JP2009159735A - Distribution system operation system and its method - Google Patents

Distribution system operation system and its method Download PDF

Info

Publication number
JP2009159735A
JP2009159735A JP2007335206A JP2007335206A JP2009159735A JP 2009159735 A JP2009159735 A JP 2009159735A JP 2007335206 A JP2007335206 A JP 2007335206A JP 2007335206 A JP2007335206 A JP 2007335206A JP 2009159735 A JP2009159735 A JP 2009159735A
Authority
JP
Japan
Prior art keywords
distribution
voltage
distribution line
line
distribution system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007335206A
Other languages
Japanese (ja)
Other versions
JP5065879B2 (en
Inventor
Naoki Kobayashi
小林  直樹
Jun Motohashi
準 本橋
Takao Hirai
崇夫 平井
Kazuya Komata
和也 小俣
Akinori Nishi
昭憲 西
Toshio Tanaka
年男 田中
Takeshi Kaneko
武 金子
Masao Hori
政夫 堀
Kazunobu Fukuda
和宜 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba System Technology Corp
Tokyo Electric Power Co Holdings Inc
Original Assignee
Toshiba Corp
Tokyo Electric Power Co Inc
Toshiba System Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Electric Power Co Inc, Toshiba System Technology Corp filed Critical Toshiba Corp
Priority to JP2007335206A priority Critical patent/JP5065879B2/en
Publication of JP2009159735A publication Critical patent/JP2009159735A/en
Application granted granted Critical
Publication of JP5065879B2 publication Critical patent/JP5065879B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/22Flexible AC transmission systems [FACTS] or power factor or reactive power compensating or correcting units

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable a stable distribution system operation by enabling power supply to a distribution system including an unexpected large consumer in a conventional manner and by maintaining the voltage of the entire power distribution lines at appropriate values. <P>SOLUTION: The distribution system operation system for supplying power to a distribution system including a large consumer is equipped with multiple loops configured by linking a plurality of power distribution lines 3 via a circuit breaker 8, and with a voltage monitoring controller 16 for controlling the voltage in the distribution system. The voltage monitoring controller 16 estimates the voltage of the entire power distribution line based on the measured information of the plurality of nodes in the distribution system, and when the voltage is not within an appropriate range, the voltage monitoring controller controls the voltage in the distribution system by controlling the voltage regulators 1, 9 set in the distribution system. The multiple loops include distribution lines with and without a branched load. The voltage monitoring controller 16 controls the voltage in the distribution system by enlarging the appropriate range of the voltage in the distribution line without the branched load relative to the distribution line with the branched load, from among the plurality of distribution lines constituting the multiple loops. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、大口需要家を含む配電系統に電力を供給するための配電系統の構成および運用に関するものである。   The present invention relates to the configuration and operation of a power distribution system for supplying power to a power distribution system including large-volume consumers.

配電系統の構成としては、樹枝状方式、ループ方式、スポットネットワーク方式など(例えば、非特許文献1参照)がある。このうち、樹枝状方式は、特定地域を除く多くの地域で採用されている。   As a configuration of the power distribution system, there are a dendritic method, a loop method, a spot network method, and the like (for example, see Non-Patent Document 1). Of these, the dendritic method is adopted in many areas except for specific areas.

また、ループ方式は、配電線を開閉器(ループ点開閉器)で連系して環状の形態とする方式であり、連系する両配電線の負荷特性が異なる場合には、常時閉路ループとすることによって電流分布が改善され、電圧降下、電力損失が少なく融通性も高くなるという利点がある。   In addition, the loop system is a system in which the distribution lines are linked by a switch (loop point switch) to form an annular shape. When the load characteristics of the both distribution lines are different, By doing so, there is an advantage that the current distribution is improved, the voltage drop and the power loss are small, and the flexibility is high.

このループ方式には、ループ点開閉器を常時開路しておき、故障発生時または作業停電時にこれを自動投入して逆送する常時開路ループ方式と、ループ点開閉器を常時閉路しておく常時閉路ループ方式とがあるが、さらに、ループ線路を複数個組み合わせた多重ループ方式も考えられている。但し、非特許文献1にも記載されているように、わが国の現状では、ループ方式とする場合、概して、高感度選択接地保護方式を採用可能な常時開路ループ方式で運転されており、常時閉路ループとすることによる前記の利点を活かしきれていないことが多い。   In this loop method, the loop point switch is always open, and when a failure occurs or when a power failure occurs, the loop point switch is automatically turned on and reversely fed, and the loop point switch is always closed. There is a closed loop system, but a multiple loop system combining a plurality of loop lines is also considered. However, as described in Non-Patent Document 1, in the current situation in Japan, when the loop method is used, it is generally operated in a normally open loop method that can adopt a high-sensitivity selective grounding protection method. In many cases, the above-described advantages of the loop are not fully utilized.

一方、配電系統における電圧調整は、大別すると、変電所送出電圧の調整、線路電圧の調整、需要家受電端の電圧調整に分類できる。現在、変電所送出電圧の調整には、母線電圧一括調整方式が主として用いられ、その具体的な方式としては、負荷変動に応じて送出電圧を調整する線路電圧降下補償器(LDC)方式などがあり、電圧調整装置としては、負荷時タップ切換変圧器(LRT)や負荷時電圧調整器(LRA)などが採用されている(例えば、特許文献1〜3参照)。   On the other hand, voltage adjustment in the distribution system can be broadly classified into adjustment of substation transmission voltage, adjustment of line voltage, and adjustment of voltage at the consumer receiving end. Currently, the bus voltage batch adjustment method is mainly used to adjust the substation transmission voltage, and the specific method is a line voltage drop compensator (LDC) method that adjusts the transmission voltage according to load fluctuation. In addition, as a voltage regulator, a load tap change transformer (LRT), a load voltage regulator (LRA), and the like are employed (see, for example, Patent Documents 1 to 3).

線路電圧の調整については、亘長が長く電圧降下が大きい配電線では、ステップ式自動電圧調整器(SVR)などの線路電圧調整器が用いられるが、他にも、電力用コンデンサ(SC)や静止型無効電力補償装置(SVC)などを用いて、配電線に流れる無効電力を調整することにより電圧調整を行う場合もある(例えば、特許文献4参照)。需要家受電端の電圧は、柱上変圧器タップ等により調整される(例えば、特許文献5参照)。   As for the line voltage adjustment, a line voltage regulator such as a step-type automatic voltage regulator (SVR) is used in a distribution line having a long span and a large voltage drop. In addition, a power capacitor (SC), The voltage may be adjusted by adjusting the reactive power flowing through the distribution line using a static reactive power compensator (SVC) or the like (see, for example, Patent Document 4). The voltage at the consumer receiving end is adjusted by a pole transformer tap or the like (see, for example, Patent Document 5).

なお、配電系統の構成が樹枝状方式の場合、需要変動パターンが大きく異なる配電線がある配電系統では、配電線間で電圧降下に差があり、前記の母線電圧一括調整方式では全ての配電線の電圧を同じ適正値に維持するのは難しい。また、分散型電源が連系する線路がある配電系統においても、分散型電源が連系する線路と分散型電源がない線路とで電圧降下に差が生じ、同じ適正値に維持することが難しい場合がある。   In addition, when the distribution system configuration is a dendritic system, there is a difference in voltage drop between distribution lines in a distribution system with distribution lines with greatly different demand fluctuation patterns. It is difficult to maintain the same voltage at the same appropriate value. Moreover, even in a distribution system with a line connected to a distributed power source, there is a difference in voltage drop between a line connected to the distributed power source and a line without a distributed power source, and it is difficult to maintain the same appropriate value. There is a case.

ところで、配電系統内の需要家として、近年、郊外の大型ショッピングモールに代表されるような大口需要家が増える傾向にあるが、そのような大口需要家からの新規申込みがあった場合、供給電圧の決定は、通常、契約容量によって判断されることが多い。また、大口需要家からの新規申込みに対して、配電線路の新設が必要となる場合は、一般的には、供給電圧が高く、配電線亘長が長いほど建設コストが掛かり、建設期間も長くなる傾向がある。このため、安価に、かつ、短期間に配電線路を新設する一つの方法として、なるべく下位の供給電圧の配電線路により電力供給する方法が考えられる。   By the way, in recent years, there has been a tendency to increase the number of large-scale customers represented by large-scale shopping malls in the suburbs as consumers in the distribution system, but if there is a new application from such large-scale customers, the supply voltage This decision is usually judged by the contract capacity. When a new distribution line is required for a new application from a large customer, the supply voltage is generally higher, the longer the distribution line length, the higher the construction cost and the longer the construction period. Tend to be. For this reason, as one method for newly establishing a distribution line at a low cost in a short period of time, a method of supplying power through a distribution line having a supply voltage as low as possible is conceivable.

特開2003−92828JP 2003-92828 A 特開平9−28037JP-A-9-28037 特開平7−163051JP 7-163051 A 特開2004−266915JP2004-266915 特開2005−341668JP-A-2005-341668 電気工学ハンドブック第6版、電気学会編、オーム社、2001年2月、ISBN:4886860125Electrical Engineering Handbook 6th Edition, The Institute of Electrical Engineers, Ohmsha, February 2001, ISBN: 4886860125

しかしながら、上記のような従来技術には、次のような問題点があった。まず、大口需要家を含む配電系統に電力供給を行う場合、従来の樹枝状方式で供給可能な送電容量は、配電線として用いられる架空ケーブルや電線の仕様により限られ、その容量以上の需要家に対しては電力供給できない。これに対し、ループ方式として環状の形態をとれば、樹枝状方式に比べて送電容量は確保できるが、ループ化する両配電線の需要変動パターンや線路インピーダンスが相違する場合には、負荷電流が一方の配電線に偏って許容値を超過する問題が生じる。   However, the prior art as described above has the following problems. First, when supplying power to a distribution system including large customers, the transmission capacity that can be supplied by the conventional dendritic method is limited by the specifications of overhead cables and wires used as distribution lines, and consumers that exceed that capacity Cannot supply power. On the other hand, if the loop form is an annular form, the transmission capacity can be secured compared to the dendritic form, but if the demand fluctuation pattern and line impedance of both distribution lines to be looped are different, the load current is One distribution line is biased and a problem of exceeding the allowable value occurs.

特に、従来の想定以上の大口需要家に対して電力供給することになると、大口需要家を含む配電線と他の配電線との需要変動パターンが異なる場合、電圧降下の差が従来以上となり、従来のLDC方式などの母線電圧一括調整方式では、全ての配電線の電圧を同じ適正値に維持するのは従来以上に困難になることが予想される。   In particular, when power is supplied to larger consumers than expected, if the fluctuation pattern of demand between distribution lines including large consumers and other distribution lines is different, the difference in voltage drop will be more than conventional, In the conventional bus voltage batch adjustment method such as the LDC method, it is expected that it will be more difficult than before to maintain the voltage of all the distribution lines at the same appropriate value.

