JP2009162629A - Interferometer - Google Patents

Interferometer Download PDF

Info

Publication number
JP2009162629A
JP2009162629A JP2008000925A JP2008000925A JP2009162629A JP 2009162629 A JP2009162629 A JP 2009162629A JP 2008000925 A JP2008000925 A JP 2008000925A JP 2008000925 A JP2008000925 A JP 2008000925A JP 2009162629 A JP2009162629 A JP 2009162629A
Authority
JP
Japan
Prior art keywords
mirror
incident
measurement
reference beam
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008000925A
Other languages
Japanese (ja)
Other versions
JP5180594B2 (en
Inventor
Ryo Teramoto
亮 寺本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sokkia Topcon Co Ltd
Original Assignee
Sokkia Topcon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sokkia Topcon Co Ltd filed Critical Sokkia Topcon Co Ltd
Priority to JP2008000925A priority Critical patent/JP5180594B2/en
Publication of JP2009162629A publication Critical patent/JP2009162629A/en
Application granted granted Critical
Publication of JP5180594B2 publication Critical patent/JP5180594B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To measure a refractive index of air in a stable condition with high accuracy, by suppressing any effects even when distortion or expansion brings about in each element constituting an interferometer. <P>SOLUTION: An interferometer includes: a trapezoid-shaped polarization beam splitter 14 splitting a laser beam 100 from a light source 12 into a measurement beam 102 and a reference beam 104 to irradiate a synthesized beam 106; a reflective mirror 18 arranged to be opposing to the trapezoid-shaped polarization beam splitter 14; a vacuum container 16 connecting the trapezoid-shaped polarization beam splitter 14 and the reflective mirror 18 and forming an optical path of the reference beam 104; and a measuring apparatus 20 carrying out measurement associated with interference of the measurement beam 102 and the reference beam 104. Among the optical path connecting a first semi-transparent section 26a and a second semi-transparent section 26b, the optical paths of the measurement beam 102 and the reference beam 104 are set as having the same optical path length. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、レーザビームを用いて気体の屈折率等を測定することができる干渉計に関する。   The present invention relates to an interferometer capable of measuring a refractive index of a gas using a laser beam.

従来、空気の屈折率を測定する干渉計として、光ビームを発生する光源と、光源からの光ビームをビームスプリッタで参照ビームと測定ビームに分割し、分割された測定ビームを再帰ミラーに向けて照射するとともに、分割された参照ビームを、ビームスプリッタに固定された逆反射体に照射し、再帰ミラーで反射した測定ビームと可動逆反射体で反射した参照ビームをビームスプリッタで合成ビームとして合成し、この合成ビームを検出器に入射し、検出器で可動逆反射体とビームスプリッタとの間の距離の変化を表わす縞の数を、気体の屈折率の変化に伴う測定ビームと参照ビームの光路長の差の変化として検出するために、参照ビームと測定ビームの差の最大変化が、使用する光ビームの1波長よりも短くなるように、ビームスプリッタと再帰ミラーの位置を調整するようにしたものが提案されている(特許文献1参照)。   Conventionally, as an interferometer that measures the refractive index of air, a light source that generates a light beam, and the light beam from the light source is divided into a reference beam and a measurement beam by a beam splitter, and the divided measurement beam is directed to a recursive mirror Irradiate and irradiate the divided reference beam to the retroreflector fixed to the beam splitter, and combine the measurement beam reflected by the retroreflector and the reference beam reflected by the movable retroreflector as a combined beam by the beam splitter. The combined beam is incident on the detector, and the number of fringes representing the change in the distance between the movable retroreflector and the beam splitter is detected by the detector, and the optical path of the measurement beam and the reference beam according to the change in the refractive index of the gas. In order to detect the change in the difference in length, the beam split is performed so that the maximum change in the difference between the reference beam and the measurement beam is shorter than one wavelength of the light beam used. That to adjust the position of recursive mirror has been proposed (see Patent Document 1).

特開平6−27020号公報JP-A-6-27020

従来技術においては、ビームスプリッタと再帰ミラーとの間の大気が熱膨張すると、熱膨張に伴って大気の屈折率が変化し、大気の屈折率を高精度に計測することができない。   In the prior art, when the atmosphere between the beam splitter and the recursive mirror is thermally expanded, the refractive index of the atmosphere changes with the thermal expansion, and the refractive index of the atmosphere cannot be measured with high accuracy.

本発明は、前記従来技術の課題に鑑みて為されたものであり、その目的は、気体の屈折率を高精度に計測することができる干渉計を提供することにある。   The present invention has been made in view of the above-mentioned problems of the prior art, and an object thereof is to provide an interferometer capable of measuring the refractive index of gas with high accuracy.

前記目的を達成するために、請求項1に係る干渉計は、レーザビームを発生する光源と、前記光源からのレーザビームを測定ビームと参照ビームに分岐させて、再帰ミラーに向けて出射するとともに、前記再帰ミラーで反射した測定ビームと参照ビームを合成して、合成ビームを出射する台形型偏光ビームスプリッタと、前記台形型偏光ビームスプリッタに相対向して配置され、入射した測定ビームと参照ビームをそれぞれ入射した経路とは異なる経路で前記台形型偏光ビームスプリッタに向けて反射させる再帰ミラーと、前記台形型偏光ビームスプリッタと再帰ミラーとを連結するとともに、前記参照ビームの光路を形成する真空容器と、前記台形型偏光ビームスプリッタから出射した合成ビームを受光し、受光した合成ビームを基に前記測定ビームと参照ビームの干渉に伴う測定を行う計測器とを備え、前記レーザビームが前記測定ビームと前記参照ビームに分岐する分岐点(26a)と、前記再帰ミラーで反射した測定ビームと参照ビームが合成ビームに合成される合成点(26b)とを結ぶ光路のうち前記測定ビームの光路と前記参照ビームの光路は、同一の光路長に設定されてなる構成とした。   In order to achieve the above object, an interferometer according to claim 1 divides a laser beam from a light source that generates a laser beam into a measurement beam and a reference beam, and emits the laser beam toward a recursive mirror. A trapezoidal polarization beam splitter that combines the measurement beam reflected by the recursive mirror and a reference beam to emit a combined beam; and the measurement beam and the reference beam that are disposed opposite to the trapezoidal polarization beam splitter. A recursive mirror that reflects toward the trapezoidal polarizing beam splitter through a path different from the incident path, a vacuum container that connects the trapezoidal polarizing beam splitter and the recursive mirror, and forms an optical path of the reference beam And receiving the combined beam emitted from the trapezoidal polarizing beam splitter, and based on the received combined beam A measuring instrument that performs measurement associated with interference between the constant beam and the reference beam, a branch point (26a) where the laser beam branches into the measurement beam and the reference beam, and the measurement beam and the reference beam reflected by the recursive mirror The optical path of the measurement beam and the optical path of the reference beam among the optical paths connecting the synthesis point (26b) where the beam is synthesized with the synthesized beam are set to the same optical path length.

