JP4679489B2 - Distribution system ground fault protection system and method - Google Patents

Distribution system ground fault protection system and method Download PDF

Info

Publication number
JP4679489B2
JP4679489B2 JP2006304554A JP2006304554A JP4679489B2 JP 4679489 B2 JP4679489 B2 JP 4679489B2 JP 2006304554 A JP2006304554 A JP 2006304554A JP 2006304554 A JP2006304554 A JP 2006304554A JP 4679489 B2 JP4679489 B2 JP 4679489B2
Authority
JP
Japan
Prior art keywords
line
zero
distribution
accident
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006304554A
Other languages
Japanese (ja)
Other versions
JP2008125196A (en
Inventor
昭憲 西
和也 小俣
年男 田中
政夫 堀
和宜 福田
崇夫 平井
小林  直樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tokyo Electric Power Co Inc
Original Assignee
Toshiba Corp
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP2006304554A priority Critical patent/JP4679489B2/en
Publication of JP2008125196A publication Critical patent/JP2008125196A/en
Application granted granted Critical
Publication of JP4679489B2 publication Critical patent/JP4679489B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

本発明は、配電系統において、電圧の安定と需要変動への対応を容易にする目的で、ループ系統を構成した場合の配電系統の地絡保護システムおよびその方法に関する。   The present invention relates to a ground fault protection system for a power distribution system and a method thereof in a case where a loop system is configured for the purpose of facilitating voltage stability and response to demand fluctuation in the power distribution system.

現在、配電系統をループ化して需要家へ電力を供給する形態は、余り実用化されてはいない。しかし、最近では、配電線の送電容量の限度を越えた大口需要家への供給ニーズが高まっていることや、分散電源の設置によって需要変動に対する電圧の安定性確保が必要となっていることから、配電系統のループ化が要請されてきている。   Currently, the form of supplying power to consumers by looping the distribution system has not been practically used. Recently, however, the need for supply to large customers exceeding the transmission capacity limit of distribution lines has increased, and the need to ensure the stability of voltage against fluctuations in demand by installing distributed power sources. There has been a demand for loops in the distribution system.

配電系統をループ系統とした場合には、ループ系統事故時にループ点における事故回線選択が重要になる。もし、変電所側の保護リレーが動作する前に、回線選択を的確に行えない場合は、電源である変電所側でループ回線が全て遮断され、ループ系統で受電していた需要家が停電するという問題がある。   When the distribution system is a loop system, it is important to select an accident line at the loop point when a loop system fault occurs. If the line selection cannot be performed accurately before the protection relay on the substation side operates, all loop lines are cut off at the power substation side, and the customer receiving power in the loop system loses power. There is a problem.

さらに、複数の配電線を用いてループ系統を構成する場合には、配電線の各相インピーダンスの不平衡によって、負荷電流に起因する零相環流電流がループ系統に流れ、この零相還流電流が大きい場合、地絡方向リレーの不正動作を招くという問題がある。   Furthermore, when a loop system is configured using a plurality of distribution lines, a zero-phase return current caused by the load current flows to the loop system due to an imbalance in the impedance of each phase of the distribution lines, and this zero-phase return current is If it is large, there is a problem in that it causes an illegal operation of the ground fault direction relay.

このようなループ系統を保護する技術については、特許文献1に提案されているものが存在する。しかし、かかる技術は短絡事故検出であり、樹枝状の配電線とループ系統構成した配電線とで、系統構成に応じて変電所での事故検出遮断方式を変更するものであって、ループ点を遮断できないため、やはりループ系統全体が停電してしまう。   As a technique for protecting such a loop system, there is one proposed in Patent Document 1. However, this technology is short-circuit accident detection, which changes the fault detection and shut-off method at the substation according to the system configuration between the dendritic distribution line and the distribution system configured in the loop system. Since it cannot be shut off, the entire loop system will be cut off.

ループ系統の場合は、ループ点での事故検出遮断が変電所の保護装置と協調を取って適切に行われれば、変電所の保護方式を変更する必要は無い。また、特別高圧送電線路での平行多回線保護の場合は、非特許文献1に記載されている方法がある。これは、図14に示すように、平行2回線の外部事故F1時には、両回線の差電流はほぼ0となることと、内部事故F2時には、健全回線に流れる電流IBよりも事故回線に流れる電流IAの方が大きいことを利用したものである。   In the case of a loop system, it is not necessary to change the protection method of the substation if the accident detection interruption at the loop point is appropriately performed in cooperation with the protection device of the substation. Further, in the case of parallel multi-line protection in an extra high voltage power transmission line, there is a method described in Non-Patent Document 1. As shown in FIG. 14, the difference current between the two lines is almost zero at the time of the external fault F1 of the parallel two lines, and the current that flows through the fault line rather than the current IB that flows through the healthy line at the time of the internal fault F2. This is based on the fact that IA is larger.

特開2004−254369号公報JP 2004-254369 A 「電気工学ハンドブック 第6版」 社団法人 電気学会、2001年2月20日 19編 「保護リレーと監視制御装置の1.2.3回線選択保護リレー」"Electrical Engineering Handbook 6th Edition" The Institute of Electrical Engineers of Japan, February 20, 2001, 19 editions "Protection relay and monitoring control device 1.2.3 circuit selection protection relay"

しかしながら、上記の平行多回線保護方式は、2回線送電線のインピーダンスがほぼ同じであるという前提に成り立つ方式であり、配電線のように、線種が種々異なっている場合や、長さの異なる一般の配電線を3回線、4回線でループ構成する場合などには採用できない。   However, the parallel multi-line protection method described above is based on the premise that the impedances of the two-line transmission lines are almost the same. When the line types are different as in the case of distribution lines, the lengths are different. It cannot be adopted when a general distribution line is configured with a loop of 3 lines and 4 lines.

結局、配電線をループ系統構成にした場合、ループ系統に配電線の各相インピーダンスの不平衡による零相環流電流が流れ、地絡方向リレーの動作を阻害し、事故回線の選択を誤ってしまう。   Eventually, when the distribution line is configured as a loop system, a zero-phase circulating current due to an unbalanced impedance of each phase of the distribution line flows in the loop system, obstructing the operation of the ground fault direction relay, and erroneously selecting the accident line .

本発明は、上記のような従来技術の問題点を解決するために提案されたものであり、その目的は、ループ系統にしたことにより生じる零相環流電流の影響を受けず、ループを構成する配電線の事故を的確に検出して選択遮断し、最小の停電範囲とすることが可能な配電系統の地絡保護システムおよびその方法を提供することにある。   The present invention has been proposed in order to solve the above-described problems of the prior art, and the object thereof is not affected by the zero-phase circulating current caused by the loop system, and constitutes a loop. It is an object of the present invention to provide a ground fault protection system for a distribution system and a method thereof capable of accurately detecting and selectively shutting down a distribution line accident and reducing the minimum power failure range.

上記の目的を達成するために、本発明は、電源変電所に接続された複数の配電線を、ループ点(連絡線)遮断器を介してループ構成して電力を供給するようにした配電系統の地絡保護システムにおいて、電源変電所端子の零相電流および零相電圧、ループ点(連絡線)の零相電流をそれぞれ抽出する抽出手段と、前記抽出手段から得られた電気量のうち、ループを構成する配電線の電源変電所端子零相電流および零相電圧を導入して、当該ループを構成する複数の配電線に事故があるか否かを一括して判定する一括事故判定手段と、前記抽出手段から得られた電気量のうち、ループを構成する配電線の個別回線毎に、電源変電所端子の零相電流、ループ点の零相電流を導入して、事故回線を識別する回線個別判定手段と、前記一括事故判定手段および前記回線個別判定手段の双方から動作信号を導入して、前記ループ点遮断器に遮断指令を出力する事故回線検出手段と、を備えたことを特徴とする。   In order to achieve the above object, the present invention provides a distribution system in which a plurality of distribution lines connected to a power supply substation are supplied in a loop configuration via a loop point (connection line) circuit breaker. In the ground fault protection system, the extraction means for extracting the zero-phase current and zero-phase voltage of the power supply substation terminal, the zero-phase current of the loop point (connection line), and the amount of electricity obtained from the extraction means, A collective accident judging means for introducing a zero phase current and a zero phase voltage of a power supply substation terminal of a distribution line constituting the loop and collectively judging whether or not there is an accident in a plurality of distribution lines constituting the loop; Of the quantity of electricity obtained from the extracting means, the zero-phase current at the power substation terminal and the zero-phase current at the loop point are introduced for each individual line of the distribution lines constituting the loop, and the fault line is identified. Individual line judging means and the collective accident judging means And the introducing operation signals from both of the line individually determining means, characterized in that and a fault line detecting means for outputting a cutoff command to the loop point breaker.

以上のような本発明では、ループを構成する配電線における電源変電所端子およびループ点の零相電流および零相電圧を用いて、ループ系統内で発生した事故を配電線一括で検出するとともに、事故のあった配電線を個別に検出することによって、ループ系統に起因する零相環流電流の影響をうけずに、事故検出の高感度化が図れる。したがって、事故回線を的確に選択して遮断できる。   In the present invention as described above, using the zero-phase current and zero-phase voltage of the power supply substation terminal and the loop point in the distribution line constituting the loop, the accident that occurred in the loop system is detected in the distribution line collectively, By detecting the distribution line where the accident occurred individually, the sensitivity of accident detection can be increased without being affected by the zero-phase circulating current caused by the loop system. Therefore, the accident line can be selected accurately and blocked.

以上述べたように、本発明によれば、ループ系統にしたことにより生じる零相環流電流の影響を受けず、ループを構成する配電線の事故を的確に検出して選択遮断し、最小の停電範囲とすることが可能な配電線の地絡保護システムおよびその方法を提供することができる。   As described above, according to the present invention, it is not affected by the zero-phase circulating current caused by the loop system, and it accurately detects and selectively shuts down the distribution line accident that constitutes the loop, thereby minimizing power outage. It is possible to provide a ground fault protection system and a method for a distribution line that can be in a range.

本発明を実施するための最良の形態(以下、実施形態とする)を、図面を参照して以下に説明する。
[ループ系統の構成例]
まず、以下に説明する各実施形態が適用されるループ系統の一例を、図1を参照して説明する。なお、図1は、3回線(A,B,C)をループ構成した系統を示す例である。但し、ループ系統を構成する回線数は、これには限定されない。
The best mode for carrying out the present invention (hereinafter referred to as an embodiment) will be described below with reference to the drawings.
[Configuration example of loop system]
First, an example of a loop system to which each embodiment described below is applied will be described with reference to FIG. FIG. 1 is an example showing a system in which three lines (A, B, C) are loop-configured. However, the number of lines constituting the loop system is not limited to this.

図1において、1は配電用変電所母線、2は配電線、3はループ系統を構成したときの連絡線、4は配電線の負荷線、5はループを構成している線路の遮断器、6および7は変成器である。   In FIG. 1, 1 is a distribution substation bus, 2 is a distribution line, 3 is a connection line when configuring a loop system, 4 is a load line of the distribution line, 5 is a circuit breaker of a line forming a loop, 6 and 7 are transformers.

遮断器5のうち、5Aは配電用変電所の端子遮断器である。また、5Bは連絡線に介挿した遮断器であり、便宜上ループ点遮断器という。変成器6,7のうち、6Aは配電用変電所の電流変成器(CT)、6Bはループを構成する連絡線の電流変成器(CT)、7Aは配電用変電所の母線の電圧変成器(VT)、7Bはループを構成する連絡線の電圧変成器(VT)である。添え字のアルファベット文字のa,b,cは、ループ系統を構成する回線(A,B,C)ごとの要素を示し、dはループ系統以外の配電線である。   Among the circuit breakers 5, 5A is a terminal circuit breaker of a distribution substation. Moreover, 5B is a circuit breaker inserted in the connection line, and is called a loop point circuit breaker for convenience. Among the transformers 6 and 7, 6A is a current transformer (CT) of a distribution substation, 6B is a current transformer (CT) of a connecting line forming a loop, and 7A is a voltage transformer of a bus of the distribution substation. (VT), 7B is a voltage transformer (VT) of the connecting line constituting the loop. The subscript alphabet letters a, b, and c indicate elements for each line (A, B, C) constituting the loop system, and d is a distribution line other than the loop system.

なお、図1では示していないが、配電用変電所にはCT6A,VT7Aで抽出した零相電流、零相電圧を入力して事故検出を行う地絡方向リレーを設けており、この地絡方向リレーの動作によって端子遮断器5Aを遮断するようになっている。   Although not shown in FIG. 1, the distribution substation is provided with a ground fault direction relay for detecting an accident by inputting a zero phase current and a zero phase voltage extracted by CT 6A and VT 7A. The terminal breaker 5A is cut off by the operation of the relay.

[第1の実施形態]
[構成]
次に、本発明の第1の実施形態の地絡保護システムを、図2を参照して説明する。図2において、10は地絡保護装置、101はループを構成する回線および連絡線の電流変成器6A,6Bおよび電圧変成器7A,7Bの出力を地絡保護装置10に入力する入力回路(入力手段)、102は各回線電流、電圧等を保護装置として使用しやすい大きさに変換する変換装置、103はループ系統を構成する配電線を一括してループ系統に事故があるかどうかを判定(識別)する一括事故判定回路(一括事故判定手段)、104はループを構成する配電線個別にどの回線の事故かを判定(識別)する回線個別判定回路(回線個別判定手段)である。なお、図2では7Bの出力を導入する方式で示してあるが、7Bの出力を用いず、104に7Aの出力を用いる方法または104には電圧出力を用いない方法も可能である。以降の説明図では、7Bの出力を導入する場合の図で説明する。
[First Embodiment]
[Constitution]
Next, the ground fault protection system according to the first embodiment of the present invention will be described with reference to FIG. In FIG. 2, 10 is a ground fault protection device, 101 is an input circuit (input) for inputting the outputs of the current transformers 6A and 6B and the voltage transformers 7A and 7B of the lines and connection lines constituting the loop to the ground fault protection device 10. Means), 102 is a conversion device that converts each line current, voltage, etc. to a size that can be easily used as a protection device, and 103 determines whether there is an accident in the loop system by collectively distributing the distribution lines constituting the loop system ( A collective accident judging circuit (collective accident judging means) 104 for identifying (identifying), and a line individual judging circuit (line individual judging means) for judging (identifying) which line the fault is for each distribution line constituting the loop. In FIG. 2, the method of introducing the output of 7B is shown, but a method of using the output of 7A without using the output of 7B or a method of using no output of voltage for 104 is possible. In the following explanation diagrams, explanation will be given with reference to the case of introducing the output of 7B.

105は、一括事故判定回路103によるループ系統の事故検出条件と回線個別判定回路104の判定結果に基づいて、事故回線を選択(検出)して遮断指令を出力する事故回線選択回路(事故回線検出手段)である。106は、事故配電線に係る遮断器へ遮断指令を与える信号である。遮断指令は、配電用変電所の遮断器とループ系統構成の連絡線遮断器への指令であるが、伝送装置を介して行うこともできる。   105, an accident line selection circuit (accident line detection) that selects (detects) an accident line and outputs a cut-off command based on the fault detection condition of the loop system by the collective accident determination circuit 103 and the determination result of the individual line determination circuit 104; Means). 106 is a signal which gives the interruption | blocking command to the circuit breaker concerning an accident distribution line. The interruption command is an instruction to the circuit breaker of the distribution substation and the connection line circuit breaker of the loop system configuration, but can also be performed via a transmission device.

図2において、入力回路101への入力は、各変成器6A,6B,7A,7Bの出力が、伝送装置を介して得られるものである。上記の伝送装置に用いられる伝送媒体に関しては、有線若しくは無線のあらゆる媒体を適用可能であり、どのようなLANやWANを経由するか若しくは経由しないかは問わない。通信プロトコルについても、現在又は将来において利用可能なあらゆるものを適用可能である。   In FIG. 2, the input to the input circuit 101 is such that the outputs of the transformers 6A, 6B, 7A, and 7B are obtained via the transmission device. With respect to the transmission medium used in the above transmission apparatus, any wired or wireless medium can be applied, and it does not matter what LAN or WAN is used. Any communication protocol that can be used at present or in the future can be applied.

なお、説明の都合上、102〜105を「回路」としているが、ディジタルリレーで処理する場合はこれらの機能をコンピュータのソフトウェア処理で実現することもできる。このため、「…回路」は「…部」若しくは「…手段」として表現してもよい。つまり、各部を実現するための回路は、例えば、各機能を実現するASICやCPU等のICチップその他の周辺回路によって構成したり、複数の機能を集約したシステムLSIによって構成する等、種々考えられるものであり、特定のものには限定されない。コードやデータを含むプログラム、各種設定等を記憶する手段として、どのような種類、容量のメモリを確保するかについても自由である。ハードウェア処理によって実現する範囲とソフトウェア処理によって実現する範囲も自由である。   For convenience of explanation, reference numerals 102 to 105 are “circuits”. However, when processing is performed by a digital relay, these functions can be realized by software processing of a computer. Therefore, “... Circuit” may be expressed as “... Unit” or “. In other words, various circuits for realizing each part are conceivable, such as an IC chip such as an ASIC or CPU that realizes each function, or other peripheral circuits, or a system LSI that integrates a plurality of functions. It is a thing and is not limited to a specific thing. As a means for storing programs including codes and data, various settings, and the like, it is also possible to secure what type and capacity of memory. The range realized by hardware processing and the range realized by software processing are also free.

また、地絡保護装置10を、汎用のコンピュータをプログラムで制御することによって、実現することもできる。この場合のプログラムは、コンピュータのハードウェアを物理的に活用することで、各部の機能を実現するものであり、かかるプログラムおよびプログラムを記録したハードディスク、CD−ROM、DVD−ROMその他の種々の記録媒体は単独でも本発明の一態様である。したがって、例えば、パーソナルコンピュータにアプリケーションプログラムをインストールすることにより、本発明を構成することもできる。   Moreover, the ground fault protection apparatus 10 can also be realized by controlling a general-purpose computer with a program. The program in this case realizes the function of each unit by physically utilizing computer hardware, and the hard disk, the CD-ROM, the DVD-ROM, and other various recordings that record the program and the program. The medium alone is one embodiment of the present invention. Therefore, for example, the present invention can be configured by installing an application program in a personal computer.

