浜松光子学株式会社 Reflection type spatial light modulator, optical observation device, and light irradiation device
CN111596339A (en) * 2020-05-29 2020-08-28 东华理工大学 Semiconductor nuclear radiation detector and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06332017A (en) * 1993-05-25 1994-12-02 Hitachi Ltd Semiconductor optical switch
US20040152229A1 (en) * 2002-10-18 2004-08-05 Khalil Najafi Manufacturing methods and vacuum or hermetically packaged micromachined or MEMS devices formed thereby having substantially vertical feedthroughs
WO2006137408A1 (en) * 2005-06-20 2006-12-28 Nippon Telegraph And Telephone Corporation Electro-optical element
JP2007243072A (en) * 2006-03-10 2007-09-20 Toyota Central Res & Dev Lab Inc Semiconductor optical amplifier composite semiconductor laser apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06332017A (en) * 1993-05-25 1994-12-02 Hitachi Ltd Semiconductor optical switch
US20040152229A1 (en) * 2002-10-18 2004-08-05 Khalil Najafi Manufacturing methods and vacuum or hermetically packaged micromachined or MEMS devices formed thereby having substantially vertical feedthroughs
WO2006137408A1 (en) * 2005-06-20 2006-12-28 Nippon Telegraph And Telephone Corporation Electro-optical element
JP2007243072A (en) * 2006-03-10 2007-09-20 Toyota Central Res & Dev Lab Inc Semiconductor optical amplifier composite semiconductor laser apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015158531A (en) * 2014-02-21 2015-09-03 日本電信電話株式会社 Electro-optical device
CN111448508A (en) * 2017-12-05 2020-07-24 浜松光子学株式会社 Reflection type spatial light modulator, optical observation device, and light irradiation device
CN111448508B (en) * 2017-12-05 2023-06-09 浜松光子学株式会社 Reflection type spatial light modulator, light observation device, and light irradiation device
CN111596339A (en) * 2020-05-29 2020-08-28 东华理工大学 Semiconductor nuclear radiation detector and preparation method and application thereof
CN111596339B (en) * 2020-05-29 2023-07-25 东华理工大学 Semiconductor nuclear radiation detector and preparation method and application thereof

Also Published As

Publication number Publication date
JP4926985B2 (en) 2012-05-09

Similar Documents

Publication Publication Date Title
EP1084445B1 (en) Method for enhancing conductivity of display substrate electrodes with auxiliary metal layers
KR101373750B1 (en) Array substrate for In-Plane switching mode liquid crystal display device and method of fabricating the same
JP2010098280A (en) Transparent thin film transistor and image display unit
JP3628342B2 (en) Dielectric optical waveguide device
US9067783B2 (en) Graphene-based photodetector including complex transparent electrode, method of manufacturing the same, and device including the same
Atighilorestani et al. Electrochromic‐Polymer‐Based Switchable Plasmonic Color Devices Using Surface‐Relief Nanostructure Pixels
KR20060104708A (en) An array substrate for in-plane switching mode lcd and method of fabricating of the same
JP4926985B2 (en) Light modulator
TW200523613A (en) Liquid crystal display, thin film diode panel, and manufacturing method of the same
JP6206922B2 (en) Electro-optic element
JP2009117816A (en) Method of manufacturing semiconductor device, method of manufacturing display apparatus, apparatus of manufacturing semiconductor device, and display apparatus
Park et al. Focus‐tunable planar lenses by controlled carriers over exciton
JP2007011225A (en) Display device and manufacturing method thereof
JP5360256B2 (en) Optical waveguide device
US20220019096A1 (en) Optical modulator
KR102082660B1 (en) Oxide thin film transistor
JP4370561B2 (en) Reflective liquid crystal display element
KR20100040603A (en) Oxide thin film transistor and method of fabricating the same
JP3751441B2 (en) Optical element
CN220191347U (en) Electronic device
JP2014154701A (en) Thin film transistor and image display device
JP5416022B2 (en) Frequency independent optical deflector
US9599876B2 (en) Periodic polarization reversal electrode, periodic polarization reversal structure forming method and periodic polarization reversal element
JPS62189439A (en) Optical bistable element
JP2005070194A (en) Method for manufacturing periodical polarization reversal structure and optical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100126

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100521

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100521

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4926985

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350