本発明は、以上のような従来技術の問題点を解決するために提案されたものであり、その目的は、従来の想定以上の大口需要家を含む配電系統に対して電力供給が可能で、かつ、配電線全体の電圧を適正値に維持して安定的な配電系統運用を可能とする配電系統運用システムとその方法を提供することである。   The present invention has been proposed in order to solve the problems of the prior art as described above, and the purpose thereof is to supply power to a distribution system including large consumers more than the conventional assumption, And it is providing the power distribution system operation system and method which enable stable power distribution system operation by maintaining the voltage of the whole distribution line at an appropriate value.

本発明は、複数の配電線を多重ループ化するという着想に基づき提案されたものであり、以下のような技術的特徴を有するものである。   The present invention has been proposed based on the idea of making a plurality of distribution lines into multiple loops, and has the following technical features.

請求項1に記載の配電系統運用システムは、大口需要家を含む配電系統に電力を供給する配電系統運用システムにおいて、配電系統の複数の配電線を、各配電線に設けた配電線連係用の遮断器を介して連係させることにより構成された多重ループと、配電系統の電圧を制御する電圧監視制御装置を備えたことを特徴とするものであり、特に、多重ループの構成とそれに応じた電圧監視制御装置の機能に特徴を有するものである。ここで、電圧監視制御装置は、前記配電系統の複数のノードの電圧および電流の計測情報と、予め保有している配電線の線路インピーダンスおよび負荷情報に基づき、当該配電系統の配電線全体の電圧が適正範囲内であるか否かを評価し、適正範囲内でない場合に当該配電系統に設置された電圧調整機器を制御することにより配電系統の電圧を制御する装置である。また、多重ループは、分岐負荷がない配電線と分岐負荷がある配電線を含む。そして、電圧監視制御装置は、前記多重ループを構成する複数の配電線のうち、前記分岐負荷がある配電線に対して前記分岐負荷がない配電線の電圧の適正範囲を拡大して前記配電系統の電圧を制御するように構成される。   The distribution system operation system according to claim 1 is a distribution system operation system that supplies electric power to a distribution system including large-volume consumers. A plurality of distribution lines of the distribution system are used for distribution line linkage provided in each distribution line. It is characterized by having a multiplex loop configured by linking through a circuit breaker and a voltage monitoring control device for controlling the voltage of the distribution system, and in particular, the configuration of the multiplex loop and the voltage corresponding thereto It has a feature in the function of the monitoring control device. Here, the voltage monitoring and control device is configured to measure the voltage and current of the plurality of nodes of the distribution system, and the voltage of the entire distribution line of the distribution system based on the line impedance and load information of the distribution line that is held in advance. Is a device for controlling the voltage of the power distribution system by evaluating whether or not is within the proper range and controlling the voltage regulating device installed in the power distribution system when it is not within the proper range. The multiple loop includes a distribution line having no branch load and a distribution line having a branch load. And the voltage monitoring control device expands the appropriate range of the voltage of the distribution line without the branch load with respect to the distribution line with the branch load among the plurality of distribution lines constituting the multiple loop, and the distribution system Configured to control the voltage of the.

請求項8に記載の配電系統運用システムは、大口需要家を含む配電系統に電力を供給する配電系統運用システムにおいて、配電系統の複数の配電線を、各配電線に設けた配電線連係用の各遮断器を介して連係させることにより構成された多重ループと、配電系統の電圧を制御する電圧監視制御装置を備えたことを特徴とするものであり、特に、電圧監視制御装置の機能と配電線連係用の各遮断器の構成および機能に特徴を有するものである。ここで、電圧監視制御装置は、前記配電系統の複数のノードの電圧および電流の計測情報と、予め保有している配電線の線路インピーダンスおよび負荷情報に基づき、当該配電系統の配電線全体の電圧が適正範囲内であるか否かを評価し、適正範囲内でない場合に当該配電系統に設置された電圧調整機器を制御することにより配電系統の電圧を制御する装置である。また、配電線連係用の各遮断器は、配電系統の電気量を計測する計測機能、配電線事故の有無を判定する事故判定機能、および配電線事故を発生した配電線を選択遮断する選択遮断機能をそれぞれ有する遮断装置として構成される。さらに、配電線連係用の各遮断装置は、前記計測機能により計測された電気量に基づき、前記事故判定機能により配電線事故発生と判定した場合には、この配電線事故を発生した配電線を前記選択遮断機能により選択遮断して前記多重ループの一部または全てを解消し、当該配電線事故が回復した場合には、再閉路を実施して配電線を再び多重ループ化するように構成される。   The distribution system operation system according to claim 8 is a distribution system operation system that supplies power to a distribution system including a large-volume consumer. For the distribution system linkage system, a plurality of distribution lines of the distribution system are provided on each distribution line. It is characterized by comprising a multiple loop configured by linking through each circuit breaker and a voltage monitoring control device for controlling the voltage of the distribution system, and in particular, the function and distribution of the voltage monitoring control device. It is characterized by the configuration and function of each circuit breaker for linking wires. Here, the voltage monitoring and control device is configured to measure the voltage and current of the plurality of nodes of the distribution system, and the voltage of the entire distribution line of the distribution system based on the line impedance and load information of the distribution line that is held in advance. Is a device for controlling the voltage of the power distribution system by evaluating whether or not is within the proper range and controlling the voltage regulating device installed in the power distribution system when it is not within the proper range. In addition, each circuit breaker for distribution line linking has a measurement function that measures the amount of electricity in the distribution system, an accident determination function that determines whether there is a distribution line accident, and a selective interruption that selectively blocks distribution lines that have caused distribution line accidents. It is configured as a shut-off device having functions. Furthermore, each interruption | blocking device for distribution line linkage is based on the amount of electricity measured by the said measurement function, and when it is determined that the distribution line accident has occurred by the accident determination function, the distribution line in which this distribution line accident has occurred is determined. The selective cutoff function is used to selectively cut off part or all of the multiplex loop, and when the distribution line fault is recovered, the redistribution is performed and the distribution line is configured to multiplex loop again. The

請求項9、10に記載の配電系統運用方法は、請求項1、8に記載の配電系統運用システムを、方法の観点からそれぞれ把握したものである。   The distribution system operation method according to claims 9 and 10 is obtained by grasping the distribution system operation system according to claims 1 and 8 from the viewpoint of the method.

以上のような特徴を有する本発明によれば、まず、配電線を多重ループ化することにより、従来の想定以上の大口需要家を含む配電系統に対して十分な送電容量を確保することが可能となる。また、配電系統の複数のノードの電圧および電流の計測情報に基づき、配電線全体の電圧を評価し、評価結果に応じて配電系統の電圧調整機器を制御することにより、配電線全体の電圧制御が容易となるため、各配電線の需要変動パターンが大きく異なる場合でも、LDC方式などの母線電圧一括調整方式による電圧制御に比べて、全ての配電線の電圧を適正範囲内に維持可能となり、安定的な配電系統運用を行うことができる。   According to the present invention having the features as described above, it is possible to secure a sufficient transmission capacity for a distribution system including a large-volume consumer that exceeds the conventional assumption by first forming a multiple distribution loop. It becomes. In addition, the voltage of the entire distribution line is controlled by evaluating the voltage of the entire distribution line based on the measurement information of the voltage and current of multiple nodes in the distribution system, and controlling the voltage regulator of the distribution system according to the evaluation result. Therefore, even if the demand fluctuation pattern of each distribution line is greatly different, it is possible to maintain the voltage of all distribution lines within the appropriate range compared to voltage control by the bus voltage batch adjustment method such as LDC method, Stable distribution system operation can be performed.

また、新規の大口需要家に対して配電系統設備を新設するような場合、大口需要家との契約容量や、配電用変電所から大口需要家までの配電線路の亘長によっては、従来の供給電圧より低い電圧階級の配電線を多重ループ化して電力供給した方が、建設コストが安くなり、また、建設期間も短くなる、という利点も得られる。   In addition, when new distribution system facilities are installed for new large-volume customers, depending on the contracted capacity with the large-volume customers and the length of the distribution line from the distribution substation to the large-volume customers, It is advantageous to supply power by making a distribution loop of a voltage class lower than the voltage into multiple loops, so that the construction cost is reduced and the construction period is shortened.

さらに、請求項1、9に記載の発明によれば、分岐負荷がない配電線と分岐負荷がある配電線を含む多重ループを構成して、この多重ループのうち、分岐負荷がない配電線の電圧の適正範囲を拡大して配電系統の電圧を制御することにより、配電系統全体の電圧制御における制約条件が緩和されるため、分岐負荷がある配電線のみを多重ループ化した場合に比べて配電系統全体の電圧調整が容易になる。   Furthermore, according to invention of Claim 1, 9, the multiple loop containing the distribution line which does not have a branch load, and the distribution line which has a branch load is comprised, Among the multiple loops, the distribution line which does not have a branch load By controlling the voltage of the distribution system by expanding the appropriate voltage range, the restrictions on the voltage control of the entire distribution system are relaxed. The voltage adjustment of the whole system becomes easy.

また、請求項1、9に記載の発明において、分岐負荷がない配電線は、新設の配電線であってもよいため、大口需要家からの新規申込みに対応するための配電線設備の工事を他の需要家に影響を与えることなく実施可能であり、新規申込みに素早く対応できる。   Further, in the inventions according to claims 1 and 9, since the distribution line having no branching load may be a newly established distribution line, the construction of the distribution line facility for responding to a new application from a large-scale customer is required. It can be implemented without affecting other customers and can respond quickly to new applications.

一方、請求項8、10に記載の発明によれば、配電線事故が発生した場合に、この配電線事故を発生した配電線のみを、配電線連係用の遮断装置により自動的に選択遮断できるため、残りの配電線によるループ運用により安定的に電力供給を継続でき、高い供給信頼度が得られる。   On the other hand, according to the inventions described in claims 8 and 10, when a distribution line accident occurs, only the distribution line in which the distribution line accident has occurred can be automatically selected and blocked by the distribution line linking breaker. Therefore, the power supply can be stably continued by the loop operation with the remaining distribution lines, and high supply reliability can be obtained.

また、請求項8、10に記載の発明において、多重ループが、分岐負荷がある既存の配電線を含む場合には、既存設備の有効活用とともに既存配電線の供給信頼度を向上できる。   Further, in the inventions according to claims 8 and 10, when the multiple loop includes an existing distribution line having a branch load, it is possible to improve the supply reliability of the existing distribution line as well as effectively use the existing facility.

本発明によれば、配電線を多重ループ化するとともに、配電系統の複数のノードの電圧および電流の計測情報に基づき、配電線全体の電圧を評価し、評価結果に応じて配電系統の電圧調整機器を制御することにより、従来の想定以上の大口需要家を含む配電系統に対して電力供給が可能で、かつ、配電線全体の電圧を適正値に維持して安定的な配電系統運用を可能とする配電系統運用システムとその方法を提供することができる。   According to the present invention, the distribution line is formed into multiple loops, the voltage of the entire distribution line is evaluated based on voltage and current measurement information of a plurality of nodes in the distribution system, and the voltage adjustment of the distribution system is performed according to the evaluation result. By controlling the equipment, it is possible to supply power to the distribution system including large consumers that are larger than expected, and to maintain the voltage of the entire distribution line at an appropriate value, enabling stable distribution system operation. It is possible to provide a power distribution system operation system and a method thereof.

