JP2009160496A - Catalyst composition for catalytic cracking of hydrocarbon oil - Google Patents

Catalyst composition for catalytic cracking of hydrocarbon oil Download PDF

Info

Publication number
JP2009160496A
JP2009160496A JP2007340495A JP2007340495A JP2009160496A JP 2009160496 A JP2009160496 A JP 2009160496A JP 2007340495 A JP2007340495 A JP 2007340495A JP 2007340495 A JP2007340495 A JP 2007340495A JP 2009160496 A JP2009160496 A JP 2009160496A
Authority
JP
Japan
Prior art keywords
catalytic cracking
catalyst
alumina
hydrocarbon oil
ammonium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007340495A
Other languages
Japanese (ja)
Inventor
Hiroshi Matsumoto
広 松本
Shingo Sakai
伸吾 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2007340495A priority Critical patent/JP2009160496A/en
Publication of JP2009160496A publication Critical patent/JP2009160496A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst composition for catalytic cracking of hydrocarbon oil having high nickel resistance. <P>SOLUTION: The catalyst composition comprises crystalline aluminosilicate zeolite, ammonium dawsonite or an alumina derived from the dawsonite, and an inorganic oxide matrix precursor. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、耐ニッケル性を有する炭化水素油の接触分解用触媒組成物に関する。   The present invention relates to a catalyst composition for catalytic cracking of hydrocarbon oil having nickel resistance.

流動接触分解(FCC)に使用される脱硫常圧残油(DSAR)、脱硫減圧残油(DSVR)等の重質の炭化水素油(以下、「原料油」ともいう)中には、ニッケル(Ni)及びバナジウム(V)が多量に含まれている。なお、ニッケルは接触分解用触媒(FCC触媒)に沈着して、原料油の脱水素反応を起こす。これによって、水素及びコークの収率が増加すると共に、液収率(特に、ガソリン収率)が低下する。
ここで、アルミナは、ニッケルと反応して複合酸化物であるニッケルアルミネート(NiAl)を形成して脱水素活性を抑制し、水素及びコーク収率の増加を抑えると共に、液収率を増加させることが知られている。このようにして、アルミナは、ニッケルによる収率の低下を抑える効果(耐ニッケル性)をFCC触媒に付与することができる。そこで、アルミナとして擬ベーマイト型のアルミナ水和物(以下、単に「擬ベーマイト」ともいう)を含有する接触分解用触媒組成物が知られている(例えば、特許文献1及び2参照)。
Heavy hydrocarbon oils (hereinafter also referred to as “raw oil”) such as desulfurized atmospheric residue (DSAR) and desulfurized vacuum residue (DSVR) used for fluid catalytic cracking (FCC) contain nickel ( Ni) and vanadium (V) are contained in large quantities. Nickel is deposited on the catalytic cracking catalyst (FCC catalyst) and causes dehydrogenation of the feedstock. As a result, the yields of hydrogen and coke are increased, and the liquid yield (particularly the gasoline yield) is decreased.
Here, alumina reacts with nickel to form a composite oxide, nickel aluminate (NiAl 2 O 4 ), thereby suppressing dehydrogenation activity, suppressing increase in hydrogen and coke yield, and liquid yield. Is known to increase. In this manner, alumina can impart to the FCC catalyst the effect of suppressing the decrease in yield due to nickel (nickel resistance). Thus, a catalytic cracking catalyst composition containing pseudoboehmite type alumina hydrate (hereinafter also simply referred to as “pseudoboehmite”) as alumina is known (see, for example, Patent Documents 1 and 2).

特開平9−164338号公報JP-A-9-164338 特開平11−50063号公報Japanese Patent Laid-Open No. 11-50063

しかしながら、通常、擬ベーマイトの結晶は、電子顕微鏡写真から任意に選んだ50〜1000本程度の結晶の幅方向の長さの測定値の平均が20nm未満であり、複数の擬ベーマイトの結晶により形成される隙間(細孔)の孔径、及び容量等が小さく、形成された細孔に保持されるニッケルの量が少ない、すなわち、耐ニッケル性が比較的低いという問題があった。
本発明はかかる事情に鑑みてなされたもので、多量のニッケルを含む重質の炭化水素油を処理することができる接触分解用触媒組成物を提供することを目的とする。
However, in general, pseudoboehmite crystals have an average value of length measurements in the width direction of about 50 to 1000 crystals arbitrarily selected from electron micrographs, and are formed by a plurality of pseudoboehmite crystals. There is a problem that the pore diameter, capacity, etc. of the gaps (pores) formed are small, and the amount of nickel retained in the formed pores is small, that is, the nickel resistance is relatively low.
The present invention has been made in view of such circumstances, and an object thereof is to provide a catalytic cracking catalyst composition capable of treating heavy hydrocarbon oil containing a large amount of nickel.

前記目的に沿う第1の発明に係る炭化水素油の接触分解用触媒組成物は、結晶性アルミノシリケートゼオライトと、アンモニウムドーソナイトと、無機酸化物マトリックス前駆体とを含む。
ここで、アンモニウムドーソナイトは、アンモニウムアルミニウムカーボネートハイドロオキサイドともいわれ、[NHAl(OH)CO]で示される物質である。アンモニウムドーソナイトは、繊維状の結晶である擬ベーマイトよりも、結晶の幅方向の長さ(いわゆる結晶の太さ。以下、「結晶サイズ」ともいう。以下同様である。)が大きい棒状の結晶であり、複数のアンモニウムドーソナイトの結晶により形成される細孔は、擬ベーマイトにより形成される細孔よりも細孔径、容量等が大きくなり、より多くのニッケルをその細孔内に保持することができる。
また、結晶性アルミノシリケートゼオライトとしては、通常、炭化水素の接触分解触媒用組成物に使用されるゼオライトを用いることができ、例えば、X型ゼオライト、Y型ゼオライト、モルデナイト、ZSM型ゼオライト等の合成ゼオライトや、天然ゼオライトが使用できる。無機酸化物マトリックス前駆体としては、アンモニウムドーソナイトの他に、バインダー成分、カオリン、メタル補足剤等がある。ここで、バインダー成分としては、アルミナゾル、シリカゾル、シリカ−アルミナ等が使用できる。また、メタル捕捉剤としては、酸化ランタン、水酸化ランタン、炭酸ランタン、水酸化カルシウム、炭酸カルシウム、シュウ酸カルシウム、酸化マグネシウム、水酸化マグネシウム、炭酸マグネシウム等が使用でき、これらは、特に原料油中に含まれるバナジウムを捕捉することを目的としている。
The catalyst composition for catalytic cracking of hydrocarbon oil according to the first invention that meets the above object comprises crystalline aluminosilicate zeolite, ammonium dosonite, and an inorganic oxide matrix precursor.
Here, ammonium dosonite is also called ammonium aluminum carbonate hydroxide, and is a substance represented by [NH 4 Al (OH) 2 CO 3 ]. Ammonium dawsonite has a rod-like shape having a length in the width direction of the crystal (so-called crystal thickness. Hereinafter, also referred to as “crystal size”. The same applies hereinafter.) Than pseudoboehmite, which is a fibrous crystal. The pores formed by a plurality of ammonium dawsonite crystals have a larger pore diameter and capacity than the pores formed by pseudoboehmite, and retain more nickel in the pores. can do.
Further, as the crystalline aluminosilicate zeolite, zeolites generally used for hydrocarbon catalytic cracking catalyst compositions can be used, for example, synthesis of X-type zeolite, Y-type zeolite, mordenite, ZSM-type zeolite, etc. Zeolite and natural zeolite can be used. Examples of the inorganic oxide matrix precursor include a binder component, kaolin, and a metal supplement in addition to ammonium dosonite. Here, as the binder component, alumina sol, silica sol, silica-alumina and the like can be used. Moreover, as the metal scavenger, lanthanum oxide, lanthanum hydroxide, lanthanum carbonate, calcium hydroxide, calcium carbonate, calcium oxalate, magnesium oxide, magnesium hydroxide, magnesium carbonate, etc. can be used. The purpose is to capture vanadium contained in.

第1の発明に係る炭化水素油の接触分解用触媒組成物において、前記アンモニウムドーソナイトは、結晶の幅方向の長さ(結晶サイズ)の平均値が20〜200nm、好ましくは40〜150nm、より好ましくは50〜100nmである。
ここで、アンモニウムドーソナイトの結晶サイズの平均値が、20nm未満の場合には、形成される細孔の細孔径、容量が小さくなり、細孔へのニッケルの保持量が低下し、200nmを超えると、触媒の強度が低下する。なお、本発明において、アンモニウムドーソナイトの結晶サイズの平均値は、電子顕微鏡写真から任意に選んだ50〜1000本程度のアンモニウムドーソナイトの結晶の幅方向の長さの測定値の平均としている。また、前記選択した全てのアンモニウムドーソナイトの結晶において、幅方向の長さが20〜200nmである結晶が、70%以上、好ましくは80%以上、より好ましくは90%以上含有されているのがよい。更に、本発明のアンモニウムドーソナイトの結晶は、幅方向の長さに対する長さ方向の長さ(アスペクト比)が、2〜20倍程度、好ましくは2〜15倍、より好ましくは2〜10倍となっているのがよい。
In the catalyst composition for catalytic cracking of hydrocarbon oil according to the first invention, the ammonium dawsonite has an average length in the width direction of crystals (crystal size) of 20 to 200 nm, preferably 40 to 150 nm, More preferably, it is 50-100 nm.
Here, when the average value of the crystal size of ammonium dosonite is less than 20 nm, the pore diameter and capacity of the formed pores are reduced, the amount of nickel retained in the pores is reduced, and 200 nm is reduced. When it exceeds, the intensity | strength of a catalyst will fall. In addition, in this invention, the average value of the crystal | crystallization size of ammonium dosonite is taken as the average of the measured value of the length of the width direction of the crystal | crystallization of about 50-1000 ammonium dosonite arbitrarily selected from the electron micrograph. Yes. Further, in all the selected ammonium dosonite crystals, 70% or more, preferably 80% or more, more preferably 90% or more of the crystals having a length in the width direction of 20 to 200 nm are contained. Is good. Furthermore, the ammonium dosonite crystal of the present invention has a length (aspect ratio) in the length direction with respect to the length in the width direction of about 2 to 20 times, preferably 2 to 15 times, more preferably 2 to 10 times. It should be doubled.

第1の発明に係る炭化水素油の接触分解用触媒組成物において、前記アンモニウムドーソナイトがアルミナ換算で1質量%以上、40質量%以下、好ましくは2〜20質量%、より好ましくは4〜10質量%含有されているのがよい。
接触分解用触媒組成物に含有されるアンモニウムドーソナイトが、アルミナ換算で1質量%未満の場合には、触媒に十分な耐ニッケル性を付与することができず、40質量%を超える場合には、触媒の強度が低下する。
In the catalyst composition for catalytic cracking of hydrocarbon oil according to the first invention, the ammonium dosonite is 1% by mass or more and 40% by mass or less, preferably 2 to 20% by mass, more preferably 4 to 4% in terms of alumina. It is good to contain 10 mass%.
When the ammonium dosonite contained in the catalytic cracking catalyst composition is less than 1% by mass in terms of alumina, sufficient nickel resistance cannot be imparted to the catalyst, and when it exceeds 40% by mass. This reduces the strength of the catalyst.

前記目的に沿う第2の発明に係る炭化水素油の接触分解用触媒組成物は、結晶性アルミノシリケートゼオライトと、アンモニウムドーソナイト由来のアルミナを含有する無機酸化物マトリックス前駆体とを含む。
ここで、アンモニウムドーソナイト由来のアルミナは、前記したアンモニウムドーソナイトを例えば、焼成、水熱処理等の加熱処理を行って、アンモニア、二酸化炭素、水を脱離させ、アルミナ[Al]にした棒状の結晶であり、本発明においては、アンモニア、二酸化炭素、水が完全に除去されていない中間体も含む。
The catalyst composition for catalytic cracking of hydrocarbon oil according to the second invention that meets the above object comprises a crystalline aluminosilicate zeolite and an inorganic oxide matrix precursor containing alumina derived from ammonium dosonite.
Here, the alumina derived from ammonium dawsonite is subjected to a heat treatment such as baking or hydrothermal treatment, for example, to release ammonia, carbon dioxide, and water, and the alumina [Al 2 O 3 In the present invention, an intermediate from which ammonia, carbon dioxide, and water have not been completely removed is also included.

第2の発明に係る炭化水素油の接触分解用触媒組成物において、前記アルミナは、結晶の幅方向の長さ(結晶サイズ)の平均値が20〜200nm、好ましくは40〜150nm、より好ましくは50〜100nmである。
ここで、アルミナの結晶サイズの平均値が、20nm未満の場合には、形成される細孔の細孔径、容量が小さくなって、細孔に保持されるニッケルの量が低下し、200nmを超えると、触媒の強度が低下する。なお、本発明において、アルミナの結晶サイズの平均値とは、電子顕微鏡写真から任意に選んだ50〜1000本程度の結晶の幅方向の長さの測定値の平均とする。また、前記選択した全てのアルミナの結晶において、幅方向の長さが20〜200nmである結晶が、70%以上、好ましくは80%以上、より好ましくは90%以上含有されているのがよい。更に、本発明のアルミナの結晶は、幅方向の長さに対する長さ方向の長さが、2〜20倍程度、好ましくは2〜15倍、より好ましくは2〜10倍となっているのがよい。
In the catalyst composition for catalytic cracking of hydrocarbon oil according to the second invention, the alumina has an average length (crystal size) in the width direction of the crystal of 20 to 200 nm, preferably 40 to 150 nm, more preferably. 50-100 nm.
Here, when the average value of the crystal size of alumina is less than 20 nm, the pore diameter and capacity of the formed pores are reduced, and the amount of nickel retained in the pores is reduced to exceed 200 nm. As a result, the strength of the catalyst decreases. In the present invention, the average value of the crystal size of alumina is the average of the measured values in the width direction of about 50 to 1000 crystals arbitrarily selected from the electron micrograph. Moreover, in all the selected alumina crystals, it is preferable that 70% or more, preferably 80% or more, more preferably 90% or more of the crystals having a length in the width direction of 20 to 200 nm are contained. Furthermore, in the alumina crystal of the present invention, the length in the length direction relative to the length in the width direction is about 2 to 20 times, preferably 2 to 15 times, more preferably 2 to 10 times. Good.

第2の発明に係る炭化水素油の接触分解用触媒組成物において、前記アルミナが1質量%以上、40質量%以下、好ましくは2〜20質量%、より好ましくは4〜10質量%含有されているのがよい。
接触分解用触媒組成物に含有されるアルミナが、1質量%未満の場合には、触媒は十分な耐ニッケル性を有さず、40質量%を超える場合には、触媒の強度が低下する。
In the catalyst composition for catalytic cracking of hydrocarbon oil according to the second invention, the alumina is contained in an amount of 1 to 40% by mass, preferably 2 to 20% by mass, more preferably 4 to 10% by mass. It is good to be.
When the alumina contained in the catalytic cracking catalyst composition is less than 1% by mass, the catalyst does not have sufficient nickel resistance, and when it exceeds 40% by mass, the strength of the catalyst decreases.

第1及び第2の発明に係る炭化水素油の接触分解用触媒組成物において、(a)細孔容積が、0.20ml/g以上、0.50ml/g以下、好ましくは、0.23ml/g以上、0.40ml/g以下、より好ましくは、0.25ml/g以上、0.35ml/g以下、(b)細孔直径が6〜1000nm(60〜10000Å)である細孔群の細孔容積Aに対して、細孔直径が20〜100nm(200〜1000Å)の細孔群の細孔容積Bの割合(B/A×100)が45〜70%、好ましくは、48〜67%、より好ましくは、50〜65%、及び、(c)比表面積が、150m/g以上、450m/g以下、好ましくは、170m/g以上、400m/g以下、より好ましくは、200m/g以上、350m/g以下であるのがよい。
ここで、細孔容積が、0.20ml/g未満の場合には、触媒は十分な耐ニッケル性を有さず、0.50ml/gを超えると、触媒の強度が弱くなる。なお、細孔容積は、水銀圧入法により測定した値である。また、細孔容積Aに対する細孔容積Bの割合(B/A×100)が、45%未満では、触媒は十分な耐ニッケル性を有さず、70%を超えると、触媒の強度が低下する。更に、比表面積が、150m/g未満では、十分な分解活性が得られず、450m/gを超えると、分解能が高すぎるために原料油が過分解し、製品収率が悪化する。なお、比表面積は、BET法により測定した値である。
In the catalyst composition for catalytic cracking of hydrocarbon oil according to the first and second inventions, (a) the pore volume is 0.20 ml / g or more and 0.50 ml / g or less, preferably 0.23 ml / g or more and 0.40 ml / g or less, more preferably 0.25 ml / g or more and 0.35 ml / g or less. (b) Fine pore groups having a pore diameter of 6 to 1000 nm (60 to 10,000 mm). The ratio (B / A × 100) of the pore volume B of the pore group having a pore diameter of 20 to 100 nm (200 to 1000 mm) with respect to the pore volume A is 45 to 70%, preferably 48 to 67%. More preferably, it is 50 to 65%, and (c) the specific surface area is 150 m 2 / g or more and 450 m 2 / g or less, preferably 170 m 2 / g or more and 400 m 2 / g or less, more preferably, 200m 2 / g or more, 350m 2 g or less is good is.
Here, when the pore volume is less than 0.20 ml / g, the catalyst does not have sufficient nickel resistance, and when it exceeds 0.50 ml / g, the strength of the catalyst becomes weak. The pore volume is a value measured by a mercury intrusion method. In addition, when the ratio of the pore volume B to the pore volume A (B / A × 100) is less than 45%, the catalyst does not have sufficient nickel resistance, and when it exceeds 70%, the strength of the catalyst decreases. To do. Furthermore, if the specific surface area is less than 150 m 2 / g, sufficient cracking activity cannot be obtained. If the specific surface area exceeds 450 m 2 / g, the resolution is too high, so that the feedstock oil is excessively decomposed and product yield deteriorates. The specific surface area is a value measured by the BET method.

