JP2009158393A - 単3形アルカリ乾電池 - Google Patents

単3形アルカリ乾電池 Download PDF

Info

Publication number
JP2009158393A
JP2009158393A JP2007337709A JP2007337709A JP2009158393A JP 2009158393 A JP2009158393 A JP 2009158393A JP 2007337709 A JP2007337709 A JP 2007337709A JP 2007337709 A JP2007337709 A JP 2007337709A JP 2009158393 A JP2009158393 A JP 2009158393A
Authority
JP
Japan
Prior art keywords
negative electrode
battery
zinc
weight
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007337709A
Other languages
English (en)
Inventor
Hidekatsu Izumi
秀勝 泉
Fumio Kato
文生 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2007337709A priority Critical patent/JP2009158393A/ja
Priority to US12/341,622 priority patent/US20090176157A1/en
Publication of JP2009158393A publication Critical patent/JP2009158393A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】大容量で高い放電特性を有し、かつ短絡したときに乾電池内の温度上昇を抑制することができる単3形アルカリ乾電池を提供する。
【解決手段】電池ケース1中には二酸化マンガンを含有する正極2と亜鉛を含有する負極3と水酸化カリウム水溶液を含有する電解液が納められている。負極3中の亜鉛の量は4.00g以上であり、負極3中にはビスマスが100ppm以下含有されている。電解液は4.00g以上納められている。
【選択図】図1

