JP2009167067A - Anodic bonding method for semiconductor sensor, anodic bonding device and semiconductor sensor - Google Patents

Anodic bonding method for semiconductor sensor, anodic bonding device and semiconductor sensor Download PDF

Info

Publication number
JP2009167067A
JP2009167067A JP2008009682A JP2008009682A JP2009167067A JP 2009167067 A JP2009167067 A JP 2009167067A JP 2008009682 A JP2008009682 A JP 2008009682A JP 2008009682 A JP2008009682 A JP 2008009682A JP 2009167067 A JP2009167067 A JP 2009167067A
Authority
JP
Japan
Prior art keywords
glass base
installation
base
anodic bonding
sensor chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008009682A
Other languages
Japanese (ja)
Other versions
JP4921389B2 (en
Inventor
Kenichi Soeda
健一 添田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2008009682A priority Critical patent/JP4921389B2/en
Publication of JP2009167067A publication Critical patent/JP2009167067A/en
Application granted granted Critical
Publication of JP4921389B2 publication Critical patent/JP4921389B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Pressure Sensors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an anodic bonding method for a semiconductor sensor by which in the positioning of a glass base and a sensor chip, even if the glass base is tilted, the corner part of the bottom face of the glass base is not damaged due to striking of the corner part against an installation stand, and a semiconductor sensor having a fine appearance can be produced. <P>SOLUTION: The upper face 35a of an installation stand 35 is provided with an installation face 36 on which a glass base 1 is installed. The installation face 36 is composed of the upper face of a base supporting part 37 projectingly provided so as to be located at the inside than the profile shape of the bottom face 1b in the glass base 1, and, even if the glass base 1 is tilted upon positioning, the corner part 1d or 1e of the bottom face in the glass base does not unevenly strike against the upper face 35a of the installation stand 35. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、半導体センサの陽極接合方法、陽極接合装置および半導体センサに関するものである。   The present invention relates to a semiconductor sensor anodic bonding method, an anodic bonding apparatus, and a semiconductor sensor.

従来より、半導体センサ、例えば半導体圧力センサの製造においては、歩留りを向上させるために、それぞれシリコンウエハとガラスウエハとから切り出した良品どうしのセンサチップとガラス基台を個別に陽極接合することが行われている(例えば、特許文献1、2参照)。   Conventionally, in the manufacture of a semiconductor sensor, for example, a semiconductor pressure sensor, in order to improve the yield, a non-defective sensor chip cut out from a silicon wafer and a glass wafer and a glass base are individually anodically bonded. (For example, see Patent Documents 1 and 2).

図10〜図12は半導体圧力センサのガラス基台とセンサチップを位置決めするために用いられている従来の位置決め機構を示す図で、図10は平面図、図11は図10のXI−XI線断面図、図12は押圧手段の斜視図である。これらの図において、1は平面視正方形のガラス基台、2はガラス基台1の上面に陽極接合される正方形のセンサチップ、3はガラス基台1の下面に予め陽極接合されたシリコンチューブ、4はガラス基台1が設置される設置台、5はガラス基台1とセンサチップ2の各側面1c、2cを当該側面と直交する方向からそれぞれ押圧しガラス基台1とセンサチップ2を位置決めする押圧部材(押圧手段)である。押圧部材5によってガラス基台1とセンサチップ2を押圧し位置決めした後、ガラス基台1とセンサチップ2の接合面6を陽極接合装置によって陽極接合することにより、半導体圧力センサ7が製造される。   10 to 12 are views showing a conventional positioning mechanism used for positioning a glass base and a sensor chip of a semiconductor pressure sensor, FIG. 10 is a plan view, and FIG. 11 is a line XI-XI in FIG. Sectional drawing and FIG. 12 are perspective views of a pressing means. In these figures, 1 is a square glass base in plan view, 2 is a square sensor chip anodically bonded to the upper surface of the glass base 1, 3 is a silicon tube previously anodically bonded to the lower surface of the glass base 1, Reference numeral 4 denotes an installation base on which the glass base 1 is installed. Reference numeral 5 denotes the glass base 1 and the sensor chip 2 by pressing the side surfaces 1c and 2c of the sensor chip 2 in a direction perpendicular to the side surfaces. A pressing member (pressing means). After the glass base 1 and the sensor chip 2 are pressed and positioned by the pressing member 5, the semiconductor pressure sensor 7 is manufactured by anodically bonding the joining surface 6 of the glass base 1 and the sensor chip 2 with an anodic bonding apparatus. .

陽極接合方法は、接合部材間に第3の材料を介在させない直接的な接合方法であって、半導体センサの製造においては、熱膨張係数が近いガラスとシリコンを重ね合わせ、ガラス側をマイナス、シリコン側をプラスとして300〜700V程度の直流電圧を印加すると同時に加熱することにより、ガラス側の陽イオン(例えば、Na+、K+)をマイナス電極側に強制的に拡散させ、両者間に強い静電引力を発生させてガラスとシリコンとを化学結合させる接合方法である。   The anodic bonding method is a direct bonding method in which a third material is not interposed between bonding members. In the manufacture of a semiconductor sensor, glass and silicon having a similar coefficient of thermal expansion are overlapped, and the glass side is minus, silicon By applying a DC voltage of about 300 to 700 V with the side being positive and heating at the same time, the positive ions (for example, Na +, K +) on the glass side are forcibly diffused to the negative electrode side, and a strong electrostatic attraction between them. Is a bonding method in which glass and silicon are chemically bonded.

特許第3895937号公報Japanese Patent No. 3895937 特許第3359493号公報Japanese Patent No. 3359493

しかしながら、上述した従来の位置決め機構10によるガラス基台1とセンサチップ2の位置決めに際しては、押圧部材5によってガラス基台1とセンサチップ2の側面1c、2cを押圧して位置決めしたときに、ガラス基台1の底面隅部が破損(チッピング)し易いという問題があった。すなわち、ガラスウエハをダイシングして正方形のガラス基台1を製作したとき、ダイシングブレードのブレなどによりガラス基台1の側面1cが上面1aおよび底面1bに対して垂直な面にならず、例えば図13(a)に示すように互いに対向する2つの側面1c、1c’が右側に傾いてしまうことがある。このような場合、押圧部材5をガラス基台1の各側面に4方向から押し付けて位置決めしたとき、ガラス基台1の傾いている側面1c、1c’が押圧部材5の押圧面5aに倣おうとするため、ガラス基台1が図13(b)に示すように押圧部材5との接触部Pを支点として左側、すなわち側面1c、1c’の傾き側とは反対側に傾く。このため、ガラス基台1の傾き側とは反対側の底面隅部1dが設置台4の上面4aから浮き上がり、傾いている側の底面隅部1eが設置台4の上面4aに片当たりする。その結果、底面隅部1eに加重が集中し、この加重により底面隅部1eが破損してしまう。   However, when the glass base 1 and the sensor chip 2 are positioned by the conventional positioning mechanism 10 described above, when the glass base 1 and the side surfaces 1c and 2c of the sensor chip 2 are pressed and positioned by the pressing member 5, the glass There was a problem that the bottom corner of the base 1 was easily damaged (chipped). That is, when a square glass base 1 is manufactured by dicing a glass wafer, the side surface 1c of the glass base 1 is not perpendicular to the top surface 1a and the bottom surface 1b due to blurring of a dicing blade. As shown to 13 (a), the two side surfaces 1c and 1c 'which oppose each other may incline to the right side. In such a case, when the pressing member 5 is pressed and positioned on each side surface of the glass base 1 from four directions, the inclined side surfaces 1c and 1c ′ of the glass base 1 try to follow the pressing surface 5a of the pressing member 5. Therefore, as shown in FIG. 13B, the glass base 1 is inclined to the left side, that is, the side opposite to the inclined side of the side surfaces 1c and 1c ′, with the contact portion P with the pressing member 5 as a fulcrum. For this reason, the bottom corner 1d opposite to the tilt side of the glass base 1 is lifted from the upper surface 4a of the installation table 4, and the bottom corner 1e on the inclined side hits the upper surface 4a of the installation table 4. As a result, the load concentrates on the bottom corner 1e, and the bottom corner 1e is damaged by this load.

また、ガラス基台1の側面1cが傾いていなくても、押圧部材5の取付誤差、ガラス基台1を押圧する押圧面5aの加工誤差等によって傾いている場合も、上記と同様にガラス基台1が傾くため、底面隅部が破損することがある。   Even if the side surface 1c of the glass base 1 is not tilted, the glass base may be tilted due to an attachment error of the pressing member 5, a processing error of the pressing surface 5a that presses the glass base 1, or the like. Since the table 1 is inclined, the bottom corners may be damaged.

本発明は上記した従来の問題を解決するためになされたもので、その目的とするところは、ガラス基台とセンサチップを位置決めするとき、ガラス基台が傾いたとしても底面隅部が設置台の上面に片当りして破損したりすることがなく、品質の良好な半導体センサを製造し得るようにした半導体センサの陽極接合方法、陽極接合装置および半導体センサを提供することにある。   The present invention has been made to solve the above-described conventional problems. The object of the present invention is to position the glass base and the sensor chip, even if the glass base is tilted, the bottom corner is the installation base. An anodic bonding method, an anodic bonding apparatus, and a semiconductor sensor for a semiconductor sensor, which can manufacture a semiconductor sensor with good quality without causing any damage to the upper surface of the semiconductor sensor.

上記目的を達成するために本発明に係る半導体センサの陽極接合方法は、設置台に平面視正方形のガラス基台を設置し、さらにこのガラス基台の上に正方形のセンサチップを載置し、前記ガラス基台と前記センサチップの側面を押圧手段によって押圧して位置決めした後、前記ガラス基台と前記センサチップの接合面を陽極接合する半導体センサの陽極接合方法において、前記設置台の前記ガラス基台が設置される設置面を、前記ガラス基台の各底面隅部より内側を支承する面に形成したことを特徴とするものである。   In order to achieve the above object, the anodic bonding method for a semiconductor sensor according to the present invention is a method of installing a square glass base in plan view on an installation base, and further mounting a square sensor chip on the glass base, In the anodic bonding method of a semiconductor sensor, in which the glass base and the side surface of the sensor chip are pressed and positioned by pressing means, and then the bonding surface of the glass base and the sensor chip is anodically bonded. The installation surface on which the base is installed is formed on a surface that supports the inside from the bottom corners of the glass base.

また、本発明に係る陽極接合装置は、設置台に平面視正方形のガラス基台を設置し、さらにこのガラス基台の上に正方形のセンサチップを載置し、前記ガラス基台と前記センサチップの側面を押圧手段によって押圧して位置決めした後、前記ガラス基台と前記センサチップの接合面を陽極接合する半導体センサの陽極接装置において、前記設置台の前記ガラス基台が設置される設置面を、前記ガラス基台の各底面隅部より内側を支承する面に形成したことを特徴とするものである。   In the anodic bonding apparatus according to the present invention, a glass base having a square shape in plan view is installed on an installation base, and a square sensor chip is placed on the glass base, and the glass base and the sensor chip are mounted. In the anodic contact apparatus for a semiconductor sensor, in which the glass base of the installation base is installed in the anodic contact apparatus for anodic bonding of the joint surface of the glass base and the sensor chip after the side surface is pressed by the pressing means Is formed on a surface that supports the inner side of each bottom corner of the glass base.

また、本発明に係る陽極接合装置は、上記発明において、前記設置台の設置面が、ガラス基台の底面の輪郭形状より小さく形成されていることを特徴とするものである。   The anodic bonding apparatus according to the present invention is characterized in that, in the above invention, the installation surface of the installation table is formed smaller than the contour shape of the bottom surface of the glass base.

また、本発明に係る陽極接合装置は、上記発明において、前記設置台の設置面が、ガラス基台の底面隅部より内側に位置するように設置台上に突設された基台支持部の上面で構成されていることを特徴とするものである。   Further, the anodic bonding apparatus according to the present invention is the anodic bonding apparatus according to the above invention, wherein the installation surface of the installation table protrudes on the installation table so that the installation surface of the installation table is located inside the bottom corner of the glass table. It is characterized by comprising an upper surface.

また、本発明に係る陽極接合装置は、上記発明において、前記基台支持部が枠状の突状体で構成されていることを特徴とするものである。   Moreover, the anodic bonding apparatus according to the present invention is characterized in that, in the above-mentioned invention, the base support portion is constituted by a frame-like protruding body.

また、本発明に係る陽極接合装置は、上記発明において、前記基台支持部が、ガラス基台の底面の各底面隅部より内側にそれぞれ位置するように突設された4つの突状体で構成されていることを特徴とするものである。   Moreover, the anodic bonding apparatus according to the present invention is the anodic bonding apparatus according to the above-mentioned invention, wherein the base support part is a four projecting body projecting so as to be located inside each bottom corner of the bottom surface of the glass base. It is characterized by being comprised.

さらに、本発明に係る半導体センサは、上記陽極接合方法によって製造されているものである。   Furthermore, the semiconductor sensor according to the present invention is manufactured by the anodic bonding method.

本発明においては、設置台のガラス基台が設置される設置面をガラス基台の各底面隅部より内側を支承する面に形成したので、ガラス基台とセンサチップを押圧手段によって押圧して位置決めしたとき、ガラス基台が傾いていたとしても傾き側の底面隅部が設置台の設置面に片当たりすることがなく、底面隅部の破損を未然に防止することができる。   In the present invention, since the installation surface on which the glass base of the installation base is installed is formed on a surface that supports the inside from the bottom corners of the glass base, the glass base and the sensor chip are pressed by pressing means. Even when the glass base is tilted when positioned, the bottom corners on the tilt side do not come into contact with the installation surface of the installation table, and damage to the bottom corners can be prevented.

設置台の設置面がガラス基台の各底面隅部より内側を支承する面としては、上面自体の面積がガラス基台の底面積より小さい設置台を用い、この設置台の上面を設置面として用いたり、あるいは設置台の上面にガラス基台の底面の底面隅部より内側に位置する基台支持部を設け、この基台支持部の上面をガラス基台の設置面として用いると、ガラス基台が傾いたとしても傾き側の底面隅部が設置台に対して片当たりせず、底面隅部の破損を防止することができる。   As the surface on which the installation surface of the installation base supports the inside of each bottom corner of the glass base, use an installation base whose upper surface itself is smaller than the bottom area of the glass base, and use the upper surface of this installation base as the installation surface If the base support part located inside the bottom corner of the bottom surface of the glass base is provided on the top surface of the installation base and the upper surface of this base support part is used as the installation surface of the glass base, Even if the table is tilted, the bottom corners on the tilt side do not come into contact with the installation table, and damage to the bottom corners can be prevented.

以下、本発明を図面に示す実施の形態に基づいて詳細に説明する。
図1は本発明によって製造された半導体センサの一実施の形態を示す平面図、図2は半導体センサの正面図、図3は図1のIII −III 線断面図である。本実施の形態は、半導体センサとして、半導体圧力センサに適用した例を示す。また、従来技術の欄で示した構成部材、部分と同一のものについては同一符号をもって示し、その説明を適宜省略する。これらの図において、全体を符号7で示す半導体圧力センサは、平面視正方形のガラス基台1と、このガラス基台1の上面に陽極接合されたシリコン製のセンサチップ2と、同じくガラス基台1の下面に陽極接合されたシリコンチューブ3とからなる三層構造のセンサを構成している。
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.
FIG. 1 is a plan view showing an embodiment of a semiconductor sensor manufactured according to the present invention, FIG. 2 is a front view of the semiconductor sensor, and FIG. 3 is a sectional view taken along line III-III in FIG. This embodiment shows an example in which a semiconductor pressure sensor is applied as a semiconductor sensor. Further, the same components and parts as those shown in the prior art column are denoted by the same reference numerals, and the description thereof will be omitted as appropriate. In these drawings, a semiconductor pressure sensor generally indicated by reference numeral 7 includes a glass base 1 having a square shape in plan view, a silicon sensor chip 2 anodically bonded to the upper surface of the glass base 1, and a glass base. The sensor has a three-layer structure including a silicon tube 3 anodically bonded to the lower surface of 1.

前記ガラス基台1は、図10および図11に示した従来のガラス基台1と同一で、シリコンの線膨張係数(4.2×10-6)と略等しい線膨張係数(5〜7×10-6)のパイレックス(登録商標)ガラス、セラミックス等によって平面視正方形の角柱体に形成され、中央に形成された表裏面に貫通する中心孔20を有している。また、ガラス基台1の上面1aで各隅部には、平面視三角形の段差部31がそれぞれ形成されており、この段差部31によってセンサチップ2の隅部がガラス基台1に接合されない非接合部2Dを形成している。ただし、この段差部31はガラス基台1側に形成されるものに限らず、センサチップ2の厚肉部2Bの隅部下面側に形成され、センサチップ2の隅部をガラス基台1に対して非接合部としてもよい。 The glass base 1 is the same as the conventional glass base 1 shown in FIGS. 10 and 11, and has a linear expansion coefficient (5 to 7 × substantially equal to the linear expansion coefficient (4.2 × 10 −6 ) of silicon. 10 −6 ) Pyrex (registered trademark) glass, ceramics or the like is formed into a square columnar body in plan view and has a center hole 20 penetrating the front and back surfaces formed in the center. Further, a stepped portion 31 having a triangular shape in plan view is formed at each corner on the upper surface 1a of the glass base 1, and the corner of the sensor chip 2 is not joined to the glass base 1 by the stepped portion 31. A junction 2D is formed. However, the stepped portion 31 is not limited to the one formed on the glass base 1 side, but is formed on the lower side of the corner of the thick portion 2B of the sensor chip 2, and the corner of the sensor chip 2 is formed on the glass base 1. It is good also as a non-joining part.

前記センサチップ2は、図10および図11に示した従来のセンサチップ2と同一で、結晶面方位が(100)面のp型単結晶Siによって形成されている。また、センサチップ2は、平面視形状がガラス基台1より若干小さい正方形のチップからなり、下面2bの中央部にエッチングによって凹部32を形成することにより、上面2aの中央部が薄肉部からなるダイヤフラム2Aを形成し、このダイヤフラム2Aより外側部分が厚肉部2Bを形成している。   The sensor chip 2 is the same as the conventional sensor chip 2 shown in FIGS. 10 and 11, and is formed of p-type single crystal Si having a (100) crystal plane orientation. The sensor chip 2 is a square chip whose plan view is slightly smaller than that of the glass base 1, and the central portion of the upper surface 2a is formed of a thin portion by forming a concave portion 32 by etching in the central portion of the lower surface 2b. A diaphragm 2A is formed, and the outer portion of the diaphragm 2A forms a thick portion 2B.

前記ダイヤフラム2Aは、四角形で、2つの対角線a、aがセンサチップ2の対角線b、bと45°の角度で交差するようにセンサチップ2に対して45°傾いた状態で形成され、上面の周縁部付近にはピエゾ領域として作用し差圧または圧力を検出する4つの差圧または圧力検出用のゲージ14a〜14dがセンサチップ2の対角線b、b上に位置するように形成されている。また、これらのゲージ14a〜14dは、センサチップ2の結晶面方位(100)においてピエゾ抵抗係数が最大となる<110>の結晶軸方向に形成されている。   The diaphragm 2A is a quadrangle, and is formed in a state of being inclined by 45 ° with respect to the sensor chip 2 so that the two diagonal lines a and a intersect the diagonal lines b and b of the sensor chip 2 at an angle of 45 °. Four differential pressure or pressure detection gauges 14a to 14d that act as piezo regions and detect differential pressure or pressure are formed in the vicinity of the peripheral edge so as to be positioned on the diagonal lines b and b of the sensor chip 2. The gauges 14a to 14d are formed in the <110> crystal axis direction where the piezoresistance coefficient is maximum in the crystal plane orientation (100) of the sensor chip 2.

また、センサチップ2の厚肉部2Bのうちガラス基台1の上面1aに接合される部分が八角形の接合部2Cを形成し、それ以外の部分がガラス基台1の段差部31に対して非接合部2Dを形成している。   Moreover, the part joined to the upper surface 1a of the glass base 1 in the thick part 2B of the sensor chip 2 forms an octagonal joint 2C, and the other part is relative to the step part 31 of the glass base 1. Thus, the non-joining portion 2D is formed.

前記センサチップ2とガラス基台1の接合面33は、ダイヤフラム2Aの変形に関係し、正方形のセンサチップ2に対し正方形のダイヤフラム2Aを互いに対角線が直交するように45°傾けて形成した場合、センサチップ2の接合面のうち対角線b方向の接合面の長さが長く、そのため厚肉部2Bの下面全体を接合するとダイヤフラム2Aの辺に垂直な応力σrがダイヤフラム2Aの辺に平行な応力σθより大きくなる。そこで、非接合部2Dを設け、その長さAと接合部2Cの長さBとの比A/Bを最適化することにより、応力σrと応力σθが略等しくなるように形成している。   The joint surface 33 of the sensor chip 2 and the glass base 1 is related to the deformation of the diaphragm 2A, and when the square diaphragm 2A is formed at an angle of 45 ° with the diagonal lines orthogonal to the square sensor chip 2, Of the joint surfaces of the sensor chip 2, the length of the joint surface in the diagonal line b direction is long. Therefore, when the entire lower surface of the thick portion 2B is joined, the stress σr perpendicular to the side of the diaphragm 2A becomes the stress σθ parallel to the side of the diaphragm 2A. Become bigger. Therefore, the non-joint portion 2D is provided and the ratio A / B between the length A and the length B of the joint portion 2C is optimized so that the stress σr and the stress σθ are substantially equal.

さらに、前記センサチップ2の上面2aで前記非接合部2Dに対応する厚肉部2Bの上面には、静圧を検出しその検出信号によって前記差圧または圧力検出用ゲージ14a〜14dの検出信号を補正する4つの静圧検出用のゲージ15a〜15dが設けられている。これらの静圧検出用ゲージ15a〜15dは、センサチップ2の対角線b,b上で各隅部に位置するように設けられている。また、センサチップ2の結晶面方位(100)においてピエゾ抵抗係数が最大となる<110>の結晶軸方向に長く形成されている。このような静圧検出用ゲージ15a〜15dは、差圧または圧力検出用ゲージ14a〜14dと同様に拡散またはイオン打ち込み法によって形成され、図示しないリードによってホイートストーンブリッジに結線されており、静圧による非接合部2Dの変形に伴い比抵抗が変化することにより静圧を検出し、その検出信号によって差圧または圧力検出用センサ14a〜14dの検出信号を補正する。   Furthermore, on the upper surface 2a of the sensor chip 2 on the upper surface of the thick portion 2B corresponding to the non-bonded portion 2D, a static pressure is detected and a detection signal of the differential pressure or pressure detection gauges 14a to 14d is detected by the detection signal. There are provided four static pressure detection gauges 15a to 15d for correcting the above. These static pressure detection gauges 15 a to 15 d are provided so as to be located at respective corners on the diagonal lines b and b of the sensor chip 2. Further, the sensor chip 2 is long in the <110> crystal axis direction where the piezoresistance coefficient is maximum in the crystal plane orientation (100). The static pressure detecting gauges 15a to 15d are formed by diffusion or ion implantation similarly to the differential pressure or pressure detecting gauges 14a to 14d, and are connected to a Wheatstone bridge by leads (not shown). The static pressure is detected by changing the specific resistance with the deformation of the non-joint portion 2D due to the pressure, and the detection signal of the differential pressure or the pressure detection sensors 14a to 14d is corrected by the detection signal.

前記シリコンチューブ3は、前記ガラス基台2に内接する外径を有する円筒体に形成され、中心に圧力導入孔21が形成されている。このようなシリコンチューブ3は、シリコンチップ2より以前にガラス基台1の底面1bに陽極接合されている。   The silicon tube 3 is formed in a cylindrical body having an outer diameter inscribed in the glass base 2, and a pressure introducing hole 21 is formed in the center. Such a silicon tube 3 is anodically bonded to the bottom surface 1 b of the glass base 1 before the silicon chip 2.

ガラス基台1とシリコンチューブ3を陽極接合するときは、ガラス基台1をシリコンチューブ3の上に設置し、ガラス基台1とシリコンチューブ3に電圧を印加するとともに所定温度に加熱することにより陽極接合する。すなわち、ガラス基台1にマイナス電極を取付け、シリコンチューブ3にプラス電極を取付けて300〜700V程度の直流電圧を印加すると同時に200〜400℃に加熱することにより、ガラス基台1側の陽イオン(例えば、Na+ 、K’ )をマイナス電極側に強制的に拡散させ、ガラス基台1とシリコンチューブ3間に静電引力を発生させることによりガラス基台1とシリコンチューブ3を陽極接合する。 When anodically bonding the glass base 1 and the silicon tube 3, the glass base 1 is placed on the silicon tube 3, and a voltage is applied to the glass base 1 and the silicon tube 3 while heating to a predetermined temperature. Anodized. That is, a negative electrode is attached to the glass base 1, a positive electrode is attached to the silicon tube 3, and a DC voltage of about 300 to 700V is applied and simultaneously heated to 200 to 400 ° C. (For example, Na + , K ′) is forcibly diffused to the negative electrode side, and electrostatic attraction is generated between the glass base 1 and the silicon tube 3 to anodic bond the glass base 1 and the silicon tube 3. .

ガラス基台1とシリコンチューブ3を陽極接合した後、引き続きガラス基台1とセンサチップ2を同様にして陽極接合する。   After the glass base 1 and the silicon tube 3 are anodically bonded, the glass base 1 and the sensor chip 2 are subsequently anodically bonded in the same manner.

ガラス基台1とセンサチップ2を陽極接合するときは、予め図4〜図6に示す位置決め機構40によってガラス基台1とセンサチップ2とを位置決めし、しかる後図9に示す陽極接合装置50によって陽極接合する。   When anodically bonding the glass base 1 and the sensor chip 2, the glass base 1 and the sensor chip 2 are previously positioned by the positioning mechanism 40 shown in FIGS. 4 to 6, and then the anodic bonding apparatus 50 shown in FIG. 9. Anodized by.

図4〜図6において、前記位置決め機構40は、設置台35と、ガラス基台1およびセンサチップ2の各側面1c、2cを押圧する押圧手段としての4つの押圧部材5とで構成されている。押圧部材5は、図10、図11に示した従来の押圧部材5と同一形状で、設置台35の上方に、ガラス基台1およびセンサチップ2を挟んで対向するように設置台35の周方向に90°位相をずらして進退自在に配設されている。また、各押圧部材5の互いに対向する面には、ガラス基台1の側面1cとセンサチップ2の側面2cをそれぞれ押圧する2つの押圧部5A、5Bが設けられている。これらの押圧部5A、5Bの押圧面は、垂直面に形成されている。   4 to 6, the positioning mechanism 40 includes an installation table 35 and four pressing members 5 as pressing means for pressing the side surfaces 1 c and 2 c of the glass base 1 and the sensor chip 2. . The pressing member 5 has the same shape as the conventional pressing member 5 shown in FIGS. 10 and 11, and the circumference of the installation table 35 is arranged above the installation table 35 so as to face the glass base 1 and the sensor chip 2. It is arranged so as to be able to advance and retract by shifting the phase by 90 ° in the direction. Further, two pressing portions 5A and 5B for pressing the side surface 1c of the glass base 1 and the side surface 2c of the sensor chip 2 are provided on the surfaces of the pressing members 5 facing each other. The pressing surfaces of these pressing portions 5A and 5B are formed as vertical surfaces.

前記設置台35は、図10、図11に示した従来の設置台4と同一の材料(例えば、窒化ケイ素、アルミナ等のセラミックス)によって円筒状に形成されてはいるが、ガラス基台1が設置される設置面が異なっている。すなわち、従来の設置台4は、上面4a全体をガラス基台1の底面の面積より大きい同一平面に形成してガラス基台1の設置面としていたのに対し、本発明は、設置台35のガラス基台1が設置される設置面36を、位置決め時にガラス基台1が傾いてもガラス基台1の底面の隅部5a〜5dが片当たりしない面に形成している。   The installation table 35 is formed in a cylindrical shape by the same material (for example, ceramics such as silicon nitride and alumina) as the conventional installation table 4 shown in FIGS. The installation surface to be installed is different. That is, the conventional installation table 4 has the entire upper surface 4 a formed on the same plane larger than the area of the bottom surface of the glass base 1 as the installation surface of the glass base 1. The installation surface 36 on which the glass base 1 is installed is formed on a surface where the corners 5a to 5d on the bottom surface of the glass base 1 do not come into contact with each other even if the glass base 1 is inclined during positioning.

このため、図5に示す設置台35は、ガラス基台1の対角線長さより大きな外径と、前記シリコンチューブ3が挿入される中心孔38を有する円筒状に形成されている。また、設置台35の上面35aは、ガラス基台1の底面1bよりも大きな面積を有する水平な平面に形成されており、この上面35aにガラス基台1の底面1bの輪郭形状より内側で、底面1bの各隅部より内側に位置する4つの基台支持部37を突設し、この基台支持部37の上面を水平な平坦面に形成し、ガラス基台1が設置される設置面36としている。基台支持部37は、平面視三角形の比較的小さな突起で構成されている。すなわち、本発明においては、設置第35の上面35aに基台支持部37を突設し、その上面を設置面36としたものである。   5 is formed in a cylindrical shape having an outer diameter larger than the diagonal length of the glass base 1 and a center hole 38 into which the silicon tube 3 is inserted. Moreover, the upper surface 35a of the installation base 35 is formed in the horizontal plane which has an area larger than the bottom face 1b of the glass base 1, and this upper surface 35a is inside the outline shape of the bottom face 1b of the glass base 1, Four base support portions 37 located on the inner side of each corner of the bottom surface 1b are projected, and the upper surface of the base support portion 37 is formed as a horizontal flat surface, and the installation surface on which the glass base 1 is installed. 36. The base support portion 37 is configured by a relatively small protrusion having a triangular shape in plan view. That is, in the present invention, the base support portion 37 is projected from the 35th upper surface 35a of the installation, and the upper surface is used as the installation surface 36.

ここで、図4〜図6においては、基台支持部37を設置台35の上面35aで中心孔38の周囲に90°の間隔をおいて4個形成したが、これに限らず図7に示すように連続した1つの基台支持部39で形成してもよい。すなわち、図7は、設置台35の上面35aにガラス基台1の底面1bの輪郭形状より小さい円形枠状の基台支持部39を中心孔38の周囲に突設し、この基台支持部39の上面を設置面として用いてガラス基台1の底面1bを支持するようにしたものである。基台支持部39としては、円形枠状のものに限らず、ガラス基台1の底面1bの輪郭形状より小さい正方形の枠状であってもよい。また、他の実施の形態として、設置台35の平面視形状をガラス基台1の底面1bよりも小さく形成し、その上面全体を設置面としてもよい。この場合は、ガラス基台1の底面隅部が設置台35の上面35aから側方に突出するため、ガラス台座1が傾いたとしても底面隅部が設置台35の上面35aに片当たりするようなことはない。   4 to 6, four base support portions 37 are formed on the upper surface 35a of the installation base 35 around the center hole 38 at intervals of 90 °. As shown, it may be formed by one continuous base support part 39. That is, in FIG. 7, a circular frame-like base support portion 39 smaller than the contour shape of the bottom surface 1b of the glass base 1 is provided on the upper surface 35a of the installation base 35 so as to protrude around the center hole 38. The bottom surface 1b of the glass base 1 is supported using the upper surface of 39 as an installation surface. The base support portion 39 is not limited to a circular frame shape, and may be a square frame shape smaller than the contour shape of the bottom surface 1 b of the glass base 1. Moreover, as another embodiment, the planar view shape of the installation table 35 may be formed smaller than the bottom surface 1b of the glass base 1, and the entire upper surface may be used as the installation surface. In this case, the bottom corner of the glass base 1 protrudes laterally from the top surface 35a of the installation table 35, so that the bottom corner hits the top surface 35a of the installation table 35 even if the glass pedestal 1 is tilted. There is nothing wrong.

要するに、設置台35は、位置決め時にガラス基台1が傾いていたとき、底面隅部が設置台35に片当たりしない設置面を有するものであればよい。   In short, the installation table 35 only needs to have an installation surface where the bottom corners do not come into contact with the installation table 35 when the glass base 1 is tilted during positioning.

位置決め機構40によってガラス基台1およびセンサチップ2を位置決めするときは、ガラス基台1を設置台35の基台支持部37(または39)上に設置する。さらにその上にセンサチップ2を隅部どうしが一致するように設置した後、押圧部材5によってこれら両部材を位置決めする。すなわち、各押圧部材5を互いに接近する方向に移動させて、押圧部5A、5Bをガラス基台1およびセンサチップ2の各側面1c、2cにそれぞれ押し付け、ガラス基台1およびセンサチップ2を位置決めする。   When the glass base 1 and the sensor chip 2 are positioned by the positioning mechanism 40, the glass base 1 is installed on the base support portion 37 (or 39) of the installation base 35. Further, after the sensor chip 2 is placed on the sensor chip 2 so that the corners coincide with each other, both members are positioned by the pressing member 5. That is, each pressing member 5 is moved in a direction approaching each other, the pressing portions 5A and 5B are pressed against the side surfaces 1c and 2c of the glass base 1 and the sensor chip 2, respectively, and the glass base 1 and the sensor chip 2 are positioned. To do.

このとき、図8に示すようにガラス基台1の対向する2つの側面1c、1c’が上面1aおよび底面1bに対して垂直ではなく同一方向に傾いていると、押圧部材5によってガラス基台1を押圧したとき、ガラス基台1の傾いている側面1c、1c’が押圧部材5の押圧面5aに倣おうとするため、ガラス基台1が押圧部材5との接触部を支点として側面1c、1c’の傾き側とは反対側に傾く(図8において左側に傾く)。このため、ガラス基台1の傾き側とは反対側の底面隅部1dが設置台35の上方に浮き上がり、傾き側の底面隅部1eが基台支持部37の設置面36よりも低くなる。しかしながら、設置台35の上面35aと基台支持部37の設置面36との間には段差43が形成されているため、ガラス基台1が傾いても底面隅部1eが設置台35の上面35aに片当たりすることはない。したがって、底面隅部1eが破損するおそれがなく、ガラス基台1とセンサチップ2を良好に位置決めすることができる。   At this time, if two opposing side surfaces 1c and 1c ′ of the glass base 1 are inclined in the same direction rather than perpendicular to the top surface 1a and the bottom surface 1b as shown in FIG. When 1 is pressed, the inclined side surfaces 1c and 1c 'of the glass base 1 try to follow the pressing surface 5a of the pressing member 5, so that the glass base 1 has the contact portion with the pressing member 5 as a fulcrum. 1c ′ is inclined to the opposite side (inclined to the left side in FIG. 8). For this reason, the bottom corner 1 d on the side opposite to the tilt side of the glass base 1 floats above the installation table 35, and the bottom corner 1 e on the tilt side becomes lower than the installation surface 36 of the base support 37. However, since a step 43 is formed between the upper surface 35 a of the installation table 35 and the installation surface 36 of the base support unit 37, the bottom corner 1 e remains on the upper surface of the installation table 35 even when the glass base 1 is tilted. There is no chance of hitting 35a. Therefore, there is no possibility that the bottom corner 1e is damaged, and the glass base 1 and the sensor chip 2 can be satisfactorily positioned.

位置決め機構40によるガラス基台1およびセンサチップ2の位置決め作業が終了すると、押圧部材5によるガラス基台1およびセンサチップ2に対する押圧状態を解除し、ガラス基台1およびセンサチップ2を陽極接合する。   When the positioning operation of the glass base 1 and the sensor chip 2 by the positioning mechanism 40 is finished, the pressing state of the pressing member 5 against the glass base 1 and the sensor chip 2 is released, and the glass base 1 and the sensor chip 2 are anodically bonded. .

ガラス基台1とセンサチップ2を陽極接合装置50によって陽極接合するときは、図9に示すように側面電極方式による陽極接合によって接合される。すなわち、プラス電極51をセンサチップ2の上面に接続し、マイナス電極52をガラス基台1の各側面1cにそれぞれ接続し、これら電極51、52を電源53に接続する。そして、これらの電極51、52間に300〜700Vの直流電圧を印加すると同時にガラス基台1およびセンサチップ2を200〜400℃に加熱すると、ガラス基台1中の陽イオンが強制的に拡散されて移動し、これによりガラス基台1とセンサチップ2との接合部33間に静電引力が発生し、これら両部材を陽極接合する。   When the anodic bonding of the glass base 1 and the sensor chip 2 by the anodic bonding apparatus 50 is performed, the anodic bonding is performed by the side electrode method as shown in FIG. That is, the plus electrode 51 is connected to the upper surface of the sensor chip 2, the minus electrode 52 is connected to each side surface 1 c of the glass base 1, and the electrodes 51 and 52 are connected to the power source 53. When a 300 to 700 V DC voltage is applied between the electrodes 51 and 52 and the glass base 1 and the sensor chip 2 are heated to 200 to 400 ° C., the cations in the glass base 1 are forcibly diffused. As a result, an electrostatic attractive force is generated between the joint portions 33 of the glass base 1 and the sensor chip 2 to anodic bond these two members.

このように、本発明においては、設置台35のガラス基台1が設置される設置面36を上面35aの上方に設け、ガラス基台1とセンサチップ2を位置決めしたとき、ガラス基台1が傾いても底面隅部が上面35aに片当たりしないようにしたので、位置決め時における底面隅部の破損を未然に防止することができ、品質、外観の良好な半導体圧力センサ7を製造することができる。   Thus, in the present invention, when the installation surface 36 on which the glass base 1 of the installation base 35 is installed is provided above the upper surface 35a and the glass base 1 and the sensor chip 2 are positioned, the glass base 1 is Since the bottom corners do not come into contact with the top surface 35a even if tilted, the bottom corners can be prevented from being damaged during positioning, and the semiconductor pressure sensor 7 having good quality and appearance can be manufactured. it can.

なお、上記した実施の形態は、半導体センサとして半導体圧力センサ7に適用した例を示したが、本発明はこれに何ら特定されるものではなく、加速度センサ、差圧・圧力センサ等にも適用することができ、また抵抗式の代わりに容量式のセンサにも適用することができる。   In the above embodiment, an example in which the semiconductor pressure sensor 7 is applied as a semiconductor sensor has been described. However, the present invention is not limited to this, and is applied to an acceleration sensor, a differential pressure / pressure sensor, and the like. It can also be applied to capacitive sensors instead of resistive ones.

本発明によって製造された半導体センサの一実施の形態を示す平面図である。It is a top view which shows one Embodiment of the semiconductor sensor manufactured by this invention. 半導体センサの正面図である。It is a front view of a semiconductor sensor. 図1のIII −III 線断面図である。It is the III-III sectional view taken on the line of FIG. 位置決め機構を示す平面図である。It is a top view which shows a positioning mechanism. 位置決め機構の断面図である。It is sectional drawing of a positioning mechanism. 設置台の斜視図である。It is a perspective view of an installation stand. 設置台の他の実施の形態を示す斜視図である。It is a perspective view which shows other embodiment of an installation stand. 位置決め時のガラス基台の傾きを示す図である。It is a figure which shows the inclination of the glass base at the time of positioning. 陽極接合を行なっている状態を示す断面図である。It is sectional drawing which shows the state which is performing anodic bonding. 従来の位置決め機構を示す平面図である。It is a top view which shows the conventional positioning mechanism. 図10のXI−XI線断面図である。It is the XI-XI sectional view taken on the line of FIG. 押圧部材の斜視図である。It is a perspective view of a pressing member. (a)、(b)は位置決め時のガラス基台の底面隅部の片当たりによる破損を説明するための図である。(A), (b) is a figure for demonstrating the damage by the one piece contact of the bottom face corner of the glass base at the time of positioning.

符号の説明Explanation of symbols

1…ガラス基台、2…センサチップ、3…シリコンチューブ、5…押圧部材(押圧手段)、33…接合面、35…設置台、36…設置面、37、39…基台支持部、40…位置決め機構、41…プラス電極、42…マイナス電極、43…電源、50…陽極接合装置。   DESCRIPTION OF SYMBOLS 1 ... Glass base, 2 ... Sensor chip, 3 ... Silicon tube, 5 ... Pressing member (pressing means), 33 ... Joining surface, 35 ... Installation base, 36 ... Installation surface, 37, 39 ... Base support part, 40 ... positioning mechanism, 41 ... plus electrode, 42 ... minus electrode, 43 ... power source, 50 ... anodic bonding apparatus.

Claims (7)

設置台に平面視正方形のガラス基台を設置し、さらにこのガラス基台の上に正方形のセンサチップを載置し、前記ガラス基台と前記センサチップの側面を押圧手段によって押圧して位置決めした後、前記ガラス基台と前記センサチップの接合面を陽極接合する半導体センサの陽極接合方法において、
前記設置台の前記ガラス基台が設置される設置面は、前記ガラス基台の各底面隅部より内側を支承する面に形成されていることを特徴とする半導体センサの陽極接合方法。
A square glass base is installed on the installation base, and a square sensor chip is placed on the glass base, and the glass base and the side surfaces of the sensor chip are pressed and positioned by pressing means. After, in the anodic bonding method of the semiconductor sensor for anodic bonding the bonding surface of the glass base and the sensor chip,
The method for anodic bonding of a semiconductor sensor, wherein an installation surface on which the glass base of the installation base is installed is formed on a surface that supports the inner side of each bottom corner of the glass base.
設置台に平面視正方形のガラス基台を設置し、さらにこのガラス基台の上に正方形のセンサチップを載置し、前記ガラス基台と前記センサチップの側面を押圧手段によって押圧して位置決めした後、前記ガラス基台と前記センサチップの接合面を陽極接合する半導体センサの陽極接装置において、
前記設置台の前記ガラス基台が設置される設置面は、前記ガラス基台の各底面隅部より内側を支承する面に形成されていることを特徴とする陽極接合装置。
A square glass base is installed on the installation base, and a square sensor chip is placed on the glass base, and the glass base and the side surfaces of the sensor chip are pressed and positioned by pressing means. After, in the anodic contact apparatus of the semiconductor sensor for anodic bonding the joint surface of the glass base and the sensor chip,
An anodic bonding apparatus, wherein an installation surface on which the glass base of the installation base is installed is formed on a surface that supports an inner side from each bottom corner of the glass base.
請求項2記載の陽極接合装置において、
前記設置台の設置面は、ガラス基台の底面の輪郭形状より小さく形成されていることを特徴とする陽極接合装置。
The anodic bonding apparatus according to claim 2, wherein
The anodic bonding apparatus characterized in that the installation surface of the installation table is formed smaller than the contour shape of the bottom surface of the glass base.
請求項2記載の陽極接合装置において、
前記設置台の設置面は、設置台の上面にガラス基台の底面隅部より内側に位置するように設置台上に突設された基台支持部の上面で構成されていることを特徴とする陽極接合装置。
The anodic bonding apparatus according to claim 2, wherein
The installation surface of the installation table is configured by an upper surface of a base support part projecting on the installation table so as to be positioned on the upper surface of the installation table and inside the bottom corner of the glass base. Anodic bonding equipment.
請求項4記載の陽極接合装置において、
前記基台支持部は、枠状の突状体で構成されていることを特徴とする陽極接合装置。
The anodic bonding apparatus according to claim 4, wherein
The anodic bonding apparatus is characterized in that the base support portion is constituted by a frame-like protrusion.
請求項4記載の陽極接合装置において、
前記基台支持部は、ガラス基台の底面の各底面隅部より内側にそれぞれ位置するように突設された4つの突状体で構成されていることを特徴とする陽極接合装置。
The anodic bonding apparatus according to claim 4, wherein
The said base support part is comprised by the four protrusions protrudingly provided so that it might each be located inside each bottom corner of the bottom face of a glass base, The anodic bonding apparatus characterized by the above-mentioned.
請求項1記載の陽極接合方法によって製造されたことを特徴とする半導体センサ。   A semiconductor sensor manufactured by the anodic bonding method according to claim 1.
JP2008009682A 2008-01-18 2008-01-18 Semiconductor sensor anodic bonding method and anodic bonding apparatus Active JP4921389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008009682A JP4921389B2 (en) 2008-01-18 2008-01-18 Semiconductor sensor anodic bonding method and anodic bonding apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008009682A JP4921389B2 (en) 2008-01-18 2008-01-18 Semiconductor sensor anodic bonding method and anodic bonding apparatus

Publications (2)

Publication Number Publication Date
JP2009167067A true JP2009167067A (en) 2009-07-30
JP4921389B2 JP4921389B2 (en) 2012-04-25

Family

ID=40968708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008009682A Active JP4921389B2 (en) 2008-01-18 2008-01-18 Semiconductor sensor anodic bonding method and anodic bonding apparatus

Country Status (1)

Country Link
JP (1) JP4921389B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014174169A (en) * 2013-03-07 2014-09-22 Sensata Technologies Inc Pressure transducer substrate with self-alignment feature

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09304206A (en) * 1996-05-14 1997-11-28 Yamatake Honeywell Co Ltd Semiconductor pressure transducer
JP2002277337A (en) * 2001-03-22 2002-09-25 Yamatake Corp Differential pressure/pressure sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09304206A (en) * 1996-05-14 1997-11-28 Yamatake Honeywell Co Ltd Semiconductor pressure transducer
JP2002277337A (en) * 2001-03-22 2002-09-25 Yamatake Corp Differential pressure/pressure sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014174169A (en) * 2013-03-07 2014-09-22 Sensata Technologies Inc Pressure transducer substrate with self-alignment feature

Also Published As

Publication number Publication date
JP4921389B2 (en) 2012-04-25

Similar Documents

Publication Publication Date Title
KR102637642B1 (en) Bonding method, bonding device, and holding member
JP2012160628A (en) Substrate bonding method and substrate bonding device
JP2010025898A (en) Mems sensor
EP3404391A1 (en) Pressure transducer substrate with self alignment feature
JP4921389B2 (en) Semiconductor sensor anodic bonding method and anodic bonding apparatus
JP2006349563A (en) Inertial force sensor
JPH09304206A (en) Semiconductor pressure transducer
JP2009135190A (en) Side surface anodic bonding method of semiconductor sensor, anodic bonding device, and semiconductor sensor
JP2007311683A (en) Sticking method and apparatus therefor
JP2005158962A (en) Electrostatic chuck and method for manufacturing the same
JP4224466B2 (en) Semiconductor sensor and manufacturing method thereof
JP2010118483A (en) Substrate holding member and bonding apparatus
JP4422395B2 (en) Manufacturing method of semiconductor acceleration sensor
KR20240086127A (en) Apparatus for measuring wafer bonding strength and operation method thereof, method for measuring wafer bonding strength
JP2006317182A (en) Acceleration sensor
JP2003276000A (en) Bonded microstructure
JP2002162409A (en) Semiconductor acceleration sensor and its manufacturing method
JPH08320340A (en) Semiconductor accelerometer
JP5065356B2 (en) Semiconductor acceleration sensor
JPH1026634A (en) Manufacture of diaphragm-type accelerometer
JP2006090975A (en) Three-axis acceleration sensor and its manufacturing method
JPH11190746A (en) Semiconductor physical quantity sensor and fabrication thereof
JPH01301176A (en) Semiconductor acceleration sensor
JP2006303446A (en) Mask for lithography and manufacturing method thereof
JP2007057517A (en) Semiconductor sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120202

R150 Certificate of patent or registration of utility model

Ref document number: 4921389

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3