JP2009157353A - 感知用導波路センサー - Google Patents

感知用導波路センサー Download PDF

Info

Publication number
JP2009157353A
JP2009157353A JP2008294179A JP2008294179A JP2009157353A JP 2009157353 A JP2009157353 A JP 2009157353A JP 2008294179 A JP2008294179 A JP 2008294179A JP 2008294179 A JP2008294179 A JP 2008294179A JP 2009157353 A JP2009157353 A JP 2009157353A
Authority
JP
Japan
Prior art keywords
sensing
sensing core
underclad
core
waveguide sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008294179A
Other languages
English (en)
Inventor
Szuhan Hu
スーハン フー
Rahman Khan Sazzadur
サジャドウル ラフマン カーン
Visit Thaveeprungsriporn
タウィープランシーポン ビジット
Noriyuki Juji
紀行 十二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Publication of JP2009157353A publication Critical patent/JP2009157353A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/242Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/247Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet using distributed sensing elements, e.g. microcapsules

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

【課題】格段に優れた感度で、二次元動作および三次元動作の感知できる導波路センサーを提供すること。
【解決手段】本発明の導波路センサーは、基板と、基板の一方の側に第1のアンダークラッドと、第1のセンシングコアと、第1のオーバークラッドと、基板の他方に配置された第2のアンダークラッドと、第2のセンシングコアと、第2のオーバークラッドを有する。第1のオーバークラッドの上に、第1のセンシングコアの延びる方向とは平行ではない方向に延びる第1の溝部が形成され、平面視した場合に、第1のセンシングコアと一緒になって、第1の回折格子を形成し、第2のオーバークラッドの上に、第2のセンシングコアが延びる方向とは平行ではない方向に延びる第2の溝部が形成され、平面視した場合に、第2のセンシングコアと一緒になって第2の回折格子を形成する。
【選択図】図1A