Description

本発明は、単3形アルカリ乾電池に関するものである。
アルカリ乾電池はマンガン乾電池に比べて電気容量が大きく、大電流で連続使用しても効率のよい放電特性を発揮するので、広く使用されるようになってきている。そして、市場ではさらに電気容量の大きい乾電池が求められているため、電気容量を大きくするための技術開発が進められている。
一般的には、1つの電池内の活物質の総量を増やすことによって、電気容量を大きくするという方法が考えられる。
例えば特許文献1には、ケース内容積をバッテリ全容積の88.4%以上にして電気化学的物質の総量を増やし、電池寿命を長くする技術が開示されている。
特表2002−523874号公報 特開2004−47321号公報 特開平5−299082号公報 特開2006−40883号公報
けれども、特許文献1に開示されている技術のように活物質の量を増やすと、乾電池が短絡した場合の電池内の温度上昇が活物質の少ない電池に比べて大きくなり、安全上問題となる。
このような問題に対して、特許文献2には異常発生時に急激な温度上昇が生じることを防止するために、正極合剤に含有されるアルカリ電解液のKOH濃度を45wt%以上とし、負極合剤に含有されるアルカリ電解液のKOH濃度を35wt%以下としているアルカリ乾電池が開示されている。
しかしながら、正極合剤と負極合剤とのアルカリ電解液の濃度を異なる濃度にしてそれを保つことは非常に困難であり、電池を使用したり、保存しておくだけでも電池内で濃度が均一になるようにKOHが移動してしまい、急激な温度上昇の防止効果が無くなってしまうという問題があった。
本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、簡単な構成で短絡したときに乾電池内の温度上昇を抑制することができる単3形アルカリ乾電池を提供することにある。
上記の課題を解決するため、本願の単3形アルカリ乾電池は二酸化マンガンを含有する正極と、亜鉛を含有する負極と、水酸化カリウム水溶液を含有する電解液とを有している単3形アルカリ乾電池であって、前記負極に含有される亜鉛は4.00g以上であり、前記電解液は4.00g以上であり、前記負極中にはビスマスが100ppm以下含有されている構成とした。
前記電解液には平均分子量が100以上500以下であるリン酸系界面活性剤を、前記負極の亜鉛重量に対して300ppm以上3000ppm以下含有させることができる。
前記電解液中の水酸化カリウム濃度を26.0重量%以上33.5重量%以下とすることができる。
前記二酸化マンガンを9.30g以上含有していることができる。
負極中のBiの含有量を100ppm以下としたので、亜鉛及び電解液の量が4.00g以上であっても短絡時の温度上昇を抑制することができる。
本発明の実施形態について説明をする前に、本願発明者らが本願発明に至った経緯について述べる。
上述のように長寿命大容量化のため、一つの乾電池内にできるだけ多くの活物質を詰め込もうとする検討が行われているが、それによっていろいろな問題が生じていたため、本願発明者らは様々な検討を行っていた。そのような検討の一つとして、耐食性のために負極に含有させているBiの量の検討を行っていたところ、Biの量がある範囲であると短絡したときの乾電池内の温度上昇を抑制することを見出した。
以下、本発明の実施形態を図面に基づいて詳細に説明する。以下の図面においては、説明の簡潔化のため、実質的に同一の機能を有する構成要素を同一の参照符号で示す。なお、本実施の形態は本願発明の例示であり、本願発明はこの例に限定されない。
図1に本実施形態に係る単3形アルカリ乾電池の一部破断をさせた断面を示す。この単3形アルカリ乾電池は、電池ケース(ケース)1内に二酸化マンガンを含有する正極2と、亜鉛を含有する負極3と、水酸化カリウム水溶液を含有する電解液(不図示)とが納められている。
本実施形態に係る単3形アルカリ乾電池の構造をより詳しく述べると、正極端子を兼ねる有底円筒形の電池ケース1の内壁には中空円筒状の正極2が接している。正極2の中空部には有底円筒形のセパレータ4を介して負極3が配置されている。そして電池ケース1の開口部は封口ユニット9によって封口されている。封口ユニット9は、電池ケース1の開口部を閉じている負極端子板7、負極端子板7に溶接された線状の負極集電子6、および樹脂製の封口体5により構成されている。負極集電子6は負極3の中央に挿入されている。ここで正極2、セパレータ4および負極3には電解液が浸透して含まれており、電解液のみは図示していない。
電池ケース1は例えばニッケルめっき鋼板を用いて特開昭60−180058号公報、特開平11−144690号公報、特開2007−27046号公報及び特開2007−66762号公報等に記載された公知の方法で所定の寸法および形状にプレス成形によって作製される。本実施形態では活物質を多く入れるために、電池ケース1の外径は13.90mm以上であり、上限は14.10mmである。上記公報のうち、後者2つに記載された方法を用いると電池内容積を大きくできて正極2および負極3の構成材料をより多く詰め込むことができて好ましい。また、電池ケース1の側面部分(筒部)の厚みは0.18mm以下であると電池ケース1の内容積が大きくなり好ましい。
正極2には、二酸化マンガン粉末を含む正極活物質と黒鉛粉末などの導電剤とが主に含まれており、乾電池1セル当たり二酸化マンガンは9.30g以上含まれている。このように多くの二酸化マンガンが含まれているので、放電特性(寿命)が優れている。なお、単3形アルカリ乾電池の外形寸法は規格で決まっているため、後で説明する亜鉛や電解液と同様に、二酸化マンガンの量には上限がある。
負極3は、ポリアクリル酸ナトリウムなどのゲル化剤と電解液との混合物を主原料とするゲル状物に亜鉛粉末または亜鉛合金粉末などの負極活物質が混合されたものである。亜鉛の量は4.00g以上である。また、負極3にはBiが100ppm以下含有されている。耐食性のことを考えると、Biは5ppm以上であることが好ましい。なお、負極活物質には、耐食性に優れた亜鉛合金粉末を用いるのが好ましく、さらには環境に配慮して水銀、カドミウム、および鉛は無添加であることが好ましい。上記亜鉛合金としては、例えばインジウム、アルミニウムおよびビスマスの少なくともいずれか一つを含む亜鉛合金を挙げることができる。
セパレータ4は、電解液のアルカリ性に耐えてかつ電解液を通過させられるよう、例えばポリビニルアルコール繊維およびレーヨン繊維を主体として混抄した不織布からなっている。
電解液は、KOH濃度が33.5重量%以下のアルカリ水溶液であって、4.00g以上存している。KOH濃度は完成した乾電池内部に存する電解液を分析することにより求められる。KOH濃度が小さい方が電解液の粘度が小さくなって、電池内の移動度が高くなり、放電寿命が延びると考えられる。さらに平均分子量が100以上500以下であるリン酸系界面活性剤が300ppm以上3000ppm以下含有されている
リン酸系界面活性剤はアニオン性界面活性剤の一種であって、アニオン性界面活性剤は亜鉛の腐食によるガス発生を抑制する効果がある。本実施形態ではアニオン性界面活性剤を加えなくてもガス発生は実用上問題ないが、防食効果を有するBiの量を少なくしているので、ガス発生をより確実に防止するため、リン酸系界面活性剤を加えている。この効果は次のようなメカニズムによるものと仮定している。即ち、不純物のない通常の電池内部では、HOが亜鉛から電子を受け取ることにより水素ガスが発生するのであるが、アニオン性界面活性剤の親水性部分が亜鉛表面を覆い、疎水性部分が外側を向いてHOの亜鉛表面に接触しようとする侵入を抑制するので、水素ガスの発生が抑制されるメカニズムである。
アニオン性界面活性剤の働きをさらに詳しく説明する。アルカリ乾電池の負極のような強アルカリ電解液中では、金属表面にOHが捕捉されるので、亜鉛表面の電荷はマイナスとなり、アニオン性界面活性剤の親水性部分(負電荷を帯びている)と亜鉛との間には静電的な引力が働かない。しかし、強アルカリ電解液中へのアニオン性界面活性剤の溶解度は中性水溶液に比べて非常に小さく、電解液中に溶存出来ないアニオン性界面活性剤が電解液中から外へ追い出される格好になって、電解液/亜鉛の界面に配列する。一方、このように配列したアニオン性界面活性剤は、放電反応に必要な亜鉛へのOHイオンの供給や亜鉛酸イオンの拡散を邪魔することはない。これは、放電時の亜鉛表面付近での電場の変化によってアニオン性界面活性剤の配列が瞬時に崩れるためと考えられる。
このようなアニオン性界面活性剤でも特にアルキルリン酸塩であるものが最も効果が認められるため、本実施形態ではアルキルリン酸塩を用いた。しかしながら、リン酸系以外の、例えばアルキル硫酸塩系などのアニオン性界面活性剤を用いることもできる。
アニオン性界面活性剤は、例えばROPONa、ROPO、(RO)PONa(ここでRはアルキル基)など、2価のアニオンであっても1価のアニオンであっても構わないし、カウンターカチオンをH、K、Na、Caなどのいずれを用いても構わないし、2種類のカウンターカチオンを用いても構わない。また、平均分子量が100以上500以下であると上記のHOの亜鉛表面に接触しようとする侵入を抑制する効果が大きいので好ましく、アルキル基Rは直鎖あるいは枝分かれしているもの(iso-アルキル基など)のいずれでも構わず、またR’(CHCHO)PONaのようにエチレンオキサイド構造を内包していても構わない。また、アニオン性界面活性剤の含有量が300ppm以上3000ppm以下であると、上記メカニズムが最も効果的に働くので好ましい。なお、アルキルリン酸塩のアニオン性界面活性剤は濃アルカリ電解液中でも安定であるので、負極への添加剤として好ましい。
また、電解液にはZnOも添加されており、その濃度は3重量%以下であることが好ましく、1.5重量%以下であることがより好ましい。なお、ZnOは電解液に0.2重量%以上含有されていることが好ましい。
(実施例1)
まず、亜鉛合金粉として、亜鉛の重量に対してAl:0.005重量%、Bi:0.005重量%、In:0.020重量%を含有する亜鉛合金粉をガスアトマイズ法によって作製した。作製した亜鉛合金粉を篩を用いて分級させて、70〜300メッシュの粒度範囲を有し、さらに200メッシュ(75μm)以下の粒径を有する亜鉛合金粉の比率が30%となるように調整した。得られた亜鉛合金粉末を、負極活物質として用いた。
次に、33重量%の水酸化カリウム水溶液(ZnO:1重量%含む)の100重量部に対して、2.2重量部のポリアクリル酸、ポリアクリル酸ナトリウムを加えて混合し、ゲル化させて、ゲル状電解液を得た。得られたゲル状電解液は、その後、24時間静置して十分に熟成させた。
その後、上記で得たゲル状電解液の所定量に対して、重量比で1.92倍の上記亜鉛合金粉末と、その亜鉛合金粉末100重量部に対して水酸化インジウム0.025重量部(金属インジウムとして0.0164重量部)と、アニオン性界面活性剤(平均分子量が約210のアルコールリン酸エステルナトリウム)0.1重量部をそれぞれ加えて十分に混合し、ゲル状負極とした。
次に、電解二酸化マンガン(東ソー(株)製 HHTF)および黒鉛(日本黒鉛工業(株)製 SP−20)を重量比94:6の割合で配合し、この混合粉100重量部に対して電解液(33重量%の水酸化カリウム水溶液(ZnO:1重量%含む))1.5重量部とポリエチレンバインダ0.2重量部を混合した後、ミキサーで均一に撹拌・混合して一定粒度に整粒した。得られた粒状物を中空円筒型に加圧成型したものを、正極合剤ペレットとして用いた。
続いて、評価用の単3形アルカリ乾電池の作製を行った。図1に示すように、電池ケース1の内部に、上記で得られた正極合剤ペレット(1個の重量:5.65g)を2個挿入し、電池ケース1内で再加圧することによって電池ケース1の内面に密着させた。そして、この正極合剤ペレットの内側にセパレータ4および底部絶縁のための底紙を挿入した後、上記で調製した電解液を1.8g注液した。注液後、セパレータ4の内側にゲル状の負極3を充填した。樹脂製の封口体5、負極端子板7、および負極集電子6を、負極3に差し込み、電池ケース1の開口端部を、封口体5の端部を介して負極端子板7の周縁部にかしめつけて電池ケース1の開口部を密着させた。電池ケース1の外表面に外装ラベル8を被覆し、単3形アルカリ乾電池を作製した。
樹脂製の封口体は、6,12−ナイロンを材料として作製した。負極集電子は、銅線にSnめっきをしたものを用いた。セパレータには、クラレ(株)製のアルカリ乾電池用セパレータ(ビニロンとテンセルからなる複合繊維)を用いた。
(比較例1)
亜鉛合金粉の組成に関して、亜鉛の重量に対してAl:0.005重量%、Bi:0.015重量%、In:0.020重量%を含有する亜鉛合金粉を負極活物質として用いたこと以外は、すべて実施例1と同様にして単3形アルカリ乾電池を作製した。
(比較例2)
電解液として、36重量%の水酸化カリウム水溶液(ZnO:1重量%含む)を用いた以外は、すべて実施例1と同様にして単3形アルカリ乾電池を作製した。
次に電池の評価方法を説明する。
(1)Zn量、MnO量、KOH濃度、ZnO濃度、Bi量
電池の重量を測定した後、外装ラベルを剥がし、電池の封口部分を切り開き、封口体を取り出して付着している負極ゲルや電解液をビーカーにイオン交換水で洗い落とした。電池内の負極ゲルを前記ビーカー内に全て入れて、セパレータを電池内から取り出してイオン交換水で付着している負極ゲルや電解液を当該ビーカーに洗い落とした。封口体、セパレータは乾燥させて重量を測定した。外装ラベルの重量も測定した。