[第1の実施形態]
[構成]
図1は、本発明を適用した第1の実施形態に係る配電系統運用システムを示す構成図である。この図1に示す配電系統運用システムにおいては、一例として、分岐負荷がある配電線と分岐負荷がない配電線を含む3回線の配電線を多重ループ化してループ系統を構成した場合を示している。なお、本実施形態におけるループ系統の構成の特徴は、分岐負荷がある配電線と分岐負荷がない配電線を含む配電線を多重ループ化する点であるが、ループ系統を構成する回線数や分岐負荷の有無に係る配電線の組み合わせは自由に選択可能である。
[First Embodiment]
[Constitution]
FIG. 1 is a configuration diagram showing a distribution system operation system according to a first embodiment to which the present invention is applied. In the distribution system operation system shown in FIG. 1, as an example, a case is shown in which a loop system is configured by multiplex-looping three distribution lines including a distribution line having a branch load and a distribution line having no branch load. . The feature of the configuration of the loop system in this embodiment is that a distribution line including a distribution line having a branch load and a distribution line having no branch load is made into multiple loops. A combination of distribution lines according to the presence or absence of a load can be freely selected.

図1に示す配電系統運用システムにおいて、配電系統は、配電用変電所の電圧調整機能を備えた配電用変圧器1に、配電用変電所母線2を介して、複数の配電線3a〜3dを接続して構成されており、このうち、3回線の配電線3a〜3cは、ループ系統の母線4により多重ループ化され、ループ系統を構成している。   In the distribution system operation system shown in FIG. 1, the distribution system connects a plurality of distribution lines 3 a to 3 d to a distribution transformer 1 having a voltage adjustment function of a distribution substation via a distribution substation bus 2. Of these, the three distribution lines 3a to 3c are formed into multiple loops by the bus 4 of the loop system, and constitute a loop system.

なお、上記および以降の説明において、添え字のアルファベット文字の「a」、「b」、「c」は、ループ系統を構成する配電線またはそこに設けられた要素を回線ごとに区別して示し、「d」はループ系統以外の配電線またはそこに設けられた要素であることを示している。また、これらの添え字のアルファベット文字は、個々の配電線の区別が不要な場合には適宜省略する。   In the above and the following description, the subscript alphabet letters “a”, “b”, and “c” indicate the distribution lines constituting the loop system or the elements provided therein, separately for each line, “D” indicates a distribution line other than the loop system or an element provided therein. Further, these alphabetic letters of the subscripts are omitted as appropriate when it is not necessary to distinguish between individual distribution lines.

ループ系統を構成する3回線の配電線3a〜3cのうち、2回線の配電線3b,3cは、配電用変電所母線2からループ点となるループ系統の母線4までの間に分岐負荷がない配電線であり、残りの配電線3aには、配電用変電所母線2からループ点となるループ系統の母線4までの間に分岐負荷となる負荷線5が設けられている。具体的には、負荷線5がない配電線3b,3cは、例えば、新設の配電線とすることができ、これらの新設の配電線3b,3cと、負荷線5がある既存の配電線3aとでループ系統を構成することができる。   Of the three lines of distribution lines 3a to 3c constituting the loop system, the two lines of distribution lines 3b and 3c have no branch load between the distribution substation bus 2 and the loop system bus 4 serving as a loop point. The remaining distribution line 3a is provided with a load line 5 serving as a branch load between the distribution substation bus 2 and the loop system bus 4 serving as a loop point. Specifically, the distribution lines 3b and 3c without the load line 5 can be, for example, newly installed distribution lines. These new distribution lines 3b and 3c and the existing distribution line 3a with the load line 5 can be used. A loop system can be configured with.

図中6はループ系統を構成する配電線3のインピーダンス、7は、複数の配電線3を配電用変電所母線2に接続する配電用変電所の遮断器である。また、8は、ループ系統を構成する配電線3a〜3cをループ系統の母線4に接続する遮断器であり、このループ系統の遮断器8は、配電線3の電圧、電流等の物理量を計測する計測機能を備えている。   In the figure, 6 is the impedance of the distribution line 3 constituting the loop system, and 7 is a circuit breaker of the distribution substation that connects the plurality of distribution lines 3 to the distribution substation bus 2. Reference numeral 8 denotes a circuit breaker that connects the distribution lines 3a to 3c constituting the loop system to the bus line 4 of the loop system. The circuit breaker 8 of the loop system measures physical quantities such as voltage and current of the distribution line 3. It has a measurement function.

図中9は、各配電線3の電圧を制御する電圧制御機器であり、各配電線3の電圧、電流等の物理量を計測する計測機能を備えている。また、図中10は、線路の電圧、電流等を計測する計測機能を備えた開閉器または遮断器である。具体的な電圧制御機器9としては、例えば、ステップ式自動電圧調整器(SVR)、電力用コンデンサ(SC)、あるいは、静止型無効電力補償装置(SVC)などが使用される。   In the figure, reference numeral 9 denotes a voltage control device for controlling the voltage of each distribution line 3 and has a measurement function for measuring physical quantities such as voltage and current of each distribution line 3. In the figure, reference numeral 10 denotes a switch or circuit breaker having a measuring function for measuring the voltage, current, etc. of the line. As the specific voltage control device 9, for example, a step type automatic voltage regulator (SVR), a power capacitor (SC), a static reactive power compensator (SVC), or the like is used.

図1においては、電圧制御機器9の配置接続構成の一例として、各1つの電圧制御機器9a〜9cが、ループ系統を構成する各配電線3a〜3cの中間付近にそれぞれ接続されると共に、1回線の配電線3aのループ外部の一端には、もう1つの電圧制御機器9aが接続されてなる構成が示されている。なお、図1に示すこのような電圧制御機器9の配置接続構成は、単なる一例にすぎず、各配電線に対する電圧制御機器の接続箇所は、他にも、例えば、配電用変電所の遮断器付近やループ点付近等、配電線における任意の地点に自由に接続可能である。   In FIG. 1, as an example of the arrangement connection configuration of the voltage control device 9, each one voltage control device 9 a to 9 c is connected near the middle of each distribution line 3 a to 3 c constituting the loop system, and 1 A configuration in which another voltage control device 9a is connected to one end outside the loop of the distribution line 3a of the line is shown. The arrangement and connection configuration of the voltage control device 9 shown in FIG. 1 is merely an example, and other connection points of the voltage control device to each distribution line include, for example, a circuit breaker of a distribution substation. It can be freely connected to any point on the distribution line such as near or near the loop point.

図中11は大口需要家の受電設備である。なお、説明の簡略化の観点から、以降の説明中では、大口需要家11と適宜略称する。12は大口需要家11をループ系統の母線4に接続する開閉装置、13は大口需要家11の力率を改善するための調相設備である。   In the figure, 11 is a power receiving facility for large consumers. In addition, from the viewpoint of simplification of explanation, in the following explanation, it is abbreviated as “large customer 11” as appropriate. Reference numeral 12 denotes a switchgear for connecting the large customer 11 to the bus line 4 of the loop system, and 13 is a phase adjusting facility for improving the power factor of the large customer 11.

図中14は配電用変電所の電流変成器(CT)、15は配電用変電所の電圧変成器(VT)、16は電圧監視制御装置、17は配電線3に設けられたインピーダンス調整装置である。なお、図1において、各インピーダンス調整装置17a〜17cは、配電用変電所の遮断器7a付近に接続されているが、これは単なる一例にすぎず、各配電線に対するインピーダンス調整装置の接続箇所は、他にも、例えば、配電線の中間付近やループ点付近等、配電線における任意の地点に自由に接続可能である。また、図中200は通信ネットワーク、300は配電用変電所の上位の電力系統を示す。   In the figure, 14 is a current transformer (CT) of the distribution substation, 15 is a voltage transformer (VT) of the distribution substation, 16 is a voltage monitoring control device, and 17 is an impedance adjustment device provided in the distribution line 3. is there. In addition, in FIG. 1, although each impedance adjusting device 17a-17c is connected to the circuit breaker 7a vicinity of the distribution substation, this is only an example and the connection location of the impedance adjusting device with respect to each distribution line is as follows. In addition, for example, it is possible to freely connect to any point on the distribution line such as near the middle of the distribution line or near the loop point. In the figure, reference numeral 200 denotes a communication network, and 300 denotes an upper power system of a distribution substation.

なお、電圧監視制御装置16と、配電用変圧器1、遮断器8、電圧制御機器9、開閉器または遮断器10、電流変成器14、電圧変成器15は通信ネットワーク200で繋がっており、計測値や制御指令を送受信できる。   Note that the voltage monitoring control device 16, the distribution transformer 1, the circuit breaker 8, the voltage control device 9, the switch or circuit breaker 10, the current transformer 14, and the voltage transformer 15 are connected by a communication network 200, and are measured. Can send and receive values and control commands.

ここで、電圧監視制御装置16は、配電系統の複数のノードの電圧および電流の計測情報と、予め保有している配電線の線路インピーダンスおよび負荷情報に基づき、当該配電系統の配電線全体の電圧が適正範囲内であるか否かを評価し、適正範囲内でない場合に当該配電系統に設置された電圧調整機器(配電用変圧器1、電圧制御機器9等)を制御することにより配電系統の電圧を制御する制御機能を有する。   Here, the voltage monitoring control device 16 determines the voltage of the entire distribution line of the distribution system based on the measurement information of the voltages and currents of a plurality of nodes of the distribution system and the line impedance and load information of the distribution line that is held in advance. Of the distribution system by controlling the voltage regulator (distribution transformer 1, voltage control device 9 etc.) installed in the distribution system when it is not within the proper range. It has a control function to control the voltage.

ここで、「ノード」とは、配電の分野で一般的に使用されている用語であり、配電系統上の開閉器設置地点、電圧調整機器設置地点、配電線の末端地点等の、構成上の変移点を示している。   Here, “node” is a term commonly used in the field of power distribution, such as a switch installation point, a voltage adjustment device installation point, a distribution line terminal point, etc. on the distribution system. Indicates the transition point.

この電圧監視制御装置16は、具体的には、各種メモリ等の記憶装置、CPU等の演算処理用ハードウェア、キーボードやマウス、ディスプレイやプリンタ等の入出力装置、通信制御装置、等を基本的に有するコンピュータにより構成される。そして、電圧監視制御装置16の上記の制御機能は、コンピュータが基本的に有するCPUなどの演算処理用ハードウェアと、電圧監視制御用に特化された制御プログラムの組み合わせ等により実現される。   Specifically, the voltage monitoring control device 16 basically includes a storage device such as various memories, arithmetic processing hardware such as a CPU, an input / output device such as a keyboard and mouse, a display and a printer, a communication control device, and the like. It is comprised by the computer which has. The above-described control function of the voltage monitoring control device 16 is realized by a combination of arithmetic processing hardware such as a CPU basically included in the computer and a control program specialized for voltage monitoring control.

[動作]
以上のような第1の実施形態に係る配電系統運用システムの平常時の動作の概略は次の通りである。
[Operation]
The outline of the normal operation of the power distribution system operation system according to the first embodiment as described above is as follows.