Description

本発明は、導波路センサーに関する。より詳細には、本発明は、格段に優れた感度で、二次元動作および三次元動作を感知できる導波路センサーに関する。
導波路センサーは、物理学的、機械的、化学的、および/または生物学的な特性の感知に用いることが期待されている。これまで、波型の回折格子を有する繊維状の導波路センサーがひずみ、ねじれ、曲げの感知に使用されることがよく知られている(例えば、非特許文献1)。このようなセンサーは、通常、ひずみ、ねじれ、曲げなどを検出することによって、機械的な感知を行う。しかしながら、このような従来のセンサーでは、安価で、優れた分解能を有するマイクロセンサーアレイを提供することができない。
このように、優れた感度で感知を行うことが可能なセンサーが強く求められている。
Victor G. and Jack F., Optical Letters, Vol.25, No.4, Feb. 15(2000),pp.203−205
本発明は、上記の従来の課題を解決するためにされたものであり、その目的は、格段に優れた感度で、二次元動作および三次元動作を感知できる導波路センサーを提供することである。
本発明の導波路センサーは、基板と、該基板の一方の側に配置された第1のアンダークラッドと、該第1のアンダークラッドの外側に配置され、一方向に延びるストライプ状パターンを有する第1のセンシングコアと、該第1のセンシングコアの外側に配置された第1のオーバークラッドと、該基板の他方の側に配置された第2のアンダークラッドと、該第2のアンダークラッドの外側に配置され、該第1のセンシングコアの延びる方向とは平行ではない方向に延びるストライプ状パターンを有する第2のセンシングコアと、該第2のセンシングコアの外側に配置された第2のオーバークラッドとを有し、該第1のオーバークラッドの上に、該第1のセンシングコアの延びる方向とは平行ではない方向に延びる第1の溝部が形成され、平面視した場合に、該第1の溝部と該第1のセンシングコアが一緒になって第1の回折格子を形成し、該第2のオーバークラッドの上に、該第2のセンシングコアが延びる方向とは平行ではない方向に延びる第2の溝部が形成され、平面視した場合に、該第2の溝部と該第2のセンシングコアが一緒になって第2の回折格子を形成する。
好ましい実施形態においては、導波路センサーは可とう性を有し、平板状である。
好ましい実施形態においては、導波路センサーは二次元動作感知および三次元動作感知を行うことができる。
本発明によれば、第1の溝部と第2の溝部の延びる方向がそれぞれ平行ではなく、このような構成により、二次元動作感知と三次元動作感知を実現することができる。さらに、本発明の導波路センサーは、基板の両側の面にそれぞれ形成された2つの回折格子を有するので、二次元動作および三次元動作の感知を可能とし、または促進し、さらに感度および感知出力を増幅させるので、感度を格段に向上させることができる。
以下に、本発明の好ましい実施形態について説明するが、本発明はこれらの実施形態のみに限定されるものではない。
A.導波路センサーの全体構成
図1Aは、本発明の好ましい実施形態による導波路センサーの概略断面図であり、図2Aは、図1Aの導波路センサーの概略斜視図である。導波路センサー100は、基板10と;基板10の一方の側に配置された第1のアンダークラッド21と;第1のアンダークラッド21の外側に配置された第1のセンシングコア31と;第1のセンシングコア31の外側に配置された第1のオーバークラッド41と;基板10のもう一方の側に配置された第2のアンダークラッド22と;第2のアンダークラッド22の外側に配置された第2のセンシングコア32と;第2のセンシングコア32の外側に配置された第2のオーバークラッド42とを含む。
1つの実施形態において、第1のセンシングコア31は、一方向に延びるストライプ状パターンを有する。第2のセンシングコア32は、第1のセンシングコア31のストライプ状パターンの延びる方向とは平行ではない方向に延びたストライプ状パターンを有する。より詳細には、第2のセンシングコア32は、第1のセンシングコア31と直交する方向に延びていてもよく、平面視した場合に、第1のセンシングコア31に対して特定の角度を規定するように延びていてもよい。
さらに、本発明においては、第1のセンシングコアのストライプ状パターンの延びた方向とは平行ではない方向に延びた第1の溝部51が、第1のオーバークラッド41の上に形成されている。より詳細には、第1の溝部51は、第1のセンシングコア31と直交する方向に延びていてもよく、平面視した場合に、第1のセンシングコア31に対して特定の角度を規定するように延びていてもよい。このように第1の溝部および第1のセンシングコアを配置することによって、平面視した場合に、第1の溝部51と第1のセンシングコア31とが第1の回折格子を形成する。
さらに、第2のセンシングコアのストライプ状パターンの延びた方向とは平行ではない方向に延びた第2の溝部52が、第2のオーバークラッド42の上に形成される。より詳細には、第2の溝部52は第2のセンシングコア32と直交する方向に延びていてもよく、平面視した場合に、第2のセンシングコア32に対して特定の角度を規定するように延びていてもよい。このように第2の溝部および第2のセンシングコアを配置することによって、平面視した場合に、第2の溝部52と第2のセンシングコア32が第2の回折格子を形成する。
上記のように、本発明の導波路センサーにおいて、第1の溝部51と第2の溝部52の延びる方向は、それぞれ平行ではない(代表的には、直交である)。このような構成(以下、本明細書において、「二軸」ともいう)にすることにより、本発明の導波路センサーは、二次元動作感知および三次元動作感知を実現することができる。さらに、上記の記載からわかるように、本発明の導波路センサーは、基板の両側にそれぞれ回折格子が形成されている(以下、本明細書において、「二重回折格子」ともいう)。このような回折格子は二次元動作および三次元動作の感知を可能とし、または促進し、さらに感度および感知出力を増幅させることができる。したがって、二重回折格子構成を有する本発明の導波路センサーは、従来のものに比べて感度を格段に向上させることができる。
図1Aおよび図2Aに示した例では、第1のセンシングコア31と第2のセンシングコア32の外表面(第1または第2のアンダークラッドと接していない外側の面)のみが、露出する構成を示す。言い換えると、第1のセンシングコア31の外表面と第1の溝部51の底面とが面一、つまり、同一平面上にあり、第2のセンシングコア32の外表面と第2の溝部52の底面とが面一である。図1Bと図2Bに示した他の実施形態においては、第1のセンシングコア31と第2のセンシングコア32の側面および上記外表面が露出する構成となる。図1Cと図2Cに示したさらに別の実施形態においては、第1のセンシングコア31の外表面は第1の溝部51の底面で覆われており、第2のセンシングコア32の外表面は第2の溝部52の底面で覆われている構成となる。いうまでもなく、図1A〜1Cおよび図2A〜2Cに図示した構成は、組み合わせてもよい。
B.基板
基板10としては、任意の適切なものを用いることができる。基板の具体例としては、シリコンウエハのような半導体基板、セラミック基板、ガラス基板、銅、アルミニウム、ステンレス鋼またはこれらの合金のような金属基板、および、任意の適切なポリマーフィルムを用いたプラスチック基板などが挙げられる。可とう性を有する導波路センサーが得られるという点から、プラスチック基板が好ましい。基板の厚みは目的に合わせて適宜変更することができ、好ましくは10μm〜5000μm、より好ましくは20μm〜1500μmである。
C.第1のアンダークラッド
第1のアンダークラッド21は、後述する第1のセンシングコア31よりも低い屈折率を有する限り、任意の適切な材料を用いて形成することができる。1つの実施形態においては、第1のアンダークラッド21は、ポリイミド樹脂またはエポキシ樹脂で形成される。ポリイミド樹脂およびエポキシ樹脂としては、任意の適切なものを用いることができる。ポリイミド樹脂およびエポキシ樹脂については、本技術分野では周知の材料であり、例えば、特開2007−279237号公報、特開2004−177864号公報などに開示されているので、本明細書ではこれらの樹脂の詳細については記載しない。他の実施形態においては、第1のアンダークラッド21は、後述する第1のセンシングコア31および/または第2のセンシングコア32の形成に用いられる光重合性組成物から形成され得る。
第1のアンダークラッド21の厚みは、目的に合わせて適宜変更することができ、好ましくは5μm〜500μm、より好ましくは10μm〜200μmである。上記のとおり、第1のアンダークラッド21の屈折率は、第1のセンシングコア31よりも低い。より詳細には、第1のアンダークラッド21の屈折率は、好ましくは1.50〜1.59である。なお、それぞれの層(例えば、コアやクラッド)の屈折率は、例えば、各層を形成する材料の種類や材料に添加する添加剤の種類を選択することにより、および/または、材料の組成や添加剤の量を調節することにより、制御することができる。
D.第1のセンシングコア
第1のセンシングコア31は、本発明の効果が得られる限り、任意の適切なものを用いることができる。第1のセンシングコア31は、好ましくはフルオレン誘導体および光酸発生剤を含む光重合性組成物から形成される。光重合性組成物の詳細については、特開2005−266739号公報に開示されており、その開示は本明細書に参考として援用される。
第1のセンシングコア31の厚みは、目的に合わせて適宜変更することができ、好ましくは5μm〜500μm、より好ましくは10μm〜100μmである。第1のセンシングコア31の屈折率は、好ましくは1.51〜1.60である。第1のアンダークラッド21と第1のセンシングコア31の屈折率の差は、好ましくは0.01〜0.1である。屈折率の差が上記範囲にあることで、感度を向上させることができる。
E.第1のオーバークラッド
第1のオーバークラッド41は、第1のアンダークラッド21と同じ材料で形成され得る。第1のオーバークラッド41の厚みは、目的に応じて変更することができ、好ましくは10μm〜500μm、より好ましくは20μm〜100μmである。厚みを上記の範囲とすることで、回折格子を所望の深さにすることができる。第1のオーバークラッド41の屈折率は、第1のセンシングコア31の屈折率よりも低ければよく、第1のアンダークラッド21と同一であっても、異なっていてもよい。第1のオーバークラッド41と第1のセンシングコア31の屈折率の差は、好ましくは0.01〜0.1である。屈折率の差がこの範囲にあることで、感度を向上させることができる。
F.第1の溝部
本発明においては、第1の溝部51が、第1のオーバークラッド41の上に形成され、上記のように、平面視した場合に、第1の溝部51と第1のセンシングコア31とが一緒になって回折格子を形成する。回折格子の形状は、目的、検出すべき特性やパラメーター(例えば、ひずみ、ねじれ、曲げ)や動作、所望される感度などに応じて適切に設計され得る。回折格子の形状の特徴としては、回折格子の大きさ(長さと幅)、回折格子のパターン(チェック状パターン)、回折格子の深さ(第1のオーバークラッドと第1のセンシングコアの総厚みに相当)、第1の溝部での溝の列(または壁の列)のピッチ、第1の溝部での溝の列(または壁の列)の幅、溝の列の幅と溝の列のピッチとの比、第1のセンシングコアでの列のピッチ、第1のセンシングコアでの列の幅、第1のセンシングコアの列の幅と第1のセンシングコアの列のピッチとの比などが挙げられる。本発明で用いられる第1の溝部51は、二次元動作および三次元動作の感知を可能にし、または促進し、あるいは感知出力を増幅させる回折格子を提供することができる。
G.第2のアンダークラッド
第2のアンダークラッド22は、第2のアンダークラッドの屈折率が後述する第2のセンシングコア32の屈折率よりも低い限り、任意の適切な材料で形成することができる。1つの実施形態においては、第2のアンダークラッド22は、第1のアンダークラッド21と同じ材料から形成され得る。第2のアンダークラッド22は、第1のアンダークラッド21と同一であっても、異なっていてもよい。
第2のアンダークラッド22の厚みは、目的に応じて適宜変更することができ、好ましくは5μm〜500μm、より好ましくは10μm〜200μmである。上記のように、第2のアンダークラッド22の屈折率は、第2のセンシングコア32よりも低い。より詳細には、第2のアンダークラッド22の屈折率は、好ましくは1.50〜1.59である。第2のアンダークラッド22の厚みおよび/または、屈折率は第1のアンダークラッド21と同一であっても異なっていてもよい。
H.第2のセンシングコア
第2のセンシングコア32は、本発明の効果が得られる限り、任意の適切な材料で形成することができる。第2のセンシングコア32は、第1のセンシングコア31と同じ材料から形成され得る。第2のセンシングコア32と第1のセンシングコア31とは同一であっても異なっていてもよい。
第2のセンシングコア32の厚みは、目的に応じて適宜変更することができ、好ましくは5μm〜500μm、より好ましくは10μm〜100μmである。第2のセンシングコア32の屈折率は、好ましくは1.51〜1.60である。第2のアンダークラッド22と第2のセンシングコア32の屈折率の差は、好ましくは0.01〜0.1である。屈折率の差が上記の範囲にあることで、感度を向上させることができる。
第1のセンシングコア31と第2のセンシングコア32との距離は、目的に応じて適宜変更することができる。1つの実施形態において、第1のセンシングコア31と第2のセンシングコア32の距離は、好ましくは25μm〜1500μm、より好ましくは50μm〜500μmである。距離がこの範囲にあることで、感度を向上させることができる。第1のセンシングコア31と第2のセンシングコア32との距離は、基板、第1のアンダークラッドおよび第2のアンダークラッドの厚みを調整することによって制御することができる。
I.第2のオーバークラッド
第2のオーバークラッド42は、第2のアンダークラッド22と同じ材料で形成され得る。第2のオーバークラッド42は、第1のオーバークラッド41と同一であっても異なっていてもよい。第2のオーバークラッド42の厚みは目的に応じて適宜変更することができ、好ましくは10μm〜500μm、より好ましくは20μm〜100μmである。第2のオーバークラッド42の厚みを上記の範囲とすることで、回折格子の深さを所望の深さにすることができる。第2のオーバークラッドの屈折率は、第2のセンシングコア32の屈折率よりも低ければよく、第2のアンダークラッドと同一であっても、異なっていてもよい。第2のオーバークラッド42と第2のセンシングコア32との屈折率の差は、0.01〜0.1であることが好ましい。屈折率の差を上記の範囲にすることで、感度を向上させることができる。
J.第2の溝部
本発明において、第2の溝部52は、第2のオーバークラッド42の上に形成され、上記のように、平面視した場合に、第2の溝部52と第2のセンシングコア32とが一緒になって回折格子を形成する。本発明で用いられる第2の溝部52は、二次元動作および三次元動作の感知を可能にし、または促進し、感知出力を増幅させる回折格子を提供することができる。回折格子の形状は、目的、検出すべき特性やパラメーター(ひずみ、ねじれ、曲げ)や動作、所望される感度などに応じて適切に設計され得る。第2の溝部52によって形成される回折格子の形状は、第1の溝部51によって形成される回折格子と同一であっても、異なっていてもよい。
上記のとおり、本発明の導波路センサーは二軸構成を有する。より詳細には、第1の溝部51と第2の溝部52が互いに平行ではない方向(1つの実施形態においては、直交する方向)に延び、第1のセンシングコア31と第2のセンシングコア32は互いに平行ではない方向(1つの実施形態においては、直交する方向)に延びている。さらに、第1の溝部51と第1のセンシングコア31は互いに平行ではない方向(1つの実施形態においては、直交する方向)に延び、第2の溝部52と第2のセンシングコア32は互いに平行ではない方向(1つの実施形態においては、直交する方向)に延びている。したがって、それぞれのチェック状パターンが互いに交差(1つの実施形態においては、直交)関係を有する2つの回折格子が導波路センサーのそれぞれの側に形成されている。
このような二軸構成により、二次元空間または三次元空間での運動情報および運動学的情報の検出を実現することができ、その結果、二次元動作または三次元動作の感知を実現することができる。例えば、一方の回折格子は、XYZ座標のX方向のたわみおよび動作を検出することができ、他方の回折格子は、XYZ座標のY方向のたわみおよび動作を検出することができる。
ねじれ計算の一例を、図3Aおよび図3Bを参照して説明する。図3Aにおいて、Xはセンサーがねじれを受けている状態での、i番目のコアのX方向におけるたわみを表し、Xi+1はセンサーがねじれを受けている状態での、(i+1)番目のコア(i番目のコアに隣接したコア)のX方向におけるたわみを表す。以下に示す式(I)に示すように、これらの2つの隣接するコアのたわみ距離をこれらの2つの隣接するコアの中心間距離ΔXで割ることによって、X方向におけるねじれ角θが求められる。中心間距離ΔXは、とても小さい(μmオーダーである)ので、図3Aに示したXとXi+1間の傾きは、数学的には直線として処理される。
tan−1[(Xi+1−X)/ΔX]=θ (I)
それと同時に、j番目のコアYのY方向へのたわみと(j+1)番目のコアYj+1のY方向におけるたわみを用いることにより、ねじれ角θと同様にして、式(II)により、Y方向におけるねじれ角αを求めることができる。ねじれ角θとαを時間の関数として決定することによって、ねじれの二次元動作の感知を実現することができる。
tan−1[(Yi+1−Y)/ΔY]=α (II)
さらに、それぞれを時間(t)の関数としてのX方向におけるたわみX(t)、Y方向におけるたわみY(t)、Z方向におけるたわみZ(t)を上記と同様の方法により求めることができる。そして、以下に示す式(III)(すなわち、ベクトルクロス乗積操作)によって、図4に示すように、三次元動作の感知を実現することができる。
X(t)×Y(t)=Z(t) (III)
1つの実施形態において、本発明の導波路センサーは対称構造である。より詳細には、第1のアンダークラッド21と第2のアンダークラッド22はそれぞれ同一あり、第1のセンシングコア31と第2のセンシングコア32はそれぞれ同一であり、第1のオーバークラッド41と第2のオーバークラッド42はそれぞれ同一である。このような対称構造により、二次元動作または三次元動作の運動的および運動学的な情報を提供することができる。
さらに、1つの実施形態において、本発明の導波路センサーは、全ての層がポリマー(すなわち、可とう性材料)から形成され得るものであり、以下に示す製造方法からもわかるように、平板状であり得る。このような構成にすることにより、本発明の導波路センサーは、従来の光学センサーに比べて、目的に合わせて形状を調整することがより容易となる。それゆえ、本発明の導波路センサーは、より広い用途に適用することができる。さらに、平板状にすることにより、コスト効率がよいフォトリソグラフィーによって、二軸かつ二重回折格子の構成にすることができる。
図示した例では、第1の回折格子および第2の回折格子が導波路センサーの実質的に全表面に形成されている形態を示しているが、目的に合わせて導波路センサーの各表面の適切な位置に回折格子を形成することができる。1つの実施形態において、複数の回折格子が基板上にマトリックス状、ストライプ状、または任意の適切なパターンとなるよう形成され得る。このような構成において、回折格子の数は目的に応じて変更できる。別の実施形態においては、複数の回折格子がランダムに形成されてもよい。さらに別の実施形態においては、小さな単一の回折格子が導波路センサーの各表面の所定の位置に形成されてもよい。
K.導波路センサーの製造方法
本発明の導波路センサーは、代表的には、フォトリソグラフィーによって製造される。以下に、本発明の導波路センサーの製造方法の好ましい一例を図5を参照して説明する。
まず、基板10を用意する。次いで、図5のステップAに示すように、第2のアンダークラッド22を基板10の上に形成する。より詳細には、第2のアンダークラッドを形成する材料を含む塗布液を基板の上に塗布する。塗布方法としては特に制限はなく、任意の適切な方法を用いることができる。具体例としては、スピンコーティング法、浸漬法、キャスティング法、噴射法、インクジェット法などが挙げられる。次いで、塗布層をプリベークして、溶媒を除去する。その後、塗布層に紫外線を照射し、照射後に焼付けて塗布層を硬化させる。このようにして、第2のアンダークラッド22を形成する。
次いで、ステップBに示すように、第2のセンシングコアを形成するための材料を含む塗布液を第2のアンダークラッド22に塗布する。塗布方法は、上記のとおりである。そして、50℃〜120℃に加熱することによって溶媒が除去され、これにより、表面に粘着性のない樹脂層32’が形成される。次いで、所定のパターンを有するフォトマスク33を樹脂層32’に配置し、フォトマスク33を介して樹脂層32’にエネルギー線を照射する。エネルギー線としては、可視光線、紫外線、赤外光、電子ビームなどが挙げられる。単純で小さな照射装置を使用することができ、コストを抑えてフォトリソグラフィーを行うことができるので、エネルギー線としては、紫外線が好ましい。紫外線照射量は、好ましくは500mJ/cm〜10000mJ/cmであり、より好ましくは1000mJ/cm〜5000mJ/cmである。必要に応じて、樹脂層をエネルギー線の照射後に加熱してもよい。加熱温度は、好ましくは80℃〜250℃であり、より好ましくは100℃〜150℃である。加熱時間は、好ましくは5分から2時間であり、より好ましくは10分から1時間である。
次いで、ステップCに示すように、現像処理をし、樹脂層32’に所定のパターン(代表的には、ストライプ状パターン)を有する第2のセンシングコア32を形成する。現像方法において、現像液および現像条件は、第2のセンシングコアを形成する材料に合わせて適切に選択することができる。形成された第2のセンシングコア32は、例えば80℃〜150℃で加熱することにより、硬化される。
次いで、ステップDに示すように、第2のオーバークラッドを形成する材料を含む塗布液を、第2のセンシングコア32のパターンが形成された第2のアンダークラッド22の上に塗布する。次いで、塗布層を加熱することにより硬化させ、第2のオーバークラッド42を形成する。塗布方法および加熱条件については、上記の第2のアンダークラッドについて記載したとおりである。
次いで、ステップEに示すように、所定のパターン(代表的には、ストライプ状パターン)を有するフォトマスク53を第2のオーバークラッド42の上に配置し、第2のオーバークラッド42にフォトマスク53を介してエネルギー線(代表的には、紫外線)を照射する。照射後、ステップFに示すように、現像処理をし、第2のオーバークラッド42の所定の位置に第2の溝部52を形成する。代表的には、第2の溝部52は、第2のセンシングコア32が延びる方向とは平行ではない方向(1つの実施形態においては、直交する方向)に延びるように、第2のセンシングコア32の上に形成される。結果として、第2の溝部52と第2のセンシングコア32の交差部分は、平面視した場合に、回折格子を形成する。なお、ステップEとFの説明図は、ステップA〜Dの説明図を90°回転させた方向からみた図である。
次いで、ステップGに示すように、ステップA〜Fで得られた積層体を天地逆転させて置く。基板10の第2のアンダークラッド22が形成されていない側に、第1のアンダークラッド21を形成する。より詳細には、第1のアンダークラッドを形成する材料を含む塗布液を基板に塗布する。塗布方法および形成条件は、上記の第2のアンダークラッドで記載したとおりである。なお、ステップG以降のステップについては、ステップA〜Dと同じ方向から見たものである。
次いで、第1のセンシングコアを形成する材料を含む塗布液を、第1のアンダークラッド21に塗布する。そして、塗布層に所定のパターンのフォトマスク(図示しない)を介してエネルギー線(代表的には、紫外線)を照射することにより、パターン化する。結果として、ステップHに示すように、所定のパターン(代表的には、ストライプ状パターン)を有する第1のセンシングコア31を、第1のアンダークラッド21の上に形成する。第1のセンシングコアを形成するための操作および条件は、上記の第2のセンシングコアと同様である。
次いで、第1のオーバークラッドを形成する材料を含む塗布液を第1のセンシングコア31が形成された第1のアンダークラッド21に塗布する。次いで、所定のパターンのフォトマスク(図示しない)を介してエネルギー線(代表的には、紫外線)を照射し、第1のオーバークラッドをパターン化する。結果として、ステップIに示すように、第1のオーバークラッド41が第1のセンシングコア31上に形成され、所定のパターン(代表的には、ストライプ状パターン)を有する溝部51が第1のオーバークラッド41の上に形成される。
上記のようにして、図1Aと図2Aに示す導波路センサーが得られる。フォトリソグラフィーの条件を適切に変更することにより、図1Bおよび図2Bに示す導波路センサー、図1Cおよび図2Cに示す導波路センサー、あるいは別の任意の適切な構成の導波路センサーが得られることはいうまでもない。
本発明の導波路センサーは、任意の適切な用途に用いることができ、例えば、携帯電化製品のタッチパッド、液晶表示装置のタッチパネル、HDD用ジンバル、コンピュータスペクトル分析器などに適用することができる。
本発明の目的や精神から逸脱することなく、多くの改変が当業者にとって自明であり、かつ、容易に実現可能である。本発明は、添付の特許請求の範囲の範囲内であれば、発明の詳細な説明の記載に限定されることを意図するものではなく、より広い意味に解釈されるべきものである。
本発明の導波路センサーは、例えば、携帯電化製品のタッチパッド、液晶表示装置のタッチパネル、HDD用ジンバル、コンピュータスペクトル分析器などに好適に適用することができる。
本発明の好ましい実施形態の導波路センサーの概略断面図である。 本発明の別の好ましい実施形態の導波路センサーの概略断面図である。 本発明のさらに別の好ましい実施形態の導波路センサーの概略断面図である。 図1Aに示した導波路センサーの概略斜視図である。 図1Bに示した導波路センサーの概略斜視図である。 図1Cに示した導波路センサーの概略斜視図である。 本発明の導波路センサーの二次元動作感知の概念を示す概略図である。 本発明の導波路センサーの二次元動作感知の概念を示す概略図である。 本発明の導波路センサーの三次元動作感知の概念を示す概略図である。 本発明の好ましい実施形態による導波路センサーの製造方法を説明する概略図である。
符号の説明
10 基板
21 第1のアンダークラッド
22 第2のアンダークラッド
31 第1のセンシングコア
32 第2のセンシングコア
41 第1のオーバークラッド
42 第2のオーバークラッド
51 第1の溝部
52 第2の溝部
100 導波路センサー

Claims (3)

  1. 基板と、
    該基板の一方の側に配置された第1のアンダークラッドと、
    該第1のアンダークラッドの外側に配置され、一方向に延びるストライプ状パターンを有する第1のセンシングコアと、
    該第1のセンシングコアの外側に配置された第1のオーバークラッドと、
    該基板の他方の側に配置された第2のアンダークラッドと、
    該第2のアンダークラッドの外側に配置され、該第1のセンシングコアの延びる方向とは平行ではない方向に延びるストライプ状パターンを有する第2のセンシングコアと、
    該第2のセンシングコアの外側に配置された第2のオーバークラッドとを有し、
    該第1のオーバークラッドの上に、該第1のセンシングコアの延びる方向とは平行ではない方向に延びる第1の溝部が形成され、平面視した場合に、該第1の溝部と該第1のセンシングコアが一緒になって第1の回折格子を形成し、
    該第2のオーバークラッドの上に、該第2のセンシングコアが延びる方向とは平行ではない方向に延びる第2の溝部が形成され、平面視した場合に、該第2の溝部と該第2のセンシングコアが一緒になって第2の回折格子を形成する、導波路センサー。
  2. 可とう性を有し、平板状である、請求項1に記載の導波路センサー。
  3. 二次元動作感知および三次元動作感知を行うことができる、請求項1または2に記載の導波路センサー。
JP2008294179A 2007-12-26 2008-11-18 感知用導波路センサー Pending JP2009157353A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US1663707P 2007-12-26 2007-12-26

Publications (1)

Publication Number Publication Date
JP2009157353A true JP2009157353A (ja) 2009-07-16

Family

ID=40545919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008294179A Pending JP2009157353A (ja) 2007-12-26 2008-11-18 感知用導波路センサー

Country Status (3)

Country Link
US (1) US7653270B2 (ja)
EP (1) EP2075551A2 (ja)
JP (1) JP2009157353A (ja)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6510263B1 (en) * 2000-01-27 2003-01-21 Unaxis Balzers Aktiengesellschaft Waveguide plate and process for its production and microtitre plate
US6903815B2 (en) * 2001-11-22 2005-06-07 Kabushiki Kaisha Toshiba Optical waveguide sensor, device, system and method for glucose measurement
JP3947457B2 (ja) 2002-11-29 2007-07-18 日東電工株式会社 ポリイミド光導波路の製造方法
DE10350526A1 (de) * 2003-10-29 2005-06-09 Bayer Technology Services Gmbh Schichtstruktur und optischer Wellenleiter-Sensor basierend auf photoadressierbaren Polymeren
JP4490183B2 (ja) 2004-02-16 2010-06-23 日東電工株式会社 光導波路およびその製造方法
CN1940529B (zh) * 2005-09-29 2010-09-01 株式会社东芝 光波导型生物化学传感器芯片及其制造方法
EP1938086A1 (en) * 2005-10-12 2008-07-02 Koninklijke Philips Electronics N.V. All polymer optical waveguide sensor
DE102005062785A1 (de) * 2005-12-28 2007-07-05 Robert Bosch Gmbh Regensensor, insbesondere für ein Kraftfahrzeug, und Verfahren zur Herstellung des Regensensors
JP2007279237A (ja) 2006-04-04 2007-10-25 Nitto Denko Corp 光導波路の製法

Also Published As

Publication number Publication date
US7653270B2 (en) 2010-01-26
EP2075551A2 (en) 2009-07-01
US20090196544A1 (en) 2009-08-06

Similar Documents

Publication Publication Date Title
Quan et al. Stretchable biaxial and shear strain sensors using diffractive structural colors
Fustin et al. Parameters influencing the templated growth of colloidal crystals on chemically patterned surfaces
Gonidec et al. Fabrication of nonperiodic metasurfaces by microlens projection lithography
Fang et al. Planar plasmonic focusing and optical transport using CdS nanoribbon
Goodling et al. Tunable and responsive structural color from polymeric microstructured surfaces enabled by interference of totally internally reflected light
Wang et al. Elliptical silicon arrays with anisotropic optical and wetting properties
Rosenberger et al. Flexible polymer shape sensor based on planar waveguide Bragg gratings
Bremer et al. Evaluating the performance of functionalized carbon structures with integrated optical fiber sensors under practical conditions
Briere et al. Rotating circular micro-platform with integrated waveguides and latching arm for reconfigurable integrated optics
Memon et al. Waveguiding light into silicon oxycarbide
Nazir et al. A monolithic gimbal micro-mirror fabricated and remotely tuned with a femtosecond laser
Bae et al. Three-dimensional printing of structural color using a femtoliter meniscus
Mattelin et al. Imprinted polymer-based guided mode resonance grating strain sensors
US10211162B2 (en) Method for determining misalignment between a first and a second etching zones
Yao et al. Stress tensor mesostructures for deterministic figuring of thin substrates
Ng et al. Single-mode SU-8 waveguide fabricated using ultrafast direct laser writing
Sokuler et al. Nano fountain pen manufacture of polymer lenses for nano-biochip applications
Ishizaki et al. Fabrication of 3D photonic crystals toward arbitrary manipulation of photons in three dimensions
JP2009157353A (ja) 感知用導波路センサー
Günther et al. Simulation and experimental verification of the thermal behaviour of self-written waveguides
Pitwon et al. Competitive evaluation of planar embedded glass and polymer waveguides in data center environments
Peters et al. Electrothermal actuators for SiO2 photonic MEMS
JP2017116521A (ja) 変位可視化センサーおよび変位可視化システム
Coppola et al. Drop-on-Demand Pyro-Electrohydrodynamic Printing of Nematic Liquid Crystal Microlenses
Wang et al. Design and fabrication of a push-pull electrostatic actuated cantilever waveguide scanner