ビーカー内の負極ゲルを10回程度水洗・デカンテーションして、KOHをほぼ全て負極ゲルから分別した上澄み液側に分離させた。この上澄み液を1N塩酸によって中和滴定して上澄み液中のKOH量(a1)を求めた。残渣の負極ゲルは(1+1)NHOHで線上をしてゲル物質を除去し、洗浄して乾燥させて負極の亜鉛粉末の重量を測定した。
また中和滴定時に溶存ZnOが析出・浮遊するため、中和滴定後の上澄み液にさらに塩酸を加えて浮遊物を溶解させた後、酢酸−酢酸アンモニウム緩衝液とXO指示薬とを加え、1/100M−EDTA溶液にて滴定をし、溶存ZnO量(b1)を求めた。
電池ケース内から正極合剤を取り出して乾燥させ、電極ケースおよび正極合剤の重量をそれぞれ測定した。その後、正極合剤を粉砕して濃塩酸を加え、加熱してMnOを溶解させ、残渣と濾別した。塩酸不溶残渣(正極合剤中の黒鉛導電剤やバインダ成分)は乾燥させて重量を測定した。
MnOが溶解した溶液を一定量分取し、これに(1+1)NHOHを滴下してpH3としてから過酸化水素を加えて攪拌し、さらに濃NHOHを加えて攪拌してMnOの沈殿を発生させた。この沈殿を濾過・水洗し、10W/V%塩酸ヒドロキシルアミンと(1+1)塩酸とで完全に溶解させて、トリエタノールアミン、塩化アンモニウム−アンモニア緩衝液、TPC指示薬を加えて1/20M−EDTA溶液で滴定してMnO量を求めた。このMnO量から電池1個に存在していたMnO量を換算した。このMnO量から電池に使用された電解二酸化マンガン(EMD)重量を換算した。(EMD中の純MnO含有比率は約93%)
次にもう一度MnOが溶解した溶液を一定量分取し、ICP発光分析(標準添加法)によって分析し、Zn量を定量して正極合剤の中に含まれていたZnO量(b2)を換算した。同じ溶液を原子吸光分析(標準添加法)によって分析し、カリウム量を定量して正極合剤の中に含まれていたKOH量(a2)を換算した。
以上の測定から、電池中の電解液重量(c)を、電池全体重量から電解液以外の構成材料の総重量(外装ラベル、ケース、封口体、セパレータ、亜鉛粉とゲル化剤、EMD、塩酸不溶残渣の合計)を除することによって求め、電池中の全KOH量(a1+a2)、全ZnO量(b1+b2)から、電解液中のKOH濃度[重量%]=(a1+a2)/c、電解液中のZnO濃度[重量%]=(b1+b2)/cを求めた。
なお、亜鉛合金粉に含まれるBi量については、上述の手順で分離した亜鉛粉の所定重量を酸に溶解させ、ICP発光分析を行うことによって求めることが可能である。
(2)放電特性
(2−1)ミドルレート放電特性
20℃の恒温槽において、電池をテスト負荷に接続して1日当たり1時間、250mAの放電を行った。このとき電池電圧を記録しておき、電池電圧が0.9V以下となるまでの放電時間を求めた。
(2−2)ハイレート放電特性
21±2℃の恒温雰囲気下で、1.5Wで2秒間放電した後、0.65Wで28秒間放電する工程を繰り返すパルス放電を1時間あたり10サイクル行った。そして、閉路電圧が1.05Vに達するまでの放電持続時間を調べた。なお、この評価は、ANSI C18.1Mに定められた放電試験の方法を準用している。
(3)短絡時の最高到達温度
21±2℃の恒温雰囲気下で、電池1個ないし4個直列を強制的に短絡させて電池温度が上昇した際の電池の最高到達温度を、電池表面の所定位置に取り付けた熱電対により測定した。
(4)負極ガス発生速度
実施例ならびに比較例で用いたゲル状負極のガス発生速度を、以下の方法で求めた。(特開昭57−048635号公報、特開平7−245103号公報、特開2006−4900号公報参照)
目盛り付きの細管を備えた栓と容器からなるガス捕集用のガラス製治具内に、ゲル状負極を5.00g入れた。ついで、この中に前記負極が完全に没し、空気が残らないように流動パラフィンを流し込んだ後、前記ガラス製治具の栓をして密閉し、45℃に保持された恒温水槽内に浸漬し、前記ガラス製治具内が一定の温度となるように約3時間放置した。そして、この状態から3日間の累計ガス発生量を測定し、次式に従ってガス発生速度を算出した。試験は、各々n=5で行い、その平均値を求めた。
ガス発生速度(μリットル/g・日)=3日間の累計ガス発生量(μリットル)÷5(g)÷3(日)
続いて、得られた評価結果を記す。
(Zn量、MnO量、電解液量、KOH濃度、ZnO濃度、Bi量)
表1は、実施例ならびに比較例で用いた電池構成部材の設計値、および各々3セルについて上記の(1)の分析を実際に行って得た分析値(3セルの平均)をまとめて示したものである。分析値は精度良く設計値を反映していることがわかる。
Figure 2009158393
(放電特性)
放電特性の評価結果を表2に示す。ミドルレートに関しては、実施例1は比較例1、2に比べて1ポイントの性能向上を確認した。ハイレートについては、実施例1は比較例1に比べて5ポイント、比較例2に比べて8ポイントの性能向上を確認できた。Biは半金属で導電性が低いため、Zn合金中の添加量が多い場合には放電の阻害因子として働く。実施例1では、このようなBiを低減した結果、Zn粉の導電性が高まり、放電時の負極の分極が抑制されて、ハイレートを中心に放電性能が向上したと考えられる。また、実施例1ではKOH濃度が低く、電解液の粘度が小さいために液中のイオン伝導度が高まり、放電性能が向上したと推察される。
Figure 2009158393
(短絡時の最高到達温度)
短絡時の電池最高到達温度(規格化した値)を表3に示す。1個および4個直列のいずれの場合についても、比較例1、2に比べて、実施例1は約10ポイントの温度低下を確認できた。Biは半金属で導電性が低い為、Zn合金中の添加量が多い場合には放電の阻害因子として働き、短絡時、すなわち強制放電時にはジュール熱となって、電池内の熱の蓄積を招く。したがって、Biを低減した実施例1においては、この電池内の熱の蓄積が抑制され、電池温度上昇が抑制されたと考えられる。また、KOH濃度を低減した場合も同様に、電解液中のイオン伝導度が高まった結果、電池内の熱の蓄積が抑制され、電池温度上昇が抑制されたと考えられる。
Figure 2009158393
(負極ガス発生速度)
負極のガス発生速度を表4に示す。いずれもほぼ同等のガス発生速度であることが確認できる。実施例1と比較例1の結果から、防食効果を有するBi量を低減した場合においても、リン酸系界面活性剤を併用添加することで、亜鉛の腐食によるガス発生を抑制できると考えられる。
Figure 2009158393
以上説明したように、本発明に係る単3形アルカリ乾電池は、短絡時の温度上昇を抑制し、大容量のアルカリ乾電池として有用である。
実施形態に係る単3形アルカリ乾電池の一部破断断面図である。
符号の説明
1 電池ケース(ケース)
2 正極
3 負極
4 セパレータ
5 樹脂製の封口体
6 負極集電子
7 負極端子板
8 外装ラベル
9 封口ユニット