[作用]
以上のような本実施形態の作用は、以下の通りである。
[零相還流電流]
まず、本実施形態の作用を説明する前に、地絡事故時にループ回線に流れる電流について、図3を参照して説明する。説明を簡略化するため、例えば、事故は100%地絡事故とする。図3に示す各対地静電容量による電流Ias、Ica、Icb、Iccは、100%地絡事故時の零相電流3I値を示しているものとする。
[Action]
The operation of the present embodiment as described above is as follows.
[Zero-phase reflux current]
First, before describing the operation of the present embodiment, the current flowing through the loop line in the event of a ground fault will be described with reference to FIG. In order to simplify the explanation, for example, the accident is assumed to be a 100% ground fault. It is assumed that the currents Ias, Ica, Icb, and Icc due to the respective ground capacitances shown in FIG. 3 indicate the zero-phase current 3I 0 value at the time of 100% ground fault.

ここで、Iasは、ループ系統を除いた電源母線からみた対地充電電流に基づく零相電流である。また、図3に示す電流記号は、各端子の零相電流3Iの値を示し、電流方向は図に示した方向を基準とする。 Here, Ias is a zero-phase current based on the ground charging current as seen from the power supply bus excluding the loop system. The current symbol shown in FIG. 3 indicates the value of the zero-phase current 3I 0 at each terminal, and the current direction is based on the direction shown in the figure.

各配電線のインピーダンスは、図に示す記号で与えている。負荷電流による平常時の零相還流電流は、配電線の各相インピーダンスの不平衡により、ループ配電線に流れる負荷電流(IL=ILa+ILb+ILc)の大きさによって、ループ系統内を環流する。この大きさは、負荷電流が3相平衡した状態で、概略インピーダンス不平衡が5%程度で負荷電流の1〜2%程度である。   The impedance of each distribution line is given by the symbols shown in the figure. The zero-phase return current in the normal state due to the load current circulates in the loop system depending on the magnitude of the load current (IL = ILa + ILb + ILc) flowing through the loop distribution line due to the unbalanced impedance of each phase of the distribution line. This magnitude is approximately 1 to 2% of the load current when the load current is in a three-phase balanced state and the impedance imbalance is approximately 5%.

この大きさは、系統対地充電電流の大きさの数倍にもなり、地絡方向リレーの不正動作を招く。また、ループを構成する配電線の回線個別に比率差動保護方式を採用する方法もあるが、この場合も、外部事故時に、この零相循環電流が流入・流出電流となり、変流器の誤差を考慮すると高感度にはできず、内部事故感度が大きく低下する要因となる。   This magnitude is several times the magnitude of the grid-to-ground charging current, leading to incorrect operation of the ground fault direction relay. In addition, there is a method that adopts the ratio differential protection method for each line of the distribution lines that make up the loop, but in this case as well, in the event of an external accident, this zero-phase circulating current becomes the inflow / outflow current, resulting in an error in the current transformer. If this is taken into account, high sensitivity cannot be achieved, and the internal accident sensitivity is greatly reduced.

ここで、A回線、B回線、C回線に流れるこの零相環流電流をIath、Ibth、Icthとし、Iath=Ibth+Icthとして、100%地絡事故時の各端子、各連絡線の電流を概略で求めた例を、表1に示す。ループ一括の電流Iとは、電源変電所端子であり、Iaa+Iab+Iacを意味している。また、個別判定のための連絡線電流は、A回線はIbaを、B回線は−Iba+Ibbを、C回線は−Ibbとして使用する。   Here, the zero-phase circulating currents flowing in the A line, the B line, and the C line are Iath, Ibth, and Icth, and Iath = Ibth + Icth, and the current of each terminal and each connecting line at the time of 100% ground fault is roughly calculated. Examples are shown in Table 1. The loop collective current I is a power supply substation terminal and means Iaa + Iab + Iac. The connection line current for individual determination uses Iba for the A line, -Iba + Ibb for the B line, and -Ibb for the C line.

Figure 0004679489
Figure 0004679489

この表1から判るように、外部事故の差電流Idは、一括判定では、ループ系統内の合計した充電電流分の流出のみとなり、回線ごとの個別判定では、回線の充電電流分が流出となる。内部事故は事故点によらず、差電流Idは一括判定で変電所背後の充電電流分であり、個別判定では事故回線は事故回線の内部充電電流分を除いた電流となる。ループ系統内の健全回線は回線の内部充電電流が流出となる。   As can be seen from Table 1, the difference current Id of the external accident is only outflow of the total charging current in the loop system in the collective judgment, and out of the charging current of the line in the individual judgment for each line. . In the case of an internal accident, the difference current Id is the charge current behind the substation by collective judgment regardless of the fault point, and in the individual judgment, the fault line is a current excluding the internal charge current of the fault line. A healthy line in the loop system causes the internal charging current of the line to flow out.

[地絡保護処理]
次に、本実施形態の作用を、図2および図3を参照して説明する。なお、電流変成器6Aa,6Ab,6Ac,6Ba,6Bbの二次側電流を変換した各回線電流の変換装置102の出力を、電流Iaa,Iab,Iac,Iba,Ibbとする。また、電圧変成器7A,7Ba,7Bbから得られる零相電圧の変換装置102の出力をVとする。これらは、以降の他の実施形態の説明でも同様とする。
[Ground fault protection treatment]
Next, the effect | action of this embodiment is demonstrated with reference to FIG. 2 and FIG. The output of each line current conversion device 102 obtained by converting the secondary currents of the current transformers 6Aa, 6Ab, 6Ac, 6Ba, 6Bb is defined as currents Iaa, Iab, Iac, Iba, Ibb. The voltage transformer 7A, 7Ba, the output of the converter 102 of the zero-phase voltage obtained from 7Bb to V 0. The same applies to the description of other embodiments below.

本実施形態では、変換装置102を介して得られた上記の電流、電圧を使用して、零相環流電流の影響を受けずに、ループ系統の事故を一括事故判定回路103で検出する。また、ループ系統を構成する配電線の個別回線ごとの電流・電圧についても、変換装置102を介して得られたものを使用して、回線個別判定回路104で事故回線を判定する。このような一括事故判定回路103の出力と回線個別判定回路104の出力の両者が成立したことによって、事故回線選択回路105が、当該配電線に係る遮断器へ遮断指令106を送出し、ループ点を遮断する。   In this embodiment, the above-described current and voltage obtained via the converter 102 are used to detect the loop system fault by the collective fault determination circuit 103 without being affected by the zero-phase circulating current. Further, the current / voltage for each individual line of the distribution lines constituting the loop system is also determined by the line individual determination circuit 104 by using the current / voltage obtained through the converter 102. When both the output of the collective accident determination circuit 103 and the output of the individual line determination circuit 104 are established, the accident line selection circuit 105 sends the interruption command 106 to the circuit breaker associated with the distribution line, and the loop point Shut off.

その後、需要家保護装置と協調を取った変電所端子の図示しない事故検出リレーで、変電所端子の遮断器を遮断し、事故除去が行われる。変電所側遮断を行う装置については本発明の装置を使用するか、従来どおりの地絡方向リレーでの遮断であっても、需要家の保護設備と時間協調が取れるため、実現可能である。以下の実施形態では、変電所端子の遮断方法については説明を省略する。   Thereafter, an accident detection relay (not shown) of the substation terminal that cooperates with the consumer protection device cuts off the circuit breaker of the substation terminal to remove the accident. Even if the device of the present invention is used for the device that performs the substation-side interruption or the interruption by the ground fault direction relay as in the past, it can be realized because it can coordinate with the protection equipment of the customer in time. In the following embodiments, description of the method for shutting off the substation terminal is omitted.

[効果]
以上のような本実施形態によれば、一括事故判定回路103によって、零相環流電流の影響を受けない一括事故判定を行い、かつ、回線個別判定回路104によって、ループ系統内の配電線の事故回線の判定を個別に行うことにより、ループ系統であっても、高感度に確実な事故回線判定が可能となる。したがって、ループを構成する配電線の事故を的確に検出して選択遮断し、停電範囲を最小にすることができる。
[effect]
According to the present embodiment as described above, the collective fault judgment circuit 103 performs the collective fault judgment not affected by the zero-phase circulating current, and the line individual judgment circuit 104 performs the fault of the distribution line in the loop system. By determining the line individually, it is possible to determine the accident line with high sensitivity even in the loop system. Therefore, it is possible to accurately detect an accident in the distribution lines constituting the loop, selectively cut off, and minimize the power failure range.

[第2の実施形態]
[構成]
本発明の第2の実施形態の地絡保護装置を、図4、図5および図6を参照して説明する。なお、本実施形態は、基本的には、上記の第1の実施形態と同様であるため、同じ構成部については説明を省略する。
[Second Embodiment]
[Constitution]
The ground fault protection apparatus of the 2nd Embodiment of this invention is demonstrated with reference to FIG.4, FIG.5 and FIG.6. Since this embodiment is basically the same as the first embodiment described above, description of the same components will be omitted.

すなわち、図4に示すように、本実施形態の一括事故判定回路103は、電流判定回路103a、電圧判定回路103bおよびAND回路103dを有している。電流判定回路103aは、電源変電所端子のループを構成する配電線の各回線電流Iaa,Iab,Iacをベクトル加算して、この値Its=Iaa+Iab+Iacが所定値k0より大きいときに出力を生じる回路である。電圧判定回路103bは、零相電圧Vが所定値以上にあれば、出力を生じる回路である。 That is, as shown in FIG. 4, the collective accident determination circuit 103 of this embodiment includes a current determination circuit 103a, a voltage determination circuit 103b, and an AND circuit 103d. The current determination circuit 103a is a circuit that generates an output when this value Its = Iaa + Iab + Iac is larger than a predetermined value k0 by adding the line currents Iaa, Iab, Iac of the distribution lines constituting the loop of the power supply substation terminal. is there. Voltage determination circuit 103b may or zero-phase voltage V 0 is above a predetermined value, a circuit for producing an output.

そして、AND回路103dは、電流判定回路103aと電圧判定回路103bのANDをとる回路である。したがって、一括事故判定回路103は、電流判定回路103aと電圧判定回路103bの条件が、両者とも成立したときに出力を生じるように構成されている。図5および図6は、このような電流判定回路103aと電圧判定回路103bの判定特性例である。   The AND circuit 103d is an AND circuit of the current determination circuit 103a and the voltage determination circuit 103b. Therefore, the collective accident determination circuit 103 is configured to generate an output when the conditions of the current determination circuit 103a and the voltage determination circuit 103b are both satisfied. 5 and 6 show examples of determination characteristics of the current determination circuit 103a and the voltage determination circuit 103b.

[作用]
以上のような本実施形態の作用を説明する。なお、第1の実施形態と異なる一括事故判定回路103の作用についてのみ説明する。すなわち、ループ系統を構成する配電線の電源変電所端子電流のベクトル加算は、上述のように、零相還流電流がキャンセルされて事故電流分と充電電流分となる。
[Action]
The operation of the present embodiment as described above will be described. Only the operation of the collective accident determination circuit 103 different from the first embodiment will be described. That is, the vector addition of the power source substation terminal currents of the distribution lines constituting the loop system becomes the accident current and the charge current as the zero-phase return current is canceled as described above.

このベクトル加算された加算値Itsは、外部事故の場合は、ループ系統内の全充電電流分であり、内部事故の場合は、系統全体の充電電流よりループ系統内の充電電流を差し引いた値となる。したがって、この加算値Itsが、ループ系統内の充電電流(例えば、所定値k0)より大きい値であれば、ループ系統の事故と判定できる。   This vector-added value Its is the total charging current in the loop system in the case of an external accident, and in the case of an internal accident, the value obtained by subtracting the charging current in the loop system from the charging current of the entire system. Become. Therefore, if this added value Its is larger than the charging current (for example, the predetermined value k0) in the loop system, it can be determined that the loop system has an accident.

また、地絡事故時には、必ず零相電圧Vの発生があり、事故の検出を確実に行うため、Vが所定値(例えばkv)以上発生していることも加味して、ループ系統の事故を判定することができる。なお、零相電圧Vに関する条件は、必ずしもこの一括事故判定回路103に必須のものではない。 In addition, in the event of a ground fault, the zero-phase voltage V 0 is always generated, and in order to reliably detect the accident, the fact that V 0 has occurred over a predetermined value (for example, kv) is taken into account. Accidents can be determined. The condition regarding the zero-phase voltage V 0 is not necessarily essential for the collective accident determination circuit 103.

[効果]
以上のような本実施形態によれば、一括事故判定回路103において、電流判定回路103aの出力と電圧判定回路103bの出力のANDをとって、零相環流電流の影響を受けない一括事故判定を行うことにより、ループ系統であっても高感度に確実な事故回線判定が可能となる。したがって、配電線の事故を的確に検出して選択遮断し、停電範囲を最小にすることができる。
[effect]
According to the present embodiment as described above, the collective accident determination circuit 103 performs AND of the output of the current determination circuit 103a and the output of the voltage determination circuit 103b to perform collective accident determination that is not affected by the zero-phase circulating current. By doing so, it is possible to determine the accident line with high sensitivity even in the loop system. Therefore, it is possible to accurately detect an accident in the distribution line, selectively cut off, and minimize the power outage range.

[第3の実施形態]
[構成]
本発明の第3の実施形態の地絡保護装置を、図7および図8を参照して説明する。なお、本実施形態は、基本的には、上記の第1の実施形態と同様であるため、同じ構成部については説明を省略する。
[Third Embodiment]
[Constitution]
The ground fault protection apparatus of the 3rd Embodiment of this invention is demonstrated with reference to FIG. 7 and FIG. Since this embodiment is basically the same as the first embodiment described above, description of the same components will be omitted.

すなわち、図7に示すように、本実施形態の一括事故判定回路103は、電流判定回路103a、位相判定回路103cおよびAND回路103dを有している。電流判定回路103aは、電源変電所端子のループを構成する配電線の各回線電流をベクトル加算して、この加算値Itsが所定値k0より大きいときに出力を生じる回路である。位相判定回路103cは、加算した電流値ItsとVの位相差λが所定値以内(θ1<λ<θ2)にあれば出力を生じる回路である。 That is, as shown in FIG. 7, the collective accident determination circuit 103 of this embodiment includes a current determination circuit 103a, a phase determination circuit 103c, and an AND circuit 103d. The current determination circuit 103a is a circuit that adds a vector to each line current of the distribution lines constituting the loop of the power supply substation terminal and generates an output when the added value Its is larger than a predetermined value k0. The phase determination circuit 103c is a circuit that generates an output if the phase difference λ between the added current value Its and V 0 is within a predetermined value (θ1 <λ <θ2).

そして、AND回路103dは、電流判定回路103aと位相判定回路103cのANDをとる回路である。したがって、一括事故判定回路103は、この電流判定回路103aと位相判定回路103cの条件が、両者とも成立したときに出力を生じるように構成されている。図8は、このような位相判定回路103cの判定特性例である。なお、図中、αは最大感度角を示す。   The AND circuit 103d is an AND circuit of the current determination circuit 103a and the phase determination circuit 103c. Therefore, the collective accident determination circuit 103 is configured to generate an output when the conditions of the current determination circuit 103a and the phase determination circuit 103c are both satisfied. FIG. 8 shows an example of determination characteristics of such a phase determination circuit 103c. In the figure, α represents the maximum sensitivity angle.

[作用]
以上のような本実施形態の作用を説明する。なお、第1の実施形態と異なる一括事故判定回路103の作用についてのみ説明する。すなわち、ループ系統を構成する配電線の電源変電所端子電流のベクトル加算は、上述のように、零相還流電流がキャンセルされて事故電流分と充電電流分となる。
[Action]
The operation of the present embodiment as described above will be described. Only the operation of the collective accident determination circuit 103 different from the first embodiment will be described. That is, the vector addition of the power source substation terminal currents of the distribution lines constituting the loop system becomes the accident current and the charge current as the zero-phase return current is canceled as described above.

このベクトル加算された加算値Itsがループ系統内の充電電流より大きい値であれば、ループ系統の事故と判定できる。しかし、外部事故時はループ系統内の全充電電流が加算値Itsとなるため、ループ系統内の充電電流が大きい場合は高感度が望めなくなる。ここで、ループ外の事故のときとループ系統内の事故とでは、VとItsの位相が逆位相になる。そこで、本実施形態では、位相判定回路103cを利用して、位相を判定することによる事故判定も行う。 If the addition value Its obtained by vector addition is larger than the charging current in the loop system, it can be determined that the loop system has an accident. However, since the entire charging current in the loop system becomes the added value Its at the time of an external accident, high sensitivity cannot be expected when the charging current in the loop system is large. Here, the accident in the loop system when an accident outside the loop, V 0 and Its phase is reversed phases. Therefore, in the present embodiment, accident determination is also performed by determining the phase using the phase determination circuit 103c.

[効果]
以上のような本実施形態によれば、一括事故判定回路103において、電流判定回路103aの出力と位相判定回路103cの出力のANDをとって、零相環流電流の影響を受けない一括事故判定を行うことにより、ループ系統内の充電電流が大きくて電流値による高感度な事故判定が望めない場合であっても、位相によって高感度に確実な事故回線判定が可能となる。したがって、配電線の事故を的確に検出して選択遮断し、停電範囲を最小にすることができる。
[effect]
According to the present embodiment as described above, the collective accident determination circuit 103 performs AND of the output of the current determination circuit 103a and the output of the phase determination circuit 103c to perform collective accident determination that is not affected by the zero-phase circulating current. By doing so, even if the charging current in the loop system is large and high-sensitivity accident determination based on the current value cannot be expected, reliable accident line determination can be performed with high sensitivity depending on the phase. Therefore, it is possible to accurately detect an accident in the distribution line, selectively cut off, and minimize the power outage range.

[第4の実施形態]
[構成]
本発明の第4の実施形態の地絡保護装置を、図9を参照して説明する。なお、本実施形態は、基本的には、上記の第1の実施形態と同様であるため、同じ構成部については説明を省略する。
[Fourth Embodiment]
[Constitution]
The ground fault protection apparatus of the 4th Embodiment of this invention is demonstrated with reference to FIG. Since this embodiment is basically the same as the first embodiment described above, description of the same components will be omitted.

すなわち、図9に示すように、本実施形態の回線個別判定回路104は、差動分算出回路104aおよび比較判定回路104bを有している。差動分算出回路104aは、ループを構成する配電線の回線ごとに、電源変電所端子電流と連絡線電流とのベクトル和の差動分を求める回路である。   That is, as shown in FIG. 9, the line individual determination circuit 104 of this embodiment includes a differential component calculation circuit 104a and a comparison determination circuit 104b. The differential component calculation circuit 104a is a circuit for obtaining the differential component of the vector sum of the power supply substation terminal current and the connection line current for each line of the distribution lines constituting the loop.

本実施形態において、図3に示した系統構成に適用した場合には、連絡線側電流は、当該配電線にかかる連絡線の電流を使用する。たとえば、A回線はIbaであり、B回線は−Iba+Ibbであり、C回線は−Ibbである。比較判定回路104bは、回線ごとに加算した電流値Ida,Idb,Idcの大きさ比較を行い、最大回線を選択する回路である。したがって、この個別選択された回線に、一括事故判定回路103の出力を条件に、遮断指令が与えられる構成となっている。   In this embodiment, when it applies to the system | strain structure shown in FIG. 3, the connection line side electric current uses the electric current of the connection line concerning the said distribution line. For example, the A line is Iba, the B line is -Iba + Ibb, and the C line is -Ibb. The comparison determination circuit 104b is a circuit that compares the magnitudes of the current values Ida, Idb, and Idc added for each line and selects the maximum line. Therefore, a cut-off command is given to the individually selected lines on condition of the output of the collective accident determination circuit 103.

[作用]
以上のような本実施形態の作用を説明する。なお、第1の実施形態と異なる回線個別判定回路104の説明を主体に、図3の系統例と、上述のループ系統の電流関係を用いて説明する。
[Action]
The operation of the present embodiment as described above will be described. The description will be made mainly using the description of the line individual determination circuit 104 different from the first embodiment, using the example of the system in FIG. 3 and the current relationship of the loop system described above.

すなわち、ループ外事故は一括事故判定回路103の出力が生ぜず、不動作となる。ループ内事故は一括事故判定回路103の出力があり、事故回線選択はこの回線個別判定回路104の出力で与えられる。たとえば、図3に示すように、A回線事故のとき、個別回線の差電流Ida,Idb,Idcは、上述の通り、
Ida=Ias+Icb+Ica
Idb=−Icb
Idc=−Icc
で与えられる。
In other words, the out-of-loop accident does not generate the output of the collective accident determination circuit 103 and does not operate. The fault in the loop has an output from the collective fault judgment circuit 103, and the fault line selection is given by the output from the individual line judgment circuit 104. For example, as shown in FIG. 3, at the time of the A line accident, the individual line differential currents Ida, Idb, Idc are as described above.
Ida = Ias + Icb + Ica
Idb = −Icb
Idc = −Icc
Given in.

すなわち、差電流Ida,Idb,Idcは、事故回線が最大となり、この値が所定値k0以上であれば、比較判定回路104bによって、事故回線が選択され出力される。この出力と、一括事故判定回路103の出力に基づいて、事故回線選択回路105から、事故回線に遮断指令が与えられる。   That is, the difference currents Ida, Idb, Idc are maximized on the fault line, and if this value is equal to or greater than the predetermined value k0, the fault determination line 104b selects and outputs the fault line. Based on this output and the output of the collective accident determination circuit 103, the accident line selection circuit 105 gives a cutoff command to the accident line.

[効果]
以上のような本実施形態によれば、一括事故判定回路103によって、零相環流電流の影響を受けない一括事故判定を行い、かつ、回線個別判定回路104によって、ループ系統内の配電線の事故回線の判定を、差電流の大きさの比較判定に基づいて個別に行うことにより、ループ系統であっても高感度に確実な事故回線判定が可能となる。したがって、ループを構成する配電線の事故を的確に検出して選択遮断し、停電範囲を最小にすることができる。
[effect]
According to the present embodiment as described above, the collective fault judgment circuit 103 performs the collective fault judgment not affected by the zero-phase circulating current, and the line individual judgment circuit 104 performs the fault of the distribution line in the loop system. By determining the line individually based on the comparison determination of the magnitude of the difference current, it is possible to determine the accident line with high sensitivity even in the loop system. Therefore, it is possible to accurately detect an accident in the distribution lines constituting the loop, selectively cut off, and minimize the power failure range.

[第5の実施形態]
[構成]
本発明の第5の実施形態の短絡保護装置を、図10を参照して説明する。なお、本実施形態は、基本的には、上記の第1の実施形態と同様であるため、同じ構成部については、説明を省略する。
[Fifth Embodiment]
[Constitution]
A short-circuit protection device according to a fifth embodiment of the present invention will be described with reference to FIG. Note that this embodiment is basically the same as the first embodiment described above, and thus the description of the same components will be omitted.

すなわち、図10に示すように、本実施形態の回線個別判定回路104は、差動位相判定回路104cおよび比較判定回路104dを有している。差動位相判定回路104cは、ループを構成する配電線の回線ごとに電源変電所端子電流と連絡線電流とのベクトル和の差動分を求め、この差動分と零相電圧の位相が所定の範囲内にあるときにその回線を選択する回路である。なお、図10において、104に導入する零相電圧は、ループ点零相電圧7Bを用いているが、7Aを用いることもできる。   That is, as shown in FIG. 10, the line individual determination circuit 104 of this embodiment includes a differential phase determination circuit 104c and a comparison determination circuit 104d. The differential phase determination circuit 104c obtains the differential component of the vector sum of the power supply substation terminal current and the connection line current for each distribution line constituting the loop, and the phase of the differential component and the zero-phase voltage is predetermined. This circuit selects the line when it is within the range. In FIG. 10, the zero-phase voltage introduced into 104 uses the loop point zero-phase voltage 7B, but 7A can also be used.

このときの連絡線側の電流は、図3に示した系統構成に適用した場合は、当該配電線に係る連絡線の電流を使用する。たとえば、A回線はIbaであり、B回線は−Iba+Ibbであり、C回線は−Ibbである。   When the current on the connection line side is applied to the system configuration shown in FIG. 3, the current of the connection line related to the distribution line is used. For example, the A line is Iba, the B line is -Iba + Ibb, and the C line is -Ibb.

比較判定回路104dは、差動位相判定回路104cにおいて成立した回線のうち、差電流の大きさ比較を行い、差電流が最大の回線を選択する回路である。したがって、この個別選択された回線に対して、一括事故判定回路103の出力を条件に、遮断指令が与えられる構成となっている。なお、この差動位相判定回路104cの判定特性は、第2の実施形態の電流判定回路103aや位相判定回路103cの例と同じであり、電流判定回路103aのItsをIdに置き換えればよい。   The comparison determination circuit 104d is a circuit that compares the magnitudes of the difference currents among the lines established in the differential phase determination circuit 104c and selects the line with the maximum difference current. Therefore, a cut-off command is given to the individually selected lines on condition that the collective accident determination circuit 103 outputs. The determination characteristics of the differential phase determination circuit 104c are the same as those of the current determination circuit 103a and the phase determination circuit 103c of the second embodiment, and it is sufficient to replace Its of the current determination circuit 103a with Id.

[作用]
以上のような本実施形態の作用を説明する。なお、第1の実施形態と異なる回線個別判定回路104の説明を主体に、図3の系統構成例と、上述のループ系統の電流関係を用いて説明する。
[Action]
The operation of the present embodiment as described above will be described. The description will be made mainly using the description of the line individual determination circuit 104 different from the first embodiment, using the system configuration example of FIG. 3 and the current relationship of the loop system described above.

すなわち、ループ外事故は一括事故判定回路103の出力が生ぜず、不動作となる。ループ内事故は一括事故判定回路103の出力があり、事故回線選択は、この回線個別判定回路104の出力で与えられる。たとえば、図3に示すように、A回線事故のときの個別回線の差電流Ida,Idb,Idcは、上述の第4の実施形態で示したとおりである。   In other words, the out-of-loop accident does not generate the output of the collective accident determination circuit 103 and does not operate. An in-loop accident has an output from the collective accident determination circuit 103, and an accident line selection is given by an output from the individual line determination circuit 104. For example, as shown in FIG. 3, the individual line differential currents Ida, Idb, Idc at the time of the A line accident are as shown in the fourth embodiment.

また、これらIdとVの位相関係は、一般に、誤差を無視すれば、上述の通り、事故回線の場合は所定値θ以内を満足し、健全回線の場合は自回線の充電電流の流出となり、事故回線と逆の位相関係になる。したがって、差動位相判定回路104cによる差電流と位相の判定と、比較判定回路104dによる比較判定により、事故回線選択回路105が事故回線を選択し、遮断指令が出力される。 The phase relationship between these Id and V 0 are generally ignoring errors, as described above, in the case of an accident the line satisfies a within a predetermined value theta, in the case of healthy line becomes the outflow of the charging current of the self-line The phase relationship is opposite to that of the accident line. Therefore, the accident line selection circuit 105 selects the accident line by the determination of the difference current and phase by the differential phase determination circuit 104c and the comparison determination by the comparison determination circuit 104d, and a cutoff command is output.

[効果]
以上のような本実施形態によれば、一括事故判定回路103によって、零相環流電流の影響を受けない一括事故判定を行い、かつ、回線個別判定回路104によって、ループ系統内の配電線の事故回線の判定を、差電流の大きさの比較判定のみならず、位相関係に基づいて個別に行うことにより、ループ系統であっても高感度に確実な事故回線判定が可能となる。したがって、仮に零相環流電流による誤差があっても健全回線を誤選択することは無く、配電線の事故を的確に検出して選択遮断し、停電範囲を最小にすることができる。
[effect]
According to the present embodiment as described above, the collective fault judgment circuit 103 performs the collective fault judgment not affected by the zero-phase circulating current, and the line individual judgment circuit 104 performs the fault of the distribution line in the loop system. By determining the line not only by comparing and determining the magnitude of the difference current but also individually based on the phase relationship, it is possible to determine the accident line with high sensitivity even in the loop system. Therefore, even if there is an error due to the zero-phase circulating current, a sound line is not erroneously selected, and an accident in the distribution line can be accurately detected and selectively cut off, so that the power failure range can be minimized.

[第6の実施形態]
[構成]
本発明の第6の実施形態の地絡保護装置を、図11を参照して説明する。なお、本実施形態は、基本的には、上記の第1の実施形態と同様であるため、同じ構成部については、説明を省略する。
[Sixth Embodiment]
[Constitution]
A ground fault protection device according to a sixth embodiment of the present invention will be described with reference to FIG. Note that this embodiment is basically the same as the first embodiment described above, and thus the description of the same components will be omitted.

すなわち、図11に示すように、本実施形態の回線個別判定回路104における差動位相判定回路104eは、ループを構成する配電線の回線ごとに電源変電所端子電流と連絡線電流とのベクトル和の差動分(Ida,Idb,Idc)を動作量とし、電源変電所端子電流と連絡線電流とのスカラー和を抑制量(Ira,Irb,Irc)として比率差動を構成し、この差動分と零相電圧の位相(λa,λb,λc)が所定の範囲内(θ1<λa<θ2,θ1<λb<θ2,θ1<λc<θ2)にあるときにその回線を選択する回路である。この方式は一般の特別高圧以上の送電線保護に使用されている方法である。なお、図11で、104に導入される零相電圧は7Bを用いているが、7Aを用いることもできる。   That is, as shown in FIG. 11, the differential phase determination circuit 104e in the line individual determination circuit 104 of the present embodiment is a vector sum of the power substation terminal current and the connection line current for each line of the distribution lines constituting the loop. The differential portion (Ida, Idb, Idc) is set as the operation amount, and the ratio sum is configured by using the scalar sum of the power source substation terminal current and the connection line current as the suppression amount (Ira, Irb, Irc). This is a circuit that selects the line when the phase and phase of the zero-phase voltage (λa, λb, λc) are within a predetermined range (θ1 <λa <θ2, θ1 <λb <θ2, θ1 <λc <θ2). . This method is used for protecting transmission lines over general extra high voltage. In FIG. 11, the zero-phase voltage introduced into 104 uses 7B, but 7A can also be used.

この方式の連絡線側の電流は、図3に示した系統構成に適用した場合は、当該配電線に係る連絡線の電流を使用する。たとえば、A回線はIbaであり、B回線は−Iba+Ibbであり、C回線は−Ibbである。   When the current on the connection line side of this system is applied to the system configuration shown in FIG. 3, the current of the connection line related to the distribution line is used. For example, the A line is Iba, the B line is -Iba + Ibb, and the C line is -Ibb.

比較判定回路104dは、差動位相判定回路104eにおいて選択された回線のうち、差電流の大きさ比較を行い、差電流が最大の回線を更に選択する回路である。したがって、この選択された回線に対して、一括事故判定回路103の出力を条件に、遮断指令が与えられる構成となっている。なお、図12は、この比較判定回路104dの判定特性例である。   The comparison determination circuit 104d is a circuit that compares the magnitude of the difference current among the lines selected by the differential phase determination circuit 104e, and further selects a line having the maximum difference current. Therefore, a cut-off command is given to the selected line on condition of the output of the collective accident determination circuit 103. FIG. 12 shows an example of determination characteristics of the comparison determination circuit 104d.

[作用]
以上のような本実施形態の作用を説明する。なお、第1の実施形態と異なる回線個別判定回路104の説明を主体に、図3の系統構成例と、上述のループ系統の電流関係を用いて説明する。
[Action]
The operation of the present embodiment as described above will be described. The description will be made mainly using the description of the line individual determination circuit 104 different from the first embodiment, using the system configuration example of FIG. 3 and the current relationship of the loop system described above.

すなわち、ループ外事故は一括事故判定回路103の出力が生ぜず、不動作となる。ループ内事故は一括事故判定回路103の出力があり、事故回線選択はこの回線個別判定回路104の出力で与えられる。   In other words, the out-of-loop accident does not generate the output of the collective accident determination circuit 103 and does not operate. The fault in the loop has an output from the collective fault judgment circuit 103, and the fault line selection is given by the output from the individual line judgment circuit 104.

たとえば図3に示すようにA回線の至近端事故(F2)のとき、個別回線の動作量である差電流Ida、Idb、Idcは、上述の第4の実施形態で示した通りである。また、抑制量Irは
Ira=|Ias+Icb+Icc+Iath|+|Iath|
Irb=|−Icb−Ibth|+|Iath−Icth|
Irc=|−Icc−Icth|+|Icth|
で与えられる。この場合、B回線とC回線は動作量が小さく、不動作となる。A回線は動作量が大きく、比率特性上動作範囲になる。
For example, as shown in FIG. 3, in the case of the near-end accident (F2) of the A line, the differential currents Ida, Idb, Idc, which are the operation amounts of the individual lines, are as described in the fourth embodiment. The suppression amount Ir is Ira = | Ias + Icb + Icc + Iath | + | Iath |
Irb = | −Icb−Ibth | + | Iath−Icth |
Irc = | −Icc−Icth | + | Icth |
Given in. In this case, the operation amount of the B line and the C line is small and does not operate. The A line has a large amount of operation and is in the operation range due to the ratio characteristic.

すなわち、事故回線の差電流が最大となり、また、これらIdとVの位相関係は、一般に、誤差を無視すれば、上述の通り、事故回線の場合は所定値θ以内となり、健全回線の場合は所定値θ以外となる。したがって、差動位相判定回路104eによる差電流と位相の判定と、比較判定回路104dによる比較判定により、事故回線選択回路105が逆の事故回線を選択し、遮断指令を出力される。 That is, the difference current of the fault line becomes the maximum, and the phase relationship between these Id and V 0 is generally within the predetermined value θ in the case of the fault line as described above if the error is ignored. Is a value other than the predetermined value θ. Therefore, the fault line selection circuit 105 selects the reverse fault line based on the judgment of the difference current and phase by the differential phase judgment circuit 104e and the comparison judgment by the comparison judgment circuit 104d, and outputs a cutoff command.

[効果]
以上のような本実施形態によれば、一括事故判定回路103によって、零相環流電流の影響を受けない一括事故判定を行い、かつ、回線個別判定回路104によって、ループ系統内の配電線の事故回線の判定を、差電流の大きさの比較判定のみならず、位相関係に基づいて個別に行うことにより、ループ系統であっても高感度に確実な事故回線判定が可能となる。したがって、仮に零相環流電流による誤差があっても健全回線を誤選択することは無く、配電線の事故を的確に検出して選択遮断し、停電範囲を最小にすることができる。
[effect]
According to the present embodiment as described above, the collective fault judgment circuit 103 performs the collective fault judgment not affected by the zero-phase circulating current, and the line individual judgment circuit 104 performs the fault of the distribution line in the loop system. By determining the line not only by comparing and determining the magnitude of the difference current but also individually based on the phase relationship, it is possible to determine the accident line with high sensitivity even in the loop system. Therefore, even if there is an error due to the zero-phase circulating current, a sound line is not erroneously selected, and an accident in the distribution line can be accurately detected and selectively cut off, so that the power failure range can be minimized.

[他の実施形態]
本発明は、上記の実施形態に限定されるものではない。例えば、上記の実施形態では、図1に示したように、ループ系統の構成を、配電線間の連絡線で説明したが、図13に示すように、ループ点を同一とした系統であっても、同じ効果が期待できる。
[Other Embodiments]
The present invention is not limited to the above embodiment. For example, in the above embodiment, as shown in FIG. 1, the configuration of the loop system has been described with connection lines between distribution lines. However, as shown in FIG. 13, the loop system has the same loop point. The same effect can be expected.

この場合、電源変電所側の端子電流は、図3と同一であるが、連絡線側の電流はA回線の電流は、図3のIbaが図13ではIbaであり、B回線の電流は、図3の−Iba+Ibbが図13ではIbbである。また、図3のC回線の連絡線側電流−Ibbは、図13ではIbcと置き換えれば、本発明の趣旨と一致する。   In this case, the terminal current on the power substation side is the same as in FIG. 3, but the current on the connection line side is the current on the A line, Iba in FIG. 3 is Iba in FIG. 13, and the current on the B line is In FIG. 13, -Iba + Ibb is Ibb in FIG. Further, if the connection line side current -Ibb of the C line in FIG. 3 is replaced with Ibc in FIG. 13, it is consistent with the gist of the present invention.

なお、本発明および本実施形態において、処理の基準となる具体的な数値としてどのようなものを採用するかは自由である。したがって、「以上」、「以下」その他の大小比較の表現は、便宜的なものであり、基準となる数値を含む場合(「以上」、「以下」)も含まない場合(「より大きい」、「を超える」、「より小さい」、「未満」)も実質的には同じである。   In the present invention and the present embodiment, what values are adopted as specific numerical values serving as processing criteria is arbitrary. Therefore, “more than,” “less than,” and other comparisons of magnitude are for convenience, and include cases where the reference numerical value is included (“above”, “below”) or not (“greater than,” “ The terms “greater than,” “smaller,” and “less than” are substantially the same.

以上述べた第1〜第6の実施形態では、ループ点遮断器を遮断した後に変電所端子遮断器を遮断するようにしたが、本発明はこれに限定されるものではなく、ループ点遮断器と変電所端子遮断器とを同時に遮断するようにしてもよい。   In the first to sixth embodiments described above, the substation terminal breaker is cut off after the loop point breaker is cut off. However, the present invention is not limited to this, and the loop point breaker is cut off. And the substation terminal circuit breaker may be disconnected at the same time.

本発明の実施形態の適用対象となる系統の一例を示す配電系統図Distribution system diagram showing an example of a system to which the embodiment of the present invention is applied 本発明の地絡保護装置の第1の実施形態を示す機能ブロック図The functional block diagram which shows 1st Embodiment of the ground fault protection apparatus of this invention 図2の実施形態におけるループ系統の事故電流を示す説明図Explanatory drawing which shows the fault electric current of the loop system | strain in embodiment of FIG. 本発明の地絡保護装置の第2の実施形態を示す機能ブロック図Functional block diagram showing a second embodiment of the ground fault protection device of the present invention 図4の実施形態における電流判定特性例を示す説明図Explanatory drawing which shows the example of the current determination characteristic in embodiment of FIG. 図5の実施形態における電圧判定特性例を示す説明図Explanatory drawing which shows the voltage determination characteristic example in embodiment of FIG. 本発明の地絡保護装置の第3の実施形態を示す機能ブロック図Functional block diagram showing a third embodiment of the ground fault protection device of the present invention 図7の実施形態における位相判定例を示す説明図Explanatory drawing which shows the example of a phase determination in embodiment of FIG. 本発明の地絡保護装置の第4の実施形態を示す機能ブロック図Functional block diagram showing a fourth embodiment of the ground fault protection device of the present invention 本発明の地絡保護装置の第5の実施形態を示す機能ブロック図Functional block diagram showing a fifth embodiment of the ground fault protection device of the present invention 本発明の地絡保護装置の第6の実施形態を示す機能ブロック図Functional block diagram showing a sixth embodiment of the ground fault protection device of the present invention 図11の実施形態における比率差動判定特性例を示す説明図Explanatory drawing which shows the example of a ratio differential determination characteristic in embodiment of FIG. ループ点を同一地点にしたループ系統構成例を示す系統図System diagram showing an example of loop system configuration with loop points at the same point 一般的な平行2回線のループ系統構成例を示す系統図System diagram showing a typical parallel 2-line loop system configuration example

符号の説明Explanation of symbols

1…配電用変電所母線
2…配電線
3…連絡線
4…負荷線
5A…変電所の端子遮断器
5B…ループ点遮断器
6,7…変成器
6A,6B…電流変成器
7A,7B…電圧変成器
10…地絡保護装置
101…入力回路
102…変換装置
103…一括事故判定回路
103a…電流判定回路
103b…電圧判定回路
103c…位相判定回路
103d…AND回路
104…回線個別判定回路
104a…差動分算出回路
104b,104d…比較判定回路
104c,104e…差動位相判定回路
105…事故回線選択回路
DESCRIPTION OF SYMBOLS 1 ... Distribution substation bus 2 ... Distribution line 3 ... Connection line 4 ... Load line 5A ... Substation terminal breaker 5B ... Loop point breaker 6, 7 ... Transformer 6A, 6B ... Current transformer 7A, 7B ... Voltage transformer 10 ... Ground fault protection device 101 ... Input circuit 102 ... Conversion device 103 ... Batch accident determination circuit 103a ... Current determination circuit 103b ... Voltage determination circuit 103c ... Phase determination circuit 103d ... AND circuit 104 ... Line individual determination circuit 104a ... Differential component calculation circuits 104b and 104d... Comparison determination circuits 104c and 104e... Differential phase determination circuit 105.

Claims (10)

電源変電所に接続された複数の配電線を、ループ点(連絡線)遮断器を介してループ構成して電力を供給するようにした配電系統の地絡保護システムにおいて、
電源変電所端子の零相電流および零相電圧、ループ点(連絡線)の零相電流をそれぞれ抽出する抽出手段と、
前記抽出手段から得られた電気量のうち、ループを構成する配電線の電源変電所端子零相電流および零相電圧を導入して、当該ループを構成する複数の配電線に事故があるか否かを一括して判定する一括事故判定手段と、
前記抽出手段から得られた電気量のうち、ループを構成する配電線の個別回線毎に、電源変電所端子の零相電流、ループ点の零相電流を導入して、事故回線を識別する回線個別判定手段と、
前記一括事故判定手段および前記回線個別判定手段の双方から動作信号を導入して、前記ループ点遮断器に遮断指令を出力する事故回線検出手段と、
を備えたことを特徴とする配電系統の地絡保護システム。
In the ground fault protection system of the distribution system in which a plurality of distribution lines connected to the power supply substation are configured in a loop via a loop point (connection line) circuit breaker to supply power,
Extraction means for extracting the zero-phase current and zero-phase voltage of the power substation terminal and the zero-phase current of the loop point (connection line);
Of the quantity of electricity obtained from the extraction means, whether or not there is an accident in a plurality of distribution lines constituting the loop by introducing the power transformer substation terminal zero-phase current and zero-phase voltage of the distribution line constituting the loop A collective accident judging means for collectively judging
Of the amount of electricity obtained from the extraction means, a line for identifying the faulty line by introducing the zero-phase current of the power substation terminal and the zero-phase current of the loop point for each individual line of the distribution line constituting the loop Individual determination means;
Accident line detection means for introducing an operation signal from both the collective accident determination means and the individual line determination means and outputting an interruption command to the loop point breaker;
A ground fault protection system for a power distribution system.
電源変電所に接続された複数の配電線を、ループ点(連絡線)遮断器を介してループ構成して電力を供給するようにした配電系統の地絡保護システムにおいて、
電源変電所端子の零相電流および零相電圧、ループ点(連絡線)の零相電流および零相電圧をそれぞれ抽出する抽出手段と、
前記抽出手段から得られた電気量のうち、ループを構成する配電線の電源変電所端子零相電流および零相電圧を導入して、当該ループを構成する複数の配電線に事故があるか否かを一括して判定する一括事故判定手段と、
前記抽出手段から得られた電気量のうち、ループを構成する配電線の個別回線毎に、電源変電所端子の零相電流、ループ点の零相電流および零相電圧を導入して、事故回線を識別する回線個別判定手段と、
前記一括事故判定手段および前記回線個別判定手段の双方から動作信号を導入して、前記ループ点遮断器に遮断指令を出力する事故回線検出手段と、
を備えたことを特徴とする配電系統の地絡保護システム。
In the ground fault protection system of the distribution system in which a plurality of distribution lines connected to the power supply substation are configured in a loop via a loop point (connection line) circuit breaker to supply power,
Extraction means for extracting the zero-phase current and zero-phase voltage of the power supply substation terminal, the zero-phase current and zero-phase voltage of the loop point (connection line), respectively;
Of the quantity of electricity obtained from the extraction means, whether or not there is an accident in a plurality of distribution lines constituting the loop by introducing the power transformer substation terminal zero-phase current and zero-phase voltage of the distribution line constituting the loop A collective accident judging means for collectively judging
Of the amount of electricity obtained from the extraction means, the zero phase current of the power substation terminal, the zero phase current and the zero phase voltage of the loop point are introduced for each individual line of the distribution line constituting the loop, and the accident line A line individual determination means for identifying
Accident line detection means for introducing an operation signal from both the collective accident determination means and the individual line determination means and outputting an interruption command to the loop point breaker;
A ground fault protection system for a power distribution system.
前記一括事故判定手段は、各配電線の電源変電所端子零相電流の合成電流値が、所定値以上であるときに事故と判定することを特徴とする請求項1又は請求項2記載の配電系統の地絡保護システム。   3. The distribution according to claim 1, wherein the collective accident determination unit determines that an accident occurs when a combined current value of power supply substation terminal zero-phase current of each distribution line is equal to or greater than a predetermined value. System ground fault protection system. 前記一括事故判定手段は、各配電線の電源変電所端子零相電流の合成電流値が所定値以上であり、かつ電源変電所端子の零相電圧との位相関係が所定範囲内であるときに事故と判定することを特徴とする請求項1又は請求項2記載の配電系統の地絡保護システム。   The collective accident determination means is configured such that the combined current value of the power substation terminal zero-phase current of each distribution line is not less than a predetermined value and the phase relationship with the zero-phase voltage of the power substation terminal is within a predetermined range. It determines with an accident, The ground fault protection system of the power distribution system of Claim 1 or Claim 2 characterized by the above-mentioned. 前記回線個別判定手段は、各配電線の回線ごとの電源変電所端子零相電流と各配電線に係る連絡線の零相電流とに基づいて得られた差電流のうち、最大となる回線の差電流が所定値を超えているときに、その配電線を事故回線と判定することを特徴とする請求項1又は請求項2記載の配電系統の地絡保護システム。   The line individual determination means is the power supply substation terminal zero-phase current for each line of each distribution line and the difference current obtained based on the zero-phase current of the connection line related to each distribution line The ground fault protection system for a distribution system according to claim 1 or 2, wherein when the difference current exceeds a predetermined value, the distribution line is determined as an accident line. 前記回線個別判定手段に電源変電所端子零相電圧を導入し、前記回線個別判定手段は、各配電線の回線ごとの電源変電所端子零相電流と各配電線に係る連絡線の零相電流とに基づいて、得られた差電流と電源変電所端子の零相電圧の位相関係が所定範囲内である回線のうち、差電流の最大回線の零相電流が所定値を超えているときに、その配電線を事故回線と判定することを特徴とする請求項1記載の配電系統の地絡保護システム。   The power line substation terminal zero-phase voltage is introduced into the line individual determination means, and the line individual determination means includes a power supply substation terminal zero-phase current for each line of each distribution line and a zero-phase current of the connection line associated with each distribution line. When the phase difference between the obtained differential current and the zero-phase voltage of the power substation terminal is within a predetermined range, the zero-phase current of the maximum differential current line exceeds a predetermined value. The ground fault protection system for a power distribution system according to claim 1, wherein the power distribution line is determined as an accident line. 前記回線個別判定手段に電源変電所端子零相電圧を導入し、前記回線個別判定手段は、各配電線の回線ごとの電源変電所端子零相電流と各配電線に係る連絡線の零相電流とに基づいて、得られた差電流と電源変電所端子の零相電圧の位相関係が所定範囲内でかつ比率特性上の動作範囲を満足する回線のうち、差電流の最大回線を事故回線と判定することを特徴とする請求項1記載の配電系統の地絡保護システム。   The power line substation terminal zero-phase voltage is introduced into the line individual determination means, and the line individual determination means includes a power supply substation terminal zero-phase current for each line of each distribution line and a zero-phase current of the connection line associated with each distribution line. Based on the above, out of the lines in which the phase relationship between the obtained difference current and the zero-phase voltage of the power substation terminal is within a predetermined range and satisfies the operation range in the ratio characteristics, the line with the largest difference current is the accident line. The ground fault protection system for a power distribution system according to claim 1, wherein the ground fault protection system is determined. 前記回線個別判定手段は、各配電線の回線ごとの電源変電所端子零相電流と各配電線に係る連絡線の零相電流とに基づいて、得られた差電流とループ点の零相電圧の位相関係が所定範囲内である回線のうち、差電流の最大回線の零相電流が所定値を超えているときに、その配電線を事故回線と判定することを特徴とする請求項2記載の配電系統の地絡保護システム。   The line individual determining means is based on the power source substation terminal zero-phase current for each line of the distribution line and the zero-phase current of the connection line related to each distribution line, and the zero-phase voltage at the loop point. 3. The distribution line is determined to be an accident line when the zero-phase current of the maximum differential current line exceeds a predetermined value among the lines having a phase relationship within a predetermined range. Ground fault protection system for power distribution system. 前記回線個別判定手段は、各配電線の回線ごとの電源変電所端子零相電流と各配電線に係る連絡線の零相電流とに基づいて、得られた差電流とループ点の零相電圧の位相関係が所定範囲内でかつ比率特性上の動作範囲を満足する回線のうち、差電流の最大回線を事故回線と判定することを特徴とする請求項2記載の配電系統の地絡保護システム。   The line individual determining means is based on the power source substation terminal zero-phase current for each line of the distribution line and the zero-phase current of the connection line related to each distribution line, and the zero-phase voltage at the loop point. 3. The distribution system ground fault protection system according to claim 2, wherein, among the lines satisfying the phase relationship within a predetermined range and satisfying the operation range in the ratio characteristic, the line having the largest difference current is determined as an accident line. . 電源変電所に接続された複数の配電線を、ループ点(連絡線)遮断器を介してループ構成して電力を供給するようにした配電系統の地絡保護方法において、
電源変電所端子の零相電流および零相電圧、ループ点(連絡線)の零相電流および零相電圧をそれぞれ抽出する抽出処理と、
前記抽出処理で得られた電気量のうち、ループを構成する配電線の電源変電所端子零相電流および零相電圧を導入して、当該ループを構成する複数の配電線に事故があるか否かを一括して判定する一括事故判定処理と、
前記抽出処理で得られた電気量のうち、ループを構成する配電線の個別回線毎に、電源変電所端子の零相電流、ループ点の零相電流および零相電圧を導入して、事故回線を識別する回線個別判定処理と、
前記一括事故判定処理および前記回線個別判定処理の双方により動作信号を導入して、前記ループ点遮断器に遮断指令を出力する事故回線検出処理と、
を実行することを特徴とする配電系統の地絡保護方法。
In a ground fault protection method for a distribution system in which a plurality of distribution lines connected to a power substation are configured to supply power by forming a loop through a loop point (connection line) circuit breaker,
Extraction processing to extract the zero-phase current and zero-phase voltage of the power substation terminal, the zero-phase current and zero-phase voltage of the loop point (connection line), respectively,
Out of the quantity of electricity obtained in the extraction process, whether or not there is an accident in a plurality of distribution lines constituting the loop by introducing a zero phase current and a zero phase voltage of the power substation terminal of the distribution line constituting the loop A collective accident judgment process for judging whether
Of the amount of electricity obtained by the extraction process, the zero phase current of the power substation terminal, the zero phase current and the zero phase voltage of the loop point are introduced for each individual line of the distribution line constituting the loop, and the accident line A line individual determination process for identifying
An accident line detection process that introduces an operation signal by both the collective accident determination process and the individual line determination process, and outputs an interruption command to the loop point breaker;
A ground fault protection method for a distribution system, characterized in that:
JP2006304554A 2006-11-09 2006-11-09 Distribution system ground fault protection system and method Expired - Fee Related JP4679489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006304554A JP4679489B2 (en) 2006-11-09 2006-11-09 Distribution system ground fault protection system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006304554A JP4679489B2 (en) 2006-11-09 2006-11-09 Distribution system ground fault protection system and method

Publications (2)

Publication Number Publication Date
JP2008125196A JP2008125196A (en) 2008-05-29
JP4679489B2 true JP4679489B2 (en) 2011-04-27

Family

ID=39509406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006304554A Expired - Fee Related JP4679489B2 (en) 2006-11-09 2006-11-09 Distribution system ground fault protection system and method

Country Status (1)

Country Link
JP (1) JP4679489B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104502796A (en) * 2014-12-10 2015-04-08 安徽国科电力设备有限公司 Low-current line selection device for wireless networking

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103280780B (en) * 2013-05-07 2016-06-29 清华大学 A kind of system with non effectively earth ed neutral fault self-recovery method
CN116260104B (en) * 2023-05-15 2023-08-04 中国南方电网有限责任公司超高压输电公司广州局 Grounding electrode line disconnection protection method and device of convertor station and computer equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007209151A (en) * 2006-02-03 2007-08-16 Hitachi Ltd Loop operational system in electrical distribution system and method
JP2008042991A (en) * 2006-08-02 2008-02-21 Kansai Electric Power Co Inc:The Looping distribution system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56148126A (en) * 1980-04-16 1981-11-17 Tokyo Shibaura Electric Co Ground-fault protecting device
JPS58157334A (en) * 1982-03-10 1983-09-19 株式会社東芝 Loop transmission line protecting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007209151A (en) * 2006-02-03 2007-08-16 Hitachi Ltd Loop operational system in electrical distribution system and method
JP2008042991A (en) * 2006-08-02 2008-02-21 Kansai Electric Power Co Inc:The Looping distribution system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104502796A (en) * 2014-12-10 2015-04-08 安徽国科电力设备有限公司 Low-current line selection device for wireless networking

Also Published As

Publication number Publication date
JP2008125196A (en) 2008-05-29

Similar Documents

Publication Publication Date Title
US10622805B2 (en) Power restoration in nested microgrids
KR101421564B1 (en) Electrical leakage detection apparatus with unexpected motion blocking function
JP2013507098A (en) System and method for a multiphase ground fault circuit breaker
KR100920113B1 (en) OCGR protection algorithm for preventing mal-operation by Reverse power
JP2009159735A (en) Distribution system operation system and its method
US7965478B2 (en) System and method for detecting a fault condition
JP2010057341A (en) Short-circuit distance relay
JP4679489B2 (en) Distribution system ground fault protection system and method
JP4199065B2 (en) Protective relay device
US8395871B2 (en) Device and method for detecting faulted phases in a multi-phase electrical network
JP4921929B2 (en) Distribution system short circuit protection system and method
JP2011097797A (en) Protection system of loop system
JP2019165569A (en) Failure determination device and protective relay device
CN109142954B (en) T-zone protection CT disconnection identification method and differential protection method
JP2014081322A (en) Ground fault detection method and device using positive-phase, one-phase voltage
JP4750071B2 (en) Loop power distribution system
JP4272171B2 (en) Power system operation method
JP4836663B2 (en) Loop system protection device and method
JP2010211948A (en) Earth leakage breaker with protection against neutral line open-phase for single-phase three lines
JP2010148269A (en) Protective relay system
JP2020167774A (en) Protection device
Dusang A ground fault protection method for ungrounded systems
KR20200038164A (en) Protection relay device
JP4072961B2 (en) Control device with system interconnection protection function of SOG switch
JP2007312582A (en) Device and method for protecting loop system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees