JP6206922B2 - Electro-optic element - Google Patents

Electro-optic element Download PDF

Info

Publication number
JP6206922B2
JP6206922B2 JP2014031814A JP2014031814A JP6206922B2 JP 6206922 B2 JP6206922 B2 JP 6206922B2 JP 2014031814 A JP2014031814 A JP 2014031814A JP 2014031814 A JP2014031814 A JP 2014031814A JP 6206922 B2 JP6206922 B2 JP 6206922B2
Authority
JP
Japan
Prior art keywords
electro
optic
crystal
refractive index
platinum oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014031814A
Other languages
Japanese (ja)
Other versions
JP2015158531A (en
Inventor
純 宮津
純 宮津
今井 欽之
欽之 今井
宗範 川村
宗範 川村
小林 潤也
潤也 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2014031814A priority Critical patent/JP6206922B2/en
Publication of JP2015158531A publication Critical patent/JP2015158531A/en
Application granted granted Critical
Publication of JP6206922B2 publication Critical patent/JP6206922B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

本発明は、電気光学素子に関し、より詳細には、電圧印加による電子注入が抑制された電極材料を備えた電気光学素子に関する。 The present invention relates to an electro-optical element, and more particularly, relates to an electro-optical element provided with an electrode material electron injection by voltage application is suppressed.

電気光学結晶を用いた様々な光学素子が検討されている。これら光学素子は、電気光学結晶に電圧を印加すると、電気光学効果により結晶内部の屈折率が変化することを利用している。電気光学効果は、GHzを超える非常に高速な応答を示すことから、高速な光制御を可能としている。   Various optical elements using electro-optic crystals have been studied. These optical elements utilize the fact that when a voltage is applied to the electro-optic crystal, the refractive index inside the crystal changes due to the electro-optic effect. Since the electro-optic effect exhibits a very high speed response exceeding GHz, high speed light control is possible.

電気光学結晶を用いた光位相変調器は、結晶の屈折率の変化により、結晶を通過する光の速度を変化させて、光の位相を変化させる。また、電気光学結晶を、マッハツェンダー干渉計、またはマイケルソン干渉計の一方の光導波路に設置すると、結晶に印加する電圧に応じて、干渉計の出力の光強度を変化させることができる。これら干渉計は、光スイッチ、光強度変調器として用いることができる。特許文献1には、電気光学結晶と偏光子、検光子を組み合わせた高速な光強度変調器を実現する方法が開示されている。   An optical phase modulator using an electro-optic crystal changes the phase of light by changing the speed of light passing through the crystal by changing the refractive index of the crystal. Further, when the electro-optic crystal is installed in one optical waveguide of the Mach-Zehnder interferometer or the Michelson interferometer, the light intensity of the output of the interferometer can be changed according to the voltage applied to the crystal. These interferometers can be used as optical switches and light intensity modulators. Patent Document 1 discloses a method for realizing a high-speed light intensity modulator that combines an electro-optic crystal, a polarizer, and an analyzer.

特開2011-118438号公報JP 2011-118438 A

しかしながら、従来の方法では、電気光学結晶に電圧を印加する際に、電気光学結晶への電子の注入を抑制することが不十分であった。電気光学結晶中に電子が注入されると、電気光学結晶中に電界の分布が発生し、その結果、電気光学結晶中を透過する光に偏向が生じてします。このような透過光の偏向は、光強度変調器としては、消光比を低下させてしまうという問題があった。   However, in the conventional method, it is insufficient to suppress injection of electrons into the electro-optic crystal when a voltage is applied to the electro-optic crystal. When electrons are injected into an electro-optic crystal, an electric field distribution is generated in the electro-optic crystal, which results in deflection of light transmitted through the electro-optic crystal. Such deflection of transmitted light has a problem that the extinction ratio is lowered as a light intensity modulator.

本発明の目的は、電気光学結晶に備える電極として酸化白金を用いることにより、電気光学結晶への電子注入を抑制し、電気光学素子の特性向上と安定動作を実現することにある。   An object of the present invention is to suppress the injection of electrons into the electro-optic crystal by using platinum oxide as an electrode provided in the electro-optic crystal, thereby realizing improvement in characteristics and stable operation of the electro-optic element.

本発明は、このような目的を達成するために、一実施態様は、単結晶からなる電気光学材料と、該電気光学材料の対向する2つの面に形成された、酸化白金からなる1対の第1の電極対と、前記第1の電極対の上に形成された、前記酸化白金より電気伝導度の高い材料が1種類以上積層された第2の電極対とを備え、前記電気光学材料は、ペロブスカイト型単結晶材料である、KTa 1-x Nb (0≦x≦1、KTN)結晶、またはK 1-y Li Ta 1-x Nb (0≦x≦1、0<y<1、KLTN)結晶であることを特徴とする。 In order to achieve the above object, according to one embodiment of the present invention, an embodiment includes an electro-optic material made of a single crystal and a pair of platinum oxides formed on two opposing surfaces of the electro-optic material. A first electrode pair; and a second electrode pair formed on the first electrode pair and laminated with one or more materials having higher electrical conductivity than the platinum oxide , the electro-optic material Is a perovskite single crystal material, KTa 1-x Nb x O 3 (0 ≦ x ≦ 1, KTN) crystal, or K 1-y Li y Ta 1-x Nb x O 3 (0 ≦ x ≦ 1) , 0 <y <1, KLTN) crystal .

以上説明したように、本発明によれば、電気光学材料に形成する電極対として、酸化白金を用いることにより、電気光学結晶への電子注入を抑制し、電気光学素子の特性向上と安定動作を実現することが可能となる。   As described above, according to the present invention, by using platinum oxide as the electrode pair formed in the electro-optic material, electron injection into the electro-optic crystal is suppressed, and the characteristics of the electro-optic element are improved and stable operation is achieved. It can be realized.

本発明の一実施形態にかかる電気光学素子を示す図である。1 is a diagram illustrating an electro-optic element according to an embodiment of the present invention. 本発明の一実施形態にかかる屈折率分布測定装置を示す図である。It is a figure which shows the refractive index distribution measuring apparatus concerning one Embodiment of this invention. 本発明の一実施形態にかかる電気光学素子の屈折率分布の電圧依存性を示す図である。It is a figure which shows the voltage dependence of the refractive index distribution of the electro-optic element concerning one Embodiment of this invention. 比較のための電気光学素子の屈折率分布の電圧依存性を示す図である。It is a figure which shows the voltage dependence of the refractive index distribution of the electro-optical element for a comparison.

以下、図面を参照しながら本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1に、本発明の一実施形態にかかる電気光学素子を示す。単結晶からなる電気光学材料101の対向する2つの面に、電気光学材料101に電圧を印加するための電極対として、酸化白金膜102a,102bを成膜する。さらに、酸化白金膜102a,102b上に、必要に応じて酸化白金より電気伝導度の高い材料を、1種類以上積層して電極層103a,103bとする。   FIG. 1 shows an electro-optic element according to an embodiment of the present invention. Platinum oxide films 102a and 102b are formed as electrode pairs for applying a voltage to the electro-optic material 101 on two opposing surfaces of the electro-optic material 101 made of a single crystal. Further, on the platinum oxide films 102a and 102b, one or more materials having higher electrical conductivity than platinum oxide are stacked as necessary to form electrode layers 103a and 103b.

電圧印加に伴う電気光学材料101への電子注入の有無は、結晶中の屈折率分布を測定することにより判断する。このため、電気光学材料101の電極対が形成された2つの面以外の、いずれかの対向する2つの面に光学研磨を行い、光の入出射面とする。屈折率分布の測定方法は後述する。   Whether or not electrons are injected into the electro-optical material 101 due to voltage application is determined by measuring the refractive index distribution in the crystal. For this reason, optical polishing is performed on any two opposing surfaces other than the two surfaces on which the electrode pair of the electro-optical material 101 is formed, thereby forming light incident / exit surfaces. A method for measuring the refractive index distribution will be described later.