Claims (4)

  1. 二酸化マンガンを含有する正極と、亜鉛を含有する負極と、水酸化カリウム水溶液を含有する電解液とを有している単3形アルカリ乾電池であって、
    前記負極に含有される亜鉛は4.00g以上であり、
    前記電解液は4.00g以上であり、
    前記負極中にはビスマスが100ppm以下含有されている、単3形アルカリ乾電池。
  2. 前記電解液には平均分子量が100以上500以下であるリン酸系界面活性剤が、前記負極の亜鉛重量に対して300ppm以上3000ppm以下含有されている、請求項1に記載されている単3形アルカリ乾電池。
  3. 前記電解液中の水酸化カリウム濃度が26.0重量%以上33.5重量%以下である、請求項1または2に記載されている単3形アルカリ乾電池。
  4. 前記二酸化マンガンは9.30g以上存している、請求項1から3のいずれか一つに記載されている単3形アルカリ乾電池。
JP2007337709A 2007-12-27 2007-12-27 単3形アルカリ乾電池 Withdrawn JP2009158393A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007337709A JP2009158393A (ja) 2007-12-27 2007-12-27 単3形アルカリ乾電池
US12/341,622 US20090176157A1 (en) 2007-12-27 2008-12-22 Aa and aaa alkaline dry batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007337709A JP2009158393A (ja) 2007-12-27 2007-12-27 単3形アルカリ乾電池

Publications (1)

Publication Number Publication Date
JP2009158393A true JP2009158393A (ja) 2009-07-16

Family

ID=40962163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007337709A Withdrawn JP2009158393A (ja) 2007-12-27 2007-12-27 単3形アルカリ乾電池

Country Status (1)

Country Link
JP (1) JP2009158393A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018514932A (ja) * 2015-05-13 2018-06-07 スペクトラム ブランズ インコーポレイテッド 改善された放電効率を含むアルカリセル

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018514932A (ja) * 2015-05-13 2018-06-07 スペクトラム ブランズ インコーポレイテッド 改善された放電効率を含むアルカリセル
US11133497B2 (en) 2015-05-13 2021-09-28 Energizer Brands, Llc Alkaline cell with improved discharge efficiency

Similar Documents

Publication Publication Date Title
JP5021940B2 (ja) 全固体アルカリ二次電池用無機ヒドロゲル電解質の製法
US9455440B2 (en) Alkaline cell with improved high rate capacity
US10446832B2 (en) Alkaline cell with improved reliability and discharge performance
KR20200016219A (ko) 2차 전지 및 2차 전지를 포함하는 장치
JP5172181B2 (ja) 亜鉛アルカリ電池
US20080193851A1 (en) Alkaline electrochemical cell having improved gelled anode
JP2023101817A (ja) 増加酸化亜鉛レベルを含むアルカリ電気化学電池
US20100129716A1 (en) Mercury-free alkaline dry battery
CN109075314B (zh) 碱性干电池
US11127951B2 (en) Alkaline secondary battery
JP2009266661A (ja) アルカリ乾電池
US11637278B2 (en) Alkaline dry batteries
EP1817809A2 (en) Electrochemical cell
JP2009158393A (ja) 単3形アルカリ乾電池
US8283069B2 (en) Zinc-alkaline battery
JP2009170163A (ja) 単4形アルカリ乾電池
JP2009043547A (ja) 電池用電解二酸化マンガン、正極合剤およびアルカリ電池
JP2009170158A (ja) 単3形アルカリ乾電池
JP2002117859A (ja) アルカリ電池
JP2007048623A (ja) アルカリ乾電池
US20090176157A1 (en) Aa and aaa alkaline dry batteries
CN115280548A (zh) 碱性干电池
JP2009163896A (ja) 単3形アルカリ乾電池
JP2022173006A (ja) 亜鉛金属電池
BR112017015083B1 (pt) Célula alcalina com confiabilidade e desempenho de descarga aprimorados

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101227

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120130

A761 Written withdrawal of application

Effective date: 20120927

Free format text: JAPANESE INTERMEDIATE CODE: A761