本発明の炭化水素油の接触分解用触媒組成物においては、アンモニウムドーソナイト又はアンモニウムドーソナイト由来のアルミナを含むので、細孔径の大きい細孔が形成され、多量のニッケルが触媒に沈着しても、高い耐ニッケル性を維持することができる。
特に、本発明の炭化水素油の接触分解用触媒組成物においては、アンモニウムドーソナイト又はアンモニウムドーソナイト由来のアルミナの結晶サイズが20〜200nmであるので、触媒の強度は低下せず、原料油中のニッケルを保持するのに十分な細孔を形成することができる。
本発明の炭化水素油の接触分解用触媒組成物においては、(1)前記アンモニウムドーソナイトを使用する場合、該アンモニウムドーソナイトがアルミナ換算で1質量%以上、40質量%以下含有され、また、(2)前記アンモニウムドーソナイト由来のアルミナを使用する場合、該アルミナが1質量%以上、40質量%以下含有されているので、触媒の強度を維持して、多量のニッケルを保持できる。
本発明の炭化水素油の接触分解用触媒組成物においては、(a)細孔容積が、0.20ml/g以上、0.50ml/g以下、(b)細孔直径が6〜1000nmである細孔群の細孔容積Aに対して、細孔直径が20〜100nmの細孔群の細孔容積Bの割合が45〜70%、(c)比表面積が、150m/g以上、450m/g以下であるので、多量のニッケルが沈着しても高い耐ニッケル性を有し、ガソリン等の液収率を増大することができ、さらに、十分な強度も有する。
In the catalyst composition for catalytic cracking of hydrocarbon oil of the present invention, it contains ammonium dawsonite or ammonium dawsonite-derived alumina, so that pores having a large pore diameter are formed and a large amount of nickel is deposited on the catalyst. However, high nickel resistance can be maintained.
In particular, in the catalyst composition for catalytic cracking of hydrocarbon oil of the present invention, since the crystal size of ammonium dawsonite or alumina derived from ammonium dawsonite is 20 to 200 nm, the strength of the catalyst does not decrease, and the raw material Sufficient pores can be formed to hold the nickel in the oil.
In the catalyst composition for catalytic cracking of hydrocarbon oil of the present invention, (1) when using the ammonium dosonite, the ammonium dosonite is contained in an amount of 1 to 40% by mass in terms of alumina, Further, (2) when using alumina derived from ammonium dosonite, since the alumina is contained in an amount of 1 to 40% by mass, the strength of the catalyst can be maintained and a large amount of nickel can be retained. .
In the catalyst composition for catalytic cracking of hydrocarbon oil of the present invention, (a) the pore volume is 0.20 ml / g or more and 0.50 ml / g or less, and (b) the pore diameter is 6 to 1000 nm. The ratio of the pore volume B of the pore group having a pore diameter of 20 to 100 nm to the pore volume A of the pore group is 45 to 70%, and (c) the specific surface area is 150 m 2 / g or more, 450 m Since it is 2 / g or less, even if a large amount of nickel is deposited, it has high nickel resistance, can increase the liquid yield of gasoline and the like, and has sufficient strength.

本発明の第1の実施の形態に係る炭化水素油の接触分解用触媒組成物は、結晶性アルミノシリケートゼオライトと、結晶サイズが20〜200nmであるアンモニウムドーソナイトを含有する無機酸化物マトリックス前駆体とを含むスラリーを噴霧乾燥して得られる。このスラリーには、結晶性アルミノシリケートが10〜50質量%、アンモニウムドーソナイトをアルミナ換算で1〜40質量%含有する無機酸化物マトリックス前駆体が90〜50質量%含まれている。得られる接触分解用触媒組成物は、細孔容積が0.20ml/g以上、0.50ml/g以下、細孔直径が6〜1000nmである細孔群の細孔容積に対して、細孔直径が20〜100nmの細孔群の細孔容積の割合が45〜70%、比表面積が150m/g以上、450m/g以下である。
本発明の第2の実施の形態に係る炭化水素油の接触分解用触媒組成物は、アンモニウムドーソナイトの替わりに、結晶サイズが20〜200nmであるアンモニウムドーソナイトを焼成、水熱処理等の加熱処理を行って得られたアルミナを使用した点が、前記した第1の実施の形態と異なっている。
The catalyst composition for catalytic cracking of hydrocarbon oil according to the first embodiment of the present invention is an inorganic oxide matrix precursor containing crystalline aluminosilicate zeolite and ammonium dosonite having a crystal size of 20 to 200 nm. It is obtained by spray drying a slurry containing the body. This slurry contains 10 to 50% by mass of crystalline aluminosilicate and 90 to 50% by mass of an inorganic oxide matrix precursor containing 1 to 40% by mass of ammonium dosonite in terms of alumina. The resulting catalytic cracking catalyst composition has a pore volume of 0.20 ml / g or more and 0.50 ml / g or less and a pore volume of a pore group having a pore diameter of 6 to 1000 nm. The proportion of the pore volume of the pore group having a diameter of 20 to 100 nm is 45 to 70%, and the specific surface area is 150 m 2 / g or more and 450 m 2 / g or less.
The catalyst composition for catalytic cracking of hydrocarbon oil according to the second embodiment of the present invention is such that, instead of ammonium dosonite, ammonium dosonite having a crystal size of 20 to 200 nm is calcined, hydrothermal treatment, etc. The point which used the alumina obtained by performing heat processing differs from above-mentioned 1st Embodiment.

(実施例1)
アルミナ換算で22質量%のアルミン酸ナトリウム水溶液2.27kgと、12.5%炭酸水素アンモニウム水溶液20kgとを、70℃の温水17.73kgに20分かけて添加した。そのまま50℃で10分間加熱攪拌した後、95℃で16時間静置熟成してアンモニウムドーソナイトスラリーを作った。このアンモニウムドーソナイトスラリーを減圧濾過機を用いて脱水した後、60℃の温水25Lでナトリウム等の不純分を洗浄して、アンモニウムドーソナイトケーキを得た。得られたケーキの濃度はアルミナ換算で10.6質量%であった。図1に得られたアンモニウムドーソナイトの電子顕微鏡写真を示す。ここで、電子顕微鏡写真から任意に100本のアンモニウムドーソナイトの結晶を選択し、それぞれの幅方向の長さを測定し、アンモニウムドーソナイトの結晶サイズの平均値を算出した(以下、同様である)。その結果、アンモニウムドーソナイトの結晶サイズの平均値は、66nmであった。
Example 1
2.27 kg of a 22% by mass aqueous sodium aluminate solution in terms of alumina and 20 kg of a 12.5% aqueous ammonium hydrogen carbonate solution were added to 17.73 kg of warm water at 70 ° C. over 20 minutes. The mixture was heated and stirred at 50 ° C. for 10 minutes as it was, followed by standing and aging at 95 ° C. for 16 hours to prepare an ammonium dosonite slurry. The ammonium dosonite slurry was dehydrated using a vacuum filter, and then impurities such as sodium were washed with 25 L of hot water at 60 ° C. to obtain an ammonium dosonite cake. The density | concentration of the obtained cake was 10.6 mass% in conversion of the alumina. FIG. 1 shows an electron micrograph of the ammonium dosonite obtained. Here, 100 ammonium dosonite crystals were arbitrarily selected from the electron micrographs, the respective lengths in the width direction were measured, and the average value of the crystal size of the ammonium dosonite was calculated (the same applies hereinafter). Is). As a result, the average value of the crystal size of ammonium dosonite was 66 nm.

アンモニウムドーソナイトケーキ1887g(Alとして200g)と、超安定化Y型ゼオライト(USY)667g(Al+SiOとして600g。)、アルミナゾルバインダー1304g(Alとして300g)、カオリン1047g(乾燥基準で900g)、及び純水95gを混合して、触媒基準で40質量%濃度の混合物スラリーを作った後、この混合物スラリーを噴霧乾燥して微小球状粒子を得た。得られた微小球状粒子を洗浄してナトリウムや塩酸根等の不純物を除いた後、希土類金属(RE)塩化物の水溶液を用いてREとして2.0%となるようにイオン交換した(触媒A)。触媒Aの性状を表1に示す。
ここで、焼成減量は触媒Aを1000℃で1時間加熱した際の質量の減少率を示し、特に結晶水及び炭酸塩等の含有量を示す。また、各元素の含有量は、蛍光X線分析装置で測定した。嵩密度(ABD)はUOP法254−65により測定した。細孔容積は、水銀圧入法で測定した。表面積(SA)は、BET法で測定した。摩耗強度(CAI)は、UOP法426−65で測定した(以下同様)。
1887 g of ammonium dosonite cake (200 g as Al 2 O 3 ), 667 g of ultra-stabilized Y-type zeolite (USY) (600 g as Al 2 O 3 + SiO 2 ), 1304 g of alumina sol binder (300 g as Al 2 O 3 ), 1047 g of kaolin (900 g on a dry basis) and 95 g of pure water were mixed to prepare a mixture slurry having a concentration of 40% by mass on the basis of the catalyst, and then the mixture slurry was spray-dried to obtain fine spherical particles. The obtained microspherical particles were washed to remove impurities such as sodium and hydrochloric acid radicals, and then ion exchanged to an RE 2 O 3 concentration of 2.0% using an aqueous solution of rare earth metal (RE) chloride. (Catalyst A). Properties of catalyst A are shown in Table 1.
Here, the calcining loss indicates the rate of mass reduction when the catalyst A is heated at 1000 ° C. for 1 hour, and particularly indicates the contents of crystal water, carbonate, and the like. The content of each element was measured with a fluorescent X-ray analyzer. Bulk density (ABD) was measured by UOP method 254-65. The pore volume was measured by mercury porosimetry. The surface area (SA) was measured by the BET method. The wear strength (CAI) was measured by the UOP method 426-65 (the same applies hereinafter).

(実施例2)
実施例1で得られたアンモニウムドーソナイトケーキを110℃で16時間乾燥し、乳鉢で粉砕した。このアンモニウムドーソナイト粉を600℃で2時間焼成し、粉状のアンモニウムドーソナイト由来のアルミナを得た。図2に得られたアルミナの電子顕微鏡写真を示す。また、得られたアルミナの結晶サイズの平均値を電子顕微鏡写真から算出したところ、66nmであった。
(Example 2)
The ammonium dosonite cake obtained in Example 1 was dried at 110 ° C. for 16 hours and pulverized in a mortar. This ammonium dawsonite powder was fired at 600 ° C. for 2 hours to obtain powdered ammonium dawsonite-derived alumina. FIG. 2 shows an electron micrograph of the obtained alumina. Moreover, it was 66 nm when the average value of the crystal size of the obtained alumina was computed from the electron micrograph.

得られたアルミナ200gと、超安定化Y型ゼオライト667g(Al+SiOとして600g)、アルミナゾルバインダー1304g(Alとして300g)、カオリン1047g(乾燥基準で900g)、及び純水1782gを混合して、触媒基準で40質量%濃度の混合物スラリーを作成した後、この混合物スラリーを噴霧乾燥して微小球状粒子を得た。得られた微小球状粒子を洗浄してナトリウムや塩酸根等の不純物を除いた後、希土類金属塩化物の水溶液を用いてREとして2.0%となるようにイオン交換した(触媒B)。触媒Bの性状を表1に示す。 200 g of the obtained alumina, 667 g of ultra-stabilized Y-type zeolite (600 g as Al 2 O 3 + SiO 2 ), 1304 g of alumina sol binder (300 g as Al 2 O 3 ), 1047 g of kaolin (900 g on a dry basis), and 1782 g of pure water Were mixed to prepare a mixture slurry having a concentration of 40% by mass based on the catalyst, and then the mixture slurry was spray-dried to obtain fine spherical particles. The obtained fine spherical particles were washed to remove impurities such as sodium and hydrochloric acid radicals, and then ion exchanged to 2.0% RE 2 O 3 using an aqueous solution of rare earth metal chloride (Catalyst B). ). Properties of catalyst B are shown in Table 1.

(比較例1)
比較例1は、アンモニウムドーソナイト又はアンモニウムドーソナイト由来のアルミナの代わりに擬ベーマイトを使用したことが、実施例1及び2と異なっている。以下、詳しく説明する。
Al濃度として5質量%のアルミン酸ソーダ溶液と、Al濃度として2.5質量%の硫酸アルミニウム溶液とをそれぞれ調製し、各々60℃に保持した。30Lの攪拌機付きのタンクAに、まず毎分1.7kgの流量でアルミン酸ソーダ溶液を供給し、アルミン酸ソーダ溶液の供給開始から5分後に、更に、毎分5kgの流量で硫酸アルミニウム溶液を攪拌しながら供給した。次に、タンクA中のアルミナ水和物の粗スラリーのpHが7.2となったら、粗スラリーのpHを7.2±0.2に保ちながら、アルミン酸ソーダ溶液及び硫酸アルミニウム溶液をそれぞれ毎分1.7kgの流量で90分間、攪拌しながら供給し続け、タンクAから溢れた粗スラリーを下部に設けた400Lの攪拌機付きのタンクBに受け入れた。
更に、タンクB内の粗スラリーを60℃に保ちながら1時間攪拌してアルミナ水和物スラリーを調製した。該アルミナ水和物スラリー56kgをフィルターで脱水捕集し、0.3質量%のアンモニア水70Lで洗浄した。この洗浄したアルミナ水和物のケーキを乾燥基準で1250gサンプリングし、純水を加えて12.5質量%Al濃度のアルミナ水和物の洗浄スラリーとした。この洗浄スラリーを攪拌しながら48%濃度の水酸化ナトリウム溶液を加えてpH11.0とした後、密閉式の熟成タンクに移し、95℃で24時間攪拌しながら、熟成して擬ベーマイトスラリーを調製した。図3に得られたアルミナの電子顕微鏡写真を示す。また、得られた擬ベーマイトの結晶サイズの平均値を電子顕微鏡写真から算出したところ、7nmであった。
(Comparative Example 1)
Comparative Example 1 differs from Examples 1 and 2 in that pseudoboehmite was used instead of ammonium dosonite or alumina derived from ammonium dosonite. This will be described in detail below.
Al 2 O 3, and sodium aluminate solution 5 wt% as a concentration, Al 2 O 3 concentration of 2.5 wt% of aluminum sulfate solution was prepared respectively and held at each 60 ° C.. First, a sodium aluminate solution is supplied to a 30 L tank A equipped with a stirrer at a flow rate of 1.7 kg, and 5 minutes after the start of supply of the sodium aluminate solution, an aluminum sulfate solution is supplied at a flow rate of 5 kg per minute. Supplied with stirring. Next, when the pH of the coarse slurry of alumina hydrate in tank A becomes 7.2, while maintaining the pH of the coarse slurry at 7.2 ± 0.2, each of the sodium aluminate solution and the aluminum sulfate solution is added. The supply was continued with stirring at a flow rate of 1.7 kg / min for 90 minutes, and the coarse slurry overflowing from the tank A was received in a tank B equipped with a 400 L stirrer provided at the bottom.
Further, the coarse slurry in the tank B was stirred for 1 hour while maintaining the temperature at 60 ° C. to prepare an alumina hydrate slurry. The alumina hydrate slurry (56 kg) was dewatered and collected with a filter, and washed with 70 L of 0.3 mass% ammonia water. 1250 g of this washed alumina hydrate cake was sampled on a dry basis, and pure water was added to obtain a washing slurry of alumina hydrate having a concentration of 12.5 mass% Al 2 O 3 . A 48% sodium hydroxide solution was added to the washed slurry while stirring to adjust the pH to 11.0, then transferred to a closed aging tank and aged at 95 ° C. for 24 hours to prepare a pseudo boehmite slurry. did. FIG. 3 shows an electron micrograph of the obtained alumina. Moreover, it was 7 nm when the average value of the crystal size of the obtained pseudo boehmite was computed from the electron micrograph.

得られた擬ベーマイトスラリー1739g(Alとして200g)と、超安定化Y型ゼオライト667g(Al+SiOとして600g)、アルミナゾルバインダー1304g(Alとして300g)、カオリン1047g(乾燥基準900g)、及び純水243gを混合して、触媒基準で40質量%濃度の混合物スラリーを作った後、この混合物スラリーを噴霧乾燥して微小球状粒子を得た。得られた微小球状粒子を洗浄してナトリウムや塩酸根等の不純物を除いた後、希土類金属塩化物の水溶液を用いてREとして2.0%となるようにイオン交換した(触媒C)。触媒Cの性状を表1に示す。 1739 g of the obtained pseudo boehmite slurry (200 g as Al 2 O 3 ), 667 g of ultra-stabilized Y-type zeolite (600 g as Al 2 O 3 + SiO 2 ), 1304 g of alumina sol binder (300 g as Al 2 O 3 ), 1047 g of kaolin ( The mixture was mixed with 900 g of a drying standard) and 243 g of pure water to prepare a mixture slurry having a concentration of 40% by mass based on the catalyst, and then the mixture slurry was spray-dried to obtain microspherical particles. The obtained fine spherical particles were washed to remove impurities such as sodium and hydrochloric acid radicals, and then ion exchanged to 2.0% as RE 2 O 3 using an aqueous solution of rare earth metal chloride (Catalyst C ). The properties of catalyst C are shown in Table 1.

(比較例2)
比較例2は、アンモニウムドーソナイト又はアンモニウムドーソナイト由来のアルミナを使用しないことが、実施例1及び2と異なっている。Y型アルミノシリケートゼオライト667g(Al+SiOとして600g)、アルミナゾルバインダー1304g(Alとして300g)、カオリン1279g(乾燥基準で1100g)、及び純水1750gを混合して、触媒基準で40質量%濃度の混合物スラリーを作成した後、この混合物スラリーを噴霧乾燥して微小球状粒子を得た。得られた微小球状粒子を洗浄してナトリウムや塩酸根等の不純物を除いた後、希土類金属塩化物の水溶液を用いてREとして2.0%となるようイオン交換した(触媒D)。触媒Dの性状を表1に示す。
(Comparative Example 2)
Comparative Example 2 is different from Examples 1 and 2 in that ammonium dosonite or alumina derived from ammonium dosonite is not used. 667 g of Y-type aluminosilicate zeolite (600 g as Al 2 O 3 + SiO 2 ), 1304 g of alumina sol binder (300 g as Al 2 O 3 ), 1279 g of kaolin (1100 g on a dry basis), and 1750 g of pure water are mixed, After preparing a mixture slurry having a concentration of 40% by mass, the mixture slurry was spray-dried to obtain fine spherical particles. The obtained fine spherical particles were washed to remove impurities such as sodium and hydrochloric acid radicals, and then ion-exchanged to 2.0% as RE 2 O 3 using an aqueous solution of rare earth metal chloride (catalyst D). . Properties of catalyst D are shown in Table 1.

(試験例1)
触媒A〜Dの性能評価を以下のように行った。触媒A〜Dをそれぞれ600℃で2時間焼成した。触媒A〜Dについて、更に、ナフテン酸ニッケルを触媒上にNiとして1000ppm、2000ppm、3000ppmを担持したものをそれぞれ作製し、それらを750℃でスチーム分圧を100%として13時間処理した。擬似平衡化した各触媒について、小型活性評価装置(ZAYTEL社製ACE−MAT)を使用して、表2に示す反応条件で触媒活性を測定した。表3に触媒A〜Dの活性の評価結果を示す。
(Test Example 1)
The performance evaluation of the catalysts A to D was performed as follows. Catalysts A to D were each calcined at 600 ° C. for 2 hours. Further, catalysts A to D were prepared by supporting nickel naphthenate on the catalyst as Ni and supporting 1000 ppm, 2000 ppm and 3000 ppm, respectively, and treating them at 750 ° C. with a steam partial pressure of 100% for 13 hours. About each catalyst which carried out the quasi-equilibrium, the catalyst activity was measured on the reaction conditions shown in Table 2 using the small activity evaluation apparatus (ACE-MAT by ZAYTEL). Table 3 shows the evaluation results of the activities of the catalysts A to D.

表3に示すように、触媒A〜Dは、ニッケルの担持量の増加と共に、水素選択性(H/K)及びコーク選択性(Coke/K)、すなわち、水素及びコークの収率が増加している。しかしながら、本発明のアンモニウムドーソナイトを使用した触媒A及びアンモニウムドーソナイト由来のアルミナを使用した触媒Bは、擬ベーマイトを使用した触媒C及びアルミナを使用していない触媒Dと比較して、水素選択性及びコーク選択性の上がり幅が小さく、水素及びコークの収率が低くなった。また、触媒A及び触媒Bは、触媒C及び触媒Dと比較して、ガソリン収率が高くなった。
このように、アンモニウムドーソナイトを使用した触媒A及びアンモニウムドーソナイト由来のアルミナを使用した触媒Bは、耐ニッケル性が高く、これらの触媒を使用することで、多量のニッケルが沈着、すなわち、多量のニッケルが含有された原料油を処理しても、水素収率及びコーク収率の増加を抑えることができると共に、ガソリン収率の低下を抑えることができる。
As shown in Table 3, the catalysts A to D increase the hydrogen selectivity (H 2 / K) and coke selectivity (Coke / K), that is, the yields of hydrogen and coke as the nickel loading increases. is doing. However, the catalyst A using the ammonium dawsonite of the present invention and the catalyst B using the ammonium dawsonite-derived alumina are compared to the catalyst C using pseudoboehmite and the catalyst D using no alumina, The increase in hydrogen selectivity and coke selectivity was small, and the yield of hydrogen and coke was low. Further, the gasoline yield of the catalyst A and the catalyst B was higher than that of the catalyst C and the catalyst D.
Thus, the catalyst A using ammonium dawsonite and the catalyst B using alumina derived from ammonium dawsonite have high nickel resistance, and by using these catalysts, a large amount of nickel is deposited. Even if a raw material oil containing a large amount of nickel is processed, an increase in hydrogen yield and coke yield can be suppressed, and a decrease in gasoline yield can be suppressed.

本発明は、前記した実施の形態に限定されるものではなく、本発明の要旨を変更しない範囲での変更は可能であり、例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組み合わせて本発明の炭化水素油の接触分解用触媒組成物及びその製造方法を構成する場合も本発明の権利範囲に含まれる。   The present invention is not limited to the above-described embodiment, and can be changed without changing the gist of the present invention. For example, some or all of the above-described embodiments and modifications are possible. The catalyst composition for catalytic cracking of hydrocarbon oil of the present invention and the method for producing the same are also included in the scope of the present invention.

アンモニウムドーソナイトの結晶の電子顕微鏡写真である。It is an electron micrograph of the crystal | crystallization of ammonium dosonite. アンモニウムドーソナイト由来のアルミナの結晶の電子顕微鏡写真である。It is an electron micrograph of the crystal | crystallization of the alumina derived from an ammonium dosonite. 擬ベーマイトの結晶の電子顕微鏡写真である。It is an electron micrograph of a pseudo boehmite crystal.

Claims (7)

結晶性アルミノシリケートゼオライトと、アンモニウムドーソナイトを含有する無機酸化物マトリックス前駆体とを含むことを特徴とする炭化水素油の接触分解用触媒組成物。   A catalytic composition for catalytic cracking of hydrocarbon oil, comprising a crystalline aluminosilicate zeolite and an inorganic oxide matrix precursor containing ammonium dosonite. 請求項1記載の炭化水素油の接触分解用触媒組成物において、前記アンモニウムドーソナイトは、結晶の幅方向の長さの平均値が20〜200nmであることを特徴とする炭化水素油の接触分解用触媒組成物。   The catalytic composition for catalytic cracking of hydrocarbon oil according to claim 1, wherein the ammonium dawsonite has an average length in the width direction of crystals of 20 to 200 nm. Catalyst composition for decomposition. 請求項1及び2のいずれか1項に記載の炭化水素油の接触分解用触媒組成物において、前記アンモニウムドーソナイトは、アルミナ換算で1質量%以上、40質量%以下含有されていることを特徴とする炭化水素油の接触分解用触媒組成物。   The catalyst composition for catalytic cracking of hydrocarbon oil according to any one of claims 1 and 2, wherein the ammonium dosonite is contained in an amount of 1% by mass to 40% by mass in terms of alumina. A catalytic composition for catalytic cracking of hydrocarbon oils. 結晶性アルミノシリケートゼオライトと、アンモニウムドーソナイト由来のアルミナを含有する無機酸化物マトリックス前駆体とを含むことを特徴とする炭化水素油の接触分解用触媒組成物。   A catalytic composition for catalytic cracking of hydrocarbon oil, comprising crystalline aluminosilicate zeolite and an inorganic oxide matrix precursor containing alumina derived from ammonium dosonite. 請求項4記載の炭化水素油の接触分解用触媒組成物において、前記アルミナは、結晶の幅方向の長さの平均値が20〜200nmであることを特徴とする炭化水素油の接触分解用触媒組成物。   5. The catalyst for catalytic cracking of hydrocarbon oil according to claim 4, wherein the alumina has an average length in the width direction of crystals of 20 to 200 nm. Composition. 請求項4及び5のいずれか1項に記載の炭化水素油の接触分解用触媒組成物において、前記アルミナは、1質量%以上、40質量%以下含有されていることを特徴とする炭化水素油の接触分解用触媒組成物。   6. The catalyst composition for catalytic cracking of hydrocarbon oil according to claim 4, wherein the alumina is contained in an amount of 1% by mass to 40% by mass. A catalytic composition for catalytic cracking. 請求項1〜6のいずれか1項に記載の炭化水素油の接触分解用触媒組成物において、(a)細孔容積が、0.20ml/g以上、0.50ml/g以下、(b)細孔直径が6〜1000nmである細孔群の細孔容積に対して、細孔直径が20〜100nmの細孔群の細孔容積の割合が45〜70%、及び、(c)比表面積が、150m/g以上、450m/g以下であることを特徴とする炭化水素油の接触分解用触媒組成物。 The catalyst composition for catalytic cracking of hydrocarbon oil according to any one of claims 1 to 6, wherein (a) the pore volume is 0.20 ml / g or more and 0.50 ml / g or less, (b) The ratio of the pore volume of the pore group having a pore diameter of 20 to 100 nm to the pore volume of the pore group having a pore diameter of 6 to 1000 nm is 45 to 70%, and (c) the specific surface area Is a catalyst composition for catalytic cracking of hydrocarbon oil, characterized in that it is 150 m 2 / g or more and 450 m 2 / g or less.
JP2007340495A 2007-12-28 2007-12-28 Catalyst composition for catalytic cracking of hydrocarbon oil Pending JP2009160496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007340495A JP2009160496A (en) 2007-12-28 2007-12-28 Catalyst composition for catalytic cracking of hydrocarbon oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007340495A JP2009160496A (en) 2007-12-28 2007-12-28 Catalyst composition for catalytic cracking of hydrocarbon oil

Publications (1)

Publication Number Publication Date
JP2009160496A true JP2009160496A (en) 2009-07-23

Family

ID=40963723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007340495A Pending JP2009160496A (en) 2007-12-28 2007-12-28 Catalyst composition for catalytic cracking of hydrocarbon oil

Country Status (1)

Country Link
JP (1) JP2009160496A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016413A1 (en) * 2009-08-03 2011-02-10 出光興産株式会社 Hydrocracking catalyst for heavy oil and method for hydrotreating heavy oil using same
JP2013506548A (en) * 2009-10-02 2013-02-28 ビー・エイ・エス・エフ、コーポレーション Improved heavy metal capture promoter for FCC process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016413A1 (en) * 2009-08-03 2011-02-10 出光興産株式会社 Hydrocracking catalyst for heavy oil and method for hydrotreating heavy oil using same
JP2011031194A (en) * 2009-08-03 2011-02-17 Idemitsu Kosan Co Ltd Hydrocracking catalyst for heavy oil and method for hydrotreating heavy oil using the same
US8795513B2 (en) 2009-08-03 2014-08-05 Jgc Catalysts And Chemicals Ltd. Hydrocracking catalyst for heavy oil and method for hydrotreating heavy oil using same
JP2013506548A (en) * 2009-10-02 2013-02-28 ビー・エイ・エス・エフ、コーポレーション Improved heavy metal capture promoter for FCC process

Similar Documents

Publication Publication Date Title
JP2908959B2 (en) New catalyst composition
TWI554604B (en) Catalytic cracking catalyst includes modified Y zeolite and preparation method thereof
JP5940935B2 (en) Hydrocarbon catalytic cracking catalyst
JP2018103120A (en) Metal scavenger, manufacturing method of metal scavenger, and fluid contact decomposition catalyst
CN104014361B (en) A kind of catalytic cracking catalyst and preparation method thereof
JP5258488B2 (en) Hydrocarbon catalytic cracking catalyst
WO2014105553A1 (en) Preparation of a hydrocarbon conversion catalyst
JP4859766B2 (en) Method for producing fluid catalytic cracking catalyst
ES2269687T3 (en) BAYERITA ALUMINIA COATED ZEOLITE AND FRACTIONATION CATALYST CONTAINING THE SAME.
JP5954970B2 (en) Hydrocarbon catalytic cracking catalyst and process for producing the same
JP2009160496A (en) Catalyst composition for catalytic cracking of hydrocarbon oil
CA3032811A1 (en) Fcc catalyst with more than one silica, its preparation and use
JP2020032352A (en) Fluid contact cracking catalyst for hydrocarbon oil
JP5426308B2 (en) Fluid catalytic cracking method
JP7278168B2 (en) Vanadium scavenger and fluid catalytic cracking catalyst
JP7178829B2 (en) Fluid catalytic cracking catalyst for hydrocarbon oil
EP2929936A1 (en) A pseudoboehmite additive support and a process for the preparation thereof
JP4859774B2 (en) Method for producing fluid catalytic cracking catalyst
JPH11156197A (en) Cracking catalyst for hydrocarbon oil
JP5579236B2 (en) Process for producing hydrocarbon fluid catalytic cracking catalyst
JP7178788B2 (en) Fluid catalytic cracking catalyst matrix, fluid catalytic cracking catalyst, and method for producing fluid catalytic cracking catalyst matrix and fluid catalytic cracking catalyst
JP7264681B2 (en) Vanadium scavenger, method for producing vanadium scavenger, and fluid catalytic cracking catalyst
CN109465005B (en) Sulfur transfer catalyst and preparation method thereof
JP7128003B2 (en) Fluid catalytic cracking catalyst matrix, fluid catalytic cracking catalyst, and method for producing fluid catalytic cracking catalyst matrix and fluid catalytic cracking catalyst
JP3730698B2 (en) Silica-alumina composite oxide

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100513