なお、電気光学素子とは、電気光学効果により結晶の屈折率が変化することを利用する光学素子である。例えば、電気光学素子には、光位相変調器、光強度変調器、光スイッチなどが含まれるが、これらに限定されるものではない。   An electro-optical element is an optical element that utilizes the change in the refractive index of a crystal due to an electro-optical effect. For example, the electro-optical element includes, but is not limited to, an optical phase modulator, a light intensity modulator, an optical switch, and the like.

(酸化白金による電子注入抑制の原理)
電気光学結晶の表面に金属等の材料を付着させた場合、金属等の材料の仕事関数と電気光学結晶の電子親和力との差分のエネルギー障壁(ショットキー障壁)が電子に対して形成される。つまり、電気光学結晶の表面に形成する材料として、仕事関数が大きな材料を用いると電気光学結晶への電子注入が抑制できることになる。電極材料として用いられる金属の中では、白金が仕事関数の大きな材料として知られている。これに対して、酸化された白金は、白金よりも仕事関数が大きく、他の電極材料では実現不可能な電子注入抑制効果を得ることができる。
(Principle of electron injection suppression by platinum oxide)
When a material such as a metal is attached to the surface of the electro-optic crystal, a difference energy barrier (Schottky barrier) between the work function of the material such as the metal and the electron affinity of the electro-optic crystal is formed for the electrons. That is, if a material having a large work function is used as a material formed on the surface of the electro-optic crystal, electron injection into the electro-optic crystal can be suppressed. Among metals used as electrode materials, platinum is known as a material having a large work function. On the other hand, oxidized platinum has a work function larger than that of platinum, and can obtain an electron injection suppressing effect that cannot be realized by other electrode materials.

(電気光学材料への酸化白金膜の取り付け方法)
電気光学結晶への酸化白金膜の取り付けは、スパッタ装置を用いて行う。スパッタは、通常アルゴン雰囲気で行うが、酸素、窒素などの活性ガスをアルゴンに加えることにより、ターゲットとなる材料の酸化物、窒化物を成膜することができる。この特徴を用いて、アルゴンに酸素を導入した雰囲気で、電気光学材料に白金のスパッタを行い、酸化白金を成膜する。
(Method of attaching platinum oxide film to electro-optic material)
The platinum oxide film is attached to the electro-optic crystal using a sputtering apparatus. Sputtering is usually performed in an argon atmosphere. By adding an active gas such as oxygen or nitrogen to argon, an oxide or nitride of a target material can be formed. Using this feature, platinum is sputtered onto the electro-optic material in an atmosphere in which oxygen is introduced into argon to form a film of platinum oxide.

なお、酸化白金膜102上に、電気伝導度の高い材料からなる電極層103を積層する場合には、同一のスパッタ装置内に、予めターゲットとして電極層の材料を導入しておけば、電気光学素子を外気に曝すことなく、電極層103を積層することができる。   Note that in the case where the electrode layer 103 made of a material having high electrical conductivity is laminated on the platinum oxide film 102, if the material of the electrode layer is introduced as a target in the same sputtering apparatus in advance, the electro-optic The electrode layer 103 can be stacked without exposing the element to the outside air.

(酸化白金膜上への電気伝導度の高い材料の積層)
酸化白金は、仕事関数が大きいために、電気光学結晶への電子注入の抑制効果も大きい。しかしながら、電気伝導度は低いため、電圧源と電気光学結晶上の酸化白金膜との接触が点接触の場合、酸化白金の面内での電位の分布が生じてしまう。従って、電気光学結晶へ電圧を印加すると、電極対が形成された面内の場所に依存して、印加される電圧が変化してしまう。
(Lamination of materials with high electrical conductivity on platinum oxide film)
Since platinum oxide has a large work function, it has a great effect of suppressing electron injection into the electro-optic crystal. However, since the electric conductivity is low, when the contact between the voltage source and the platinum oxide film on the electro-optic crystal is a point contact, a potential distribution occurs in the plane of the platinum oxide. Therefore, when a voltage is applied to the electro-optic crystal, the applied voltage changes depending on the location in the plane where the electrode pair is formed.

そこで、酸化白金膜102上に、電気伝導度の高い材料を、1種類以上積層して電極層103とすることにより、上記印加電圧の場所依存性を回避することができる。本実施形態では、電極層103として白金を用いる。酸化白金よりも電気伝導度が高い材料であっても、酸化されやすい材料の場合には、酸化により電気伝導度が低くなる可能性がある。そこで、酸化されにくい材料として白金を用いる。   Therefore, the location dependence of the applied voltage can be avoided by stacking one or more kinds of materials having high electrical conductivity on the platinum oxide film 102 to form the electrode layer 103. In this embodiment, platinum is used as the electrode layer 103. Even if the material has higher electrical conductivity than platinum oxide, in the case of a material that is easily oxidized, the electrical conductivity may be lowered by oxidation. Therefore, platinum is used as a material that is not easily oxidized.

白金は、一般的には酸化されにくい材料ではあるが、より酸化されにくい材料を積層して、白金の酸化を防止する。例えば、電気伝導度が高く、酸化されにくい金を、白金の上に積層する構造とすることもできる。   Platinum is generally a material that is difficult to oxidize, but a layer that is more difficult to oxidize is laminated to prevent oxidation of platinum. For example, a structure in which gold having high electrical conductivity and hardly oxidized is stacked on platinum.

なお、電圧源と電気光学材料101上の酸化白金膜102との接触を、面接触とすることができれば、上記のような印加電圧の場所依存性を回避することができるため、電極層103を積層する必要はない。   Note that if the contact between the voltage source and the platinum oxide film 102 on the electro-optic material 101 can be a surface contact, the above-described location dependency of the applied voltage can be avoided. There is no need to stack.

(電気光学材料)
高効率な光制御デバイス実現のためには、1次の電気光学定数であるポッケルス定数rij、または2次の電気光学定数であるカー定数sijが大きい、単結晶の電気光学材料を用いることが望ましい。そのような電気光学定数の大きい電気光学結晶としては、例えば、ペロブスカイト型単結晶であり、大きなポッケルス定数rijを有する強誘電相のKTa1-xNb(0≦x≦1、KTN)結晶、K1-yLiTa1-xNb(0≦x≦1、0<y<1、KLTN)結晶、大きなカー定数sijを有する常誘電相のKTN結晶、KLTN結晶などが挙げられる。
(Electro-optic material)
In order to realize a high-efficiency light control device, a single crystal electro-optic material having a large Pockels constant r ij that is a first-order electro-optic constant or a Kerr constant s ij that is a second-order electro-optic constant is used. Is desirable. Such an electro-optic crystal having a large electro-optic constant is, for example, a perovskite single crystal, and KTa 1-x Nb x O 3 (0 ≦ x ≦ 1, KTN) of a ferroelectric phase having a large Pockels constant r ij. ) Crystal, K 1-y Li y Ta 1-x Nb x O 3 (0 ≦ x ≦ 1, 0 <y <1, KLTN) crystal, paraelectric KTN crystal having a large Kerr constant s ij , KLTN crystal Etc.

(電子注入量の評価方法)
電圧印加に伴う電気光学材料101への電子注入の有無は、結晶中の屈折率分布を測定することにより判断する。電気光学結晶における屈折率変化量Δnは、1次の電気光学定数であるポッケルス定数rij、2次の電気光学定数であるカー定数sij、結晶中の電界Eを用いてそれぞれ以下のように表される。
(Evaluation method of electron injection amount)
Whether or not electrons are injected into the electro-optical material 101 due to voltage application is determined by measuring the refractive index distribution in the crystal. The refractive index change Δn in the electro-optic crystal is as follows using the Pockels constant r ij that is the first-order electro-optic constant, the Kerr constant s ij that is the second-order electro-optic constant, and the electric field E in the crystal, respectively. expressed.

Figure 0006206922
Figure 0006206922

Figure 0006206922
Figure 0006206922

電圧印加に伴って、電気光学結晶中に電子が注入された場合、電極の陰極からの距離をx、注入された電荷密度をρ、結晶の誘電率をεとすると、以下のガウスの法則 When electrons are injected into the electro-optic crystal with voltage application, the distance from the cathode of the electrode is x, the injected charge density is ρ, and the dielectric constant of the crystal is ε.

Figure 0006206922
Figure 0006206922

からわかるように、電界に傾斜が発生する。この電界の傾斜は、注入電荷ρが大きければ大きいほど大きくなる。このような電気光学効果から、電界の傾斜により屈折率の傾斜が発生するため、屈折率分布の測定により結晶内の電子注入量を評価することができる。 As can be seen, the electric field is tilted. The gradient of the electric field increases as the injected charge ρ increases. Because of such an electro-optic effect, a refractive index gradient is generated by the gradient of the electric field. Therefore, the electron injection amount in the crystal can be evaluated by measuring the refractive index distribution.

(電気光学結晶中の屈折率分布測定)
図2に、本発明の一実施形態にかかる屈折率分布測定装置を示す。屈折率分布測定装置は、電気光学素子を透過した被検光と参照光との位相差から、電圧印加に伴う電気光学材料内部の屈折率の変化量に換算する。
(Measurement of refractive index distribution in electro-optic crystal)
FIG. 2 shows a refractive index distribution measuring apparatus according to an embodiment of the present invention. The refractive index distribution measuring device converts the phase difference between the test light transmitted through the electro-optic element and the reference light into a change amount of the refractive index inside the electro-optic material due to voltage application.

レーザー201から出射されたレーザー光は、ビームイクスパンダー202によりビーム径が拡大され、ビームスプリッター203において参照光と被検光に2分岐される。参照光はミラー204を経て、ビームスプリッター208へ到達する。被検光はミラー206と電気光学素子207を経て、ビームスプリッター208へ到達する。ビームスプリッター208で合波された参照光と被検光は、結像レンズ209に入射され、撮像素子210で結像した干渉縞が観測される。   The laser beam emitted from the laser 201 is expanded in beam diameter by the beam expander 202, and is split into two by the beam splitter 203 into reference light and test light. The reference light reaches the beam splitter 208 via the mirror 204. The test light reaches the beam splitter 208 through the mirror 206 and the electro-optical element 207. The reference light and the test light combined by the beam splitter 208 are incident on the imaging lens 209, and interference fringes imaged by the image sensor 210 are observed.

ミラー204に取り付けられたピエゾ素子205により、参照光の光路長をレーザー光の波長の1/4の長さづつ変化させながら、干渉縞を複数回(4回)撮影する。撮影された干渉縞間で演算を行い、マッハツェンダー干渉計の両光路間の位相差を求める(位相シフト法)。この位相差は、電気光学素子207の電気光学結晶中の屈折率変化に伴い発生するため、位相差から屈折率変化量に換算することができる。   The interference fringes are photographed a plurality of times (four times) while changing the optical path length of the reference light by a quarter of the wavelength of the laser light by the piezo element 205 attached to the mirror 204. A calculation is performed between the captured interference fringes to obtain a phase difference between both optical paths of the Mach-Zehnder interferometer (phase shift method). Since this phase difference is generated with a change in refractive index in the electro-optic crystal of the electro-optic element 207, the phase difference can be converted into a refractive index change amount.

図1に示した電気光学素子を作製した。電気光学材料としてKLTN結晶を用い、その対向する2つの面に酸化白金膜からなる電極対を成膜した。さらに、白金、金の順で積層された電極層を形成した。この電気光学素子を、図2に示した屈折率分布測定装置に挿入し、電圧印加に伴う屈折率分布を測定することにより、電子注入量を評価した。   The electro-optical element shown in FIG. 1 was produced. A KLTN crystal was used as the electro-optic material, and an electrode pair made of a platinum oxide film was formed on two opposing faces. Furthermore, the electrode layer laminated | stacked in order of platinum and gold | metal | money was formed. The electro-optic element was inserted into the refractive index distribution measuring apparatus shown in FIG. 2, and the refractive index distribution accompanying voltage application was measured to evaluate the electron injection amount.

電気光学材料101であるKLTN結晶の大きさは、4.0mm×3.2mm×1.0mmであり、4.0mm×3.2mmの2つの面にスパッタ装置により、酸化白金膜102である電極対を形成した。スパッタ装置は、5.0×10-6Torr以下の真空引きを行った後、アルゴンの流量を25.7ccm、酸素の流量を10.0ccmの雰囲気として、白金のスパッタを行った。 The size of the KLTN crystal that is the electro-optic material 101 is 4.0 mm × 3.2 mm × 1.0 mm, and the electrode that is the platinum oxide film 102 is formed on two surfaces of 4.0 mm × 3.2 mm by a sputtering apparatus. A pair was formed. The sputtering apparatus evacuated to 5.0 × 10 −6 Torr or less, and then sputtered platinum with an argon flow rate of 25.7 ccm and an oxygen flow rate of 10.0 ccm.

その後、再度真空引きを行った後、酸素は供給せず、アルゴンのみの流量を25.7ccmの雰囲気で白金を成膜し、続けて金を成膜して、電極層103を形成した。酸化白金膜、白金、金の厚さは、それぞれ50Å、600Å、1000Åとした。屈折率分布を測定するため、KLTN結晶の3.2mm×1.0mmの2つの面に対して、光学研磨を行った。   Then, after evacuation was performed again, oxygen was not supplied, and platinum was formed in an atmosphere with an argon flow rate of 25.7 ccm, followed by gold to form an electrode layer 103. The thicknesses of the platinum oxide film, platinum, and gold were 50 mm, 600 mm, and 1000 mm, respectively. In order to measure the refractive index distribution, optical polishing was performed on two surfaces of 3.2 mm × 1.0 mm of the KLTN crystal.

KLTN結晶は、温度を徐々に上げると強誘電相から常誘電相へ相転移を起こす。本実施例においては常誘電相となるよう温度を設定し、このときの比誘電率は10000とした。常誘電相においては、最低次の電気光学効果は、2次の電気光学効果(カー効果)であり、以下の測定ではカー効果による屈折率変化を測定する。   The KLTN crystal undergoes a phase transition from the ferroelectric phase to the paraelectric phase when the temperature is gradually increased. In this example, the temperature was set so that a paraelectric phase was obtained, and the relative dielectric constant at this time was 10,000. In the paraelectric phase, the lowest-order electro-optic effect is the second-order electro-optic effect (Kerr effect), and the refractive index change due to the Kerr effect is measured in the following measurement.

図3に、本発明の一実施形態にかかる電気光学素子の屈折率分布の電圧依存性を示す。横軸が陰極からの距離、縦軸が屈折率変化量である。印加電圧は100V、200V、300V、400Vとした。各電圧におけるグラフの傾きが極めて小さいことがわかる。すなわち、電極対の陰極から陽極に向かって、KLTN結晶内部の屈折率が一定であることを示しており、式3で示したガウスの法則からわかるように、注入電荷は、ほぼゼロである。   FIG. 3 shows the voltage dependence of the refractive index distribution of the electro-optic element according to one embodiment of the present invention. The horizontal axis is the distance from the cathode, and the vertical axis is the amount of change in refractive index. The applied voltage was 100 V, 200 V, 300 V, and 400 V. It can be seen that the slope of the graph at each voltage is extremely small. That is, the refractive index inside the KLTN crystal is constant from the cathode to the anode of the electrode pair, and as can be seen from Gauss's law expressed by Equation 3, the injected charge is almost zero.

比較のために、酸化白金膜を成膜せず、KLTN結晶上に白金(厚さ600Å)と、その上に金(厚さ1000Å)を成膜したサンプルを用意した。同様に、図2に示した屈折率分布測定装置測定を用いて行った測定結果を図4に示す。印加電圧が200Vの場合においてもグラフは傾きを持ち、電圧の増加に伴って、その傾きは増加していることがわかる。すなわち、電極対の陰極から陽極に向かって、KLTN結晶内部の屈折率が傾斜しており、注入電荷によって電界の傾斜が発生していることがわかる。   For comparison, a sample was prepared in which a platinum oxide film was formed on a KLTN crystal and gold (a thickness of 1000 mm) was formed on the KLTN crystal without forming a platinum oxide film. Similarly, FIG. 4 shows the measurement results obtained using the refractive index distribution measuring device measurement shown in FIG. Even when the applied voltage is 200 V, the graph has a slope, and it can be seen that the slope increases as the voltage increases. That is, it can be seen that the refractive index inside the KLTN crystal is inclined from the cathode to the anode of the electrode pair, and the electric field is inclined by the injected charge.

本実施形態によれば、電気光学材料に形成する電極対として、仕事関数の大きな酸化白金を用いることにより、電気光学結晶への電子注入を抑制し、電気光学素子の特性向上と安定動作を実現することが可能となる。   According to this embodiment, by using platinum oxide having a large work function as an electrode pair formed on an electro-optic material, electron injection into the electro-optic crystal is suppressed, and the characteristics of the electro-optic element are improved and stable operation is realized. It becomes possible to do.

101 電気光学材料
102 酸化白金膜
103 電極層
201 レーザー
202 ビームイクスパンダー
203,208 ビームスプリッター
204,206 ミラー
205 ピエゾ素子
207 電気光学素子
209 結像レンズ
210 撮像素子
DESCRIPTION OF SYMBOLS 101 Electro-optic material 102 Platinum oxide film 103 Electrode layer 201 Laser 202 Beam expander 203, 208 Beam splitter 204, 206 Mirror 205 Piezo element 207 Electro-optic element 209 Imaging lens 210 Imaging element

Claims (1)

単結晶からなる電気光学材料と、
該電気光学材料の対向する2つの面に形成された、酸化白金からなる1対の第1の電極対と、
前記第1の電極対の上に形成された、前記酸化白金より電気伝導度の高い材料が1種類以上積層された第2の電極対と
を備え
前記電気光学材料は、ペロブスカイト型単結晶材料である、KTa 1-x Nb (0≦x≦1、KTN)結晶、またはK 1-y Li Ta 1-x Nb (0≦x≦1、0<y<1、KLTN)結晶であることを特徴とする電気光学素子。
An electro-optic material made of a single crystal;
A pair of first electrodes made of platinum oxide formed on two opposing surfaces of the electro-optic material;
A second electrode pair formed on the first electrode pair and laminated with one or more materials having higher electrical conductivity than the platinum oxide ;
The electro-optical material is a KTa 1-x Nb x O 3 (0 ≦ x ≦ 1, KTN) crystal or a K 1-y Li y Ta 1-x Nb x O 3 (0 ≦ x ≦ 1, 0 <y <1, KLTN) crystal .
JP2014031814A 2014-02-21 2014-02-21 Electro-optic element Expired - Fee Related JP6206922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014031814A JP6206922B2 (en) 2014-02-21 2014-02-21 Electro-optic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014031814A JP6206922B2 (en) 2014-02-21 2014-02-21 Electro-optic element

Publications (2)

Publication Number Publication Date
JP2015158531A JP2015158531A (en) 2015-09-03
JP6206922B2 true JP6206922B2 (en) 2017-10-04

Family

ID=54182576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014031814A Expired - Fee Related JP6206922B2 (en) 2014-02-21 2014-02-21 Electro-optic element

Country Status (1)

Country Link
JP (1) JP6206922B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112017002825T5 (en) 2016-06-06 2019-02-28 Hamamatsu Photonics K.K. Light modulator, optical observation device and optical irradiation device
DE112017002833T5 (en) 2016-06-06 2019-02-21 Hamamatsu Photonics K.K. Reflecting spatial light modulator, optical observation device and optical irradiation device
DE112017002834T5 (en) 2016-06-06 2019-02-28 Hamamatsu Photonics K.K. Reflecting spatial light modulator, optical observation device and optical irradiation device
DE112017002829T5 (en) 2016-06-06 2019-02-21 Hamamatsu Photonics K.K. OPTICAL ELEMENT AND OPTICAL DEVICE
JP7229937B2 (en) * 2017-12-05 2023-02-28 浜松ホトニクス株式会社 Optical modulator, optical observation device and light irradiation device
WO2021210145A1 (en) * 2020-04-16 2021-10-21 日本電信電話株式会社 Electro-optic device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6946596B2 (en) * 2002-09-13 2005-09-20 Kucherov Yan R Tunneling-effect energy converters
JP5130652B2 (en) * 2006-05-15 2013-01-30 富士通株式会社 Metal film etching method and semiconductor device manufacturing method
JP4382103B2 (en) * 2007-02-26 2009-12-09 富士通株式会社 Capacitor element, semiconductor device, and capacitor element manufacturing method
JP4919228B2 (en) * 2007-05-15 2012-04-18 独立行政法人日本原子力研究開発機構 Hydrogen gas detection membrane
JP4926985B2 (en) * 2008-01-17 2012-05-09 日本電信電話株式会社 Light modulator
JP5428109B2 (en) * 2009-03-17 2014-02-26 国立大学法人秋田大学 Fuel cell

Also Published As

Publication number Publication date
JP2015158531A (en) 2015-09-03

Similar Documents

Publication Publication Date Title
JP6206922B2 (en) Electro-optic element
Reddy et al. Superconducting nanowire single-photon detectors with 98% system detection efficiency at 1550 nm
CN107430294B (en) Electro-absorption modulator for depth imaging and other applications
Wang et al. Hot-electron photodetector with wavelength selectivity in near-infrared via Tamm plasmon
FR2665270A1 (en) SPATIAL LIGHT MODULATOR DEVICE AND HIGH - DYNAMIC CONOSCOPIC HOLOGRAPHIC SYSTEM COMPRISING SUCH A MODULATOR DEVICE.
KR101811209B1 (en) Photon generator using frequency comb and nanoplasmonic technology and generating method thereof
Wade et al. A squeezed light source operated under high vacuum
US8773749B2 (en) Variable focusing lens and microscope
Chen et al. Integrated electro-optic modulator in z-cut lithium niobate thin film with vertical structure
Jing et al. Angular dependence of optical modes in metal-insulator-metal coupled quantum well infrared photodetector
Kawaguchi et al. Time-, spin-, and angle-resolved photoemission spectroscopy with a 1-MHz 10.7-eV pulse laser
Chiao Tunneling times and superluminality: A tutorial
Finco et al. Monolithic thin-film lithium niobate broadband spectrometer with one nanometre resolution
Hu Efficient superconducting-nanowire single-photon detectors and their applications in quantum optics
EP2281217A2 (en) Optical element and apparatus comprising transparent superconducting material
Mandel et al. Theory and design of a novel integrated polarimetric sensor utilizing a light sorting metamaterial grating
JP4926985B2 (en) Light modulator
Heath et al. A tunable fiber-coupled optical cavity for agile enhancement of detector absorption
EP1038202B1 (en) Pockels cell and optical switch with pockels cell
Wang Laser-based angle-resolved photoemission spectroscopy of topological insulators
Kalaev et al. Temporal and spatial tuning of optical constants in praseodymium doped ceria by electrochemical means
JP2021190465A (en) Dual-wavelength sensor element, infrared detector, and imaging system
Hu et al. Combining Bragg reflector and Fabry–Pérot cavity into a solid-state electrochromic device for dynamic modulation
JP6291339B2 (en) Optical deflector manufacturing method and optical deflector
Sahin Waveguide single-photon and photon number-resolving detectors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170621

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170830

R150 Certificate of patent or registration of utility model

Ref document number: 6206922

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees