JP2009166617A - Radial tire for vehicle - Google Patents

Radial tire for vehicle Download PDF

Info

Publication number
JP2009166617A
JP2009166617A JP2008006000A JP2008006000A JP2009166617A JP 2009166617 A JP2009166617 A JP 2009166617A JP 2008006000 A JP2008006000 A JP 2008006000A JP 2008006000 A JP2008006000 A JP 2008006000A JP 2009166617 A JP2009166617 A JP 2009166617A
Authority
JP
Japan
Prior art keywords
belt
tire
circumferential direction
layer
cords
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008006000A
Other languages
Japanese (ja)
Other versions
JP2009166617A5 (en
Inventor
Takeshi Hodaka
武 穂高
Takayuki Yamamoto
孝行 山本
Tetsuya Mizone
哲也 溝根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2008006000A priority Critical patent/JP2009166617A/en
Publication of JP2009166617A publication Critical patent/JP2009166617A/en
Publication of JP2009166617A5 publication Critical patent/JP2009166617A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radial tire for a vehicle increased in high-speed durability and riding comfort by reducing a ply steer and rolling resistance. <P>SOLUTION: In this radial tire 1 for a vehicle, two belt layers 6, 7 formed by tilting belt cords 6a, 7a in the reverse directions to the tire circumferential direction are formed on a tread part 5 on the outside of a carcass layer 4. The tilt angles θ<SB>1</SB>, θ<SB>2</SB>of the belt cords 6a, 7a of both belt layers 6, 7 to the tire circumferential direction are set to 45-65°, respectively. An organic fiber cord 8a is spirally wrapped around both belt layers 6, 7 in the tire circumferential direction to form a reinforcement layer 8. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は車両用ラジアルタイヤに関する。   The present invention relates to a vehicle radial tire.

最近の自動車は、高速走行における操縦安定性、耐久性等に優れたラジアルタイヤを装備する傾向がある。このラジアルタイヤは、ベルトコードをタイヤ周方向に対して互いに逆向きに傾斜させた2枚のベルト層を積層し、これをトレッド部のカーカス層の外側に配置してある(特許文献1参照)。積層されたベルト層は周方向と幅方向の剛性を有し、たが効果によりカーカス層を締め付けてタイヤ形状を保持している。   Recent automobiles tend to be equipped with radial tires excellent in handling stability and durability at high speeds. In this radial tire, two belt layers in which belt cords are inclined in opposite directions with respect to the tire circumferential direction are laminated, and this is disposed outside the carcass layer of the tread portion (see Patent Document 1). . The laminated belt layer has rigidity in the circumferential direction and the width direction, and the carcass layer is tightened by the effect to maintain the tire shape.

ラジアルタイヤは、接地変形しながら転動するため、ベルト層の幅方向に作用する引張力に差が生じ、横力(以下、プライステアという)によるタイヤ捩れを生じる。このため、転がり抵抗が大きくなるとともに、ハンドル流れが生じ易くなる。ところで、ベルトコードのタイヤ周方向に対する傾斜角を特異角(54.7度)にすると、ベルト層の幅方向に対する引張力の差が生じなくなり、プライステアの発生を防止できることが知られている。しかし、ベルトコードの傾斜角を特異角にすると、ベルト層の周方向の剛性がなくなり、タイヤとして機能しなくなる。   Since the radial tire rolls while being deformed in contact with the ground, a difference occurs in the tensile force acting in the width direction of the belt layer, and the tire twists due to lateral force (hereinafter referred to as price tear). For this reason, the rolling resistance increases and the handle flow easily occurs. By the way, it is known that when the inclination angle of the belt cord with respect to the tire circumferential direction is set to a singular angle (54.7 degrees), a difference in tensile force with respect to the width direction of the belt layer does not occur and the occurrence of price tear can be prevented. However, if the inclination angle of the belt cord is a singular angle, the rigidity of the belt layer in the circumferential direction is lost, and the belt cord does not function as a tire.

そこで、ベルトコードの傾斜角を特異角に設定した有機繊維ベルトを設け、この有機繊維ベルトで別のスチールベルトを包み込んだ構造が提案されている(特許文献2参照)。つまり、有機繊維ベルトの周方向剛性の喪失分をスチールベルトで補っている。
あるいは、有機繊維製の帯材をジグザグに折り返して補強層を形成し、この補強層を、ベルトコードの傾斜角を特異角に設定したスチールベルト層に被せた構造も提案されている(特許文献3参照)。
特開平9−142104号公報(段落[0011〜0012]、図2) 特開平10−109502公報(段落[0012〜0014]、図2,3 ) 特開平11−321225号公報(段落[0012〜0013]、図2,4)
Therefore, a structure has been proposed in which an organic fiber belt in which the inclination angle of the belt cord is set to a singular angle is provided and another steel belt is wrapped with the organic fiber belt (see Patent Document 2). That is, the loss in the circumferential rigidity of the organic fiber belt is compensated by the steel belt.
Alternatively, a structure in which a reinforcing layer is formed by folding an organic fiber strip in a zigzag, and this reinforcing layer is covered with a steel belt layer in which the inclination angle of the belt cord is set to a singular angle has been proposed (Patent Document). 3).
JP 9-142104 A (paragraphs [0011 to 0012], FIG. 2) Japanese Patent Laid-Open No. 10-109502 (paragraphs [0012 to 0014], FIGS. 2 and 3) Japanese Patent Laid-Open No. 11-32225 (paragraphs [0012 to 0013], FIGS. 2 and 4)

しかし、特許文献2の構造によると、有機繊維ベルトでスチールベルトを包み込んで3層構造のベルトを構成してあるため、全体の肉厚が大きくなり、却ってタイヤ捩れが生じ易くなり、直進走行性の向上には然程役立たない。さらに、ベルト全体の周方向の剛性はスチールベルトで確保しているので、剛性が高くなり過ぎ、乗り心地特性にも問題がある。
一方、特許文献3の構造によると、有機繊維製の帯材をジグザグに折り返して補強層を形成してあるので、加工工数が嵩み、コスト的に問題がある。また、ベルトコードの傾斜角を特異角に設定したスチールベルト層の数が1つであるので、タイヤ全体の剛性が通常より弱くなる。
さらに、特許文献1,2のタイヤでは、高速回転時の遠心力によりベルト層が径方向外方に広がり、大きな歪を生じるため、ベルト層が両端から剥離し易く、高速耐久性に問題があるばかりでなく、転がり抵抗も大きくなる。
However, according to the structure of Patent Document 2, since the steel belt is wrapped with an organic fiber belt to form a three-layer belt, the overall thickness is increased, and the tire is liable to be twisted. It does not help so much. Further, since the rigidity in the circumferential direction of the entire belt is secured by the steel belt, the rigidity becomes too high, and there is a problem in the riding comfort characteristics.
On the other hand, according to the structure of Patent Document 3, since the reinforcing layer is formed by folding the organic fiber band material in a zigzag manner, the number of processing steps increases and there is a problem in cost. In addition, since the number of steel belt layers in which the inclination angle of the belt cord is set to a singular angle is one, the rigidity of the entire tire becomes weaker than usual.
Furthermore, in the tires of Patent Documents 1 and 2, the belt layer spreads radially outward due to the centrifugal force during high-speed rotation, and a large distortion is generated. Therefore, the belt layer is easily peeled from both ends, and there is a problem in high-speed durability. Not only will the rolling resistance increase.

本発明は、このような事情に鑑み、プライステアと転がり抵抗を小さくし、高速耐久性と乗り心地特性を向上させた車両用ラジアルタイヤの提供を目的とする。   In view of such circumstances, an object of the present invention is to provide a radial tire for a vehicle in which price tear and rolling resistance are reduced, and high-speed durability and riding comfort characteristics are improved.

前記課題を解決するための本発明は、ベルトコードをタイヤ周方向に対して互いに逆向きに傾斜させた2つのベルト層をトレッド部のカーカス層の外側に備えた車両用ラジアルタイヤにおいて、前記両ベルト層におけるベルトコードのタイヤ周方向に対する傾斜角を45〜65度に設定するとともに、前記両ベルト層に有機繊維コードをタイヤ周方向に螺旋状に巻き付けて補強層を形成したことを特徴とする。   The present invention for solving the above-described problems provides a radial tire for a vehicle, in which two belt layers, each having a belt cord inclined in opposite directions with respect to the tire circumferential direction, are provided outside the carcass layer of the tread portion. An inclination angle of the belt cord in the belt layer with respect to the tire circumferential direction is set to 45 to 65 degrees, and an organic fiber cord is spirally wound in the tire circumferential direction around the belt layers to form a reinforcing layer. .

ベルトコードのタイヤ周方向に対する傾斜角を45〜65度に設定すると、ベルト層の周方向の剛性が大幅に低下するので、ベルト層の幅方向に対する引張力の差が殆ど生じなくなり、プライステアによるタイヤの捩れが殆ど生じなくなる。また、ベルト層の周方向の剛性が大幅に低下することに対しては、ベルト層に有機繊維コードをタイヤ周方向に螺旋状に巻き付けて補強層を形成し、この補強層によりベルト層の周方向剛性の低下分を補うことで対処している。   If the inclination angle of the belt cord with respect to the tire circumferential direction is set to 45 to 65 degrees, the rigidity in the circumferential direction of the belt layer is greatly reduced, so there is almost no difference in tensile force with respect to the width direction of the belt layer. Tire twisting hardly occurs. Further, in order to greatly reduce the circumferential rigidity of the belt layer, an organic fiber cord is spirally wound around the belt layer in the tire circumferential direction to form a reinforcing layer. This is dealt with by compensating for the decrease in directional rigidity.

前記有機繊維コードは芳香族ポリアミド繊維、ポリアリレート繊維またはポリパラフェニレンベンズビスオキサゾール繊維からなるのが好ましい。   The organic fiber cord is preferably made of an aromatic polyamide fiber, a polyarylate fiber, or a polyparaphenylene benzbisoxazole fiber.

この種の有機繊維コードをベルト層に対しタイヤ周方向に螺旋状に巻き付けると、軽量で強度の高い補強層が形成される。   When this type of organic fiber cord is spirally wound around the belt layer in the tire circumferential direction, a lightweight and high-strength reinforcing layer is formed.

本発明によれば、ベルト層の幅方向に対する引張力の差が殆ど生じなくなるので、タイヤ捩れによるプライステアが殆ど生じなくなり、転がり抵抗が小さくなるとともに、直進走行性が良くなる。
さらに、ベルト層に有機繊維コードをタイヤ周方向に螺旋状に巻き付けて補強層を形成してあるので、高速回転時の遠心力によりベルト層が径方向外方に広がるのを阻止でき、ベルト層の歪が生じなくなる。このため、ベルト層の剥離が生じにくくなり、高速耐久性が大幅に向上する。
また、有機繊維製の補強層でベルト層の周方向剛性の低下分を補っているので、タイヤ剛性が適度なものに維持でき、乗り心地特性の向上を図ることもできる。
According to the present invention, the difference in tensile force with respect to the width direction of the belt layer hardly occurs, so that price tear due to tire twist hardly occurs, rolling resistance is reduced, and straight running performance is improved.
Further, since the reinforcing layer is formed by spirally winding the organic fiber cord in the tire circumferential direction on the belt layer, the belt layer can be prevented from spreading radially outward due to centrifugal force during high-speed rotation. No distortion occurs. For this reason, peeling of a belt layer becomes difficult to occur and high-speed durability is greatly improved.
In addition, since the decrease in the circumferential rigidity of the belt layer is compensated by the reinforcing layer made of organic fibers, the tire rigidity can be maintained at an appropriate level, and the riding comfort characteristics can be improved.

以下、本発明の実施形態を添付図面を参照しながら詳細に説明する。
図1は本発明の車両用ラジアルタイヤの断面構造を示す模式図、図2は同ラジアルタイヤにおけるベルト層と補強層の展開図、図3は図2のA−A線断面図、図4は積層ベルトにおけるベルトコード傾斜角とヤング率の関係を示すグラフ図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
1 is a schematic diagram showing a cross-sectional structure of a radial tire for a vehicle according to the present invention, FIG. 2 is a development view of a belt layer and a reinforcing layer in the radial tire, FIG. 3 is a cross-sectional view taken along line AA in FIG. It is a graph which shows the relationship between the belt cord inclination-angle in a laminated belt, and Young's modulus.

本実施形態に係る車両用ラジアルタイヤ1は、地面に接するトレッド部5と、リムRに嵌着されるビード部11と、トレッド部5とビード部11を連結するサイドウォール部9とを備え、タイヤ本体の内部には断面略王冠状の空気室10を形成してある。ビード部11にはビードコア2とビードフィラ3を内蔵してある。このラジアルタイヤ1は、一対のビードコア2とビードフィラ3で両端を折り返して結合したカーカス層4と、トレッド部5のカーカス層4の外側に配設した2つのベルト層6,7と、これらベルト層6,7の外側に配設した有機繊維製の補強層8とを積層した構造になっている。   The vehicular radial tire 1 according to the present embodiment includes a tread portion 5 that is in contact with the ground, a bead portion 11 that is fitted to the rim R, and a sidewall portion 9 that connects the tread portion 5 and the bead portion 11. An air chamber 10 having a substantially crown-shaped cross section is formed inside the tire body. The bead core 11 and the bead filler 3 are built in the bead unit 11. The radial tire 1 includes a carcass layer 4 in which both ends are folded and connected by a pair of bead cores 2 and bead fillers 3, two belt layers 6 and 7 disposed outside the carcass layer 4 of the tread portion 5, and these belt layers. 6 and 7 are laminated with organic fiber reinforcing layers 8 disposed outside.

カーカス層4はタイヤとしての骨格をなすゴム引きコード層であって、ナイロンやポリエステル、芳香族ポリアミドなどの有機繊維からなるカーカスコード4aをタイヤ周方向と直交するラジアル方向に配置してある(図2参照)。   The carcass layer 4 is a rubberized cord layer that forms a skeleton as a tire, and carcass cords 4a made of organic fibers such as nylon, polyester, and aromatic polyamide are arranged in a radial direction orthogonal to the tire circumferential direction (see FIG. 2).

ベルト層6,7は非伸張性のコードを有するゴム引きコード層であって、たが効果によりカーカス層4を締め付けてタイヤ形状を保持している。ベルト層6,7はゴム引きコードをバイアスカットして帯材を形成し、その両端を連結してベルト状に形成してある。このため、ベルト層6,7の幅方向に対して傾斜したベルトコード6a,7aがゴム層6b,7b内に所定ピッチで埋設してある(図3参照)。ベルトコード6a,7aには、例えばスチールまたは有機繊維(芳香族ポリアミド等)の撚り線が用いられる。   The belt layers 6 and 7 are rubberized cord layers having non-stretchable cords, and the carcass layer 4 is tightened by the effect to keep the tire shape. The belt layers 6 and 7 are formed in a belt shape by bias-cutting a rubberized cord to form a band material and connecting both ends thereof. For this reason, belt cords 6a and 7a inclined with respect to the width direction of the belt layers 6 and 7 are embedded in the rubber layers 6b and 7b at a predetermined pitch (see FIG. 3). For the belt cords 6a and 7a, for example, a stranded wire of steel or organic fiber (such as aromatic polyamide) is used.

ベルト層6,7は、図2に示すように、そのベルトコード6a,7aをタイヤ周方向に対して互いに逆向きに傾斜させて積層してある。また、各ベルトコード6a,7aのタイヤ周方向に対する傾斜角θを等しくするとともに、その値を45〜65度に設定してある。ベルトコード6a,7aのタイヤ周方向に対する傾斜角θは特異角54.7度に近いほど好ましい。ところで、ベルト層6,7はゴム引きコードを同一の角度でバイアスカットして形成してあるので、その幅方向両端を平行に揃えて積層すると、ベルトコード6a,7aがタイヤ周方向に対して対称配置され、傾斜角θが等しくなる。なお、内側のベルト層6は外側のベルト層7よりも幅広に形成してある。 As shown in FIG. 2, the belt layers 6 and 7 are laminated such that the belt cords 6a and 7a are inclined in opposite directions with respect to the tire circumferential direction. Further, the inclination angles θ 1 and θ 2 of the belt cords 6a and 7a with respect to the tire circumferential direction are made equal, and the values thereof are set to 45 to 65 degrees. The inclination angles θ 1 and θ 2 of the belt cords 6a and 7a with respect to the tire circumferential direction are preferably closer to a singular angle of 54.7 degrees. By the way, since the belt layers 6 and 7 are formed by bias-cutting rubberized cords at the same angle, the belt cords 6a and 7a are aligned with respect to the tire circumferential direction by laminating both ends in the width direction in parallel. They are arranged symmetrically and the inclination angles θ 1 and θ 2 are equal. The inner belt layer 6 is formed wider than the outer belt layer 7.

補強層8は、図3に示すように、ベルト層6,7に有機繊維コード8aをタイヤ周方向に螺旋状に巻き付けて形成してある。有機繊維コード8aの巻き付けに際しては、有機繊維コード8aが密に並べられ、一層巻きにするのが好ましいが、タイヤの特性に応じて多層巻きにしてもよい。有機繊維コード8aは、芳香族ポリアミド繊維、ポリアリレート繊維、ポリパラフェニレンベンズビスオキサゾール繊維等の有機繊維の撚り線を用いるのが好ましい。なお、補強層8はベルト層6,7に完全に被さるように内側のベルト層6よりも幅広に形成することで(図1参照)、高速回転時にベルト層6,7が両端から剥離するのを防止している。   As shown in FIG. 3, the reinforcing layer 8 is formed by winding an organic fiber cord 8a around the belt layers 6 and 7 in a spiral shape in the tire circumferential direction. When winding the organic fiber cord 8a, it is preferable that the organic fiber cords 8a are densely arranged and wound in a single layer, but may be wound in multiple layers depending on the characteristics of the tire. The organic fiber cord 8a preferably uses a strand of organic fiber such as aromatic polyamide fiber, polyarylate fiber, polyparaphenylene benzbisoxazole fiber or the like. The reinforcing layer 8 is formed wider than the inner belt layer 6 so as to completely cover the belt layers 6 and 7 (see FIG. 1), so that the belt layers 6 and 7 are peeled from both ends during high-speed rotation. Is preventing.

ところで、積層されたベルト層6,7の幅方向のヤング率Exは、図4に示すように、ベルトコード6a,7aの傾斜角θ(θ =θ)がゼロのときに最大で、傾斜角θの増加にともなって急激に減少し、特異角θ(54.7度)でゼロになる。つまり、特異角θで周方向の剛性がなくなるので、タイヤの接地変形によりベルト層6,7に作用する、幅方向の引張力に差が生じなくなり、タイヤ捩れ変形が抑制されることでプライステアが大幅に低減される。ただし、ベルト層6,7の周方向の剛性がなくなるので、このままではタイヤとして機能しなくなる。このため、従来は、ベルトコード6a,7aの傾斜角θを17〜27度(図4の範囲A)に設定して周方向の剛性を確保していたので、タイヤの捩れが生じることでプライステアが発生し、直進走行性に問題があった。 By the way, as shown in FIG. 4, the Young's modulus Ex in the width direction of the laminated belt layers 6 and 7 is maximum when the inclination angle θ (θ 1 = θ 2 ) of the belt cords 6a and 7a is zero. As the inclination angle θ increases, it decreases rapidly and becomes zero at the singular angle θ 0 (54.7 degrees). In other words, since the rigidity in the circumferential direction is lost at the singular angle θ 0 , there is no difference in the tensile force in the width direction acting on the belt layers 6 and 7 due to the ground contact deformation of the tire, and the torsional deformation of the tire is suppressed, thereby reducing the price. Tare is greatly reduced. However, since the circumferential rigidity of the belt layers 6 and 7 is lost, the belt layers 6 and 7 cannot function as tires as they are. For this reason, in the past, the inclination angle θ of the belt cords 6a and 7a was set to 17 to 27 degrees (range A in FIG. 4) to ensure the rigidity in the circumferential direction. There was a problem with straight running and a straight running.

一方、本実施形態では、ベルトコード6a,7aの傾斜角θを45〜65度に設定してあるので、ベルト層6,7の周方向の剛性が大幅に低くなっている。このため、ベルト層6,7の幅方向に対する引張力の差が殆ど生じなくなり、タイヤ捩れによるプライステアが大幅に低減される。このため、転がり抵抗が小さくなるとともに、直進走行性が良くなる。ただし、ベルト層6,7の周方向の剛性が大幅に低下し、このままではタイヤとして機能しなくなるので、ベルト層6,7の外側に補強層8を設けてベルト層6,7の周方向剛性の低下分を補っている。 On the other hand, in the present embodiment, since the inclination angles θ 1 and θ 2 of the belt cords 6a and 7a are set to 45 to 65 degrees, the rigidity in the circumferential direction of the belt layers 6 and 7 is greatly reduced. For this reason, the difference of the tensile force with respect to the width direction of the belt layers 6 and 7 hardly arises, and the price tear by tire twist is reduced significantly. For this reason, the rolling resistance is reduced and the straight traveling performance is improved. However, since the circumferential rigidity of the belt layers 6 and 7 is significantly reduced and the tire does not function as it is, the reinforcing layer 8 is provided outside the belt layers 6 and 7 so that the circumferential rigidity of the belt layers 6 and 7 is increased. To compensate for the decline.

さらに、ベルト層6,7に有機繊維コード8aをタイヤ周方向に螺旋状に巻き付けて補強層8を形成してあるので、高速回転時の遠心力によるベルト層6,7の径方向外方への広がりを阻止でき、ベルト層6,7の歪が生じなくなる。このため、ベルト層6,7の剥離が生じにくくなり、高速耐久性が大幅に向上する。
また、有機繊維製の補強層8でベルト層6,7の周方向剛性の低下分を補っているので、タイヤ剛性が適度なものに維持でき、乗り心地特性の向上を図ることもできる。
Further, since the reinforcing layer 8 is formed by spirally winding the organic fiber cords 8a around the belt layers 6 and 7 in the circumferential direction of the tire, outwardly in the radial direction of the belt layers 6 and 7 due to centrifugal force during high-speed rotation. The belt layers 6 and 7 are not distorted. For this reason, peeling of the belt layers 6 and 7 hardly occurs, and the high-speed durability is greatly improved.
In addition, since the organic fiber reinforcing layer 8 compensates for the decrease in the circumferential rigidity of the belt layers 6 and 7, the tire rigidity can be maintained at an appropriate level, and the riding comfort characteristics can be improved.

ところで、ベルトコード6a,7aの傾斜角θを特異角に設定すると、ベルト層6,7の接地時の捩れ変形がなくなりプライステアが低減され、ハンドル流れが抑制される結果、直進走行性が最も良くなるが、傾斜角θを特異角から約10度小さい45度に設定しても、プライステアの飛躍的な向上が実験により確認された。ベルトコード6a,7aの傾斜角θによるプライステアの変化は特異角を挟んで対称であると考えられるので、特異角よりも約10度大きい65度に設定しても、プライステアの飛躍的な低減が期待できるはずである。 By the way, if the inclination angles θ 1 and θ 2 of the belt cords 6a and 7a are set to singular angles, the belt layers 6 and 7 are prevented from torsional deformation at the time of contact, the price tear is reduced, and the handle flow is suppressed. Although the running performance is the best, even if the inclination angles θ 1 and θ 2 are set to 45 degrees, which is about 10 degrees smaller than the singular angle, a dramatic improvement in the price tear was confirmed by experiments. The change in the price tear due to the inclination angles θ 1 and θ 2 of the belt cords 6a and 7a is considered to be symmetric with respect to the singular angle, so even if it is set to 65 degrees that is about 10 degrees larger than the singular angle, the price tear It should be possible to expect a dramatic reduction in

次に、本発明について実施例と比較例を挙げて具体的に説明する。
(実施例)
ベルト層6,7には、ベルトコード6a,7aとしてスチールコードを用い、その傾斜角θ(θ=θ)をそれぞれ45度と55度に設定したものを2組用いた。そして、これら2組のベルト層6,7を用いてタイヤを各1個製作した。いずれのタイヤでも、補強層8の有機繊維コード8aとして芳香族ポリアミド繊維の撚り線を用いた。表1では、ベルトコード6a,7aの傾斜角θが45度のものを実施例1として、傾斜角θが55度のものを実施例2として示してある。なお、タイヤ1サイズは195/65R15、リムサイズは15×6J、空気圧は220kPaである。
Next, the present invention will be specifically described with reference to examples and comparative examples.
(Example)
For the belt layers 6 and 7, two sets of steel cords were used as the belt cords 6a and 7a, and the inclination angles θ (θ 1 = θ 2 ) were set to 45 degrees and 55 degrees, respectively. Then, one tire was manufactured using these two sets of belt layers 6 and 7 respectively. In any of the tires, an aromatic polyamide fiber strand was used as the organic fiber cord 8a of the reinforcing layer 8. In Table 1, the belt cords 6a and 7a having the inclination angle θ of 45 degrees are shown as Example 1, and those having the inclination angle θ of 55 degrees are shown as Example 2. The tire 1 size is 195 / 65R15, the rim size is 15 × 6 J, and the air pressure is 220 kPa.

(比較例)
ベルト層6,7には、ベルトコード6a,7aとしてスチールコードを用い、その傾斜角θ(θ=θ)を27度に設定したものを2組用いた。補強層8の有機繊維コード8aとしてナイロンと芳香族ポリアミド繊維の撚り線を用いた。そして、これらの有機繊維からなる補強層8を備えたタイヤを各1個製作した。表1では、有機繊維コード8aがナイロンのものを比較例1として、有機繊維コード8aが芳香族ポリアミド繊維のものを比較例2として示してある。なお、タイヤサイズ、リムサイズ及び空気圧は実施例と同じである。
(Comparative example)
For the belt layers 6 and 7, two sets of steel cords were used as the belt cords 6a and 7a and the inclination angle θ (θ 1 = θ 2 ) was set to 27 degrees. As the organic fiber cord 8a of the reinforcing layer 8, a stranded wire of nylon and an aromatic polyamide fiber was used. And one tire each provided with the reinforcement layer 8 which consists of these organic fibers was manufactured. In Table 1, a case where the organic fiber cord 8a is nylon is shown as Comparative Example 1, and a case where the organic fiber cord 8a is an aromatic polyamide fiber is shown as Comparative Example 2. The tire size, rim size, and air pressure are the same as in the example.

(試験条件)
高速試験:ISO−10191に準拠して実施した。本来は空気圧を280kPaとすべきであるが、今回はベルト層6,7の耐久性を確認するためであるので、低空気圧条件(150kPa)にて試験を実施し、タイヤが破損したところまでの距離を測定した。比較例1のタイヤを100とする指標で結果を示し、指数が大きいほど高速性に優れていることを示す。
耐久試験:速度80km/h、荷重8kN、空気圧150kPaの条件下で走行し、タイヤが破損したところまでの距離を測定した。比較例1のタイヤを100とする指標で結果を示し、指数が大きいほど耐久性に優れていることを示す。
コーナリングフォース:タイヤ試験機を用い、空気圧210kPa、荷重450kgの条件下でコーナリングフォースを測定した。比較例1のタイヤを100とする指標で結果を示し、数値が大きいほどコーナリングフォースが優れていることを示す。
(Test conditions)
High-speed test: The test was performed according to ISO-10191. Originally, the air pressure should be 280 kPa, but this time to confirm the durability of the belt layers 6 and 7, the test was conducted under low air pressure conditions (150 kPa) until the tire was damaged. The distance was measured. A result is shown by the index | index which makes the tire of the comparative example 1 100, and it shows that it is excellent in high speed, so that an index | exponent is large.
Durability test: The vehicle was run under conditions of a speed of 80 km / h, a load of 8 kN, and an air pressure of 150 kPa, and the distance to the place where the tire was damaged was measured. A result is shown by the index | index which sets the tire of the comparative example 1 to 100, and it shows that it is excellent in durability, so that an index | exponent is large.
Cornering force: A cornering force was measured using a tire testing machine under conditions of an air pressure of 210 kPa and a load of 450 kg. A result is shown by the index | index which makes the tire of the comparative example 1 100, and it shows that the cornering force is excellent, so that a numerical value is large.

転がり抵抗:室内ドラム式タイヤ転がり試験機を用いて評価を実施した。比較例1のタイヤを100とする指標で結果を示し、指数が低いほど転がり抵抗が少ないことを示す。
プライステア:JASOC607に準拠し、ユニフォミティ測定試験機上でプライステアを測定した。比較例1のタイヤを100とする指標で結果を示し、指数が小さいほどプライステアが低いことを示す。
乗り心地特性:排気量1.8リットルクラスの自動車にテストタイヤをそれぞれ装着し、テストドライバーによるフィーリング結果を数値化した。比較例1のタイヤを100する指標で示し、数値が大きいほど乗り心地特性が優れていることを示す。
Rolling resistance: Evaluation was carried out using an indoor drum type tire rolling tester. A result is shown by the index | index which makes the tire of the comparative example 1 100, and it shows that there are few rolling resistance, so that an index | exponent is low.
Price tear: Based on JASOC607, the price tear was measured on a uniformity measurement tester. A result is shown by the index | index which makes the tire of the comparative example 1 100, and it shows that a price tear is so low that an index | exponent is small.
Ride comfort characteristics: Test tires were mounted on 1.8 liter class cars, and the feelings by the test driver were quantified. It shows with the parameter | index which sets the tire of the comparative example 1 to 100, and shows that riding comfort characteristics are excellent, so that a numerical value is large.

Figure 2009166617
Figure 2009166617

表1から分かるように、有機繊維コード8aとしてナイロン繊維に代えて芳香族ポリアミド繊維を用いると(比較例1,2を較べると)、乗り心地特性を除いて良い結果が得られた。特に、耐久試験については飛躍的に良い結果が得られた。これは、芳香族ポリアミド繊維はナイロン繊維に較べて強度が高く、補強層8の強度向上によりベルト層6,7の変形が抑制されるからである。さらに、プライステアについても、ある程度の低減が認められた。これは、補強層8の強度向上によりタイヤの接地変形(凹み)が抑えられ、タイヤの捩れが小さくなるからである。なお、補強層8がタイヤ自体の剛性を高めているため、乗り心地特性は若干悪くなっている。
高速試験、耐久試験及びコーナリングフォースについては、ベルトコード6a,7aの傾斜角θを変えても、比較例1よりも良い結果が得られた(実施例1,2参照)。
As can be seen from Table 1, when aromatic polyamide fibers were used as the organic fiber cord 8a instead of nylon fibers (comparing Comparative Examples 1 and 2), good results were obtained except for ride comfort characteristics. In particular, the results of the durability test were dramatically improved. This is because the aromatic polyamide fiber has higher strength than the nylon fiber, and the deformation of the belt layers 6 and 7 is suppressed by improving the strength of the reinforcing layer 8. In addition, some reduction in price tear was observed. This is because the ground deformation (dent) of the tire is suppressed due to the improvement of the strength of the reinforcing layer 8, and the twist of the tire is reduced. In addition, since the reinforcing layer 8 increases the rigidity of the tire itself, the riding comfort characteristics are slightly deteriorated.
For the high speed test, durability test and cornering force, better results than Comparative Example 1 were obtained even when the inclination angle θ of the belt cords 6a and 7a was changed (see Examples 1 and 2).

ベルトコード6a,7aの傾斜角θ(θ=θ)を特異角近傍の55度に設定すると、プライステアが低減されることが確認できた(実施例1)。ベルトコード6a,7aの傾斜角θが小さくなる程、プライステアは増加するが、ベルトコード6a,7aの傾斜角θが45度の場合でも(比較例1と較べると)、プライステアの飛躍的な低減が認められるため、上述のように、傾斜角θの下限を45度に設定した。
転がり抵抗についても、ベルトコード6a,7aの傾斜角θが特異角に近づく程、小さくなることが分かる(比較例1と実施例1,2参照)。これは、ベルトコード6a,7aの傾斜角θが特異角に近づく程、ベルト層6,7の接地時の捩れ変形が小さくなり、タイヤの捩れが小さくなるからである。
乗り心地特性についても、ベルトコード6a,7aの傾斜角θが特異角に近づく程、良くなることが分かる(比較例1と実施例1,2参照)。これは、ベルトコード6a,7aの傾斜角θが特異角に近づく程、ベルト層6,7の接地時の捩れ変形が小さくなり、タイヤ剛性が適度なものに維持できるからである。
It was confirmed that the price tear was reduced when the inclination angle θ (θ 1 = θ 2 ) of the belt cords 6a and 7a was set to 55 degrees near the singular angle (Example 1). The price tear increases as the inclination angle θ of the belt cords 6a and 7a decreases. However, even when the inclination angle θ of the belt cords 6a and 7a is 45 degrees (compared to the first comparative example), the price tear is dramatically increased. Therefore, as described above, the lower limit of the inclination angle θ is set to 45 degrees.
It can also be seen that the rolling resistance decreases as the inclination angle θ of the belt cords 6a and 7a approaches the singular angle (see Comparative Example 1 and Examples 1 and 2). This is because as the inclination angle θ of the belt cords 6a and 7a approaches the singular angle, the torsional deformation at the time of contact of the belt layers 6 and 7 becomes smaller and the torsion of the tire becomes smaller.
It can be seen that the riding comfort characteristics also improve as the inclination angle θ of the belt cords 6a and 7a approaches the singular angle (see Comparative Example 1 and Examples 1 and 2). This is because as the inclination angle θ of the belt cords 6a and 7a approaches the singular angle, the torsional deformation at the time of contact of the belt layers 6 and 7 decreases, and the tire rigidity can be maintained at an appropriate level.

本発明の車両用ラジアルタイヤの断面構造を示す模式図である。It is a mimetic diagram showing the section structure of the radial tire for vehicles of the present invention. 同ラジアルタイヤにおけるベルト層と補強層の展開図である。FIG. 3 is a development view of a belt layer and a reinforcing layer in the radial tire. 図2のA−A線断面図である。It is the sectional view on the AA line of FIG. 積層ベルトにおけるベルトコード傾斜角とヤング率の関係を示すグラフ図である。It is a graph which shows the relationship between the belt cord inclination-angle in a laminated belt, and Young's modulus.

符号の説明Explanation of symbols

1 車両用ラジアルタイヤ
2 ビードコア
3 ビードフィラ
4 カーカス層
5 トレッド部
6 ベルト層
6a ベルトコード
7 ベルト層
7a ベルトコード
8 補強層
8a 有機繊維コード
θ ベルトコード6aの傾斜角
θ ベルトコード7aの傾斜角
θ 特異角
DESCRIPTION OF SYMBOLS 1 Radial tire for vehicles 2 Bead core 3 Bead filler 4 Carcass layer 5 Tread part 6 Belt layer 6a Belt cord 7 Belt layer 7a Belt cord 8 Reinforcement layer 8a Organic fiber cord θ 1 Inclination angle of belt cord 6a θ 2 Inclination angle of belt cord 7a θ 0 singular angle

Claims (2)

ベルトコードをタイヤ周方向に対して互いに逆向きに傾斜させた2つのベルト層をトレッド部のカーカス層の外側に備えた車両用ラジアルタイヤにおいて、前記両ベルト層におけるベルトコードのタイヤ周方向に対する傾斜角を45〜65度に設定するとともに、前記両ベルト層に有機繊維コードをタイヤ周方向に螺旋状に巻き付けて補強層を形成したことを特徴とする車両用ラジアルタイヤ。   In a radial tire for a vehicle having two belt layers inclined in opposite directions with respect to the tire circumferential direction on the outer side of the carcass layer of the tread portion, the inclination of the belt cords in the tire circumferential direction in both belt layers A radial tire for a vehicle, wherein an angle is set to 45 to 65 degrees and an organic fiber cord is spirally wound around the belt layer in the tire circumferential direction to form a reinforcing layer. 前記有機繊維コードが芳香族ポリアミド繊維、ポリアリレート繊維またはポリパラフェニレンベンズビスオキサゾール繊維からなることを特徴とする請求項1記載の車両用ラジアルタイヤ。   2. The vehicle radial tire according to claim 1, wherein the organic fiber cord is made of an aromatic polyamide fiber, a polyarylate fiber, or a polyparaphenylene benzbisoxazole fiber.
JP2008006000A 2008-01-15 2008-01-15 Radial tire for vehicle Pending JP2009166617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008006000A JP2009166617A (en) 2008-01-15 2008-01-15 Radial tire for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008006000A JP2009166617A (en) 2008-01-15 2008-01-15 Radial tire for vehicle

Publications (2)

Publication Number Publication Date
JP2009166617A true JP2009166617A (en) 2009-07-30
JP2009166617A5 JP2009166617A5 (en) 2010-12-09

Family

ID=40968315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008006000A Pending JP2009166617A (en) 2008-01-15 2008-01-15 Radial tire for vehicle

Country Status (1)

Country Link
JP (1) JP2009166617A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106739829A (en) * 2017-03-16 2017-05-31 青岛科技大学 A kind of radial of quadriply belt beam layer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09207516A (en) * 1996-02-09 1997-08-12 Bridgestone Corp Radial tire
JP2002307910A (en) * 2001-04-12 2002-10-23 Yokohama Rubber Co Ltd:The Pneumatic radial tire
JP2007045334A (en) * 2005-08-10 2007-02-22 Yokohama Rubber Co Ltd:The Flat pneumatic radial tire for heavy load
JP2007050726A (en) * 2005-08-16 2007-03-01 Bridgestone Corp Pneumatic tire
JP2008279849A (en) * 2007-05-09 2008-11-20 Bridgestone Corp Pneumatic tire

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09207516A (en) * 1996-02-09 1997-08-12 Bridgestone Corp Radial tire
JP2002307910A (en) * 2001-04-12 2002-10-23 Yokohama Rubber Co Ltd:The Pneumatic radial tire
JP2007045334A (en) * 2005-08-10 2007-02-22 Yokohama Rubber Co Ltd:The Flat pneumatic radial tire for heavy load
JP2007050726A (en) * 2005-08-16 2007-03-01 Bridgestone Corp Pneumatic tire
JP2008279849A (en) * 2007-05-09 2008-11-20 Bridgestone Corp Pneumatic tire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106739829A (en) * 2017-03-16 2017-05-31 青岛科技大学 A kind of radial of quadriply belt beam layer

Similar Documents

Publication Publication Date Title
JP4377933B2 (en) Pneumatic tire
JP4747773B2 (en) Pneumatic tire
JPS5973307A (en) Pneumatic belted tyre pair for motorcycle
JP4467419B2 (en) Pneumatic tire
JP4900016B2 (en) Pneumatic tire
JP5294396B2 (en) Pneumatic radial tire
CN115362071A (en) Pneumatic tire
JP4677116B2 (en) Radial tires for motorcycles
JP4377934B2 (en) Pneumatic tire
JP5358333B2 (en) Pneumatic tire
CN114340912A (en) Pneumatic tire
JPS5938104A (en) Pneumatic tire
JP2007022374A (en) Pneumatic radial tire for motorcycle
JP4349607B2 (en) Pneumatic tires for motorcycles
JP5077094B2 (en) Pneumatic tire
JP5332422B2 (en) Pneumatic tire
JP5125193B2 (en) Pneumatic tire
JP5493590B2 (en) Pneumatic radial tire
JP5083041B2 (en) Pneumatic tire
WO2009113583A1 (en) Radial tire for vehicle and method for manufacturing the same
JP4149711B2 (en) Pneumatic radial tire
JP2009166617A (en) Radial tire for vehicle
US20100051162A1 (en) Modular two-ply tire with directional side plies
WO2015156154A1 (en) Tire
CN114555386A (en) Run-flat tire

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101021

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120613

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121016