(作用)台形型ビームスプリッタ14と再帰ミラー18を真空容器16を介して連結するとともに、レーザビームが測定ビームと参照ビームに分岐する分岐点(26a)と、再帰ミラーで反射した測定ビームと参照ビームが合成ビームに合成される合成点(26b)とを結ぶ光路のうち測定ビームの光路と参照ビームの光路を同一の光路長に設定したので、干渉計を構成する各要素に歪みや膨張が生じても、これらの影響を抑制して、空気の屈折率を安定した状態で高精度に測定することができる。   (Operation) The trapezoidal beam splitter 14 and the recursive mirror 18 are connected via the vacuum vessel 16, the branch point (26a) where the laser beam branches into the measurement beam and the reference beam, the measurement beam reflected by the recursive mirror and the reference Since the optical path of the measurement beam and the optical path of the reference beam are set to the same optical path length among the optical paths connecting the combined point (26b) where the beam is combined with the combined beam, distortion and expansion are caused in each element constituting the interferometer. Even if they occur, these effects can be suppressed and the refractive index of air can be measured with high accuracy in a stable state.

請求項2に係る干渉計は、請求項1に記載の干渉計において、前記台形型偏光ビームスプリッタは、直角三角形部と、当該直角三角形部の斜辺にその一辺が接合された平行四辺形部との結合により、その周囲に台形形状(14)の四辺が形成され、前記直角三角形部と前記平行四辺形部との接合による接合面の一部は、前記光源からのレーザビームを透過光としての測定ビームと反射光としての参照ビームに分岐させる第1の半透過部を構成し、前記接合面に対して45度傾斜した第1の辺は、前記第1の半透過部で分岐された測定ビームと参照ビームを前記再帰ミラーに向けて出射する出射面を構成し、前記三角形部の一辺であって、前記第1の辺と直交する第2の辺は、前記光源からのレーザビームを透過する入射面を構成し、前記四辺形部の一辺であって、前記接合面と平行な第3の辺は、前記接合面を透過した測定ビームを前記第1の辺から前記再帰ミラーの入出射面に向けて反射させるとともに、前記真空容器から前記第1の辺を介して入射した参照ビームを前記接合面側に反射させる反射面を構成し、前記接合面の他の部位は、前記第3の辺で反射した参照ビームを前記第4の辺側に反射させ、前記再帰ミラーから前記第1の辺に入射した測定ビームを前記第4の辺側に透過し、前記参照ビームと測定ビームを合成して合成ビームを生成する第2の半透過部を構成し、前記四辺形部の一辺であって、前記第1の辺と平行な第4の辺は、前記第2の透過部から合成ビームを前記計測器に向けて出射する出射面を構成し、前記再帰ミラーは、直角三角形形状に形成されて、その斜辺が、前記台形型偏光ビームスプリッタの第1の辺と平行になって配置され、前記再帰ミラーの斜辺のうち前記真空容器と相対向する中心部は、前記参照ビームの入出射面を構成し、前記再帰ミラーの斜辺のうち前記中心部から外れた部位は、前記測定ビームの入出射面を構成し、前記再帰ミラーの残りの二辺のうち一方の反射面は、前記入出射面から入射した測定ビームを他方の反射面に反射させるとともに、前記入出射面から入射して他方の反射面で反射した参照ビームを前記真空容器側へ反射させる第1のミラー反射面を構成し、前記再帰ミラーの他方の反射面は、前記第1のミラー反射面で反射した測定ビームを前記真空容器から外れた領域を介して前記第1の辺側へ反射させるとともに、前記入出射面から入射した参照ビームを前記第1のミラー反射面側に反射させる第2のミラー反射面を構成した。   An interferometer according to a second aspect is the interferometer according to the first aspect, wherein the trapezoidal polarizing beam splitter includes a right triangle portion and a parallelogram portion whose one side is joined to the hypotenuse of the right triangle portion. The four sides of the trapezoidal shape (14) are formed in the periphery thereof, and a part of the joint surface formed by joining the right-angled triangle part and the parallelogram part is obtained by transmitting the laser beam from the light source as transmitted light. A first semi-transmission portion for branching into a measurement beam and a reference beam as reflected light is configured, and a first side inclined by 45 degrees with respect to the joint surface is branched at the first semi-transmission portion. An emission surface that emits a beam and a reference beam toward the recursive mirror is configured, and a second side that is one side of the triangular portion and orthogonal to the first side transmits the laser beam from the light source. The incident surface that forms the four sides And a third side parallel to the joint surface reflects a measurement beam transmitted through the joint surface from the first side toward the incident / exit surface of the recursive mirror and the vacuum A reflection surface configured to reflect the reference beam incident from the container through the first side to the bonding surface side; and another portion of the bonding surface that reflects the reference beam reflected by the third side A measurement beam that is reflected on the side of the fourth side and is incident on the first side from the recursive mirror is transmitted to the fourth side, and a combined beam is generated by synthesizing the reference beam and the measurement beam. The fourth side that is one side of the quadrangular part and parallel to the first side emits a combined beam from the second transmission part toward the measuring instrument. Constituting the exit surface, the recursive mirror is formed in a right triangle shape; Is arranged in parallel with the first side of the trapezoidal polarizing beam splitter, and the central portion of the hypotenuse of the recursive mirror opposite to the vacuum vessel constitutes the incident / exit surface of the reference beam Of the oblique sides of the recursive mirror, a portion deviating from the central portion constitutes the incident / exit surface of the measurement beam, and one of the remaining two sides of the recursive mirror is reflected from the incident / exit surface. A first mirror reflecting surface configured to reflect the incident measurement beam to the other reflecting surface and reflect the reference beam incident from the incident / exiting surface and reflected by the other reflecting surface toward the vacuum chamber; The other reflecting surface of the recursive mirror reflects the measurement beam reflected by the first mirror reflecting surface to the first side through a region outside the vacuum vessel and is incident from the incident / exiting surface. Reference beam The second mirror reflecting surface is configured to reflect the light beam toward the first mirror reflecting surface side.

(作用)直角三角形部と平行四辺形部との接合による接合面の一部を、光源からのレーザビームを透過光としての測定ビームと反射光としての参照ビームに分岐させる第1の半透過部として構成し、接合面に対して45度傾斜した第1の辺を、第1の半透過部で分岐された測定ビームと参照ビームを再帰ミラーに向けて出射する出射面として構成し、第1の辺と直交する第2の辺は、光源からのレーザビームを透過する入射面を構成し、接合面と平行な第3の辺は、接合面を透過した測定ビームを第1の辺から再帰ミラーの斜辺に向けて反射させるとともに、真空容器から第1の辺を介して入射した参照ビームを接合面側に反射させる反射面を構成し、接合面の他の部位は、第3の辺で反射した参照ビームを第4の辺側に反射させ、再帰ミラーから入射した測定ビームを第4の辺側に透過し、参照ビームと測定ビームを合成して合成ビームを生成する第2の半透過部を構成し、第1の辺と平行な第4の辺は、第2の透過部からの合成ビームを計測器に向けて出射する出射面を構成し、再帰ミラーは、60°の三角形形状に形成されて、その入射面が、台形型偏光ビームスプリッタの第1の辺と平行になって配置され、再帰ミラーの入出射面の中心部附近は、参照ビームの入出射面(入射面または出射面)を構成し、再帰ミラーの入出射面のうち中心部附近から外れた部位は、測定ビームの入出射面(入射面または出射面)を構成し、再帰ミラーの残りの二辺のうち一方の反射面は、入出射面から入射した測定ビームを他方の反射面に反射させるとともに、入出射面から入射して他方の反射面で反射した参照ビームを真空容器側へ反射させる第1のミラー反射面を構成し、再帰ミラーの他方の反射面は、第1のミラー反射面で反射した測定ビームを真空容器から外れた領域を介して第1の辺側へ反射させるとともに、入出射面から入射した参照ビームを第1のミラー反射面側に反射させる第2のミラー反射面を構成するので、第1の半透過部と第2の半透過部とを結ぶ光路のうち測定ビームの光路と参照ビームの光路を同一の光路長にすることができる。   (Operation) First semi-transmission part for branching a part of the joint surface formed by joining the right triangle part and the parallelogram part into a measurement beam as transmitted light and a reference beam as reflected light. The first side inclined by 45 degrees with respect to the joint surface is configured as an exit surface that emits the measurement beam and the reference beam branched by the first semi-transmissive portion toward the recursive mirror. The second side orthogonal to the first side constitutes an incident surface that transmits the laser beam from the light source, and the third side parallel to the bonding surface recurs the measurement beam transmitted through the bonding surface from the first side. A reflection surface is formed that reflects toward the oblique side of the mirror and reflects the reference beam incident from the vacuum vessel via the first side to the bonding surface side. The other part of the bonding surface is the third side. The reflected reference beam is reflected to the fourth side, and a recursive mirror A measurement beam incident on the fourth side is transmitted to the fourth side, and a second semi-transmission unit that combines the reference beam and the measurement beam to generate a combined beam constitutes a fourth side parallel to the first side. Constitutes an emission surface for emitting the combined beam from the second transmission part toward the measuring instrument, and the recursive mirror is formed in a triangular shape of 60 °, and its incident surface is the trapezoidal polarization beam splitter. Arranged parallel to the first side, the vicinity of the center of the entrance / exit surface of the recursive mirror constitutes the entrance / exit surface (incident surface or exit surface) of the reference beam, and is the center of the entrance / exit surface of the recursive mirror The part deviated from the vicinity of the part constitutes the incident / exit surface of the measurement beam (incident surface or exit surface), and one of the remaining two sides of the recursive mirror reflects the other of the measurement beam incident from the incident / exit surface. The light is reflected on the reflective surface of the light and incident from the light incident / exit surface. A first mirror reflecting surface that reflects the reference beam reflected by the reflecting surface to the vacuum vessel side is configured, and the other reflecting surface of the recursive mirror is separated from the measurement vessel reflected by the first mirror reflecting surface from the vacuum vessel. Since the second mirror reflecting surface that reflects the reference beam incident from the incident / exiting surface to the first mirror reflecting surface side while reflecting the first side through the region is configured, the first semi-transmissive portion The optical path of the measurement beam and the optical path of the reference beam can be set to the same optical path length.

本発明によれば、請求項1に係る干渉計によれば、干渉計を構成する各要素に歪みや膨張が生じても、これらの影響を抑制して、空気の屈折率を安定した状態で高精度に測定することができる。   According to the present invention, according to the interferometer of the first aspect, even if distortion or expansion occurs in each element constituting the interferometer, these effects are suppressed and the refractive index of air is stabilized. It can be measured with high accuracy.

請求項2によれば、第1の半透過部と第2の半透過部とを結ぶ光路のうち測定ビームの光路と参照ビームの光路を同一の光路長にすることができる。   According to the second aspect, the optical path of the measurement beam and the optical path of the reference beam in the optical path connecting the first semi-transmissive part and the second semi-transmissive part can be set to the same optical path length.

以下、本発明に係る波長測定用干渉計の一実施形態を図面に基づいて説明する。図1は、本発明に係る干渉計の一実施例を示すブロック構成図、図2は、測定ビームと参照ビームの光路を説明するための構成図である。   Hereinafter, an embodiment of an interferometer for wavelength measurement according to the present invention will be described with reference to the drawings. FIG. 1 is a block configuration diagram showing an embodiment of an interferometer according to the present invention, and FIG. 2 is a configuration diagram for explaining optical paths of a measurement beam and a reference beam.

図1において、波長測定用干渉計10は、光源12と、台形型偏光ビームスプリッタ14と、真空容器16と、再帰ミラー18と、計測器20とを備えて構成されている。   In FIG. 1, the wavelength measuring interferometer 10 includes a light source 12, a trapezoidal polarizing beam splitter 14, a vacuum container 16, a recursive mirror 18, and a measuring instrument 20.

光源12は、例えば、半導体レーザを備え、半導体レーザの発振によるレーザビーム100を台形型偏光ビームスプリッタ14に向けて出射する。   The light source 12 includes, for example, a semiconductor laser, and emits a laser beam 100 generated by the oscillation of the semiconductor laser toward the trapezoidal polarization beam splitter 14.

台形型偏光ビームスプリッタ14は、直角三角形形状のプリズムで構成された直角プリズム22と、平行四辺形形状のプリズムで構成された平行四辺形プリズム24を備え、直角プリズム22の斜辺22aが、平行四辺形プリズム24の一辺24aに接合されて、接合面26として形成されている。この台形型偏光ビームスプリッタ14は、光源12からのレーザビーム100が接合面26に入射したときに、接合面26により、レーザビーム100を透過光としての測定ビーム102と反射光としての参照ビーム104とに分岐させ、測定ビーム102と参照ビーム104を再帰ミラー18に向けて出射する。   The trapezoidal polarization beam splitter 14 includes a right-angle prism 22 formed of a right-angled triangular prism and a parallelogram prism 24 formed of a parallelogram-shaped prism, and the hypotenuse 22a of the right-angle prism 22 is a parallelogram. It is joined to one side 24 a of the shaped prism 24 and formed as a joining surface 26. When the laser beam 100 from the light source 12 is incident on the joint surface 26, the trapezoidal polarization beam splitter 14 causes the joint surface 26 to cause the laser beam 100 to pass through the measurement beam 102 as transmitted light and the reference beam 104 as reflected light. The measurement beam 102 and the reference beam 104 are emitted toward the recursive mirror 18.

この際、台形を構成する四辺14a、14b、14c、14dのうち辺14a(上底)と辺14b(下底)は互いに平行な一組の対辺として構成され、辺14cと辺14dは他の一組の対辺として構成されているとともに、辺14cは辺14a、14bに直交する辺として、辺14dは接合面26に平行な辺として構成されている。   At this time, of the four sides 14a, 14b, 14c, and 14d constituting the trapezoid, the side 14a (upper base) and the side 14b (lower base) are configured as a pair of opposite sides parallel to each other, and the side 14c and the side 14d The side 14 c is configured as a side orthogonal to the sides 14 a and 14 b, and the side 14 d is configured as a side parallel to the bonding surface 26.

辺14cは、三角形部22の一辺であって、辺14b(第1の辺)に直交し、接合面26に対して45度傾斜した第2の辺を構成するとともに、光源12からのレーザビーム100を透過する入射面を構成する。   The side 14 c is one side of the triangular portion 22 and forms a second side orthogonal to the side 14 b (first side) and inclined by 45 degrees with respect to the joint surface 26, and the laser beam from the light source 12. An incident surface that transmits 100 is formed.

辺14dは、接合面26と平行な第3の辺であって、接合面26を透過した測定ビーム102を辺14bから再帰ミラー18の反射面18bに向けて反射させる反射面を構成する。   The side 14 d is a third side parallel to the bonding surface 26 and constitutes a reflection surface that reflects the measurement beam 102 transmitted through the bonding surface 26 from the side 14 b toward the reflection surface 18 b of the recursive mirror 18.

接合面26は、その一部が、辺14c(第2の辺)を透過したレーザビーム100を測定ビーム102と参照ビーム104とに分岐させる分岐点として機能し、レーザビーム100を測定ビーム102として透過するとともに、参照ビーム104を反射光として、辺14b側に反射させる第1の半透過部26aを構成する。   A part of the bonding surface 26 functions as a branching point for branching the laser beam 100 transmitted through the side 14 c (second side) into the measurement beam 102 and the reference beam 104, and the laser beam 100 is used as the measurement beam 102. A first semi-transmissive portion 26a that transmits and reflects the reference beam 104 to the side 14b as reflected light is configured.

一方、真空容器16は、円筒状に形成されて、その両端側に、円盤状に形成された光透過性のカバー28、30が窓として固定され、内部が真空に保たれている。カバー28は、辺14bの中心部(辺14bと接合面26との交点を中心とする領域)に固定され、カバー30は、再帰ミラー18の入出射面18aの中心部に固定されている。すなわち、真空容器16は、カバー28、30を介して、台形型偏光ビームスプリッタ14と再帰ミラー18とを連結するとともに、台形型偏光ビームスプリッタ14と再帰ミラー18とを結ぶ、参照ビーム104の光路として構成されている。   On the other hand, the vacuum container 16 is formed in a cylindrical shape, and light-transmitting covers 28 and 30 formed in a disk shape are fixed as windows on both ends thereof, and the inside is kept in a vacuum. The cover 28 is fixed to the center of the side 14b (a region centering on the intersection of the side 14b and the joint surface 26), and the cover 30 is fixed to the center of the incident / exit surface 18a of the recursive mirror 18. That is, the vacuum vessel 16 connects the trapezoidal polarization beam splitter 14 and the recursive mirror 18 via the covers 28 and 30 and connects the trapezoidal polarization beam splitter 14 and the recursive mirror 18 to the optical path of the reference beam 104. It is configured as.

再帰ミラー18は、60°の三角形形状に形成された全反射プリズムとして構成され、その入出射面18aが、台形型偏光ビームスプリッタ14の辺14bと平行になって配置されている。この再帰ミラー18は、台形型偏光ビームスプリッタ14からの測定ビーム102と参照ビーム104を入射するとともに、入射した測定ビーム102と参照ビーム104をそれぞれ入射した経路とは異なる経路で、台形型偏光ビームスプリッタ14の辺14bに向けて反射させるコーナーキューブプリズムとして構成されている。   The recursive mirror 18 is configured as a total reflection prism formed in a 60 ° triangular shape, and its incident / exit surface 18 a is arranged in parallel with the side 14 b of the trapezoidal polarization beam splitter 14. The recursive mirror 18 is incident on the measurement beam 102 and the reference beam 104 from the trapezoidal polarization beam splitter 14, and has a trapezoidal polarization beam on a path different from the path on which the measurement beam 102 and the reference beam 104 are incident. The corner cube prism is configured to reflect toward the side 14 b of the splitter 14.

具体的には、再帰ミラー18の入出射面18aのうち真空容器16と相対向する中心部は、参照ビーム104の入射面または出射面を構成し、入出射面18aのうち中心部から外れた部位は、測定ビーム102の入射面または出射面を構成するようになっている。   Specifically, the central portion of the incident / exit surface 18a of the recursive mirror 18 that is opposite to the vacuum vessel 16 constitutes the incident surface or the output surface of the reference beam 104, and deviates from the central portion of the incident / exit surface 18a. The part constitutes an incident surface or an output surface of the measurement beam 102.

また、再帰ミラー18の頂点では反射面18b、18c、18d(図示せず)が直角をもって構成されて結合されている。再帰ミラー18の二つの反射面18b、18cの一方の反射面18bは、入出射面18aから入射した測定ビーム102を他方の反射面18cに反射させるとともに、入出射面18aから入射して他方の反射面18cで反射した参照ビーム104を真空容器16側へ反射させる第1のミラー反射面を構成する。   Further, reflection surfaces 18b, 18c, 18d (not shown) are formed at right angles at the apex of the recursive mirror 18 and are coupled. One reflecting surface 18b of the two reflecting surfaces 18b and 18c of the recursive mirror 18 reflects the measurement beam 102 incident from the incident / exiting surface 18a to the other reflecting surface 18c, and enters the other reflecting surface 18a from the other incident surface 18a. A first mirror reflecting surface that reflects the reference beam 104 reflected by the reflecting surface 18c toward the vacuum container 16 is configured.

さらに、再帰ミラー18の他方の反射面18cは、反射面(第1のミラー反射面)18bで反射した測定ビーム102を真空容器16から外れた領域(空気が存在する領域)を介して、台形型偏光ビームスプリッタ14の反射面14b側へ反射させるとともに、入出射面18aから入射した参照ビーム104を反射面(第1のミラー反射面)18b側に反射させる第2のミラー反射面を構成する。
再帰ミラー18で反射した測定ビーム102と参照ビーム104のうち測定ビーム102は、辺14bから接合面26に入射し、参照ビーム104は辺14bから辺14dに入射する。
Further, the other reflecting surface 18c of the recursive mirror 18 is trapezoidal via a region (region where air exists) where the measurement beam 102 reflected by the reflecting surface (first mirror reflecting surface) 18b is separated from the vacuum vessel 16. A second mirror reflecting surface that reflects the reference beam 104 incident from the incident / exiting surface 18a to the reflecting surface (first mirror reflecting surface) 18b side is formed while reflecting to the reflecting surface 14b side of the polarizing beam splitter 14. .
Of the measurement beam 102 and the reference beam 104 reflected by the recursive mirror 18, the measurement beam 102 is incident on the joint surface 26 from the side 14b, and the reference beam 104 is incident on the side 14d from the side 14b.

この際、辺14dは、真空容器16から辺14bを介して入射した参照ビーム104を接合面26側に反射させる反射面を構成する。   At this time, the side 14d constitutes a reflection surface that reflects the reference beam 104 incident from the vacuum vessel 16 through the side 14b to the bonding surface 26 side.

また、接合面26の他の部位は、辺14dで反射した参照ビーム104を辺14a側に反射させ、再帰ミラー18から辺14bに入射した測定ビーム102を辺14a側に透過し、参照ビーム104と測定ビーム102との合成による合成ビーム106を辺14a側へ照射する第2の半透過部26bを構成するとともに、参照ビーム104と測定ビーム102とを合成する合成点として機能する。   Further, the other part of the joint surface 26 reflects the reference beam 104 reflected by the side 14d to the side 14a side, transmits the measurement beam 102 incident on the side 14b from the recursive mirror 18 to the side 14a side, and transmits the reference beam 104. The second semi-transmissive portion 26b that irradiates the side 14a with the combined beam 106 obtained by combining the measurement beam 102 and the measurement beam 102 functions as a combination point for combining the reference beam 104 and the measurement beam 102.

さらに、辺14aは、辺14bと平行な第4の辺であって、接合面26からの合成ビーム106を透過して、計測器20に向けて出射する出射面を構成する。   Further, the side 14 a is a fourth side parallel to the side 14 b, and constitutes an emission surface that transmits the combined beam 106 from the bonding surface 26 and emits it toward the measuring instrument 20.

計測器20は、例えば、合成ビーム106を構成する参照ビーム104と測定ビーム102との干渉に伴う干渉信号を電気信号に変換する光検出器と、電気信号を位相信号に変換し、位相信号を基に空気の屈折率の絶対値を演算する演算器で構成されている。なお、演算器としては、位相信号を基にビームの波長を演算するもので構成することもできる。   The measuring instrument 20 includes, for example, a photodetector that converts an interference signal associated with interference between the reference beam 104 and the measurement beam 102 constituting the combined beam 106 into an electrical signal, and converts the electrical signal into a phase signal. Based on an arithmetic unit that calculates the absolute value of the refractive index of air. Note that the calculator can be configured to calculate the wavelength of the beam based on the phase signal.

上記構成において、光源12から辺14cに向けてレーザビーム100が出射されると、このレーザビーム100は、辺14を透過して接合面26の第1の半透過部26aで測定ビーム102と参照ビーム104に分岐される。測定ビーム102は、辺14で反射した後、空気中を伝播して復帰ミラー18に入射し、復帰ミラー18の反射面18b、18cでそれぞれ反射した後、空気中を伝播して辺14bから接合面26の第2の半透過部26bに入射する。   In the above configuration, when the laser beam 100 is emitted from the light source 12 toward the side 14c, the laser beam 100 passes through the side 14 and is referred to the measurement beam 102 at the first semi-transmissive portion 26a of the bonding surface 26. The beam 104 is branched. The measurement beam 102 is reflected by the side 14, propagates in the air, enters the return mirror 18, is reflected by the reflecting surfaces 18 b and 18 c of the return mirror 18, and then propagates in the air and joins from the side 14 b. The light enters the second semi-transmissive portion 26 b of the surface 26.

一方、第1の半透過部26aで分岐された参照ビーム104は、カバー29、真空容器16、カバー30を伝播して再帰ミラー18に入射し、復帰ミラー18の反射面18c、18bでそれぞれ反射した後、カバー30、真空容器16、カバー28を伝播して辺14dに入射し、辺14dで反射した後、接合面26の第2の半透過部26bに入射する。   On the other hand, the reference beam 104 branched by the first semi-transmissive portion 26a propagates through the cover 29, the vacuum vessel 16, and the cover 30, enters the recursive mirror 18, and is reflected by the reflecting surfaces 18c and 18b of the return mirror 18, respectively. After that, the light propagates through the cover 30, the vacuum container 16, and the cover 28, enters the side 14 d, is reflected by the side 14 d, and then enters the second semi-transmissive portion 26 b of the joint surface 26.

接合面26の第2の半透過部26bに入射した参照ビーム104は、接合面26の第2の半透過部26bで測定ビーム102と合成される。参照ビーム104と測定ビーム102の合成による合成ビーム106は、辺14aから計測器20に向けて出射される。   The reference beam 104 incident on the second semi-transmissive portion 26 b of the joint surface 26 is combined with the measurement beam 102 by the second semi-transmissive portion 26 b of the joint surface 26. A combined beam 106 obtained by combining the reference beam 104 and the measurement beam 102 is emitted from the side 14 a toward the measuring instrument 20.

この際、第1の半透過部26a(分岐点)と第2の半透過部26b(合成点)とを結ぶ、測定ビーム102の光路と、第1の半透過部26a(分岐点)と第2の半透過部26b(合成点)とを結ぶ、参照ビーム104の光路は、同一の光路長に設定されている。   At this time, the optical path of the measurement beam 102 connecting the first semi-transmissive part 26a (branch point) and the second semi-transmissive part 26b (synthesis point), the first semi-transmissive part 26a (branch point) and the second The optical path of the reference beam 104 connecting the two semi-transmissive portions 26b (combining points) is set to the same optical path length.

具体的には、図2に示すように、第1の半透過部26aと辺14dにおける測定ビーム102の反射点P1との距離をL1とし、第2の半透過部26bと辺14dにおける参照ビーム104の反射点P2との距離をL2とすると、L1、L2は、平行四辺形部24の各辺に等しいので、L1=L2となる。   Specifically, as shown in FIG. 2, the distance between the first semi-transmissive portion 26a and the reflection point P1 of the measurement beam 102 at the side 14d is L1, and the reference beam at the second semi-transmissive portion 26b and the side 14d. Assuming that the distance from the reflection point P2 of 104 is L2, L1 and L2 are equal to the respective sides of the parallelogram portion 24, so L1 = L2.

反射点P1と測定ビーム102の反射面18bにおける反射点P3との距離をL3とし、第1の半透過部26aと、再帰ミラー18の反射面18cに入射する参照ビーム104と測定ビーム102との交点P4との距離をL4とすると、台形の辺14bと再帰ミラー18の入出射面18aが互いに平行であるので、L3=L4となる。   The distance between the reflection point P1 and the reflection point P3 on the reflection surface 18b of the measurement beam 102 is L3, and the reference beam 104 and the measurement beam 102 incident on the first semi-transmissive portion 26a and the reflection surface 18c of the recursive mirror 18 are set. When the distance from the intersection P4 is L4, the trapezoidal side 14b and the incident / exit surface 18a of the recursive mirror 18 are parallel to each other, and therefore L3 = L4.

反射点P3と、反射点P3で反射した測定ビーム102と再帰ミラー18の反射面18bで反射した参照ビーム104との交点P5との距離をL5とし、交点P5と反射面18bにおける参照ビーム104の反射点P6との距離をL6とすると、再帰ミラー18が直角三角形であるので、L5=L6となる。   The distance between the reflection point P3 and the intersection P5 of the measurement beam 102 reflected at the reflection point P3 and the reference beam 104 reflected by the reflection surface 18b of the recursive mirror 18 is L5, and the reference beam 104 at the intersection P5 and the reflection surface 18b When the distance from the reflection point P6 is L6, the recursive mirror 18 is a right triangle, so L5 = L6.

交点P5と交点P4との距離をL7とし、再帰ミラー18の反射面18cにおける参照ビーム104の反射点P7と反射面18bにおける参照ビーム104の反射点P6との距離をL8とすると、再帰ミラー18が直角三角形であるので、L7=L8となる。   When the distance between the intersection point P5 and the intersection point P4 is L7, and the distance between the reflection point P7 of the reference beam 104 on the reflection surface 18c of the recursive mirror 18 and the reflection point P6 of the reference beam 104 on the reflection surface 18b is L8, the recursion mirror 18 Since L is a right triangle, L7 = L8.

交点P4と、再帰ミラー18の反射面18cにおける測定ビーム102の反射点P8との距離をL9とし、交点P4と反射点P7との距離をL10とすると、再帰ミラー18が直角三角形であるので、L9=L10となる。   When the distance between the intersection point P4 and the reflection point P8 of the measurement beam 102 on the reflection surface 18c of the recursive mirror 18 is L9 and the distance between the intersection point P4 and the reflection point P7 is L10, the recursive mirror 18 is a right triangle. L9 = L10.

反射点P8と第2の半透過部26bとの距離をL11とし、交点P5と辺14dにおける反射点P2との距離をL12とすると、台形の辺14bと直角三角形の入出射面18aが互いに平行であるので、L11=L12となる。   When the distance between the reflection point P8 and the second semi-transmissive portion 26b is L11, and the distance between the intersection P5 and the reflection point P2 at the side 14d is L12, the trapezoidal side 14b and the right triangle input / output surface 18a are parallel to each other. Therefore, L11 = L12.

距離L1、L3、L5、L7、L9、L11の合計は、第1の半透過部26aと第2の半透過部26bとを結ぶ光路のうち測定ビーム102の光路長に対応し、距離L4、L10、L8、L6、L12、L2の合計は、第1の半透過部26aと第2の半透過部26bとを結ぶ光路のうち参照ビーム104の光路長に対応し、L1+L3+L5+L7+L9+L11=L2+L4+L6+L8+L10+L12の関係にある。   The sum of the distances L1, L3, L5, L7, L9, and L11 corresponds to the optical path length of the measurement beam 102 among the optical paths connecting the first semi-transmissive portion 26a and the second semi-transmissive portion 26b, and the distance L4, The sum of L10, L8, L6, L12, and L2 corresponds to the optical path length of the reference beam 104 among the optical paths connecting the first semi-transmissive portion 26a and the second semi-transmissive portion 26b, and has a relationship of L1 + L3 + L5 + L7 + L9 + L11 = L2 + L4 + L6 + L8 + L10 + L12. is there.

従って、第1の半透過部26aと第2の半透過部26bとを結ぶ、測定ビーム102の光路(L1+L3+L5+L7+L9+L11)と、第1の半透過部26aと第2の半透過部26bとを結ぶ、参照ビーム104の光路(L4+L10+L8+L6+L12+L2)は、同一の光路長となる。   Therefore, the optical path of the measurement beam 102 (L1 + L3 + L5 + L7 + L9 + L11) connecting the first semi-transmissive part 26a and the second semi-transmissive part 26b, and the first semi-transmissive part 26a and the second semi-transmissive part 26b are connected. The optical path (L4 + L10 + L8 + L6 + L12 + L2) of the reference beam 104 has the same optical path length.

本実施例によれば、台形型ビームスプリッタ14と再帰ミラー18を真空容器16を介して互いに平行に配置するとともに、第1の半透過部26aと第2の半透過部26bとを結ぶ測定ビーム102の光路と、第1の半透過部26aと第2の半透過部26bとを結ぶ参照ビーム104の光路を同一の光路長に設定したので、干渉計を構成する各要素に歪みや膨張が生じても、これらの影響を抑制して、空気の屈折率を安定した状態で高精度に測定することができる。   According to this embodiment, the trapezoidal beam splitter 14 and the recursive mirror 18 are arranged in parallel to each other via the vacuum vessel 16, and the measurement beam connecting the first semi-transmissive portion 26a and the second semi-transmissive portion 26b. Since the optical path of the reference beam 104 connecting the optical path 102 and the first semi-transmissive part 26a and the second semi-transmissive part 26b is set to the same optical path length, distortion and expansion are caused in each element constituting the interferometer. Even if they occur, these effects can be suppressed and the refractive index of air can be measured with high accuracy in a stable state.

また、本実施例によれば、計測器20で合成ビーム106を基にビームの波長を測定するときには、第1の半透過部26aと第2の半透過部26bとを結ぶ、測定ビーム102の光路と、第1の半透過部26aと第2の半透過部26bとを結ぶ、参照ビーム104の光路が同一の光路長に設定されているので、ビームの波長を高精度に測定することができる。   Further, according to the present embodiment, when measuring the wavelength of the beam based on the combined beam 106 by the measuring instrument 20, the measurement beam 102 connecting the first semi-transmissive portion 26a and the second semi-transmissive portion 26b is used. Since the optical path of the reference beam 104 connecting the optical path and the first semi-transmissive part 26a and the second semi-transmissive part 26b is set to the same optical path length, the wavelength of the beam can be measured with high accuracy. it can.

また、本実施例によれば、レーザビーム100を合成ビーム106として出射するに際して、1/4波長板を用いることなく、台形型偏光ビームスプリッタ14の入射面(辺14c)に対して90度の方向(辺14a)に合成ビーム106を出射することができるので、受光装置である計測器20の設置が容易となる。   In addition, according to the present embodiment, when the laser beam 100 is emitted as the combined beam 106, it is 90 degrees with respect to the incident surface (side 14 c) of the trapezoidal polarization beam splitter 14 without using a quarter-wave plate. Since the combined beam 106 can be emitted in the direction (side 14a), the installation of the measuring instrument 20 that is a light receiving device is facilitated.

本発明に係る干渉計の一実施例を示すブロック構成図である。It is a block block diagram which shows one Example of the interferometer which concerns on this invention. 測定ビームと参照ビームの光路を説明するための構成図である。It is a block diagram for demonstrating the optical path of a measurement beam and a reference beam.

符号の説明Explanation of symbols

10 干渉計
12 光源
14 台形型偏光ビームスプリッタ
16 真空容器
18 再帰ミラー
20 計測器
100 レーザビーム
102 測定ビーム
104 参照ビーム
106 合成ビーム
DESCRIPTION OF SYMBOLS 10 Interferometer 12 Light source 14 Trapezoidal polarization beam splitter 16 Vacuum container 18 Recursive mirror 20 Measuring instrument 100 Laser beam 102 Measurement beam 104 Reference beam 106 Composite beam

Claims (2)

レーザビームを発生する光源と、前記光源からのレーザビームを測定ビームと参照ビームに分岐させて、再帰ミラーに向けて出射するとともに、前記再帰ミラーで反射した測定ビームと参照ビームを合成して、合成ビームを出射する台形型偏光ビームスプリッタと、
前記台形型偏光ビームスプリッタに相対向して配置され、入射した測定ビームと参照ビームをそれぞれ入射した経路とは異なる経路で前記台形型偏光ビームスプリッタに向けて反射させる再帰ミラーと、
前記台形型偏光ビームスプリッタと再帰ミラーとを連結するとともに、前記参照ビームの光路を形成する真空容器と、
前記台形型偏光ビームスプリッタから出射した合成ビームを受光し、受光した合成ビームを基に前記測定ビームと参照ビームの干渉に伴う測定を行う計測器とを備え、
前記レーザビームが前記測定ビームと前記参照ビームに分岐する分岐点と、前記再帰ミラーで反射した測定ビームと参照ビームが合成ビームに合成される合成点とを結ぶ光路のうち前記測定ビームの光路と前記参照ビームの光路は、同一の光路長に設定されてなる、干渉計。
A light source that generates a laser beam, a laser beam from the light source is branched into a measurement beam and a reference beam, and emitted toward the recursive mirror, and the measurement beam reflected by the recursive mirror and the reference beam are combined, A trapezoidal polarizing beam splitter that emits a combined beam;
A recursive mirror disposed opposite to the trapezoidal polarizing beam splitter and reflecting the incident measurement beam and the reference beam toward the trapezoidal polarizing beam splitter through paths different from the incident paths,
A vacuum vessel that connects the trapezoidal polarizing beam splitter and the recursive mirror and forms an optical path of the reference beam;
A measuring instrument that receives the combined beam emitted from the trapezoidal polarization beam splitter and performs measurement associated with interference between the measurement beam and the reference beam based on the received combined beam;
An optical path of the measurement beam among optical paths connecting a branch point where the laser beam branches to the measurement beam and the reference beam, and a synthesis point where the measurement beam reflected by the recursive mirror and the reference beam are combined with the combined beam, The interferometer, wherein the optical path of the reference beam is set to the same optical path length.
請求項1に記載の干渉計において、
前記台形型偏光ビームスプリッタは、直角三角形部と、当該直角三角形部の斜辺にその一辺が接合された平行四辺形部との結合により、その周囲に台形形状の四辺が形成され、
前記直角三角形部と前記平行四辺形部との接合による接合面の一部は、前記光源からのレーザビームを透過光としての測定ビームと反射光としての参照ビームに分岐させる第1の半透過部を構成し、
前記接合面に対して45度傾斜した第1の辺は、前記第1の半透過部で分岐された測定ビームと参照ビームを前記再帰ミラーに向けて出射する出射面を構成し、
前記三角形部の一辺であって、前記第1の辺と直交する第2の辺は、前記光源からのレーザビームを透過する入射面を構成し、
前記四辺形部の一辺であって、前記接合面と平行な第3の辺は、前記接合面を透過した測定ビームを前記第1の辺から前記再帰ミラーの入出射面に向けて反射させるとともに、前記真空容器から前記第1の辺を介して入射した参照ビームを前記接合面側に反射させる反射面を構成し、
前記接合面の他の部位は、前記第3の辺で反射した参照ビームを前記第4の辺側に反射させ、前記再帰ミラーから前記第1の辺に入射した測定ビームを前記第4の辺側に透過し、前記参照ビームと測定ビームを合成して合成ビームを生成する第2の半透過部を構成し、
前記四辺形部の一辺であって、前記第1の辺と平行な第4の辺は、前記第2の透過部から合成ビームを前記計測器に向けて出射する出射面を構成し、
前記再帰ミラーは、直角三角形形状に形成されて、その斜辺が、前記台形型偏光ビームスプリッタの第1の辺と平行になって配置され、
前記再帰ミラーの斜辺のうち前記真空容器と相対向する中心部は、前記参照ビームの入出射面を構成し、前記再帰ミラーの斜辺のうち前記中心部から外れた部位は、前記測定ビームの入出射面を構成し、
前記再帰ミラーの残りの二辺のうち一方の反射面は、前記入出射面から入射した測定ビームを他方の反射面に反射させるとともに、前記入出射面から入射して他方の反射面で反射した参照ビームを前記真空容器側へ反射させる第1のミラー反射面を構成し、
前記再帰ミラーの他方の反射面は、前記第1のミラー反射面で反射した測定ビームを前記真空容器から外れた領域を介して前記第1の辺側へ反射させるとともに、前記入出射面から入射した参照ビームを前記第1のミラー反射面側に反射させる第2のミラー反射面を構成してなることを特徴とする干渉計。
The interferometer according to claim 1, wherein
The trapezoidal polarization beam splitter has a trapezoidal shape formed around a right triangle portion and a parallelogram portion whose one side is joined to the hypotenuse of the right triangle portion.
A part of the joint surface formed by joining the right triangle part and the parallelogram part is a first semi-transmission part that branches the laser beam from the light source into a measurement beam as transmitted light and a reference beam as reflected light Configure
The first side inclined by 45 degrees with respect to the joint surface constitutes an emission surface that emits the measurement beam and the reference beam branched by the first semi-transmissive portion toward the recursive mirror,
A second side that is one side of the triangular portion and is orthogonal to the first side constitutes an incident surface that transmits a laser beam from the light source;
A third side that is one side of the quadrangular portion and is parallel to the joint surface reflects the measurement beam transmitted through the joint surface from the first side toward the incident / exit surface of the recursive mirror. A reflection surface configured to reflect the reference beam incident from the vacuum vessel through the first side to the bonding surface side;
The other part of the joint surface reflects the reference beam reflected by the third side to the fourth side, and the measurement beam incident on the first side from the recursive mirror is reflected by the fourth side. A second semi-transmissive portion that transmits to the side and combines the reference beam and the measurement beam to generate a combined beam;
A side that is one side of the quadrangular part and is parallel to the first side constitutes an emission surface that emits a combined beam from the second transmission part toward the measuring instrument,
The recursive mirror is formed in a right triangle shape, and its hypotenuse is arranged parallel to the first side of the trapezoidal polarizing beam splitter,
Of the hypotenuse of the retroreflective mirror, the central part opposite to the vacuum vessel constitutes the entrance / exit surface of the reference beam, and the part of the hypotenuse of the retroreflective mirror that is off the central part is the entrance of the measurement beam. Configure the exit surface,
One reflecting surface of the remaining two sides of the recursive mirror reflects the measurement beam incident from the incident / exiting surface to the other reflecting surface and is incident from the incident / exiting surface and reflected by the other reflecting surface. Forming a first mirror reflecting surface for reflecting the reference beam toward the vacuum container;
The other reflecting surface of the retroreflecting mirror reflects the measurement beam reflected by the first mirror reflecting surface to the first side through a region outside the vacuum vessel and is incident from the incident / exiting surface. An interferometer comprising a second mirror reflection surface configured to reflect the reference beam reflected toward the first mirror reflection surface.
JP2008000925A 2008-01-08 2008-01-08 Interferometer Active JP5180594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008000925A JP5180594B2 (en) 2008-01-08 2008-01-08 Interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008000925A JP5180594B2 (en) 2008-01-08 2008-01-08 Interferometer

Publications (2)

Publication Number Publication Date
JP2009162629A true JP2009162629A (en) 2009-07-23
JP5180594B2 JP5180594B2 (en) 2013-04-10

Family

ID=40965412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008000925A Active JP5180594B2 (en) 2008-01-08 2008-01-08 Interferometer

Country Status (1)

Country Link
JP (1) JP5180594B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102033053A (en) * 2010-11-12 2011-04-27 浙江理工大学 Method and device for measuring refractive index of air based on laser synthetic wavelength interferometry
CN103063608A (en) * 2013-01-05 2013-04-24 浙江理工大学 Air refractive index measurement method and device based on dual-frequency orthogonal line polarized light interference
KR101504061B1 (en) 2014-02-17 2015-03-19 한국기술교육대학교 산학협력단 System for measuring light absorption coefficient of sample and measuring method thereof
KR101602068B1 (en) * 2014-12-02 2016-03-09 한국기술교육대학교 산학협력단 System for measuring light absorption coefficient using polarization and interference
CN106018345A (en) * 2016-05-24 2016-10-12 中国工程物理研究院激光聚变研究中心 System and method for measuring refractive index of optical plate glass based on short coherence
CN106645028A (en) * 2016-10-17 2017-05-10 中国科学院自动化研究所 Light interference gas concentration sensor system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6432102A (en) * 1987-07-29 1989-02-02 Topcon Corp Optical ic interferometer
JPH02115701A (en) * 1988-10-26 1990-04-27 Konica Corp Laser interferometric length measuring meter
JPH0519950U (en) * 1991-08-28 1993-03-12 横河電機株式会社 Air refractive index measuring device
JPH0543058U (en) * 1991-11-13 1993-06-11 横河電機株式会社 Air refractive index measuring device
JPH0627020A (en) * 1991-03-08 1994-02-04 Renishaw Transducer Syst Ltd Gas refractometer
JPH06347207A (en) * 1993-06-04 1994-12-20 Nikon Corp Laser interferometer for measuring length
JPH09126712A (en) * 1995-10-30 1997-05-16 Sokkia Co Ltd Laser length measuring machine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6432102A (en) * 1987-07-29 1989-02-02 Topcon Corp Optical ic interferometer
JPH02115701A (en) * 1988-10-26 1990-04-27 Konica Corp Laser interferometric length measuring meter
JPH0627020A (en) * 1991-03-08 1994-02-04 Renishaw Transducer Syst Ltd Gas refractometer
JPH0519950U (en) * 1991-08-28 1993-03-12 横河電機株式会社 Air refractive index measuring device
JPH0543058U (en) * 1991-11-13 1993-06-11 横河電機株式会社 Air refractive index measuring device
JPH06347207A (en) * 1993-06-04 1994-12-20 Nikon Corp Laser interferometer for measuring length
JPH09126712A (en) * 1995-10-30 1997-05-16 Sokkia Co Ltd Laser length measuring machine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102033053A (en) * 2010-11-12 2011-04-27 浙江理工大学 Method and device for measuring refractive index of air based on laser synthetic wavelength interferometry
CN103063608A (en) * 2013-01-05 2013-04-24 浙江理工大学 Air refractive index measurement method and device based on dual-frequency orthogonal line polarized light interference
KR101504061B1 (en) 2014-02-17 2015-03-19 한국기술교육대학교 산학협력단 System for measuring light absorption coefficient of sample and measuring method thereof
KR101602068B1 (en) * 2014-12-02 2016-03-09 한국기술교육대학교 산학협력단 System for measuring light absorption coefficient using polarization and interference
CN106018345A (en) * 2016-05-24 2016-10-12 中国工程物理研究院激光聚变研究中心 System and method for measuring refractive index of optical plate glass based on short coherence
CN106645028A (en) * 2016-10-17 2017-05-10 中国科学院自动化研究所 Light interference gas concentration sensor system
CN106645028B (en) * 2016-10-17 2019-04-02 中国科学院自动化研究所 A kind of interference of light gas concentration sensor system

Also Published As

Publication number Publication date
JP5180594B2 (en) 2013-04-10

Similar Documents

Publication Publication Date Title
JP6336998B2 (en) CALIBRATION DEVICE, LASER DISTANCE MEASURING DEVICE, AND STRUCTURE MANUFACTURING METHOD
EP0646767B1 (en) Interferometric distance measuring apparatus
US9500537B2 (en) Temperature measurement apparatus and method
JP5180594B2 (en) Interferometer
JP2009300263A (en) Two-wavelength laser interferometer and method of adjusting optical axis in the same
JPH09257415A (en) Optical fiber sensor
JP7363614B2 (en) Optical interference measurement device
JP2007240287A (en) Apparatus for measurement of optical fiber distortion
KR20230017791A (en) Temperature measurement system and method using optical signal transmission through an optical interferometer
JP5786270B2 (en) Two-color interference measuring device
JPH06174844A (en) Laser distance measuring apparatus
CN108286943B (en) Displacement measurement optical system applied to workbench of photoetching system
JP4665290B2 (en) Interval measuring device and surface shape measuring device
JP6204272B2 (en) Distance measuring device
JPH11108614A (en) Light-wave interference measuring instrument
JP2024056589A (en) Optical rangefinder
CN109000691A (en) A kind of three glistening light of waves fibre laser self-mixing interference measurement methods
CN109000690A (en) A kind of double wave optical-fiber laser self-mixed interference measuring system
US20220171035A1 (en) Optical interferometric lidar system to control main measurement range using active selection of reference optical path length
JP2000018918A (en) Laser interference apparatus for detecting moving quantity of movable body
JP2014123669A (en) Light source device, control method, and shape measuring device
JP6410100B2 (en) Interferometer
CN115560680A (en) Measuring system with fusion of absolute distance and relative displacement of space optical assembly
JP2022098280A (en) Interferometer and optical apparatus
JP2712509B2 (en) Reflection film characteristic measuring device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20101022

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130111

R150 Certificate of patent or registration of utility model

Ref document number: 5180594

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250