まず、計測機能を備えた各機器(遮断器8、電圧制御機器9、開閉器または遮断器10)および配電用変電所の電流変成器14、電圧変成器15などの配電系統の複数のノードにおいて、配電系統の電圧、電流を時々刻々と計測し、その計測値を通信ネットワーク200を介して電圧監視制御装置16に送信する。   First, at each of a plurality of nodes of a distribution system such as each device (breaker 8, voltage control device 9, switch or circuit breaker 10) having a measurement function, and a current transformer 14 and a voltage transformer 15 of a distribution substation. The voltage and current of the distribution system are measured every moment, and the measured values are transmitted to the voltage monitoring control device 16 via the communication network 200.

電圧監視制御装置16では、配電系統全体から収集した電圧と電流の計測値を用いて、配電系統内の電圧が適正値となっているか評価する。適正値となっている場合には、配電系統の電圧監視をそのまま継続する。これに対し、配電系統内の適正値になっていない場合には、電圧監視制御装置16は、電圧が適正値となるように、配電系統の電圧調整機器、すなわち、図1中では、電圧調整機能を備えた配電用変圧器1と各配電線の電圧制御機器9の制御量を算出し、算出した制御量を含む制御指令をそれらの機器1,9へ送信する。制御指令を受信した配電用変圧器1および電圧制御機器9では、その制御指令に応じて、配電系統の電圧が適正値となるように電圧制御を実施する。   The voltage monitoring control device 16 evaluates whether the voltage in the distribution system is an appropriate value by using the measured values of voltage and current collected from the entire distribution system. If it is an appropriate value, voltage monitoring of the distribution system is continued as it is. On the other hand, when it is not an appropriate value in the distribution system, the voltage monitoring control device 16 adjusts the voltage adjustment device of the distribution system, that is, the voltage adjustment in FIG. The control amount of the distribution transformer 1 having the function and the voltage control device 9 of each distribution line is calculated, and a control command including the calculated control amount is transmitted to the devices 1 and 9. The distribution transformer 1 and the voltage control device 9 that have received the control command perform voltage control according to the control command so that the voltage of the distribution system becomes an appropriate value.

なお、ループ系統を構成する配電線のうち、配電線3b,3cには負荷線5がないため、これらの配電線3b,3c内の線路電圧は大口需要家受電端において適正値になっていれば問題はない。したがって、これらの分岐負荷がない配電線3b,3c内の線路電圧の制御は、分岐負荷がある配電線3aに対して拡大可能である。例えば、電圧監視制御装置16は、これらの配電線3b,3c内の線路電圧の制御における電圧の適正範囲を、電気設備に関する技術基準を定める省令で規定する高圧電圧の範囲内(600V<V≦7,000V)として電圧の制御を行う。   In addition, since the distribution line 3b and 3c do not have the load line 5 among the distribution lines which comprise a loop system, the line voltage in these distribution lines 3b and 3c may become an appropriate value in a large-volume consumer receiving end. There is no problem. Therefore, the control of the line voltage in the distribution lines 3b and 3c without these branch loads can be expanded with respect to the distribution line 3a with the branch loads. For example, the voltage monitoring control device 16 sets the appropriate voltage range in the control of the line voltage in these distribution lines 3b and 3c within the range of high voltage (600V <V ≦ The voltage is controlled as 7,000 V).

また、ループ系統を構成する各配電線3a〜3cに設けた各インピーダンス調整装置17a〜17cにより、これらの配電線3a〜3cの負荷電流を均等化するように、各配電線3a〜3cのインピーダンスが調整される。インピーダンス調整装置17a〜17cは、抵抗分やインダクタンス分を変更することによりインピーダンスを調整する装置であり、周知の技術である。   Moreover, the impedance of each distribution line 3a-3c is equalized so that the load current of these distribution lines 3a-3c may be equalized by each impedance adjusting device 17a-17c provided in each distribution line 3a-3c which comprises a loop system | strain. Is adjusted. The impedance adjusting devices 17a to 17c are devices that adjust impedance by changing a resistance component or an inductance component, and are well-known techniques.

図2は、以上のような本実施形態に係る配電系統運用システムにおける電圧監視制御装置16の処理フローの一例を示すフローチャートである。この図2に示すように、電圧監視制御装置16はまず、計測機能を備えた各機器(遮断器8、電圧制御機器9、開閉器または遮断器10)および配電用変電所の電流変成器14、電圧変成器15などの配電系統の複数のノードにおいて、時々刻々と計測した電圧、電流の計測値を、通信ネットワーク200を介して収集する(S01)。   FIG. 2 is a flowchart illustrating an example of a processing flow of the voltage monitoring control device 16 in the distribution system operation system according to the present embodiment as described above. As shown in FIG. 2, the voltage monitoring control device 16 first includes each device (breaker 8, voltage control device 9, switch or circuit breaker 10) having a measurement function, and a current transformer 14 of a distribution substation. The measured values of voltage and current measured every moment at a plurality of nodes of the distribution system such as the voltage transformer 15 are collected via the communication network 200 (S01).

電圧監視制御装置16は、受信した配電系統の複数のノードの電圧、電流と、あらかじめ保有している配電線の線路インピーダンス、負荷情報から、配電線全体の電圧分布を推定して(S02)、配電線全体の電圧が適正範囲内であるか否かを評価する(S03)。この評価結果において、電圧が適正範囲を逸脱する配電線がある場合(S03のNO)に、電圧監視制御装置16は、その配電線内の電圧制御機器9の制御量を算出し、算出した制御量を含む制御指令を、通信ネットワーク200を介してその電圧制御機器9に送信する(S04)。その結果、制御指令を受信した電圧制御機器9は、その制御指令に応じて、配電系統の電圧が適正値となるように電圧制御を実施する。   The voltage monitoring and control device 16 estimates the voltage distribution of the entire distribution line from the received voltage and current of the plurality of nodes of the distribution system and the line impedance and load information of the distribution line possessed in advance (S02), It is evaluated whether or not the voltage of the entire distribution line is within an appropriate range (S03). In this evaluation result, when there is a distribution line whose voltage deviates from the appropriate range (NO in S03), the voltage monitoring control device 16 calculates the control amount of the voltage control device 9 in the distribution line, and calculates the calculated control. The control command including the quantity is transmitted to the voltage control device 9 via the communication network 200 (S04). As a result, the voltage control device 9 that has received the control command performs voltage control according to the control command so that the voltage of the distribution system becomes an appropriate value.

電圧監視制御装置16は、制御指令の送信により、電圧制御機器9による電圧制御が実施された後の当該配電線の電圧が適正範囲内であるか否かを評価し(S05)、当該配電線の電圧が適正範囲とならない場合(S05のNO)は、電圧制御機器9が制御限界に達するまで(S06のNO)、制御指令の送信(S04)と配電線電圧の評価(S05)を繰り返す。   The voltage monitoring and control device 16 evaluates whether or not the voltage of the distribution line after the voltage control by the voltage control device 9 is performed within the appropriate range by transmitting the control command (S05). Is not in the proper range (NO in S05), the control command transmission (S04) and the distribution line voltage evaluation (S05) are repeated until the voltage control device 9 reaches the control limit (NO in S06).

なお、電圧制御機器9が制御限界に達しても電圧が適正範囲とならない場合(S06のYES)、電圧監視制御装置16は、配電用変圧器1の制御量であるタップ調整量を算出し、このタップ調整量を含むタップ調整指令を、通信ネットワーク200を介して配電用変圧器1に送信する(S07)。その結果、タップ調整指令を受信した配電用変圧器1は、そのタップ調整指令に応じて、配電系統の電圧が適正値となるようにタップ調整による電圧制御を実施する。   When the voltage does not fall within the proper range even when the voltage control device 9 reaches the control limit (YES in S06), the voltage monitoring control device 16 calculates the tap adjustment amount that is the control amount of the distribution transformer 1, A tap adjustment command including the tap adjustment amount is transmitted to the distribution transformer 1 via the communication network 200 (S07). As a result, the distribution transformer 1 that has received the tap adjustment command performs voltage control by tap adjustment so that the voltage of the distribution system becomes an appropriate value in accordance with the tap adjustment command.

電圧監視制御装置16は、以上のような一連の処理(S01〜S07)を、配電系統全体の電圧が適正範囲となるまで繰り返し、配電系統全体の電圧が適正範囲となった時点(S02のYES、または、S05のYES)で、一連の処理(S01〜S07)を終了する。   The voltage monitoring control device 16 repeats the series of processes (S01 to S07) as described above until the voltage of the entire distribution system falls within the proper range, and the time when the voltage of the entire distribution system falls within the proper range (YES in S02). Or, a series of processing (S01 to S07) is terminated in S05).

[効果]
以上のような第1の実施形態に係る配電系統運用システムによれば、次のような効果が得られる。
[effect]
According to the distribution system operation system according to the first embodiment as described above, the following effects can be obtained.

まず、配電線を多重ループ化することにより、従来の想定以上(例えば、4500kVA以上)の大口需要家を含む配電系統に対して十分な送電容量を確保することが可能となる。また、配電系統の複数のノードの電圧および電流の計測情報に基づき、配電線全体の電圧を評価し、評価結果に応じて配電系統の電圧調整機器を制御することにより、配電線全体の電圧制御が容易となるため、各配電線の需要変動パターンが大きく異なる場合でも、LDC方式などの母線電圧一括調整方式による電圧制御に比べて、全ての配電線の電圧を適正範囲内に維持可能となり、安定的な配電系統運用を行うことができる。   First, by making the distribution line into a multiple loop, it is possible to secure a sufficient transmission capacity for a distribution system including a large-volume consumer more than the conventional assumption (for example, 4500 kVA or more). In addition, the voltage of the entire distribution line is controlled by evaluating the voltage of the entire distribution line based on the measurement information of the voltage and current of multiple nodes in the distribution system, and controlling the voltage regulator of the distribution system according to the evaluation result. Therefore, even if the demand fluctuation pattern of each distribution line is greatly different, it is possible to maintain the voltage of all distribution lines within the appropriate range compared to voltage control by the bus voltage batch adjustment method such as LDC method, Stable distribution system operation can be performed.

また、新規の大口需要家に対して配電系統設備を新設するような場合、大口需要家との契約容量や、配電用変電所から大口需要家までの配電線路の亘長によっては、従来の供給電圧より低い電圧階級の配電線を多重ループ化して電力供給した方が、建設コストが安くなり、また、建設期間も短くなる、という利点も得られる。   In addition, when new distribution system facilities are installed for new large-volume customers, depending on the contracted capacity with the large-volume customers and the length of the distribution line from the distribution substation to the large-volume customers, It is advantageous to supply power by making a distribution loop of a voltage class lower than the voltage into multiple loops, so that the construction cost is reduced and the construction period is shortened.

特に、本実施形態によれば、分岐負荷がない配電線と分岐負荷がある配電線を含む多重ループを構成して、この多重ループのうち、分岐負荷がない配電線の電圧の適正範囲を拡大して配電系統の電圧を制御することにより、配電系統全体の電圧制御における制約条件が緩和されるため、分岐負荷がある配電線のみを多重ループ化した場合に比べて配電系統全体の電圧調整が容易になる。   In particular, according to the present embodiment, a multiple loop including a distribution line having no branch load and a distribution line having a branch load is configured, and the appropriate range of the voltage of the distribution line having no branch load is expanded among the multiple loops. By controlling the voltage of the distribution system, the restrictions on the voltage control of the entire distribution system are relaxed.Therefore, the voltage adjustment of the entire distribution system can be adjusted compared to the case where only distribution lines with branch loads are made into multiple loops. It becomes easy.

また、分岐負荷がない配電線は、新設の配電線であってもよいため、大口需要家からの新規申込みに対応するための配電線設備の工事を他の需要家に影響を与えることなく実施可能であり、新規申込みに素早く対応できる。   In addition, distribution lines that do not have branch loads may be newly established distribution lines, so the construction of distribution line facilities to respond to new applications from large-scale customers is carried out without affecting other customers. Yes, it can respond quickly to new applications.

さらに、ループ系統を構成する各配電線にインピーダンス調整装置を設けているため、各インピーダンス調整装置により各配電線のインピーダンスを調整して配電線の負荷電流の均等化を図ることができる。   Furthermore, since the impedance adjusting device is provided for each distribution line constituting the loop system, it is possible to equalize the load current of the distribution line by adjusting the impedance of each distribution line by each impedance adjusting device.

[配電線負荷電流均等化の変形例]
上述した第1の実施形態においては、ループ系統を構成する各配電線3a〜3cに設けた各インピーダンス調整装置17a〜17cにより、これらの配電線3a〜3cの負荷電流を均等化するように、各配電線3a〜3cのインピーダンス6a〜6cを調整する手法を適用した場合について説明した。しかし、ループ系統を構成する配電線の負荷電流を均等化するためのインピーダンス調整機能は、インピーダンス調整装置を使用する手法に限らず、他の手法によっても実現可能である。
[Modification of distribution line load current equalization]
In 1st Embodiment mentioned above, so that the load current of these distribution lines 3a-3c may be equalize | homogenized by each impedance adjustment apparatus 17a-17c provided in each distribution line 3a-3c which comprises a loop system | strain. The case where the technique of adjusting the impedance 6a-6c of each distribution line 3a-3c was applied was demonstrated. However, the impedance adjustment function for equalizing the load currents of the distribution lines constituting the loop system is not limited to the method using the impedance adjustment device, and can be realized by other methods.

インピーダンス調整機能を実現する一つの手法として、ループ系統を構成する配電線に、電気的仕様(電線の抵抗分、インダクタンス分、対地静電容量等)が互いに異なる複数種類の電線を用いることによりインピーダンス調整機能を実現してもよい。すなわち、図1において、ループを構成する各配電線3a〜3cの各インピーダンス6a〜6cを、互いに電気的仕様が異なる複数種類の電線を用いることにより調整してもよい。例えば、インピーダンス6aを実現する電線にはアルミ電線を用い、インピーダンス6bと6cを実現する電線には架空ケーブルを用いるなどの構成が考えられる。   As one of the methods to realize the impedance adjustment function, impedance can be achieved by using multiple types of wires with different electrical specifications (wire resistance, inductance, ground capacitance, etc.) for the distribution lines that make up the loop system. An adjustment function may be realized. That is, in FIG. 1, you may adjust each impedance 6a-6c of each distribution line 3a-3c which comprises a loop by using several types of electric wire from which an electrical specification mutually differs. For example, a configuration is conceivable in which an aluminum wire is used as the wire that realizes the impedance 6a, and an overhead cable is used as the wire that realizes the impedances 6b and 6c.

インピーダンス調整機能を実現する別の手法として、ループ系統を構成する同一の配電線内で電気的仕様が互いに異なる電線を用いることにより、インピーダンス調整機能を実現してもよい。図3は、第1の実施形態の変形例として、ループ系統を構成する同一の配電線内で電気的仕様が異なる複数種類の電線を用いた場合の配電系統運用システムの一例を示す構成図であり、この図3において、18,19は互いに電気的仕様が異なる電線を示す。例えば、配電用変電所の遮断器7からループ点までの中間点で電線を変えて、配電用変電所側の電線18a〜18cには架空ケーブルを用い、ループ点側の電線19a〜19cにはアルミ電線を用いるなどの構成が考えられる。   As another method for realizing the impedance adjustment function, the impedance adjustment function may be realized by using electric wires having different electrical specifications within the same distribution line constituting the loop system. FIG. 3 is a configuration diagram showing an example of a distribution system operation system when a plurality of types of electric wires having different electrical specifications are used in the same distribution line constituting the loop system as a modification of the first embodiment. In FIG. 3, reference numerals 18 and 19 denote electric wires having different electrical specifications. For example, by changing the wires at the intermediate point from the circuit breaker 7 of the distribution substation to the loop point, overhead cables are used for the wires 18a to 18c on the distribution substation side, and the wires 19a to 19c on the loop point side are used. A configuration using an aluminum electric wire is conceivable.

なお、電線に架空ケーブルを用いると、アルミ電線などに比べて対地静電容量が大きくなるので、電圧維持効果の向上が期待できる。また、架空ケーブルは、アルミ電線などに比べて絶縁性が高いので、複数回線を同一電柱に敷設しやすいなどの利点も得られる。   In addition, when an overhead cable is used for the electric wire, since the ground capacitance becomes larger than that of an aluminum electric wire or the like, an improvement in the voltage maintaining effect can be expected. In addition, since the overhead cable has higher insulation than an aluminum electric wire or the like, there is an advantage that a plurality of lines can be easily laid on the same power pole.

一方、ループ系統を構成する配電線の負荷電流を均等化するための手法は、インピーダンス調整機能を持たせる手法に限らず、配電線の位相を調整する位相調整機能を持たせる手法を採用してもよい。図4は、第1の実施形態の変形例として、ループ系統を構成する各配電線に、位相調整装置を接続した場合の配電系統運用システムの一例を示す構成図である。この図4において、ループ系統を構成する各配電線3a〜3cの各位相調整装置20a〜20cは、一例として、配電用変電所の遮断器7近傍に接続されているが、これは単なる一例にすぎず、各配電線に対する位相調整装置の接続箇所は、他にも、例えば、配電線の中間付近やループ点付近等、配電線における任意の地点に自由に接続可能である。また、位相調整装置の具体的な構成は自由に選択可能であり、例えば、移相調整変圧器などの既存システムを用いてもよい。   On the other hand, the method for equalizing the load current of the distribution lines that make up the loop system is not limited to the method that provides the impedance adjustment function, but the method that provides the phase adjustment function that adjusts the phase of the distribution line is adopted. Also good. FIG. 4 is a configuration diagram showing an example of a distribution system operation system when a phase adjusting device is connected to each distribution line constituting the loop system as a modification of the first embodiment. In FIG. 4, the phase adjusting devices 20a to 20c of the distribution lines 3a to 3c constituting the loop system are connected to the vicinity of the circuit breaker 7 of the distribution substation as an example, but this is merely an example. However, the connection part of the phase adjusting device for each distribution line can be freely connected to any point on the distribution line, for example, near the middle of the distribution line or near the loop point. The specific configuration of the phase adjustment device can be freely selected. For example, an existing system such as a phase shift adjustment transformer may be used.

[電圧制御機器配置の変形例]
上述した第1の実施形態においては、ループ系統を構成する各配電線3a〜3cに電圧制御機器9a〜9cをそれぞれ設けて配電線毎に線路電圧を制御できるように構成したが、本発明はこれに限らず、図5に示すような構成も可能である。ここで、図5は、第1の実施形態の変形例として、ループ系統を構成する一部の配電線にのみ電圧制御機器を設けた場合の配電系統運用システムの一例を示す構成図である。すなわち、図5において、ループ系統を構成する配電線に設けられた電圧制御機器は、1回線の配電線3aのループ外部の一端に接続された1つの電圧制御機器9aのみとなっている。
[Variation of voltage control device arrangement]
In 1st Embodiment mentioned above, although it comprised so that each distribution line 3a-3c which comprises a loop system could provide the voltage control apparatus 9a-9c, respectively, and it was comprised so that line voltage could be controlled for every distribution line, this invention is Not only this but the structure as shown in FIG. 5 is also possible. Here, FIG. 5 is a configuration diagram illustrating an example of a distribution system operation system in the case where voltage control devices are provided only in some of the distribution lines configuring the loop system, as a modification of the first embodiment. That is, in FIG. 5, the voltage control device provided in the distribution line constituting the loop system is only one voltage control device 9a connected to one end outside the loop of the single distribution line 3a.

この図5に示すようなループ系統の構成は、例えば、配電用変電所母線からループ点までの線路亘長が比較的短く、電圧維持がしやすい系統などにおいて適用可能であり、ループ系統内の電圧制御機器をなくして、構成機器の簡素化を図ることも可能である。   The configuration of the loop system as shown in FIG. 5 can be applied to, for example, a system in which the line length from the distribution substation bus to the loop point is relatively short and the voltage is easily maintained. It is also possible to simplify the components by eliminating the voltage control device.

[第2の実施形態]
[構成]
図6は、本発明を適用した第2の実施形態に係る配電系統運用システムを示す構成図である。この図6に示す配電系統運用システムにおいては、一例として、分岐負荷がある配電線のみからなる3回線の配電線を多重ループ化してループ系統を構成した場合を示している。
[Second Embodiment]
[Constitution]
FIG. 6 is a configuration diagram showing a distribution system operation system according to a second embodiment to which the present invention is applied. In the distribution system operation system shown in FIG. 6, as an example, a case is shown in which a three-line distribution line consisting only of distribution lines having a branch load is formed into a multiple loop to form a loop system.

図6に示す配電系統運用システムの基本的な構成は、図1に示した第1の実施形態のシステムと同様であるため、以下には、第1の実施形態のシステムと異なる点のみ説明する。すなわち、本実施形態の配電系統運用システムにおいて、第1の実施形態と異なる点は、ループ系統を構成する配電線3a〜3cをループ系統の母線4に接続する遮断器として、第1の実施形態の遮断器8a〜8cに代えて、計測機能だけでなく事故判定機能および選択遮断機能を備えた遮断装置21a〜21cが使用されている点である。   Since the basic configuration of the power distribution system operation system shown in FIG. 6 is the same as that of the system of the first embodiment shown in FIG. 1, only differences from the system of the first embodiment will be described below. . That is, in the distribution system operation system of the present embodiment, the difference from the first embodiment is that the first embodiment is a circuit breaker that connects the distribution lines 3a to 3c constituting the loop system to the bus 4 of the loop system. Instead of the circuit breakers 8a to 8c, circuit breakers 21a to 21c having not only a measurement function but also an accident determination function and a selective interruption function are used.

また、ループ系統を構成する3回線の配電線3a〜3cにいずれも負荷線5が接続されている点と、ループ系統を構成する配電線に設けられた電圧制御機器が、1回線の配電線3aのループ外部の一端に接続された1つの電圧制御機器9aのみとなっている点も、第1の実施形態と異なる点である。   Further, the load line 5 is connected to the three distribution lines 3a to 3c constituting the loop system, and the voltage control device provided on the distribution line constituting the loop system is a single distribution line. The difference from the first embodiment is that only one voltage control device 9a is connected to one end outside the loop 3a.

これらの遮断装置21a〜21cにおいて、事故判定機能は、計測機能により得られた電圧や電流の計測値に基づき、配電線事故の有無を判定する機能であり、また、選択遮断機能は、配電線事故を発生した配電線を選択遮断する機能である。このような事故判定機能および選択遮断機能を備えた遮断装置21は、具体的には、記憶装置、演算処理用ハードウェア、入出力装置、通信制御装置、等を基本的に有するコンピュータと遮断器メカニズムの組み合わせにより構成される。そして、事故判定機能や選択遮断機能は、演算処理用ハードウェアと遮断装置用に特化された制御プログラムの組み合わせ等により実現される。   In these interruption devices 21a to 21c, the accident determination function is a function for determining the presence or absence of a distribution line accident based on the measured values of voltage and current obtained by the measurement function, and the selective interruption function is a distribution line. This function selectively cuts off the distribution line that caused the accident. Specifically, the shut-off device 21 having such an accident determination function and a selective shut-off function specifically includes a computer and a circuit breaker that basically include a storage device, arithmetic processing hardware, an input / output device, a communication control device, and the like. Composed of a combination of mechanisms. The accident determination function and the selective cutoff function are realized by a combination of arithmetic processing hardware and a control program specialized for the cutoff device.

なお、本実施形態におけるループ系統の構成の特徴は、計測機能だけでなく事故判定機能および選択遮断機能を備えた遮断装置を用いてループ系統を構成する点であるが、ループ系統を構成する回線数は一定の条件の下で自由に選択可能である。ここで、ループ系統を構成する回線数に関する一定の条件とは、ループ系統内のいずれかの配電線において事故が発生してその事故配電線が遮断された場合に、ループ系統内の残りの配電線のループ運用により電力供給を継続可能であるという条件である。すなわち、この条件が成立する限りにおいて、ループ系統を構成する回線数は自由に選択可能である。   Note that the feature of the configuration of the loop system in this embodiment is that the loop system is configured using not only a measurement function but also an interrupting device having an accident determination function and a selective blocking function. The number is freely selectable under certain conditions. Here, the fixed condition regarding the number of lines constituting the loop system means that when an accident occurs in any of the distribution lines in the loop system and the accident distribution line is cut off, the remaining distribution in the loop system. The condition is that the power supply can be continued by the loop operation of the electric wire. That is, as long as this condition is satisfied, the number of lines constituting the loop system can be freely selected.

[動作]
以上のような第2の実施形態に係る配電系統運用システムの平常時の動作は、前述した第1の実施形態のシステムと同様であるが、本実施形態に係る配電系統運用システムにおいては、ループ系統内における配電線事故発生時に、計測機能と選択遮断機能を備えた遮断装置21により事故配電線の検出と選択遮断を含む特徴的な動作が行われる。図7は、本実施形態の配電系統運用システムにおける遮断装置21の処理フローの一例を示すフローチャートである。
[Operation]
The normal operation of the distribution system operation system according to the second embodiment as described above is the same as that of the system according to the first embodiment described above. However, in the distribution system operation system according to the present embodiment, a loop is performed. When a distribution line accident occurs in the system, a characteristic operation including detection and selective interruption of the accident distribution line is performed by the interruption device 21 having a measurement function and a selective interruption function. FIG. 7 is a flowchart showing an example of a processing flow of the shutoff device 21 in the distribution system operation system of the present embodiment.

この図7に示すように、ループ系統内における配電線事故時においては、計測機能と選択遮断機能を備えた遮断装置21により、計測した電圧・電流に基づく事故判定の結果、配電線事故が検出され(S11、S12のYES)、事故を発生した配電線のみが選択遮断されて一部のループ構成が解消される(S13)。この場合、ループ系統内の残りの配電線によるループ運用により電力供給は継続される。   As shown in FIG. 7, in the event of a distribution line accident in the loop system, a distribution line accident is detected as a result of an accident determination based on the measured voltage / current by the interruption device 21 having a measurement function and a selective interruption function. (YES in S11 and S12), only the distribution line in which the accident has occurred is selectively cut off and a part of the loop configuration is eliminated (S13). In this case, power supply is continued by the loop operation by the remaining distribution lines in the loop system.

このような選択遮断後、事故配電線が回復した時点(S14のYES)で、事故配電線の遮断装置21は、遮断状態から再閉路して、ループ系統を元のループ構成に戻す(S15)。なお、電圧監視制御装置16およびそれと通信ネットワーク200で接続される各機器は、事故発生後も平常時と同様に動作する。   After such selective interruption, when the accident distribution line recovers (YES in S14), the accident distribution line interruption device 21 recloses from the interruption state and returns the loop system to the original loop configuration (S15). . Note that the voltage monitoring control device 16 and each device connected to the voltage monitoring control device 16 through the communication network 200 operate in the same manner as normal after an accident occurs.

[効果]
以上のような第2の実施形態に係る配電系統運用システムによれば、次のような効果が得られる。
[effect]
According to the power distribution system operation system according to the second embodiment as described above, the following effects can be obtained.

まず、配電線を多重ループ化することにより、従来の想定以上の大口需要家を含む配電系統に対して十分な送電容量を確保可能となる点や、配電線全体の電圧に基づいて配電系統の電圧調整機器を制御することにより、各配電線の需要変動パターンが大きく異なる場合でも、全ての配電線の電圧を適正範囲内に維持可能となり、安定的な配電系統運用を行うことができる点は、第1の実施形態と同様である。   First, by making the distribution lines into multiple loops, it is possible to secure a sufficient transmission capacity for the distribution system including large customers than expected, and the distribution system based on the voltage of the entire distribution line. By controlling the voltage regulator, even if the demand fluctuation pattern of each distribution line is significantly different, the voltage of all distribution lines can be maintained within the appropriate range, and stable distribution system operation can be performed. This is the same as in the first embodiment.

また、新規の大口需要家に対して配電系統設備を新設する場合に、契約容量や配電線路の亘長によっては、従来の供給電圧より低い電圧階級の配電線を多重ループ化して電力供給した方が、建設コストが安くなり、また、建設期間も短くなる、という利点が得られることも、第1の実施形態と同様である。さらに、ループ系統を構成する各配電線に設けた各インピーダンス調整装置により、各配電線のインピーダンスを調整して配電線の負荷電流の均等化を図ることができる点も、第1の実施形態と同様である。   In addition, when installing new distribution system facilities for new large-scale customers, depending on the contracted capacity and the length of the distribution line, it is possible to supply power by distributing multiple distribution lines of voltage class lower than the conventional supply voltage. However, similar to the first embodiment, the construction cost can be reduced and the construction period can be shortened. Furthermore, the point which can equalize the load current of a distribution line by adjusting the impedance of each distribution line by each impedance adjustment apparatus provided in each distribution line which comprises a loop system also with 1st Embodiment. It is the same.

以上のような効果に加えて、特に、本実施形態によれば、配電線事故が発生した場合に、この配電線事故を発生した配電線のみを、配電線連係用の遮断装置により自動的に選択遮断できるため、残りの配電線によるループ運用により安定的に電力供給を継続でき、高い供給信頼度が得られるという効果が得られる。また、多重ループが、分岐負荷がある既存の配電線を含む場合には、既存設備の有効活用とともに既存配電線の供給信頼度を向上できる。   In addition to the effects as described above, in particular, according to the present embodiment, when a distribution line accident occurs, only the distribution line in which the distribution line accident has occurred is automatically detected by the distribution line linking circuit breaker. Since it can be selectively cut off, the power supply can be continued stably by the loop operation with the remaining distribution lines, and the effect that high supply reliability is obtained can be obtained. Moreover, when the multiple loop includes an existing distribution line having a branch load, it is possible to improve the supply reliability of the existing distribution line as well as effectively use the existing facilities.

[配電線負荷電流均等化の変形例]
上述した第2の実施形態においては、ループ系統を構成する配電線の負荷電流を均等化するためのインピーダンス調整機能を実現する手法として、第1の実施形態と同様に、ループ系統を構成する各配電線3a〜3cにインピーダンス調整装置17a〜17cを設ける手法を適用した場合を示したが、インピーダンス調整機能を実現する手法として、図8、図9に示すような他の手法を適用してもよい。
[Modification of distribution line load current equalization]
In the second embodiment described above, as a technique for realizing an impedance adjustment function for equalizing the load currents of the distribution lines constituting the loop system, each of the loop systems is configured in the same manner as in the first embodiment. Although the case where the method of providing the impedance adjusting devices 17a to 17c is applied to the distribution lines 3a to 3c has been shown, as a method for realizing the impedance adjusting function, other methods as shown in FIGS. 8 and 9 may be applied. Good.

ここで、図8は、第2の実施形態の変形例として、ループ系統を構成する同一の配電線内で、電気的仕様が異なる複数種類の電線18,19(図3と同様の電線)を用いた場合の配電系統運用システムの一例を示す構成図である。この図8に示す変形例においては、ループ系統を構成する3回線の配電線3a〜3cのうち、2回線の配電線3b,3cのみに複数種類の電線18,19が用いられている。このような構成は、例えば、配電線3aが、1種類の電線で構成された既存の配電線であり、この既存の配電線3aと、複数種類の電線を用いた新設の配電線3b,3cとを連係して多重ループ化する場合などに採用される。   Here, FIG. 8 shows, as a modification of the second embodiment, a plurality of types of electric wires 18 and 19 (electric wires similar to FIG. 3) having different electrical specifications in the same distribution line constituting the loop system. It is a block diagram which shows an example of the power distribution system operation system at the time of using. In the modification shown in FIG. 8, a plurality of types of electric wires 18 and 19 are used only for the two distribution lines 3b and 3c among the three distribution lines 3a to 3c constituting the loop system. Such a configuration is, for example, an existing distribution line in which the distribution line 3a is composed of one type of electric wire, and the existing distribution line 3a and new distribution lines 3b and 3c using a plurality of types of electric wires. This is used when multiple loops are formed by linking with.

また、図9は、第2の実施形態の別の変形例として、ループ系統を構成する各配電線に、位相調整装置20a〜20c(図4と同様の位相調整装置)を接続した場合の配電系統運用システムの一例を示す構成図である。   Further, FIG. 9 shows another modification of the second embodiment, in which power distribution when phase adjusting devices 20a to 20c (phase adjusting devices similar to FIG. 4) are connected to the respective distribution lines constituting the loop system. It is a lineblock diagram showing an example of a system operation system.

[その他の変形例]
さらに、その他の変形例として、第1の実施形態(図1)あるいはその変形例(図3、図4、図5)の構成のうち、遮断器8のみを、第2の実施形態に係る計測機能と選択遮断機能を備えた遮断装置21に置き換える構成も可能である。このような変形例によれば、第1の実施形態の効果と第2の実施形態の効果との相乗的な効果が得られる。
[Other variations]
Furthermore, as another modified example, only the circuit breaker 8 is measured according to the second embodiment in the configuration of the first embodiment (FIG. 1) or the modified examples (FIGS. 3, 4, and 5). It is also possible to adopt a configuration that replaces the blocking device 21 having a function and a selective blocking function. According to such a modification, a synergistic effect of the effect of the first embodiment and the effect of the second embodiment can be obtained.

[他の実施形態]
なお、本発明は、前述した実施形態に限定されるものではなく、本発明の範囲内で他にも多種多様な変形例が実施可能である。例えば、図面に示したシステム構成や処理フローは一例にすぎず、具体的な配電系統の構成やループ系統の構成、電圧監視制御装置や遮断装置の具体的な処理フロー等は適宜変更可能である。
[Other Embodiments]
It should be noted that the present invention is not limited to the above-described embodiments, and various other variations can be implemented within the scope of the present invention. For example, the system configuration and processing flow shown in the drawings are merely examples, and the specific power distribution system configuration, loop system configuration, voltage monitoring control device and specific processing flow of the shut-off device, etc. can be changed as appropriate. .

本発明を適用した第1の実施形態に係る配電系統運用システムを示す構成図。The lineblock diagram showing the distribution system operation system concerning a 1st embodiment to which the present invention is applied. 第1の実施形態に係る配電系統運用システムにおける電圧監視制御装置の処理フローの一例を示すフローチャート。The flowchart which shows an example of the processing flow of the voltage monitoring control apparatus in the power distribution system operation system which concerns on 1st Embodiment. 第1の実施形態の変形例として、ループ系統を構成する同一の配電線内で電気的仕様が異なる複数種類の電線を用いた場合の配電系統運用システムの一例を示す構成図。The block diagram which shows an example of the distribution system operation system at the time of using the multiple types of electric wire from which an electrical specification differs in the same distribution line which comprises a loop system as a modification of 1st Embodiment. 第1の実施形態の変形例として、ループ系統を構成する各配電線に、位相調整装置を接続した場合の配電系統運用システムの一例を示す構成図。The block diagram which shows an example of the power distribution system operation system at the time of connecting a phase adjustment apparatus to each distribution line which comprises a loop system as a modification of 1st Embodiment. 第1の実施形態の変形例として、ループ系統を構成する一部の配電線にのみ電圧制御機器を設けた場合の配電系統運用システムの一例を示す構成図。The block diagram which shows an example of the power distribution system operation system at the time of providing a voltage control apparatus only in the one part distribution line which comprises a loop system as a modification of 1st Embodiment. 本発明を適用した第2の実施形態に係る配電系統運用システムを示す構成図。The lineblock diagram showing the distribution system operation system concerning a 2nd embodiment to which the present invention is applied. 第2の実施形態の配電系統運用システムにおける遮断装置の処理フローの一例を示すフローチャート。The flowchart which shows an example of the processing flow of the interruption | blocking apparatus in the power distribution system operation system of 2nd Embodiment. 第2の実施形態の変形例として、ループ系統を構成する同一の配電線内で、電気的仕様が異なる複数種類の電線を用いた場合の配電系統運用システムの一例を示す構成図。The block diagram which shows an example of the distribution system operation system at the time of using the multiple types of electric wire from which an electrical specification differs in the same distribution line which comprises a loop system as a modification of 2nd Embodiment. 第2の実施形態の別の変形例として、ループ系統を構成する各配電線に、位相調整装置を接続した場合の配電系統運用システムの一例を示す構成図。The block diagram which shows an example of the distribution system operation system at the time of connecting a phase adjustment apparatus to each distribution line which comprises a loop system as another modification of 2nd Embodiment.

符号の説明Explanation of symbols

1…電圧調整機能を備えた配電用変圧器
2…配電用変電所母線
3…配電線
4…ループ系統の母線
5…負荷線
6…インピーダンス
7…配電用変電所の遮断器
8…計測機能を備えたループ系統の遮断器
9…計測機能を備えた電圧制御機器
10…計測機能を備えた開閉器または遮断器
11…大口需要家(の受電設備)
12…開閉装置
13…調相設備
14…配電用変電所の電流変成器(CT)
15…配電用変電所の電圧変成器(VT)
16…電圧監視制御装置
17…インピーダンス調整装置
18,19…電気的仕様が異なる電線
20…位相調整装置
21…計測機能、事故判定機能、選択遮断機能を備えたループ系統の遮断装置
DESCRIPTION OF SYMBOLS 1 ... Distribution transformer with voltage adjustment function 2 ... Distribution substation bus 3 ... Distribution line 4 ... Loop system bus 5 ... Load line 6 ... Impedance 7 ... Distribution substation breaker 8 ... Measurement function Circuit breaker 9 with loop system ... Voltage control device 10 with measurement function ... Switch or circuit breaker 11 with measurement function ... Large customers (power receiving equipment)
12 ... switchgear 13 ... phase adjusting equipment 14 ... current transformer (CT)
15 ... Voltage transformer (VT) of distribution substation
DESCRIPTION OF SYMBOLS 16 ... Voltage monitoring control apparatus 17 ... Impedance adjustment apparatus 18, 19 ... Electric wire 20 with different electrical specifications ... Phase adjustment apparatus 21 ... Loop system interruption | blocking apparatus provided with measurement function, accident determination function, and selection interruption | blocking function

Claims (10)

大口需要家を含む配電系統に電力を供給する配電系統運用システムにおいて、
前記配電系統の複数の配電線を、各配電線に設けた配電線連係用の各遮断器を介して連係させることにより構成された多重ループと、
前記配電系統の複数のノードの電圧および電流の計測情報と、予め保有している配電線の線路インピーダンスおよび負荷情報に基づき、当該配電系統の配電線全体の電圧が適正範囲内であるか否かを評価し、適正範囲内でない場合に当該配電系統に設置された電圧調整機器を制御することにより配電系統の電圧を制御する電圧監視制御装置
を備え、
前記多重ループは、分岐負荷がない配電線と分岐負荷がある配電線を含み、
前記電圧監視制御装置は、前記多重ループを構成する複数の配電線のうち、前記分岐負荷がある配電線に対して前記分岐負荷がない配電線の電圧の適正範囲を拡大して前記配電系統の電圧を制御するように構成される
ことを特徴とする配電系統運用システム。
In the distribution system operation system that supplies power to the distribution system including large consumers,
A plurality of distribution lines of the distribution system, multiple loops configured by linking through distribution circuit link breakers provided in each distribution line;
Whether or not the voltage of the entire distribution line of the distribution system is within the appropriate range based on the measurement information of the voltage and current of the plurality of nodes of the distribution system and the line impedance and load information of the distribution line that is held in advance. A voltage monitoring control device for controlling the voltage of the distribution system by controlling the voltage regulator installed in the distribution system when it is not within the proper range,
The multiple loop includes a distribution line having no branch load and a distribution line having a branch load,
The voltage monitoring control device expands an appropriate voltage range of the distribution line having no branch load with respect to the distribution line having the branch load among the plurality of distribution lines constituting the multiplex loop. A power distribution system operation system configured to control voltage.
前記多重ループを構成する複数の配電線は、これらの配電線の負荷電流を均等化するように、配電線のインピーダンスを調整するインピーダンス調整機能または配電線の位相を調整する位相調整機能を有する
ことを特徴とする請求項1に記載の配電系統運用システム。
The plurality of distribution lines constituting the multiplex loop have an impedance adjustment function for adjusting the impedance of the distribution lines or a phase adjustment function for adjusting the phase of the distribution lines so as to equalize the load currents of these distribution lines. The power distribution system operation system according to claim 1.
前記インピーダンス調整機能は、前記多重ループを構成する各配電線にそれぞれ接続されたインピーダンス調整装置により実現される
ことを特徴とする請求項2に記載の配電系統運用システム。
The distribution system operation system according to claim 2, wherein the impedance adjustment function is realized by an impedance adjustment device connected to each distribution line configuring the multiple loop.
前記インピーダンス調整機能は、前記多重ループを構成する複数の配電線に、電気的仕様の異なる複数種類の電線を用いることにより実現される
ことを特徴とする請求項2に記載の配電系統運用システム。
The distribution system operation system according to claim 2, wherein the impedance adjustment function is realized by using a plurality of types of electric wires having different electrical specifications for the plurality of distribution wires constituting the multiple loop.
前記インピーダンス調整機能は、前記多重ループを構成する各配電線である同一の配電線内で、電気的仕様の異なる複数種類の電線を用いることにより実現される
ことを特徴とする請求項2に記載の配電系統運用システム。
The said impedance adjustment function is implement | achieved by using the multiple types of electric wire from which an electrical specification differs in the same distribution line which is each distribution line which comprises the said multiple loop. Power distribution system operation system.
前記位相調整機能は、前記多重ループを構成する各配電線にそれぞれ接続された位相調整装置により実現される
ことを特徴とする請求項2に記載の配電系統運用システム。
The distribution system operation system according to claim 2, wherein the phase adjustment function is realized by a phase adjustment device connected to each distribution line constituting the multiplex loop.
前記多重ループを構成する複数の配電線の一部または全部は、架空ケーブルにより構成される
ことを特徴とする請求項1に記載の配電系統運用システム。
The distribution system operation system according to claim 1, wherein a part or all of the plurality of distribution lines constituting the multiple loop is configured by an overhead cable.
大口需要家を含む配電系統に電力を供給する配電系統運用システムにおいて、
前記配電系統の複数の配電線を、各配電線に設けた配電線連係用の各遮断器を介して連係させることにより構成された多重ループと、
前記配電系統の複数のノードの電圧および電流の計測情報と、予め保有している配電線の線路インピーダンスおよび負荷情報に基づき、当該配電系統の配電線全体の電圧が適正範囲内であるか否かを評価し、適正範囲内でない場合に当該配電系統に設置された電圧調整機器を制御することにより配電系統の電圧を制御する電圧監視制御装置
を備え、
前記配電線連係用の各遮断器は、配電系統の電気量を計測する計測機能、配電線事故の有無を判定する事故判定機能、および配電線事故を発生した配電線を選択遮断する選択遮断機能をそれぞれ有する遮断装置として構成され、
前記配電線連係用の各遮断装置は、前記計測機能により計測された電気量に基づき、前記事故判定機能により配電線事故発生と判定した場合には、この配電線事故を発生した配電線を前記選択遮断機能により選択遮断して前記多重ループの一部または全てを解消し、当該配電線事故が回復した場合には、再閉路を実施して配電線を再び多重ループ化するように構成される
ことを特徴とする配電系統運用システム。
In the distribution system operation system that supplies power to the distribution system including large consumers,
A plurality of distribution lines of the distribution system, multiple loops configured by linking through distribution circuit link breakers provided in each distribution line;
Whether or not the voltage of the entire distribution line of the distribution system is within the appropriate range based on the measurement information of the voltage and current of the plurality of nodes of the distribution system and the line impedance and load information of the distribution line that is held in advance. A voltage monitoring control device for controlling the voltage of the distribution system by controlling the voltage regulator installed in the distribution system when it is not within the proper range,
Each circuit breaker for the distribution line linkage is a measurement function for measuring the amount of electricity in the distribution system, an accident determination function for determining the presence or absence of a distribution line accident, and a selective cutoff function for selectively blocking a distribution line in which a distribution line accident has occurred. Each is configured as a shut-off device,
Each of the disconnecting devices for linking the distribution line is determined based on the amount of electricity measured by the measurement function, and when the distribution determination is made by the accident determination function, the distribution line that has caused the distribution line accident is By selectively blocking with the selective blocking function, part or all of the multiplex loop is eliminated, and when the distribution line fault is recovered, the redistribution is performed and the distribution line is configured to multiplex loop again. Distribution system operation system characterized by that.
大口需要家を含む配電系統に電力を供給する配電系統運用方法において、
前記配電系統の複数の配電線を、各配電線に設けた配電線連係用の各遮断器を介して連係させることにより、分岐負荷がない配電線と分岐負荷がある配電線を含む多重ループを構成し、
電圧監視制御装置を用いて、前記配電系統の複数のノードの電圧および電流の計測情報と、予め保有している配電線の線路インピーダンスおよび負荷情報に基づき、当該配電系統の配電線全体の電圧が適正範囲内であるか否かを評価し、適正範囲内でない場合に当該配電系統に設置された電圧調整機器を制御することにより配電系統の電圧を制御し、
前記電圧監視制御装置により前記配電系統の電圧を制御する際に、前記多重ループを構成する複数の配電線のうち、前記分岐負荷がある配電線に対して前記分岐負荷がない配電線の電圧の適正範囲を拡大して当該配電系統の電圧を制御する
ことを特徴とする配電系統運用方法。
In a distribution system operation method for supplying power to a distribution system including large consumers,
By linking a plurality of distribution lines of the distribution system via each distribution line link breaker provided on each distribution line, a multiple loop including a distribution line having no branch load and a distribution line having a branch load is provided. Configure
Based on voltage and current measurement information of a plurality of nodes of the distribution system and line impedance and load information of the distribution line that is held in advance, the voltage of the entire distribution line of the distribution system is Evaluate whether it is within the proper range, and if it is not within the proper range, control the voltage of the distribution system by controlling the voltage regulator installed in the distribution system,
When controlling the voltage of the distribution system by the voltage monitoring control device, among the plurality of distribution lines constituting the multiplex loop, the voltage of the distribution line without the branch load is compared with the distribution line with the branch load. A power distribution system operation method characterized by enlarging an appropriate range and controlling the voltage of the power distribution system.
大口需要家を含む配電系統に電力を供給する配電系統運用方法において、
前記配電系統の複数の配電線を、各配電線に設けた配電線連係用の各遮断器を介して連係させることにより、多重ループを構成し、
電圧監視制御装置を用いて、前記配電系統の複数のノードの電圧および電流の計測情報と、予め保有している配電線の線路インピーダンスおよび負荷情報に基づき、当該配電系統の配電線全体の電圧が適正範囲内であるか否かを評価し、適正範囲内でない場合に当該配電系統に設置された電圧調整機器を制御することにより配電系統の電圧を制御し、
前記配電線連係用の各遮断器は、配電系統の電気量を計測する計測機能、配電線事故の有無を判定する事故判定機能、および配電線事故を発生した配電線を選択遮断する選択遮断機能をそれぞれ有する遮断装置として構成し、
前記配電線連係用の各遮断装置によって、前記計測機能により計測された電気量に基づき、前記事故判定機能により配電線事故発生と判定した場合には、この配電線事故を発生した配電線を前記選択遮断機能により選択遮断して前記多重ループの一部または全てを解消し、当該配電線事故が回復した場合には、再閉路を実施して配電線を再び多重ループ化する
ことを特徴とする配電系統運用方法。
In a distribution system operation method for supplying power to a distribution system including large consumers,
By linking a plurality of distribution lines of the distribution system via each distribution line link breaker provided in each distribution line, a multiple loop is configured,
Based on voltage and current measurement information of a plurality of nodes of the distribution system and line impedance and load information of the distribution line that is held in advance, the voltage of the entire distribution line of the distribution system is Evaluate whether it is within the proper range, and if it is not within the proper range, control the voltage of the distribution system by controlling the voltage regulator installed in the distribution system,
Each circuit breaker for the distribution line linkage is a measurement function for measuring the amount of electricity in the distribution system, an accident determination function for determining the presence or absence of a distribution line accident, and a selective cutoff function for selectively blocking a distribution line in which a distribution line accident has occurred. Configured as a shut-off device each having
When it is determined that a distribution line accident has occurred by the accident determination function based on the amount of electricity measured by the measurement function by each of the distribution line linking device, the distribution line that has caused this distribution line accident is The selective cutoff function is used to selectively cut off part or all of the multiplex loop, and when the distribution line fault is recovered, the circuit is reclosed and the distribution line is made into a multiple loop again. Distribution system operation method.
JP2007335206A 2007-12-26 2007-12-26 Distribution system operation system and method Expired - Fee Related JP5065879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007335206A JP5065879B2 (en) 2007-12-26 2007-12-26 Distribution system operation system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007335206A JP5065879B2 (en) 2007-12-26 2007-12-26 Distribution system operation system and method

Publications (2)

Publication Number Publication Date
JP2009159735A true JP2009159735A (en) 2009-07-16
JP5065879B2 JP5065879B2 (en) 2012-11-07

Family

ID=40963133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007335206A Expired - Fee Related JP5065879B2 (en) 2007-12-26 2007-12-26 Distribution system operation system and method

Country Status (1)

Country Link
JP (1) JP5065879B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101043572B1 (en) 2009-08-10 2011-06-22 한국전력공사 Distribution Automation System and its voltage control method for reactive power compensation
JP2012217248A (en) * 2011-03-31 2012-11-08 Mitsubishi Electric Corp Distribution system voltage control apparatus
JP2013031362A (en) * 2011-06-23 2013-02-07 Central Research Institute Of Electric Power Industry User voltage stabilization system in power distribution system
JP2013078236A (en) * 2011-09-30 2013-04-25 Daihen Corp Voltage adjusting device and voltage adjusting method
JP2015139253A (en) * 2014-01-21 2015-07-30 株式会社東光高岳 voltage control system and voltage control program
JP2017034752A (en) * 2015-07-29 2017-02-09 東京電力ホールディングス株式会社 Monitoring control system
US10598736B2 (en) 2012-07-31 2020-03-24 British Columbia Hydro And Power Authority Method for identifying a system anomaly in a power distribution system
CN112636471A (en) * 2020-12-11 2021-04-09 国网安徽省电力有限公司黄山供电公司 Method for judging abnormal ring opening in 10KV distribution network ring closing process
CN114024365A (en) * 2021-10-08 2022-02-08 深圳供电局有限公司 Substation monitoring system, method, electronic device and storage medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7954457B2 (en) 2005-09-14 2011-06-07 Aircom Manufacturing, Inc. Dispenser

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001119860A (en) * 1999-10-19 2001-04-27 Toshiba Corp Method and device for adjusting power voltage system
JP2001251765A (en) * 2000-03-06 2001-09-14 Central Res Inst Of Electric Power Ind Loop power distribution system and power distribution line loop controller used in the same system
JP2007209151A (en) * 2006-02-03 2007-08-16 Hitachi Ltd Loop operational system in electrical distribution system and method
JP2007312583A (en) * 2006-05-22 2007-11-29 Toshiba Corp Device and method for protecting loop system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001119860A (en) * 1999-10-19 2001-04-27 Toshiba Corp Method and device for adjusting power voltage system
JP2001251765A (en) * 2000-03-06 2001-09-14 Central Res Inst Of Electric Power Ind Loop power distribution system and power distribution line loop controller used in the same system
JP2007209151A (en) * 2006-02-03 2007-08-16 Hitachi Ltd Loop operational system in electrical distribution system and method
JP2007312583A (en) * 2006-05-22 2007-11-29 Toshiba Corp Device and method for protecting loop system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101043572B1 (en) 2009-08-10 2011-06-22 한국전력공사 Distribution Automation System and its voltage control method for reactive power compensation
US8271148B2 (en) 2009-08-10 2012-09-18 Korea Electric Power Corporation Distribution automation system for reactive power compensation and its voltage control method
JP2012217248A (en) * 2011-03-31 2012-11-08 Mitsubishi Electric Corp Distribution system voltage control apparatus
JP2013031362A (en) * 2011-06-23 2013-02-07 Central Research Institute Of Electric Power Industry User voltage stabilization system in power distribution system
JP2013078236A (en) * 2011-09-30 2013-04-25 Daihen Corp Voltage adjusting device and voltage adjusting method
US10598736B2 (en) 2012-07-31 2020-03-24 British Columbia Hydro And Power Authority Method for identifying a system anomaly in a power distribution system
JP2015139253A (en) * 2014-01-21 2015-07-30 株式会社東光高岳 voltage control system and voltage control program
JP2017034752A (en) * 2015-07-29 2017-02-09 東京電力ホールディングス株式会社 Monitoring control system
CN112636471A (en) * 2020-12-11 2021-04-09 国网安徽省电力有限公司黄山供电公司 Method for judging abnormal ring opening in 10KV distribution network ring closing process
CN112636471B (en) * 2020-12-11 2022-08-02 国网安徽省电力有限公司黄山供电公司 Method for judging abnormal ring opening in 10KV distribution network ring closing process
CN114024365A (en) * 2021-10-08 2022-02-08 深圳供电局有限公司 Substation monitoring system, method, electronic device and storage medium
CN114024365B (en) * 2021-10-08 2024-03-29 深圳供电局有限公司 Substation monitoring system, method, electronic device and storage medium

Also Published As

Publication number Publication date
JP5065879B2 (en) 2012-11-07

Similar Documents

Publication Publication Date Title
JP5065879B2 (en) Distribution system operation system and method
Abdelaziz et al. An adaptive protection scheme for optimal coordination of overcurrent relays
Gwon et al. Mitigation of voltage unbalance by using static load transfer switch in bipolar low voltage DC distribution system
CN111052529B (en) Power supply system
WO2008097982A9 (en) Fuse saving power distribution system and fault protection
CN102148497B (en) Optimal configuration method of series reactor for limiting short-circuit current
EP2311162A1 (en) A protection arrangement for an electrical power distribution network
US10819112B1 (en) Feeder line fault response using direct current interconnection system
CN105659463B (en) Device and method for the stability for controlling local power grid using adjustable local power grid transformer
Voima et al. Adaptive protection scheme for smart grids
CA3090982C (en) Method for automatically coordinating protection settings in an electric power distribution network
Rolim et al. Adaptive protection methodology for modern electric power distribution systems
CN110460026B (en) Directional overcurrent ground relay (DOCGR) using sampled values and method of operating DOCGR
US20220166218A1 (en) Method of controlling a power distribution system including a microgrid
Benato et al. Application of PLC for the control and the protection of future distribution networks
JP2011097797A (en) Protection system of loop system
JP5191245B2 (en) Distribution line compensation reactor automatic control system
CN109687417A (en) A kind of fault current limiter configuration method
Dragičević et al. Power electronics for microgrids: Concepts and future trends
JP4679489B2 (en) Distribution system ground fault protection system and method
Kayyali et al. Roadmap to modernization of line protection in active distribution systems
Kim et al. Allowable Capacity Estimation of DGs for New 70 kV Transmission System in Korea
CN113632334A (en) Feeder fault response using DC interconnect system
Valbuena et al. Loss of Coordination in a Protection Scheme due to DG assessed by means of Reliability Analysis
JP5058009B2 (en) Distribution line compensation reactor system and distribution line compensation reactor setting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120528

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120810

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees