JP2005070194A - Method for manufacturing periodical polarization reversal structure and optical device - Google Patents

Method for manufacturing periodical polarization reversal structure and optical device Download PDF

Info

Publication number
JP2005070194A
JP2005070194A JP2003297051A JP2003297051A JP2005070194A JP 2005070194 A JP2005070194 A JP 2005070194A JP 2003297051 A JP2003297051 A JP 2003297051A JP 2003297051 A JP2003297051 A JP 2003297051A JP 2005070194 A JP2005070194 A JP 2005070194A
Authority
JP
Japan
Prior art keywords
electrode
single crystal
polarization reversal
substrate
comb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003297051A
Other languages
Japanese (ja)
Other versions
JP4372489B2 (en
Inventor
Shoichiro Yamaguchi
省一郎 山口
Yuichi Iwata
雄一 岩田
Makoto Iwai
真 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2003297051A priority Critical patent/JP4372489B2/en
Publication of JP2005070194A publication Critical patent/JP2005070194A/en
Application granted granted Critical
Publication of JP4372489B2 publication Critical patent/JP4372489B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To form an excellent polarization reversal part even when a period of polarization reversal is lengthened. <P>SOLUTION: A periodical polarization reversal structure, which comprises a plurality of polarization reversal parts and a plurality of polarization non-reversal parts periodically aligned in a specified direction A, is manufactured by disposing comb shaped electrodes 14 on one principal surface of a ferroelectric single crystal substrate made to be the mono-domain, disposing a uniform electrode on the other principal surface of the substrate and applying a voltage between the comb shaped electrodes 14 and the uniform electrode. The comb shaped electrodes 14 include a plurality of electrode pieces 16a, 16b, 16c respectively aligned in the specified direction A corresponding to the respective polarization reversal parts 16. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、周期分極反転構造の製造方法および光デバイスに関するものである。   The present invention relates to a method for manufacturing a periodically poled structure and an optical device.

強誘電体の分極を強制的に反転させる分極反転構造を周期的に形成することで、表面弾性波を利用した光周波数変調器や、非線型分極の分極反転を利用した光波長変換素子などを実現することができる。特に、非線型光学材料の非線型分極を周期的に反転することが可能となれば、高効率な波長変換素子を作製することができ、これを用いて固体レーザなどの光を変換すれば、印刷、光情報処理、光応用計測制御などの分野に応用できる小型軽量の短波長光源を構成することができる。   By periodically forming a polarization inversion structure that forcibly inverts the polarization of a ferroelectric, an optical frequency modulator using surface acoustic waves, an optical wavelength conversion element using polarization inversion of nonlinear polarization, etc. Can be realized. In particular, if it is possible to periodically invert the nonlinear polarization of the nonlinear optical material, a highly efficient wavelength conversion element can be produced, and if this is used to convert light such as a solid-state laser, A compact and lightweight short wavelength light source that can be applied to fields such as printing, optical information processing, and optical applied measurement control can be configured.

強誘電体非線型光学材料に周期状の分極反転構造を形成する手法としては、いわゆる電圧印加法が知られている。この方法では、強誘電体単結晶の基板の一方の主面に櫛形電極を形成し、他方の主面に一様電極を形成し、両者の間にパルス電圧を印加する。こうした方法は、特許文献1に記載されている。
特開平8−220578
A so-called voltage application method is known as a method of forming a periodic domain-inverted structure in a ferroelectric nonlinear optical material. In this method, a comb-shaped electrode is formed on one main surface of a ferroelectric single crystal substrate, a uniform electrode is formed on the other main surface, and a pulse voltage is applied between them. Such a method is described in Patent Document 1.
JP-A-8-220578

ニオブ酸リチウム単結晶などの非線型光学材料から第二高調波を発生させるためには、単結晶に周期状の分極反転を形成する必要がある。この場合には、例えば図4に示すような櫛形電極20を基板の上面に形成する。櫛形電極20は、周期状に配列されている多数の細長い電極片18と、電極片18を電気的に接続する給電パッド15とを備えている。隣接する電極片18の間には隙間17が形成されている。Pは分極反転周期であり、Wは電極片の幅である。この櫛形電極20に対して、抗電界以上となるように電圧を供給すると、各電極片18の主として先端部分から分極反転部が伸び、周期状分極反転構造が生成する。   In order to generate the second harmonic from a non-linear optical material such as a lithium niobate single crystal, it is necessary to form a periodic polarization inversion in the single crystal. In this case, for example, a comb-shaped electrode 20 as shown in FIG. 4 is formed on the upper surface of the substrate. The comb-shaped electrode 20 includes a large number of elongated electrode pieces 18 arranged in a periodic manner, and a power supply pad 15 that electrically connects the electrode pieces 18. A gap 17 is formed between the adjacent electrode pieces 18. P is the polarization inversion period, and W is the width of the electrode piece. When a voltage is supplied to the comb-shaped electrode 20 so as to be equal to or higher than the coercive electric field, the domain-inverted portion extends mainly from the tip portion of each electrode piece 18 to generate a periodic domain-inverted structure.

本発明者は、例えば周期Pが10μm以上の長周期の周期分極反転構造を形成しようと試みた。このような周期分極反転構造は、例えば光通信用のレーザー光を発生させるのに適している。しかし、この場合、良好な周期分極反転構造が生成しないことを見いだした。すなわち、各電極片18において、電極片の2つの角点18aを起点としてそれぞれ各分極反転部が別々に生成し、各分極反転部がつながらないために、幅Wに対応する分極反転部が生成しないことが判明した。このため、例えば図5に示すように、各角点18a近辺でのみ分極反転部が生成し、隣接する分極反転部の間は非分極反転部として残留した。このような周期分極反転構造では、光の変換効率が低くなる。   The inventor attempted to form a periodically poled structure having a long period of, for example, a period P of 10 μm or more. Such a periodically poled structure is suitable for generating laser light for optical communication, for example. However, in this case, it was found that a good periodic polarization inversion structure was not generated. That is, in each electrode piece 18, each polarization inversion part is generated separately from each of the two corner points 18 a of the electrode piece, and each polarization inversion part is not connected. Therefore, no polarization inversion part corresponding to the width W is generated. It has been found. For this reason, for example, as shown in FIG. 5, the polarization inversion portions are generated only in the vicinity of each corner point 18a, and the non-polarization inversion portions remain between the adjacent polarization inversion portions. In such a periodically poled structure, the light conversion efficiency is low.

本発明の課題は、単分域化している強誘電体単結晶基板に電圧印加法によって分極反転部を製造するのに際して、分極反転周期を大きくした場合であっても良好な分極反転部を形成できるようにすることである。   It is an object of the present invention to form a favorable domain inversion part even when the domain inversion period is increased when a domain inversion part is manufactured on a single domain ferroelectric single crystal substrate by a voltage application method. Is to be able to do it.

本発明は、単分域化している強誘電体単結晶基板の一方の主面上に櫛形電極を設け、強誘電体単結晶基板の他方の主面側に一様電極を設け、櫛形電極と一様電極との間に電圧を印加することによって、複数の分極反転部と非分極反転部とが周期的に所定方向に向かって配列された周期分極反転構造を製造する方法であって、櫛形電極が、各分極反転部に対応して、それぞれ所定方向へと向かって配列された複数の電極片を備えていることを特徴とする。   The present invention provides a comb-shaped electrode on one main surface of a single-domain ferroelectric single crystal substrate, a uniform electrode on the other main surface side of the ferroelectric single crystal substrate, A method of manufacturing a periodic polarization reversal structure in which a plurality of polarization reversal portions and non-polarization reversal portions are periodically arranged in a predetermined direction by applying a voltage between the electrodes and a uniform electrode The electrode includes a plurality of electrode pieces arranged in a predetermined direction corresponding to each polarization inversion portion.

また、本発明は、前記方法によって製造された周期分極反転構造を備えていることを特徴とする、光デバイスに係るものである。   The present invention also relates to an optical device comprising a periodically poled structure manufactured by the above method.

以下、適宜図面を参照しつつ、本発明を説明する。
本発明者は、例えば図1に示すように、基板上に櫛形電極14を形成するのに際して、各分極反転部に対応して、それぞれ所定方向Aへと向かって複数の電極片16a、16b、16cを配列することを想到した。すなわち、図1の櫛形電極14においては、隣接する分極反転領域16の間に隙間17が形成されており、各分極反転領域16と隙間17とが矢印A方向に向かって配列されている。従って、生成する周期分極反転構造は、矢印A方向へと向かって伸びる。こうした構造において、更に、各分極反転領域16において、複数の電極片16a、16b、16cを矢印A方向に向かって配列する。tは、隣接する電極片の間隔である。
The present invention will be described below with reference to the drawings as appropriate.
For example, as shown in FIG. 1, the inventor forms a plurality of electrode pieces 16a, 16b in a predetermined direction A corresponding to each polarization inversion portion when forming the comb-shaped electrode 14 on the substrate. It was conceived to arrange 16c. That is, in the comb-shaped electrode 14 of FIG. 1, gaps 17 are formed between adjacent domain-inverted regions 16, and the domain-inverted regions 16 and the gaps 17 are arranged in the direction of arrow A. Therefore, the generated periodically poled structure extends in the direction of arrow A. In such a structure, a plurality of electrode pieces 16 a, 16 b and 16 c are further arranged in the direction of arrow A in each polarization inversion region 16. t is the interval between adjacent electrode pieces.

このような構造によれば、各電極片16a、16b、16cの各角点からそれぞれ分極反転部が延びる(図2参照)。そして、電圧の印加時間や大きさを調整することによって、各分極反転部が互いに連続し、一つの幅広い分極反転部が生成する(図3参照)ことを見いだし、本発明に到達した。   According to such a structure, the polarization inversion part extends from each corner point of each electrode piece 16a, 16b, 16c (see FIG. 2). Then, by adjusting the voltage application time and magnitude, it was found that the polarization inversion portions are continuous with each other and one wide polarization inversion portion is generated (see FIG. 3), and the present invention has been achieved.

本発明においては、各分極反転部に対応して、所定方向Aへと向かって配列された複数の電極片16a、16b、16cを設ける。ここで、分極反転領域16の形成周期Pの下限は特にないが、Pが大きい場合ほど、幅広い分極反転部を形成することが一般に難しくなり、従って本発明の作用効果が特に大きい。この観点からは、周期Pは5μm以上であることが好ましく、10μm以上であることが更に好ましい。周期Pの上限は特にないが、実用的な観点からは、40μm以下であってもよい。   In the present invention, a plurality of electrode pieces 16a, 16b, 16c arranged in the predetermined direction A are provided corresponding to each polarization inversion portion. Here, the lower limit of the formation period P of the domain-inverted regions 16 is not particularly limited, but it is generally difficult to form a wider domain-inverted portion as P is larger, and thus the operational effects of the present invention are particularly large. From this viewpoint, the period P is preferably 5 μm or more, and more preferably 10 μm or more. The upper limit of the period P is not particularly limited, but may be 40 μm or less from a practical viewpoint.

各分極反転領域16における電極片の個数は2つ以上であれば特に限定されない。幅広い分極反転部を良好に形成するという観点からは、各分極反転領域における電極片の個数は3つ以上であることが更に好ましい。また、各分極反転領域における電極片の個数の上限は特にない。   The number of electrode pieces in each polarization inversion region 16 is not particularly limited as long as it is two or more. From the viewpoint of satisfactorily forming a wide domain-inverted portion, the number of electrode pieces in each domain-inverted region is more preferably 3 or more. There is no particular upper limit on the number of electrode pieces in each domain-inverted region.

隣接する電極片の間隔tも特に限定されない。tを3.0μm以下とすることによって、各電極片から伸びる各分極反転部が互いに連結しやすくなる。この観点からは、tを2.5μm以下とすることが更に好ましい。また、tを1.0μm以上とすることによって、隣接する電極片の短絡を防止し、各電極片の各角点から分極反転部が伸びるように制御しやすい。   The interval t between adjacent electrode pieces is not particularly limited. By setting t to 3.0 μm or less, the polarization inversion portions extending from the electrode pieces are easily connected to each other. From this viewpoint, it is more preferable that t is 2.5 μm or less. In addition, by setting t to 1.0 μm or more, short-circuiting between adjacent electrode pieces can be prevented, and the polarization inversion portion can be easily controlled to extend from each corner point of each electrode piece.

各電極片の線幅Wは、各電極片の先端角点から伸びる分極反転部が互いに連結しやすいようにするためには、1.0μm以下とすることが好ましく、0.5μm以下とすることが更に好ましい。   The line width W of each electrode piece is preferably 1.0 μm or less, and preferably 0.5 μm or less so that the polarization inversion portions extending from the tip corners of each electrode piece can be easily connected to each other. Is more preferable.

強誘電体単結晶基板を構成する強誘電体単結晶の種類は限定されない。しかし、ニオブ酸リチウム(LiNbO)、タンタル酸リチウム(LiTaO)、ニオブ酸リチウム−タンタル酸リチウム固溶体、KLiNb15の各単結晶が特に好ましい。
強誘電体単結晶中には、三次元光導波路の耐光損傷性を更に向上させるために、マグネシウム(Mg)、亜鉛(Zn)、スカンジウム(Sc)及びインジウム(In)からなる群より選ばれる1種以上の金属元素を含有させることができ、マグネシウムが特に好ましい。分極反転特性(条件)が明確であるとの観点からは、ニオブ酸リチウム単結晶、ニオブ酸リチウムータンタル酸リチウム固溶体単結晶、タンタル酸リチウム単結晶にそれぞれマグネシウムを添加したものが特に好ましい。また、強誘電体単結晶中には、ドープ成分として、希土類元素を含有させることができる。この希土類元素は、レーザー発振用の添加元素として作用する。この希土類元素としては、特にNd、Er、Tm、Ho、Dy、Prが好ましい。
The type of the ferroelectric single crystal constituting the ferroelectric single crystal substrate is not limited. However, single crystals of lithium niobate (LiNbO 3 ), lithium tantalate (LiTaO 3 ), lithium niobate-lithium tantalate solid solution, and K 3 Li 2 Nb 5 O 15 are particularly preferable.
The ferroelectric single crystal is selected from the group consisting of magnesium (Mg), zinc (Zn), scandium (Sc), and indium (In) in order to further improve the light damage resistance of the three-dimensional optical waveguide. More than one metal element can be contained, and magnesium is particularly preferred. From the viewpoint that the domain inversion characteristics (conditions) are clear, it is particularly preferable to add magnesium to a lithium niobate single crystal, a lithium niobate-lithium tantalate solid solution single crystal, or a lithium tantalate single crystal. Further, a rare earth element can be contained as a doping component in the ferroelectric single crystal. This rare earth element acts as an additive element for laser oscillation. As this rare earth element, Nd, Er, Tm, Ho, Dy, and Pr are particularly preferable.

ただし、これらの耐光損傷性向上元素や希土類元素を添加した場合には、強誘電体単結晶の導電性が高くなり、周期状分極反転部が櫛形電極の全体にわたって一様に形成されにくくなる。以下の実施形態は、こうした場合に特に好適である。   However, when these light damage resistance improving elements and rare earth elements are added, the conductivity of the ferroelectric single crystal is increased, and the periodic domain-inverted portion is hardly formed uniformly over the entire comb-shaped electrode. The following embodiments are particularly suitable in such a case.

すなわち、櫛型電極をパターニングした全域にわたって分極反転構造を一様に形成させるために、例えば図6に示すような別体の下地基板13を積層する。例えばMgOドープニオブ酸リチウム単結晶からなる基板2の一方の主面1aには櫛形電極14を形成し、基板2の他方の主面2bには一様電極4が形成されている。この基板2の下に、別体の下地基板13を積層する。下地基板13の本体5の一方の主面5a上には第一の導電膜6を形成し、本体5の他方の主面5b上には第二の導電膜7を形成する。本例では、第一の導電膜6と一様電極4とを接触させることで両者を電気的に接続したが、第一の導電膜6と一様電極4との間に別に導電物(好ましくは導電膜)を介在させることによって、両者を電気的に接続することができる。   That is, in order to form a domain-inverted structure uniformly over the entire area where the comb-shaped electrode is patterned, for example, a separate base substrate 13 as shown in FIG. 6 is laminated. For example, a comb-shaped electrode 14 is formed on one main surface 1 a of the substrate 2 made of MgO-doped lithium niobate single crystal, and a uniform electrode 4 is formed on the other main surface 2 b of the substrate 2. A separate base substrate 13 is laminated under the substrate 2. A first conductive film 6 is formed on one main surface 5 a of the main body 5 of the base substrate 13, and a second conductive film 7 is formed on the other main surface 5 b of the main body 5. In this example, the first conductive film 6 and the uniform electrode 4 are brought into contact with each other to be electrically connected, but a conductive material (preferably between the first conductive film 6 and the uniform electrode 4 is preferable. Can be electrically connected to each other by interposing a conductive film.

そして、例えば図7、図8に示すように、容器9内に絶縁オイル8を収容し、絶縁オイル8内に積層体1を浸漬する。この際、櫛形電極14には電線11を接続し、第二の導電膜7には電線10を接続する。電線10および11は高電圧源12に接続されている。この状態で、所定電圧、パルス幅のパルス状電圧を印加すると、櫛形電極14と一様電極4との間に周期状分極反転部が形成される。   For example, as shown in FIGS. 7 and 8, the insulating oil 8 is accommodated in the container 9, and the laminate 1 is immersed in the insulating oil 8. At this time, the electric wire 11 is connected to the comb electrode 14, and the electric wire 10 is connected to the second conductive film 7. The electric wires 10 and 11 are connected to a high voltage source 12. When a pulse voltage having a predetermined voltage and a pulse width is applied in this state, a periodic polarization inversion portion is formed between the comb electrode 14 and the uniform electrode 4.

ここで、下地基板13をも積層し、下地基板13上の導電膜6、7を介して電圧を印加することによって、櫛形電極3の全体にわたって周期状分極反転部が一様に生成しやすくなる。   Here, by laminating the base substrate 13 and applying a voltage through the conductive films 6 and 7 on the base substrate 13, the periodic polarization inversion portions are easily generated uniformly over the entire comb-shaped electrode 3. .

櫛形電極、一様電極の材質は限定されないが、Al、Au、Ag、Cr、Cu、Ni、Ni-Cr、Pd、Taが好ましい。
第一の導電膜、第二の導電膜の材質は、限定されないが、Al、Au、Ag、Cr、Cu、Ni、Ni-Cr、Pd、Taが好ましい。
The material of the comb electrode and the uniform electrode is not limited, but Al, Au, Ag, Cr, Cu, Ni, Ni—Cr, Pd, and Ta are preferable.
The material of the first conductive film and the second conductive film is not limited, but Al, Au, Ag, Cr, Cu, Ni, Ni—Cr, Pd, and Ta are preferable.

下地基板の基板本体5の材質は絶縁性が高く、材質内の体積抵抗率が均一で、所定の構造強度を有していることが必要である。この材質としては、シリコン、サファイア、水晶、ガラス、ニオブ酸リチウム、タンタル酸リチウム、ニオブ酸リチウム−タンタル酸リチウム固溶体MgOドープニオブ酸リチウム、MgOドープタンタル酸リチウム、ZnOドープニオブ酸リチウム、ZnOドープタンタル酸リチウムを例示できる。   The material of the substrate body 5 of the base substrate is required to have a high insulation property, a uniform volume resistivity within the material, and a predetermined structural strength. This material includes silicon, sapphire, crystal, glass, lithium niobate, lithium tantalate, lithium niobate-lithium tantalate solid solution MgO-doped lithium niobate, MgO-doped lithium tantalate, ZnO-doped lithium niobate, ZnO-doped lithium tantalate. Can be illustrated.

基板2としては、いわゆるZカット基板,オフカットX板、オフカットY板を使用することが特に好適である。オフカットX板、オフカットY板を使用する場合には、オフカット角度は特に限定されない。特に好ましくは、オフカット角度は1°以上であり、あるいは、20°以下である。   The substrate 2 is particularly preferably a so-called Z-cut substrate, off-cut X plate, or off-cut Y plate. When using an off-cut X plate and an off-cut Y plate, the off-cut angle is not particularly limited. Particularly preferably, the off-cut angle is 1 ° or more, or 20 ° or less.

印加電圧の大きさは3kV〜8kVが好ましく、パルス周波数は1Hz〜1000Hzが好ましい。   The magnitude of the applied voltage is preferably 3 kV to 8 kV, and the pulse frequency is preferably 1 Hz to 1000 Hz.

本発明によって形成された周期状分極反転部は、このような分極反転部を有する任意の光学デバイスに対して適用できる。このような光学デバイスは、例えば、第二高調波発生素子等の高調波発生素子を含む。第二高調波発生素子として使用した場合には、高調波の波長は330−1600nmが好ましい。   The periodic domain-inverted part formed by the present invention can be applied to any optical device having such a domain-inverted part. Such an optical device includes, for example, a harmonic generation element such as a second harmonic generation element. When used as a second harmonic generation element, the wavelength of the harmonic is preferably 330-1600 nm.

比較例1Comparative Example 1

図6に示すような積層体1を作成し、図7、図8に示すような装置を使用して電圧印加法により周期状分極反転構造を形成した。ただし、図4に示すようなパターンの櫛形電極20を形成した。
具体的には、MgOをドープしたニオブ酸リチウム単結晶からなる、厚さ0.5mmのzカット基板2と、5度オフyカットの0.5mm厚さの基板5とを用意し、それぞれzカット基板2の+z面2aに櫛型電極20をパターニングし、-z面2bには一様電極4を成膜した。5度オフyカット基板5については上下面5a、5bともに一様電極6、7を形成した。分極反転周期Pを18μmとした。各電極片の線幅Wは7μmとした。各電極の材質はTaを使用した。電極厚さは全て1000オングストロームとした。また、zカット基板2の櫛型電極20の表面に、SiO2を2000オングストローム成膜した。図6に示すように、上側にzカット基板2を、下側に5度オフカット基板5を積層し、積層体1を得た。積層体1を、図7に示すように絶縁オイル8内に浸漬し、6kV、パルス幅10Hzのパルス状電圧を、パルス間隔約1秒で印加した。
A laminate 1 as shown in FIG. 6 was prepared, and a periodic domain-inverted structure was formed by a voltage application method using an apparatus as shown in FIGS. However, the comb electrode 20 having a pattern as shown in FIG. 4 was formed.
Specifically, a 0.5 mm thick z-cut substrate 2 made of MgO-doped lithium niobate single crystal and a 5 mm off-y cut 0.5 mm thick substrate 5 were prepared, and each was z-cut. The comb electrode 20 was patterned on the + z surface 2a of the substrate 2, and the uniform electrode 4 was formed on the -z surface 2b. For the 5 degree off-y cut substrate 5, uniform electrodes 6 and 7 were formed on the upper and lower surfaces 5a and 5b. The polarization inversion period P was 18 μm. The line width W of each electrode piece was 7 μm. Ta was used as the material of each electrode. All electrode thicknesses were 1000 angstroms. Further, a SiO 2 film having a thickness of 2000 Å was formed on the surface of the comb-shaped electrode 20 of the z-cut substrate 2. As shown in FIG. 6, the z-cut substrate 2 was laminated on the upper side, and the 5-degree off-cut substrate 5 was laminated on the lower side, whereby the laminate 1 was obtained. The laminate 1 was immersed in the insulating oil 8 as shown in FIG. 7, and a pulse voltage of 6 kV and a pulse width of 10 Hz was applied at a pulse interval of about 1 second.

分極反転が形成されているのかどうかを確認するため、弗硝酸混合液(弗酸:硝酸=1:2)で、ウェハ表面の+z面をウエットエッチングした。図5はこの顕微鏡写真である。図5に示すように、写真の白っぽく見えるところが反転部であり、櫛型電極の角点近傍にしか反転構造が得られていないことが分かる。各電極片の角点近傍には分極反転部が生成したが、各角点から伸びる分極反転部が互いに連結しなかった。電圧印加の条件は、電圧を上げたり、パルスの幅を変えたり、種々試みたが、反転部の大きさが多少増減するものの、電極片の全幅にわたって分極反転部を形成することが困難であった。 In order to confirm whether the polarization inversion was formed, the + z plane of the wafer surface was wet etched with a hydrofluoric acid mixed solution (hydrofluoric acid: nitric acid = 1: 2). FIG. 5 is a photomicrograph of this. As shown in FIG. 5, it can be seen that the portion that looks whitish in the photograph is the reversal part, and the reversal structure is obtained only in the vicinity of the corner points of the comb-shaped electrode. Although the polarization inversion portions were generated in the vicinity of the corner points of the electrode pieces, the polarization inversion portions extending from the corner points were not connected to each other. Various attempts were made to increase the voltage or change the pulse width, but it was difficult to form a polarization inversion portion over the entire width of the electrode piece, although the size of the inversion portion slightly increased or decreased. It was.

比較例1と同様にして、電圧印加法により周期状分極反転構造を形成した。ただし、図1に示すようなパターンの櫛形電極14を形成した。
具体的には、MgOをドープしたニオブ酸リチウム単結晶からなる、厚さ0.5mmのzカット基板2と、5度オフyカットの0.5mm厚さの基板5とを用意し、それぞれzカット基板2の+z面2aに櫛型電極14をパターニングし、-z面2bには一様電極4を成膜した。5度オフyカット基板5については上下面5a、5bともに一様電極6、7を形成した。分極反転周期Pを18μmとした。分極反転部16間の隙間の幅は9μmとした。各電極片6a、6b、6cの線幅Wはそれぞれ0.3μmとし、隣接する各電極片の隙間は約2.5μmとした。電極の材質はTaを使用した。電極厚さは全て1000オングストロームとした。また、zカット基板2の櫛型電極14の表面に、SiO2を2000オングストローム成膜した。図6に示すように、上側にzカット基板2を、下側に5度オフカット基板5を積層し、積層体1を得た。積層体1を、図7に示すように絶縁オイル8内に浸漬し、6kV、パルス幅10Hzのパルス状電圧を、パルス間隔約1秒で印加した。
In the same manner as in Comparative Example 1, a periodic domain-inverted structure was formed by a voltage application method. However, a comb electrode 14 having a pattern as shown in FIG. 1 was formed.
Specifically, a 0.5 mm thick z-cut substrate 2 made of MgO-doped lithium niobate single crystal and a 5 mm off-y cut 0.5 mm thick substrate 5 were prepared, and each was z-cut. The comb electrode 14 was patterned on the + z surface 2a of the substrate 2, and the uniform electrode 4 was formed on the -z surface 2b. For the 5 degree off-y cut substrate 5, uniform electrodes 6 and 7 were formed on the upper and lower surfaces 5a and 5b. The polarization inversion period P was 18 μm. The width of the gap between the polarization inversion portions 16 was 9 μm. The line width W of each electrode piece 6a, 6b, 6c was 0.3 μm, and the gap between adjacent electrode pieces was about 2.5 μm. Ta was used as the electrode material. All electrode thicknesses were 1000 angstroms. Further, a SiO 2 film having a thickness of 2000 Å was formed on the surface of the comb-shaped electrode 14 of the z-cut substrate 2. As shown in FIG. 6, the z-cut substrate 2 was laminated on the upper side, and the 5-degree off-cut substrate 5 was laminated on the lower side, whereby the laminate 1 was obtained. The laminate 1 was immersed in the insulating oil 8 as shown in FIG. 7, and a pulse voltage of 6 kV and a pulse width of 10 Hz was applied at a pulse interval of about 1 second.

図2に、弗硝酸でエッチング後ウェハの+z面を観察した結果を示す。電極の根元から先端にかけて周期状の分極反転が形成されていることが分かる。但し、一部で反転ができていない領域がある。そこで、電圧印加の条件として、印加するパルスの回数を増やし、2000回印加した。結果を図3に示す。図2とは拡大率が異なるが、櫛型電極の全域に渡って、周期状の分極反転が形成されていることが確認できる。   FIG. 2 shows the result of observing the + z plane of the wafer after etching with hydrofluoric acid. It can be seen that a periodic polarization inversion is formed from the base of the electrode to the tip. However, there is a region that is not reversed in part. Therefore, as a voltage application condition, the number of applied pulses was increased and applied 2000 times. The results are shown in FIG. Although the magnification is different from that in FIG. 2, it can be confirmed that periodic polarization inversion is formed over the entire area of the comb-shaped electrode.

本発明の実施形態に係る櫛形電極14を示す平面図である。It is a top view which shows the comb-shaped electrode 14 which concerns on embodiment of this invention. 実施例1で形成された分極反転部のパターン例を示す顕微鏡写真である。3 is a micrograph showing a pattern example of a domain-inverted part formed in Example 1. FIG. 実施例1で形成された分極反転部のパターン例を示す顕微鏡写真である。3 is a micrograph showing a pattern example of a domain-inverted part formed in Example 1. FIG. 比較例に係る櫛形電極20を示す平面図である。It is a top view which shows the comb-shaped electrode 20 which concerns on a comparative example. 比較例で形成された分極反転部のパターン例を示す顕微鏡写真である。It is a microscope picture which shows the example of a pattern of the polarization inversion part formed in the comparative example. 基板2と5との積層体1を示す正面図である。2 is a front view showing a laminate 1 of substrates 2 and 5. FIG. 積層体1に電圧印加法によって分極反転部を形成するための装置を示す模式図である。It is a schematic diagram which shows the apparatus for forming a polarization inversion part in the laminated body 1 by the voltage application method. 図7の装置の上面図である。FIG. 8 is a top view of the apparatus of FIG.

符号の説明Explanation of symbols

1 積層体 2 強誘電体単結晶基板 2a 基板2の一方の主面 2b 基板2の他方の主面 4 一様電極 5 下地基板の基板本体 5a 基板本体5の一方の主面 5b 基板本体5の他方の主面 6 第一の導電膜 7 第二の導電膜 8 絶縁オイル 9 容器 12 高電圧源 13 下地基板 14 本発明の実施形態に係る櫛形電極 15 給電パッド 16 櫛形電極の分極反転領域 16a、16b、16c 電極片 17 分極反転部の隙間 18 比較例の電極片 20 比較例の櫛形電極 A 所定方向 P 分極反転周期 W 電極片の線幅 t 電極片の間隔   DESCRIPTION OF SYMBOLS 1 Laminated body 2 Ferroelectric single crystal substrate 2a One main surface of the substrate 2b The other main surface of the substrate 2 4 Uniform electrode 5 Substrate body of the base substrate 5a One main surface of the substrate body 5b 5b of the substrate body 5 The other main surface 6 First conductive film 7 Second conductive film 8 Insulating oil 9 Container 12 High voltage source 13 Base substrate 14 Comb electrode 15 according to the embodiment of the present invention 15 Feed pad 16 Polarization inversion region 16a of the comb electrode, 16b, 16c Electrode piece 17 Gap between polarization inversion portions 18 Electrode piece of comparative example 20 Comb electrode of comparative example A A predetermined direction P Polarization inversion period W Line width of electrode piece t Distance between electrode pieces

Claims (6)

単分域化している強誘電体単結晶基板の一方の主面上に櫛形電極を設け、前記強誘電体単結晶基板の他方の主面側に一様電極を設け、前記櫛形電極と前記一様電極との間に電圧を印加することによって、複数の分極反転部と非分極反転部とが周期的に所定方向に向かって配列された周期分極反転構造を製造する方法であって、
前記櫛形電極が、各分極反転部に対応して、それぞれ前記所定方向へと向かって配列された複数の電極片を備えていることを特徴とする、周期分極反転構造の製造方法。
A comb-shaped electrode is provided on one main surface of a single-domain ferroelectric single crystal substrate, and a uniform electrode is provided on the other main surface side of the ferroelectric single crystal substrate. A method of manufacturing a periodic polarization reversal structure in which a plurality of polarization reversal portions and non-polarization reversal portions are periodically arranged in a predetermined direction by applying a voltage between the electrodes,
The method of manufacturing a periodic polarization reversal structure, wherein the comb-shaped electrode includes a plurality of electrode pieces arranged in the predetermined direction corresponding to each polarization reversal portion.
前記周期分極反転構造の周期が10μm以上であることを特徴とする、請求項1記載の方法。   The method according to claim 1, wherein the period of the periodically poled structure is 10 μm or more. 前記強誘電体単結晶基板が、ニオブ酸リチウム単結晶、タンタル酸リチウム単結晶、およびニオブ酸リチウム−タンタル酸リチウム固溶体単結晶からなる群より選ばれた単結晶からなることを特徴とする、請求項1記載の方法。   The ferroelectric single crystal substrate is made of a single crystal selected from the group consisting of a lithium niobate single crystal, a lithium tantalate single crystal, and a lithium niobate-lithium tantalate solid solution single crystal. Item 2. The method according to Item 1. 前記単結晶に、酸化マグネシウムと酸化亜鉛との少なくとも一方が含有されていることを特徴とする、請求項1〜3のいずれか一つの請求項に記載の方法。   The method according to any one of claims 1 to 3, wherein the single crystal contains at least one of magnesium oxide and zinc oxide. 前記強誘電体単結晶基板がZカット基板であることを特徴とする、請求項1〜4のいずれか一つの請求項に記載の方法。   The method according to claim 1, wherein the ferroelectric single crystal substrate is a Z-cut substrate. 請求項1〜5のいずれか一つの請求項に記載の方法によって製造された周期分極反転構造を備えていることを特徴とする、光デバイス。   An optical device comprising a periodically poled structure manufactured by the method according to any one of claims 1 to 5.
JP2003297051A 2003-08-21 2003-08-21 Method for manufacturing periodically poled structure Expired - Lifetime JP4372489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003297051A JP4372489B2 (en) 2003-08-21 2003-08-21 Method for manufacturing periodically poled structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003297051A JP4372489B2 (en) 2003-08-21 2003-08-21 Method for manufacturing periodically poled structure

Publications (2)

Publication Number Publication Date
JP2005070194A true JP2005070194A (en) 2005-03-17
JP4372489B2 JP4372489B2 (en) 2009-11-25

Family

ID=34403013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003297051A Expired - Lifetime JP4372489B2 (en) 2003-08-21 2003-08-21 Method for manufacturing periodically poled structure

Country Status (1)

Country Link
JP (1) JP4372489B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009092843A (en) * 2007-10-05 2009-04-30 Ngk Insulators Ltd Manufacturing method for periodic polarization reversal structure
US7633672B2 (en) 2007-03-08 2009-12-15 Ngk Insulators, Ltd. Wavelength conversion devices
US7931831B2 (en) 2006-11-09 2011-04-26 Ngk Insulators, Ltd. Optical waveguide substrate manufacturing method
US8101099B2 (en) 2006-11-09 2012-01-24 Ngk Insulators, Ltd. Optical waveguide substrate manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7931831B2 (en) 2006-11-09 2011-04-26 Ngk Insulators, Ltd. Optical waveguide substrate manufacturing method
US8101099B2 (en) 2006-11-09 2012-01-24 Ngk Insulators, Ltd. Optical waveguide substrate manufacturing method
US7633672B2 (en) 2007-03-08 2009-12-15 Ngk Insulators, Ltd. Wavelength conversion devices
JP2009092843A (en) * 2007-10-05 2009-04-30 Ngk Insulators Ltd Manufacturing method for periodic polarization reversal structure

Also Published As

Publication number Publication date
JP4372489B2 (en) 2009-11-25

Similar Documents

Publication Publication Date Title
US7453625B2 (en) Method of producing domain inversion parts and optical devices
JP2011514552A (en) Method for polarizing a metal-doped ferroelectric material
JP4721455B2 (en) Method for manufacturing periodically poled structure
JP4400816B2 (en) Method for manufacturing periodically poled structure and optical device
JP5300664B2 (en) Method for manufacturing polarization reversal part
JP4372489B2 (en) Method for manufacturing periodically poled structure
KR20090080096A (en) Optical waveguide substrate manufacturing method
US6597492B1 (en) Fabrication of an invertedly poled domain structure from a ferroelectric crystal
JP4756706B2 (en) Method for manufacturing domain-inverted structure
KR20090083387A (en) Optical waveguide substrate manufacturing method
JP2002031826A (en) Method for manufacturing polarization reversal part
JP4201244B2 (en) Method for manufacturing polarization reversal part
JP4974872B2 (en) Method for manufacturing periodically poled structure
JP4646150B2 (en) Method for manufacturing periodically poled structure
JP4642065B2 (en) Method for manufacturing periodic polarization reversal part
WO2005124447A1 (en) Production method for polarization inversion unit
JP2003195377A (en) Polarization reversal method for ferroelectric substance and method of producing optical wavelength conversion element
JP2003270687A (en) Method of forming periodical polarization inversion structure, periodical polarization inversion structure, and optical waveguide element
JP2005208197A (en) Manufacturing method of substrate having periodical polarization inversion region
JP2016024423A (en) Manufacturing method of wavelength conversion element, and wavelength conversion element
JP2003207811A (en) Polarization inverted crystal and its manufacturing method
JP2010107731A (en) Ferroelectric bulk element
JP2009092843A (en) Manufacturing method for periodic polarization reversal structure
JP2005258348A (en) Method for manufacturing periodic polarization inversion structure and periodic polarization inversion structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090902

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4372489

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

EXPY Cancellation because of completion of term