JP2009161360A - High-fluidity mortar - Google Patents

High-fluidity mortar Download PDF

Info

Publication number
JP2009161360A
JP2009161360A JP2007339268A JP2007339268A JP2009161360A JP 2009161360 A JP2009161360 A JP 2009161360A JP 2007339268 A JP2007339268 A JP 2007339268A JP 2007339268 A JP2007339268 A JP 2007339268A JP 2009161360 A JP2009161360 A JP 2009161360A
Authority
JP
Japan
Prior art keywords
mortar
water
fluidity
temperature
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007339268A
Other languages
Japanese (ja)
Other versions
JP5004294B2 (en
Inventor
Hirokazu Shoji
広和 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Materials Corp
Original Assignee
Taiheiyo Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Materials Corp filed Critical Taiheiyo Materials Corp
Priority to JP2007339268A priority Critical patent/JP5004294B2/en
Publication of JP2009161360A publication Critical patent/JP2009161360A/en
Application granted granted Critical
Publication of JP5004294B2 publication Critical patent/JP5004294B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-fluidity mortar which is a high-fluidity mortar suited for use at a temperature as low as about 5°C, is a high-fluidity mortar being good in workability in laying at the low temperature and being capable of being defoamed within a relatively short time after laying, and is capable of performing laying at a temperature, e.g., ordinary temperature, higher than the low temperature without raising substantially no troubles of workability in laying and of the properties of an object on which it is laid. <P>SOLUTION: The high-fluidity mortar is one comprising a portland cement, an expanding material, a water-retaining and thickening admixture, a water-reducing agent, a defoaming agent, a fine aggregate (α) having a particle diameter of above 150 μm, and a fine aggregate (β) having a particle diameter of 150 μm or less wherein the (β)/(α) mass ratio is 0.8-3. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えばレベリング調整材や床材等として使用でき、低温での施工性に適した高流動モルタルに関する。   The present invention relates to a high-flowing mortar that can be used as, for example, a leveling adjusting material or a flooring material and is suitable for workability at a low temperature.

セメント等を水硬成分とする高流動モルタルは、例えばコンクリート構造物の床版などに流し込むと水平な表面を容易に形成できるため、レベリング材などとして使用されている。高流動モルタルを水平床等のレベリング材に使用する場合、施工に適した流動性の設定が重要である。また流動性の操作によって影響を受ける諸性状の調整も重要となる。高い流動状態のモルタルを得る上では、概して混練水を多く用いた配合になるため、材料分離や乾燥過程でのひび割れ等が起こり易く、水平施工物は得られるものの、特に表面状態が良好な施工物が容易には得難い。このような問題に対処するため、例えば、セメントに次に示すような様々な混和成分を配合した水平面を得るのに適した組成物が提案されている。即ち、砂(骨材)、石灰系膨張材、分散剤、フライアッシュ及びセルロース系保水剤を配合したもの(特許文献1参照。)、骨材、分散剤、収縮低減剤、石膏のような凝結促進剤、増粘剤及び消泡剤を配合したもの(特許文献2参照。)、骨材、減水剤、消泡剤、凝結調整剤及び水溶性セルロースエーテルを配合したもの(特許文献3参照。)等が知られている。このような対策がなされた高流動のモルタルであっても、一般に粘度は温度の低下と共に大きく上昇するため、低温で施工使用しようとすると、高粘性となって流動性が低下し、施工作業性が著しく低下する。温度低下による高粘性化の傾向は、増粘成分を含有するモルタルほど顕著である。低温施工に適ったセルフレベリング性のセメント系モルタルも知られているが、その多くは速硬成分を使用したものである。(例えば、特許文献4〜6参照。)これらは低温での凝結・硬化性の改善を主目的としているため、より高い温度での施工には難があるか、常温以上での使用も可能なものでも低温では高い粘性状態で凝結が早く進行する。高い粘性のモルタルでは混練時に巻き込まれたモルタル中の微細な気泡が抜け難く、これが施工物表面に蓄積したり、またその破泡痕が残ったりし、荒れた表面になり易かった。低温で低粘性のモルタルを得る方策として、特定のビニル系共重合体を有効成分とする分散剤を使用すると、低温でセルフレベリング材に適した高流動性が得られることが知られている。(例えば、特許文献7参照。)
特開昭56−84358号公報 特開平7−267704号公報 特開2006−56763号公報 特開平7−69704号公報 特開2000−211961号公報 特開2006−16223号公報 特開平8−290955号公報
High-fluid mortar containing hydraulic components such as cement is used as a leveling material because it can easily form a horizontal surface when poured into a floor slab of a concrete structure, for example. When using high-fluidity mortar for leveling materials such as horizontal floors, it is important to set fluidity suitable for construction. It is also important to adjust various properties that are affected by fluidity manipulation. In order to obtain a mortar with a high fluidity, it is generally formulated with a large amount of kneaded water, so cracking during material separation and drying processes is likely to occur, and horizontal construction can be obtained, but construction with particularly good surface conditions. Things are difficult to get easily. In order to deal with such a problem, for example, a composition suitable for obtaining a horizontal surface in which various admixture components are mixed in cement as described below has been proposed. That is, sand (aggregate), lime-based expansion agent, dispersant, fly ash and cellulose-based water retention agent (refer to Patent Document 1), aggregate, dispersant, shrinkage reducing agent, setting like gypsum A blend of an accelerator, a thickener and an antifoaming agent (see Patent Document 2), an aggregate, a water reducing agent, an antifoaming agent, a coagulation regulator, and a water-soluble cellulose ether (see Patent Document 3). ) Etc. are known. Even in the case of high flow mortars with such countermeasures, the viscosity generally increases greatly as the temperature decreases, so if you try to use it at low temperatures, it will become highly viscous and fluidity will decrease, and workability will be reduced. Is significantly reduced. The tendency to increase the viscosity due to a decrease in temperature is more prominent for mortar containing a thickening component. Self-leveling cement-based mortars suitable for low-temperature construction are also known, but most of them use fast-hardening components. (For example, refer to Patent Documents 4 to 6.) Since these are mainly aimed at improving the setting / curability at low temperature, it is difficult to construct at higher temperature, or can be used at room temperature or higher. Even at low temperatures, condensation proceeds rapidly in a highly viscous state. In a highly viscous mortar, fine bubbles in the mortar caught during kneading are difficult to escape, which accumulates on the surface of the work piece, and remains in a broken surface, which tends to be a rough surface. As a measure for obtaining a low-viscosity mortar at a low temperature, it is known that a high fluidity suitable for a self-leveling material can be obtained at a low temperature when a dispersant containing a specific vinyl copolymer as an active ingredient is used. (For example, see Patent Document 7)
JP-A-56-84358 JP 7-267704 A JP 2006-56763 A JP-A-7-69704 JP 2000-211961 A JP 2006-16223 A JP-A-8-290955

一般のセメント系高流動モルタルを低温で施工使用すると、低温時の粘性上昇による施工作業性の著しい低下や、混練時に巻き込まれた気泡の残存により荒れた表面になり易い。一方、特殊な分散剤等の使用で低温で高い流動性を発現させたモルタルでは、温度上昇に伴い粘性が低下し過ぎて不具合が生じることがあり、低温以外での施工使用は実質困難であった。本発明は、5℃程度での低温での使用に適した高流動性モルタルであって、当該低温時の施工作業性が良好で、施工後比較的短時間で気泡が消失することができる高流動モルタルであって、これよりも温度の高い、例えば常温等での施工使用も、施工作業性や施工物の性状等に実質支障を及ぼすことなく行うことができる高流動モルタルの提供を課題とする。   When general cement-based high-fluidity mortar is used at low temperatures, the workability of the construction is significantly reduced due to the increase in viscosity at low temperatures, and the surface becomes rough due to the residual bubbles entrained during kneading. On the other hand, mortars that exhibit high fluidity at low temperatures with the use of special dispersants, etc., may experience problems due to excessively low viscosity with increasing temperature, making it practically difficult to use at other temperatures. It was. The present invention is a high fluidity mortar suitable for use at a low temperature of about 5 ° C., has good workability at the time of low temperature, and can eliminate bubbles in a relatively short time after construction. It is a flow mortar that has a higher temperature than that, for example, at room temperature, etc., and it is an issue to provide a high flow mortar that can be used without substantially affecting the workability and properties of the work. To do.

本発明者は、前記課題解決のため検討を行った結果、高流動モルタルに粒子径150μmを超える細骨材と粒子径150μm以下の細骨材を使用し、両者を特定の含有比率にすることによって流動性を十分調整することができ、しかも調整された流動性は、増粘成分を主体として調整された流動性に比べ、温度依存性が遙かに少ないことを見出し、低温に適した施工作業性が得られる流動性にしても、そのまま常温以上の温度でも実質支障なく施工使用できたことから本発明を完成するに至った。   As a result of investigations for solving the above problems, the present inventor uses a fine aggregate having a particle diameter of more than 150 μm and a fine aggregate having a particle diameter of not more than 150 μm in a high-flowing mortar, and setting both to a specific content ratio The fluidity can be adjusted sufficiently by the method, and the adjusted fluidity is much less temperature-dependent than the fluidity adjusted mainly for thickening components. Even if the fluidity is such that workability can be obtained, the present invention has been completed since it can be used without any substantial trouble even at temperatures above room temperature.

即ち、本発明は、ポルトランドセメント、膨張材、保水性及び増粘性物質、減水剤、消泡剤、粒子径150μmを超える細骨材(α)及び粒子径150μm以下の細骨材(β)を含有し、質量比で(β)/(α)が0.8〜3であることを特徴とする高流動モルタルである。また、本発明は、5℃でのモルタルフローが250〜300mmである前記の高流動モルタルである。   That is, the present invention includes Portland cement, an expansion material, a water retention and thickening substance, a water reducing agent, an antifoaming agent, a fine aggregate (α) having a particle diameter of 150 μm and a fine aggregate (β) having a particle diameter of 150 μm or less. It is a high flow mortar characterized by containing (β) / (α) in a mass ratio of 0.8-3. Moreover, this invention is the said high fluid mortar whose mortar flow in 5 degreeC is 250-300 mm.

本発明による高流動モルタルは、例えば5℃程度の低温〜常温に至るまで高い流動性を示すことができ、流し込むだけで容易に水平性を発現することも可能であり、材料分離、収縮亀裂及び表面に気泡痕等も実質見られない施工物が得られる。   The high-fluidity mortar according to the present invention can exhibit high fluidity, for example, from a low temperature of about 5 ° C. to room temperature, and can easily express horizontality just by pouring. A construction having substantially no bubble marks on the surface can be obtained.

本発明の高流動モルタルは、結合相形成成分としてポルトランドセメントを使用する。ポルトランドセメントの種類は特に限定されず、例えば、普通、早強、超早強、中庸熱、低熱等の各種ポルトランドセメントの他、該ポルトランドセメントをベースとするものであれば、高炉セメントやフライアッシュセメント等の混合セメントでも良い。また2種類以上のポルトランドセメントを使用しても良い。好ましくは、施工時のシマリが良好になることから、普通ポルトランドセメントと早強又は超早強ポルトランドセメントを併用するのが良い。併用する場合は普通ポルトランドセメント使用量の5〜30質量%に相当する量を早強又は超早強ポルトランドセメントにするのが適当である。   The high flow mortar of the present invention uses Portland cement as a binder phase forming component. The type of Portland cement is not particularly limited. For example, in addition to various Portland cements such as normal, early strength, super early strength, moderate heat, low heat, etc. Mixed cement such as cement may be used. Two or more types of Portland cement may be used. Preferably, normal portland cement and early strength or very early strength portland cement are preferably used in combination, since the simminess during construction becomes good. When used in combination, it is appropriate to use an amount corresponding to 5 to 30% by mass of ordinary Portland cement used as early or very early Portland cement.

また、本発明の高流動モルタルは膨張材を配合使用する。膨張材はモルタルやコンクリートに使用できるものであれば特に限定されない。好ましくは、石灰系やエトリンガイト系のような水和反応で体積膨張を起こすことが可能な膨張材を配合使用する。石灰系の膨張材としては、例えば遊離生石灰を共存生成させたクリンカの粉砕物、石灰石の焼成粉砕物を有効成分とするもの等を挙げることができる。またエトリンガイト系の膨張材とは、水と反応してエトリンガイト相を生成するものなら限定されず、例えばカルシウムサルホアルミネートを有効成分とするもの等を好適に挙げることができる。石灰系とエトリンガイト系の膨張材を併用しても良い。膨張材により硬化〜乾燥期に渡る比較的規模の大きな収縮が抑制され、特に初期ひび割れの発生を防ぐことができる。膨張材の配合量はセメント含有量100質量部に対し、2〜15質量部が好ましい。2質量部未満では硬化時の収縮を十分抑えられず、また15質量部を超えると過膨張による膨張亀裂の虞があるので適当ではない。   Moreover, the high fluid mortar of this invention mix | blends and uses an expanding material. The expansion material is not particularly limited as long as it can be used for mortar and concrete. Preferably, an expansion material capable of causing volume expansion by a hydration reaction such as lime or ettringite is used. Examples of the lime-based expansion material include a clinker pulverized product in which free quick lime is co-generated, and a limestone calcined pulverized product as an active ingredient. The ettringite-based expansion material is not limited as long as it reacts with water to generate an ettringite phase, and examples thereof include those containing calcium sulfoaluminate as an active ingredient. Lime-based and ettringite-based expansion materials may be used in combination. The expansion material suppresses relatively large-scale shrinkage from the curing to the drying period, and can particularly prevent the occurrence of initial cracks. The blending amount of the expansion material is preferably 2 to 15 parts by mass with respect to 100 parts by mass of the cement content. If it is less than 2 parts by mass, shrinkage during curing cannot be sufficiently suppressed, and if it exceeds 15 parts by mass, there is a risk of expansion cracking due to overexpansion, which is not appropriate.

また、本発明の高流動モルタルは、保水性及び増粘性物質を配合使用する。ここで保水性及び増粘性物質とは、セメント系のモルタルに対し保水性と増粘性を付与できる物質を云い、両性能を兼ね備えた単一成分の物質(例えば単一の化合物。)であっても、保水性物質と増粘性物質の両者を併用した物(保水性物質と増粘性物質の混合物)でも良い。これら何れかであってモルタルやコンクリートに使用できるものであれば限定されない。前者の例として水溶性セルロースエーテルを挙げることができ、より具体的には、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース等が例示される。水溶性セルロースエーテルは増粘作用により材料分離を抑制する。また保水作用によって、例えば凹凸が見られる床に施工したときに、施工厚が薄くなる部位と厚くなる部位との乾燥期間を整合させ、施工物の乾燥収縮時期の差により生じるひび割れを抑制すると共に乾燥過程での表層部と低層部の水分量のバランスも保つことに貢献する。水溶性セルロースエーテルの配合量はセメント含有量100質量部に対し、0.08〜0.5質量部が好ましい。0.08質量部未満では材料分離やひび割れを十分抑えられず、また0.5質量部を超えると粘性が上昇し過ぎて所望のモルタルフローが得られないことがあり、施工性が低下する虞があるので適当ではない。   Moreover, the high fluidity mortar of this invention mix | blends and uses a water retention and a thickening substance. Here, the water retention and thickening substance refers to a substance capable of imparting water retention and thickening to cement-based mortar, and is a single component substance (for example, a single compound) having both performances. Alternatively, a combination of both a water-retaining substance and a thickening substance (a mixture of a water-retaining substance and a thickening substance) may be used. Any of these can be used as long as it can be used for mortar and concrete. Examples of the former include water-soluble cellulose ethers, and more specifically, methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl methyl cellulose and the like are exemplified. Water-soluble cellulose ether suppresses material separation by thickening action. In addition, due to the water retention effect, for example, when applied to floors with unevenness, the drying period of the part where the construction thickness becomes thin and the part where the thickness becomes thick are matched, and cracks caused by the difference in the drying shrinkage time of the construction are suppressed. This contributes to maintaining the balance of moisture content in the surface layer and low layer during the drying process. The compounding amount of the water-soluble cellulose ether is preferably 0.08 to 0.5 parts by mass with respect to 100 parts by mass of cement. If the amount is less than 0.08 parts by mass, material separation and cracking cannot be sufficiently suppressed. If the amount exceeds 0.5 parts by mass, the viscosity may increase excessively and a desired mortar flow may not be obtained, which may reduce workability. Because there is, it is not appropriate.

また、本発明の高流動モルタルは減水剤が配合される。減水剤はモルタルやコンクリートに使用できるものであって、減水作用があるものなら、分散剤、高性能減水剤、AE減水剤、高性能AE減水剤又は流動化剤と称されているものの何れでも良く、成分も限定されない。中でも、ポリカルボン酸系の減水剤類を使用すると低温でも良好な流動性が持続発現できるので好ましい。減水剤の配合量は有効成分毎に適宜定めれば良く、例えばポリカルボン酸系高性能減水剤を使用する場合は、セメント含有量100質量部に対し、0.4〜1質量部が好ましい。この場合、0.4質量部未満では低温で施工に適した流動性を確保することが困難になり、また1質量部を超えると材料分離を起こし易くなるので適当ではない。   Moreover, a water reducing agent is mix | blended with the high fluid mortar of this invention. The water reducing agent can be used for mortar and concrete, and if it has a water reducing action, any of the so-called dispersant, high performance water reducing agent, AE water reducing agent, high performance AE water reducing agent or fluidizing agent can be used. Good and the ingredients are not limited. Among them, it is preferable to use polycarboxylic acid-based water reducing agents because good fluidity can be continuously expressed even at low temperatures. What is necessary is just to determine the compounding quantity of a water reducing agent suitably for every active ingredient, for example, when using a polycarboxylic acid type high performance water reducing agent, 0.4-1 mass part is preferable with respect to 100 mass parts of cement contents. In this case, if it is less than 0.4 parts by mass, it will be difficult to ensure fluidity suitable for construction at low temperature, and if it exceeds 1 part by mass, it will be easy to cause material separation.

また、本発明の高流動モルタルは粒子径150μmを超える細骨材(α)を配合使用する。粒子径150μmを超える細骨材は、モルタルやコンクリートに使用できるものであれば、含有成分を問わず、何れの細骨材でも良い。具体的には、山砂、川砂、海砂、砕砂の天然細骨材、鉱物粉等を主体とする原料を焼成してなる人工細骨材等を挙げることができる。細骨材の最大粒子径は2.5mm以下であるのが好ましく、より好ましくは最大粒子径が1.2mm以下の細骨材を使用する。粒子径150μmを超える細骨材を使用することで施工後の収縮量が低減され易くなる。   Moreover, the high flow mortar of this invention mix | blends and uses the fine aggregate ((alpha)) exceeding a particle diameter of 150 micrometers. The fine aggregate exceeding the particle diameter of 150 μm may be any fine aggregate, regardless of the content, as long as it can be used for mortar and concrete. Specific examples include natural fine aggregates of mountain sand, river sand, sea sand, crushed sand, and artificial fine aggregates obtained by firing raw materials mainly composed of mineral powder. The maximum particle diameter of the fine aggregate is preferably 2.5 mm or less, more preferably a fine aggregate having a maximum particle diameter of 1.2 mm or less. By using a fine aggregate having a particle diameter of more than 150 μm, the amount of shrinkage after construction is easily reduced.

また、本発明の高流動モルタルは、粒子径150μm以下の細骨材(β)を配合使用する。この微粒細骨材の使用により施工に適した流動性を安定して発現させることができる。特に低温での施工に於いて、減水剤との併用作用により水量増加させずとも、温度低下に伴う粘性増大化を抑制し、所望の流動性が容易に得られるようになる。使用する細骨材は、水と実質反応せず且つ溶解しないものであれば制限ず、粒径以外は前記細骨材(α)と同じ材質の骨材であっても良い。好ましくは無機材質の普通細骨材を使用する。具体的には、例えば炭酸カルシウム粉や珪石粉等を挙げることができるが、これに限定されるものではない。また、粒子径150μm以下の細骨材(β)の配合量は、粒子径150μmを超える細骨材の配合量(α)と相関性があり、質量比で(β)/(α)が0.8以上3未満となる範囲内で定めれば良い。質量比で(β)/(α)が0.8未満では粒子径が150μmを超える細骨材の配合効果が実質得られず、施工性の良い流動性を安定して得ることが困難になる他、材料分離も抑制され難いので好ましくない。また、質量比で(β)/(α)が3を超えると、モルタルの粘性が大きくなり過ぎて所望の流動性が得難くなるので好ましくない。粒子径150μm以下の細骨材(β)と粒子径150μmを超える細骨材(α)の合計配合量はセメント100質量部に対し、1.3〜2.5質量部が好ましい。1.3質量部未満では収縮量が大きく、ひび割れが発生し易くなるので適当ではない。また2.5質量部を超えると施工物の強度が低下するので適当ではない。   Moreover, the high flow mortar of this invention mix | blends and uses the fine aggregate ((beta)) with a particle diameter of 150 micrometers or less. By using this fine fine aggregate, fluidity suitable for construction can be stably expressed. In particular, in construction at a low temperature, even if the amount of water is not increased by the combined action with a water reducing agent, the increase in viscosity due to the temperature decrease is suppressed, and the desired fluidity can be easily obtained. The fine aggregate to be used is not limited as long as it does not substantially react with water and does not dissolve, and may be the same aggregate as the fine aggregate (α) except for the particle diameter. Preferably, inorganic fine aggregates are used. Specific examples include calcium carbonate powder and quartzite powder, but are not limited thereto. The amount of fine aggregate (β) having a particle size of 150 μm or less is correlated with the amount (α) of fine aggregate having a particle size of more than 150 μm, and (β) / (α) is 0 in terms of mass ratio. It may be set within a range of 8 or more and less than 3. When the mass ratio (β) / (α) is less than 0.8, the effect of blending fine aggregates with a particle diameter exceeding 150 μm cannot be obtained substantially, and it becomes difficult to stably obtain fluidity with good workability. In addition, material separation is difficult to suppress, which is not preferable. On the other hand, if (β) / (α) exceeds 3 in terms of mass ratio, the viscosity of the mortar becomes too large, and it becomes difficult to obtain desired fluidity. The total amount of fine aggregate (β) having a particle diameter of 150 μm or less and fine aggregate (α) having a particle diameter of 150 μm or more is preferably 1.3 to 2.5 parts by mass with respect to 100 parts by mass of cement. If the amount is less than 1.3 parts by mass, the amount of shrinkage is large, and cracks are likely to occur. Moreover, since the intensity | strength of a construction material will fall when it exceeds 2.5 mass parts, it is not suitable.

また、本発明の高流動モルタルは、消泡剤を配合使用する。消泡剤は、モルタルやコンクリートに使用できるものであれば、何れのものでも配合使用できる。消泡剤の使用により、高流動モルタルの注水後の混練時に巻き込まれた空気によって施工物表面に見られ易い気泡あばたの出現を防ぎ、平滑面が得易やすくなる。消泡剤の配合量は、セメント含有量100質量部に対し、固形分換算で0.05〜1質量部が好ましい。0.05質量部未満では気泡除去が困難であり、また1質量部を超える量の消泡剤を使用しても配合効果が向上せず、コストのみが上昇するので適当ではない。   Moreover, the high fluid mortar of this invention mix | blends and uses an antifoamer. Any antifoaming agent can be used as long as it can be used for mortar and concrete. The use of the antifoaming agent prevents the appearance of bubble blisters that are likely to be seen on the surface of the work due to the air entrained during the kneading of the high-fluid mortar, and makes it easier to obtain a smooth surface. As for the compounding quantity of an antifoamer, 0.05-1 mass part is preferable in conversion of solid content with respect to 100 mass parts of cement contents. If the amount is less than 0.05 parts by mass, it is difficult to remove the bubbles, and even if an amount of the antifoaming agent exceeding 1 part by mass is used, the blending effect is not improved and only the cost is increased, which is not appropriate.

本発明の高流動モルタルは、本発明の効果を実質喪失させない範囲で、前記以外の成分を含有するものであっても良い。このような成分として、例えばモルタルやコンクリートに使用できる収縮低減材、白華防止剤、繊維、凝結調整剤、撥水剤、ポゾラン反応性物質、石膏、粘土鉱物、顔料等を挙げることができる。   The high flow mortar of the present invention may contain components other than those described above as long as the effects of the present invention are not substantially lost. Examples of such components include shrinkage reducing materials that can be used in mortar and concrete, anti-whitening agents, fibers, setting modifiers, water repellents, pozzolanic reactive substances, gypsum, clay minerals, pigments, and the like.

また、本発明の高流動モルタルは、5℃でのモルタルフローが250〜300mmであるモルタルである。5℃でのモルタルフローが250未満では、床板等へ流し込むだけで水平面が得られ難く、施工作業性も低下するので好ましくない。また、モルタルフローが300を超えると、施工物にひび割れ等が発生し易くなるので好ましくない。また、本発明の高流動モルタルの混練水の配合量は、前記モルタルフローが得やすいよう、適宜水量を選定すれば良く、特に制限されるものではない。20℃での施工する場合の好適例示として、高流動モルタル100質量部に対し、混練水量は概ね23〜28質量部とする。この場合、概ね23質量部未満では良好な施工性に適した流動性が得られないことがあり、概ね28質量部を超えると、施工物の表層強度向上が得難くなる。   Moreover, the high flow mortar of this invention is a mortar whose mortar flow in 5 degreeC is 250-300 mm. If the mortar flow at 5 ° C. is less than 250, it is difficult to obtain a horizontal plane simply by pouring into a floor board or the like, and the workability of the work is also unfavorable. On the other hand, when the mortar flow exceeds 300, it is not preferable because cracks and the like are easily generated in the construction. Further, the blending amount of the high-fluid mortar kneading water of the present invention is not particularly limited and may be appropriately selected so that the mortar flow can be easily obtained. As a suitable example in the case of construction at 20 ° C., the amount of kneading water is generally 23 to 28 parts by mass with respect to 100 parts by mass of the high flow mortar. In this case, if it is less than about 23 parts by mass, fluidity suitable for good workability may not be obtained, and if it exceeds about 28 parts by mass, it will be difficult to improve the surface layer strength of the construction.

また、本発明の高流動モルタルの混練水の配合量は、前記モルタルフローを充当する限り特に制限されない。本発明の高流動モルタルの製造方法は特に限定されない。一例を挙げれば、混練容器に混練水を入れ、次いで混練水以外の配合材料を加えて混合することにより製造できる。また、本高流動モルタルの施工方法も特に限定されず、例えば、従来より一般に行われているセメント系セルフレベリング材の施工法を適用できる。     Moreover, the compounding quantity of the kneading | mixing water of the high fluid mortar of this invention will not be restrict | limited especially as long as the said mortar flow is applied. The manufacturing method of the high fluid mortar of this invention is not specifically limited. For example, it can be produced by adding kneaded water to a kneading container, and then adding and mixing a compounding material other than kneaded water. Moreover, the construction method of this high fluidity mortar is not specifically limited, For example, the construction method of the cement type self-leveling material generally performed conventionally can be applied.

以下、実施例により本発明を具体的に詳しく説明する。
次に表すA1〜Fから選定される材料を用い、表1の配合量となるよう、まず混練水を混練容器に投入し、次いで他の材料を一括投入し、約90秒間混練を行い、高流動モルタルを作製した。このモルタルの作製は温度20℃と温度5℃の両環境下で同様に作製した。但し、混練水の配合量のみ温度によって変更した。
A1;普通ポルトランドセメント(太平洋セメント株式会社製)
A2;早強ポルトランドセメント(太平洋セメント株式会社製)
B;石灰系膨張材(商品名;太平洋エクスパン、太平洋マテリアル株式会社製)
C;水溶性メチルセルロース系増粘剤(商品名;メトローズ90SH−4000、信越化学工業株式会社製)
D;ポリカルボン酸系高性能減水剤(商品名;マイティ21P、花王株式会社製)
E1;細骨材(山形珪砂6・7号、粒子径150μm以下の粒子含有率5質量%)
E2;細骨材(山形珪砂7号、粒子径150μm以下の粒子含有率51質量%)
E3;炭酸カルシウム微粉(市販品、粒子径150μm以下の粒子含有率96質量%)
F;消泡剤(商品名;SNディフォーマーAHP、サンノプコ株式会社製)
Hereinafter, the present invention will be described in detail by way of examples.
Using materials selected from A1 to F shown below, kneading water is first put into a kneading container so as to achieve the blending amount shown in Table 1, and then other materials are put together and kneaded for about 90 seconds. A fluid mortar was made. This mortar was prepared in the same manner in both environments of a temperature of 20 ° C. and a temperature of 5 ° C. However, only the amount of the kneaded water was changed depending on the temperature.
A1: Normal Portland cement (manufactured by Taiheiyo Cement Co., Ltd.)
A2: Early strong Portland cement (manufactured by Taiheiyo Cement Co., Ltd.)
B: Lime-based expansion material (trade name: Taiheiyo Expan, manufactured by Taiheiyo Materials Co., Ltd.)
C: Water-soluble methylcellulose-based thickener (trade name; Metroles 90SH-4000, manufactured by Shin-Etsu Chemical Co., Ltd.)
D: Polycarboxylic acid-based high-performance water reducing agent (trade name; Mighty 21P, manufactured by Kao Corporation)
E1: Fine aggregate (Yamagata silica sand No.6, No. 7, particle content 5% by mass with particle diameter of 150 μm or less)
E2: Fine aggregate (Yamagata silica sand No. 7, particle content of 51 μm or less with a particle diameter of 150 μm or less)
E3: Calcium carbonate fine powder (commercially available product, particle content 96 mass% with particle diameter of 150 μm or less)
F: Antifoaming agent (trade name; SN deformer AHP, manufactured by San Nopco)

Figure 2009161360
Figure 2009161360

作製した高流動モルタルについて、流動性の評価として、日本建築学会規格JASS 15M−103のフロー試験方法に準じてフローを測定した。フローは、混練終了直後(注水から約2分経過時点)の高流動モルタルに対し、温度20℃で作製したモルタルは20℃の温度下で、また温度5℃で作製したモルタルは5℃の温度下でそれぞれ測定した。また、作製した高流動モルタルを内寸縦13cm、横8.5cm、高さ1.8cmのブラスチック製容器に、厚さ約1cmとなるように、5℃で作製したモルタルは5℃で、20℃で作製したモルタルは20℃の温度下でそれぞれ流し込んだ。材料分離性の評価として、30分間放置した施工物表面のブリーディング水発生有無を目視で観察した。またさらに、施工から5℃と20℃でそれぞれ1日経過後の各施工物表面状態の評価として、表面に気泡膨れ、ピンホール又は浮遊成膜の存在があるか否かを目視で確認し、何れの発生も全く見られなかったものを表面状態「良好」と判断し、それ以外は「不良」と判断した。   About the produced high fluidity mortar, the flow was measured according to the flow test method of the Architectural Institute of Japan standard JASS 15M-103 as fluidity | liquidity evaluation. As for the flow, the mortar prepared at a temperature of 20 ° C. is 20 ° C., and the mortar prepared at a temperature of 5 ° C. is 5 ° C. with respect to the high-flowing mortar immediately after the end of the kneading (when about 2 minutes have passed since water injection) Each was measured below. Moreover, the mortar produced at 5 ° C. was 5 ° C. so that the produced high-flowing mortar had a thickness of about 1 cm in a plastic container having an inner dimension of 13 cm, a width of 8.5 cm, and a height of 1.8 cm. The mortar produced at 20 ° C. was poured at a temperature of 20 ° C., respectively. As evaluation of material separability, the presence or absence of bleeding water generation on the surface of the construction left for 30 minutes was visually observed. Furthermore, as an evaluation of the surface condition of each construction after 1 day at 5 ° C. and 20 ° C. from the construction, it is visually confirmed whether or not there are bubbles bulging, pinholes or floating film formation on the surface. In the case where no occurrence of odor was observed, the surface condition was judged as “good”, and other cases were judged as “bad”.

Figure 2009161360
Figure 2009161360

表2から、本発明による高流動モルタルは低温(5℃)でも、また常温(20℃)でも施工に適した比較的高い流動性を安定して示し、施工後も表面状態が良好で材料分離等も実質発生していないことがわかる。   From Table 2, the high flow mortar according to the present invention stably exhibits a relatively high fluidity suitable for construction even at low temperature (5 ° C.) or at ordinary temperature (20 ° C.), and the surface condition is good after construction and material separation. It can be seen that there is no substantial occurrence.

Claims (2)

ポルトランドセメント、膨張材、保水性及び増粘性物質、減水剤、消泡剤、粒子径150μmを超える細骨材(α)及び粒子径150μm以下の細骨材(β)を含有し、質量比で(β)/(α)が0.8〜3であることを特徴とする高流動モルタル。 Contains Portland cement, expansive material, water retention and thickening material, water reducing agent, antifoaming agent, fine aggregate (α) with a particle diameter of 150 μm and fine aggregate (β) with a particle diameter of 150 μm or less. (Β) / (α) is 0.8 to 3, high flow mortar. 5℃でのモルタルフローが250〜300mmである請求項1記載の高流動モルタル。 The high flow mortar according to claim 1, wherein the mortar flow at 5 ° C. is 250 to 300 mm.
JP2007339268A 2007-12-28 2007-12-28 High flow mortar Expired - Fee Related JP5004294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007339268A JP5004294B2 (en) 2007-12-28 2007-12-28 High flow mortar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007339268A JP5004294B2 (en) 2007-12-28 2007-12-28 High flow mortar

Publications (2)

Publication Number Publication Date
JP2009161360A true JP2009161360A (en) 2009-07-23
JP5004294B2 JP5004294B2 (en) 2012-08-22

Family

ID=40964425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007339268A Expired - Fee Related JP5004294B2 (en) 2007-12-28 2007-12-28 High flow mortar

Country Status (1)

Country Link
JP (1) JP5004294B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012201532A (en) * 2011-03-24 2012-10-22 Ube Industries Ltd High fluidity mortar composition
JP2012202060A (en) * 2011-03-24 2012-10-22 Ube Ind Ltd Method for constructing housing foundation structure and housing foundation structure constructed by the method
JP2014129208A (en) * 2012-12-28 2014-07-10 Taiheiyo Material Kk Adhesive for tile
JP2015163589A (en) * 2015-06-16 2015-09-10 株式会社大林組 high-strength mortar composition
JP2019123646A (en) * 2018-01-17 2019-07-25 太平洋マテリアル株式会社 Mortar composition and mortar

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58223652A (en) * 1982-06-22 1983-12-26 宇部興産株式会社 Non-shrinkable high fluidity high strength mortar
JPH11130508A (en) * 1997-10-30 1999-05-18 Taiheiyo Cement Corp Cement-based composition and its hardened body
JP2000086320A (en) * 1998-09-16 2000-03-28 Taiheiyo Cement Corp Grout composition and admixture for grouting material
JP2001199754A (en) * 1999-11-12 2001-07-24 Onoda Co Mortar composition
JP2005047772A (en) * 2003-07-31 2005-02-24 Denki Kagaku Kogyo Kk Mortar composition
JP2006045025A (en) * 2004-08-06 2006-02-16 Ube Ind Ltd Self-flowing hydraulic composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58223652A (en) * 1982-06-22 1983-12-26 宇部興産株式会社 Non-shrinkable high fluidity high strength mortar
JPH11130508A (en) * 1997-10-30 1999-05-18 Taiheiyo Cement Corp Cement-based composition and its hardened body
JP2000086320A (en) * 1998-09-16 2000-03-28 Taiheiyo Cement Corp Grout composition and admixture for grouting material
JP2001199754A (en) * 1999-11-12 2001-07-24 Onoda Co Mortar composition
JP2005047772A (en) * 2003-07-31 2005-02-24 Denki Kagaku Kogyo Kk Mortar composition
JP2006045025A (en) * 2004-08-06 2006-02-16 Ube Ind Ltd Self-flowing hydraulic composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012201532A (en) * 2011-03-24 2012-10-22 Ube Industries Ltd High fluidity mortar composition
JP2012202060A (en) * 2011-03-24 2012-10-22 Ube Ind Ltd Method for constructing housing foundation structure and housing foundation structure constructed by the method
JP2014129208A (en) * 2012-12-28 2014-07-10 Taiheiyo Material Kk Adhesive for tile
JP2015163589A (en) * 2015-06-16 2015-09-10 株式会社大林組 high-strength mortar composition
JP2019123646A (en) * 2018-01-17 2019-07-25 太平洋マテリアル株式会社 Mortar composition and mortar

Also Published As

Publication number Publication date
JP5004294B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
JP5939776B2 (en) Repair mortar composition
JP5161062B2 (en) High flow mortar
JP6674307B2 (en) Self-leveling mortar
JP2008094674A (en) Filler for reinforcement and method of filling reinforcement using the same
JP6830826B2 (en) Self-smooth mortar
JP5004294B2 (en) High flow mortar
JP2018193280A (en) Quick-hardening ultrahigh-strength grout composition
WO2023213065A1 (en) Gypsum-based ground tile bonding mortar and preparation method therefor
JP2011136863A (en) Superhigh strength grout composition
JP6372886B2 (en) Low whiteness self-leveling composition
JP7034573B2 (en) Fast-curing polymer cement composition and fast-curing polymer cement mortar
JP6654932B2 (en) High strength grout composition and high strength grout material
JP2011068546A (en) High strength cement composition and high strength cementitious hardened body
JP5035721B2 (en) High fluidity lightweight mortar
JP6482861B2 (en) Inseparable mortar composition in water
JP2012140274A (en) Strength-increasing agent for polymer cement composition, and high-strength polymer cement composition
JP2010155757A (en) Admixture for grout and grout composition
JP2010100457A (en) Grout composition for use at elevated temperature
JP6626363B2 (en) Non-shrink grout composition
JP2019167272A (en) Self-smoothing hydraulic composition
JP2006282442A (en) Quick-setting and high-fluidity mortar
JP6300365B2 (en) Underwater inseparable fast-hardening concrete and method for producing the same
JP2008056541A (en) Self-leveling composition
JP2018123025A (en) Self-leveling mortar
JP5594760B2 (en) Hydraulic composition having self-smoothness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120518

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5004294

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees