JP2009156553A - Reheat steam temperature control method - Google Patents

Reheat steam temperature control method Download PDF

Info

Publication number
JP2009156553A
JP2009156553A JP2007338165A JP2007338165A JP2009156553A JP 2009156553 A JP2009156553 A JP 2009156553A JP 2007338165 A JP2007338165 A JP 2007338165A JP 2007338165 A JP2007338165 A JP 2007338165A JP 2009156553 A JP2009156553 A JP 2009156553A
Authority
JP
Japan
Prior art keywords
exhaust gas
temperature
reheat steam
combustion exhaust
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007338165A
Other languages
Japanese (ja)
Other versions
JP5164561B2 (en
Inventor
Hisashi Fukusumi
尚志 福角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2007338165A priority Critical patent/JP5164561B2/en
Publication of JP2009156553A publication Critical patent/JP2009156553A/en
Application granted granted Critical
Publication of JP5164561B2 publication Critical patent/JP5164561B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To constantly control a temperature of reheat steam with accuracy in a power generating installation such as a thermal power plant. <P>SOLUTION: The power generating installation is equipped with a boiler device 11 with a regulated furnace 12, and superheaters 14, 16 and reheaters 15, 17 arranged in a flue 13 passing combustion exhaust gas of the boiler device. The combustion exhaust gas is recirculated to the furnace by an exhaust gas recirculation duct 24. When controlling the temperature of the reheat steam, first, an opening of a furnace hopper damper 26 is controlled to adjust a recirculation amount of the combustion exhaust gas. If the temperature of the reheat steam drops even when the recirculation amount of the combustion exhaust gas is adjusted, soot blowing is carried out to clean surfaces of the reheaters. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、火力発電所においてボイラーの蒸気温度を制御するための方法に関し、特に、再熱蒸気の温度を制御するための方法に関するものである。   The present invention relates to a method for controlling the steam temperature of a boiler in a thermal power plant, and more particularly to a method for controlling the temperature of reheat steam.

一般に、火力発電所においては、ボイラー装置で石油等の燃料の燃焼によって発生する燃焼排ガスの一部を排ガス再循環ファン(GRF)及び排ガス再循環量調整ダンパー(火炉ホッパーダンパー)を介してボイラー装置に規定された火炉の底部に導入して、燃焼排ガスと燃料とを火炉内で混合するようにしている。火炉の出口側には過熱器、再熱器、及び節炭器等が順次配列され、復水器から供給される水(復水)を昇圧ポンプで昇圧(給水)した後、節炭器で加熱(加温)する。その後、給水は火炉水壁を通過して過熱器に与えられ、ここで過熱蒸気となり、この過熱蒸気は高圧タービンに送られ、高圧タービンで仕事をする(高圧タービンを駆動する)。   Generally, in a thermal power plant, a part of combustion exhaust gas generated by combustion of fuel such as oil in a boiler device is passed through an exhaust gas recirculation fan (GRF) and an exhaust gas recirculation amount adjustment damper (furnace hopper damper). Is introduced into the bottom of the furnace specified in the above, and the combustion exhaust gas and fuel are mixed in the furnace. A superheater, reheater, economizer, etc. are arranged in sequence at the outlet side of the furnace, and after the water (condensate) supplied from the condenser is boosted (feed water) with a booster pump, Heat (warm). Thereafter, the feed water passes through the furnace water wall and is given to the superheater, where it becomes superheated steam, which is sent to the high-pressure turbine and works in the high-pressure turbine (drives the high-pressure turbine).

高圧タービンから排出された蒸気は再熱器に送られ再熱器で再加熱されて、中圧タービンに送られここで仕事をした後、さらに低圧タービンに送られる。これらタービンの駆動によって発電機が駆動されて電力が発生し送電線に送られることになる。一方、燃焼排ガスは脱硝装置、空気予熱器、電気集塵器、及び脱硫装置を介して煙突から排出される。   Steam discharged from the high-pressure turbine is sent to a reheater, reheated by the reheater, sent to an intermediate-pressure turbine, where it works, and further sent to a low-pressure turbine. The generator is driven by the driving of these turbines, and electric power is generated and sent to the transmission line. On the other hand, the combustion exhaust gas is discharged from the chimney through a denitration device, an air preheater, an electrostatic precipitator, and a desulfurization device.

ところで、前述の過熱器、再熱器、及び節炭器の伝熱管の表面には燃焼排ガス中に含まれる灰分等の粒子状物質(煤等)が不可避的に付着するため、その熱吸収量が経時的に低下する。このような熱吸収量の低下を是正するためボイラー装置にはスートブロア(煤吹き機)が配設され、スートブローによって定期的に伝熱管表面に付着した煤等を除去し、熱吸収性能の低下を防止するようにしている。   By the way, particulate matter such as ash contained in the combustion exhaust gas inevitably adheres to the surface of the heat transfer tube of the above-mentioned superheater, reheater, and economizer, so the heat absorption amount Decreases with time. In order to correct such a decrease in heat absorption amount, the boiler device is provided with a soot blower (soot blower), and soot blow periodically removes soot and the like adhering to the surface of the heat transfer tube to reduce the heat absorption performance. I try to prevent it.

上述のスートブローを行うと、伝熱管表面の煤等が短時間で除去され、当該伝熱管の熱吸収量が急激に増加し、その結果、蒸気温度が急上昇する現象が生じることがある。このため、ボイラー燃焼排ガス流路内に、前述の過熱器及び再熱器を配置して、過熱器及び再熱器のうち少なくとも再熱器への付着物(煤等)を除去するスートブローを間欠的に実施しつつ、再熱器及び過熱器に対する燃焼排ガスの通過流量をガス分配ダンパーによって制御して、所謂再熱蒸気温度制御を行う際、再熱器への付着物を除去するスートブローを実施する前に、ガス分配ダンパーによって再熱器側の通過ガス量を減少させて熱吸収量を少なくするようにしたものがある(例えば、特許文献1参照)。
特開2004−264002号公報
When the above-mentioned soot blow is performed, soot and the like on the surface of the heat transfer tube are removed in a short time, the heat absorption amount of the heat transfer tube increases rapidly, and as a result, a phenomenon that the steam temperature rapidly increases may occur. For this reason, the above-mentioned superheater and reheater are arranged in the boiler combustion exhaust gas flow path, and soot blow that removes at least the deposits (such as soot) from the superheater and reheater to the reheater is intermittent. The soot blow to remove deposits on the reheater is performed when the so-called reheat steam temperature control is performed by controlling the flow rate of the combustion exhaust gas to the reheater and superheater by the gas distribution damper. Prior to this, there is a gas distribution damper that reduces the amount of gas passing on the reheater side to reduce the amount of heat absorption (see, for example, Patent Document 1).
JP 2004-264002 A

ところで、従来の再熱蒸気温度制御では、火炉ホッパーダンパーには、最低の再循環ガス量を確保する下限開度と火炉内のガス量を制限し燃焼不良や火炉圧力の上昇を防止する上限開度が設定されており、このどちらになっても、再熱蒸気温度に支障が生じる。従って、スートブローを間欠的に行って、再熱器に付着した付着物を除去するが、清掃頻度によるスートブロー後の蒸気温度の変化に起因する、火炉ホッパーダンパーの開度変化を把握しづらく、結果的に、定期的なスートブローを実施する傾向にある。   By the way, in the conventional reheat steam temperature control, the furnace hopper damper has a lower limit opening for securing the minimum recirculation gas amount and a gas amount in the furnace to limit the upper limit opening to prevent poor combustion and increase in furnace pressure. The degree is set, and in either case, the reheat steam temperature is disturbed. Therefore, the soot blow is intermittently performed to remove the deposits adhering to the reheater, but it is difficult to grasp the change in the opening degree of the furnace hopper damper due to the change in the steam temperature after the soot blow due to the cleaning frequency. In particular, there is a tendency to carry out regular soot blowing.

つまり、従来の再熱蒸気温度制御においては、火炉ホッパーダンパーによる循環ガス量の制御となり、上述の上下限とならないように、定期的にスートブローを実施していた。   In other words, in the conventional reheat steam temperature control, the circulation gas amount is controlled by the furnace hopper damper, and soot blow is periodically performed so as not to reach the upper and lower limits described above.

従って、本発明の目的は、常に精度よく再熱蒸気の温度を制御することができる再熱温度制御方法を提供することにある。   Accordingly, an object of the present invention is to provide a reheat temperature control method that can always control the temperature of reheat steam with high accuracy.

本発明は、火炉が規定されたボイラー装置と、該ボイラー装置の燃焼排ガスが通過する燃焼排ガス路内に配設された過熱器及び再熱器と、前記過熱器から得られる過熱蒸気によって駆動されるとともに、前記過熱蒸気が仕事した後に得られる蒸気を前記再熱器で再加熱して得られた再熱蒸気で駆動されるタービンと、該タービンの駆動によって駆動される発電機とを有する発電システムで用いられ、前記再熱蒸気の温度を制御するための再熱蒸気温度制御方法であって、前記発電システムには前記燃焼排ガスを前記火炉に再循環する再循環部と、前記燃焼排ガスの再循環量を規制する燃焼排ガス再循環量規制部と、前記再熱器の表面を清掃する清掃手段とが備えられており、前記燃焼排ガス再循環量規制部によって前記燃焼排ガスの再循環量を調整して前記再熱蒸気の温度を制御する第1のステップと、前記第1のステップにおける再熱循環量の制御範囲を温度制御に最適な範囲で行うため、前記清掃手段によって前記再熱器の表面を清掃する第2のステップとを有することを特徴とするものである。   The present invention is driven by a boiler device in which a furnace is defined, a superheater and a reheater disposed in a combustion exhaust gas passage through which the combustion exhaust gas of the boiler device passes, and superheated steam obtained from the superheater. A turbine driven by the reheat steam obtained by reheating the steam obtained after the superheated steam has worked by the reheater, and a generator driven by the driving of the turbine A reheat steam temperature control method used in a system for controlling the temperature of the reheat steam, wherein the power generation system includes a recirculation unit for recirculating the combustion exhaust gas to the furnace, A combustion exhaust gas recirculation amount regulating part for regulating the recirculation amount; and a cleaning means for cleaning the surface of the reheater; and the recirculation amount of the combustion exhaust gas by the combustion exhaust gas recirculation quantity regulating unit. A first step of adjusting and controlling the temperature of the reheat steam, and a control range of the reheat circulation amount in the first step within a range optimal for temperature control. And a second step of cleaning the surface.

本発明による再熱蒸気温度制御方法は、前記第1のステップでは前記再熱蒸気の温度が予め定められた閾値温度未満となると前記燃焼排ガス再循環量規制部によって前記火炉への前記燃焼排ガスの再循環量を増加させ、前記第2のステップは、前記第1のステップを少なくとも1回行った後行われ、再度前記再熱蒸気の温度が前記閾値温度未満となると前記清掃手段によって前記再熱器の表面を清掃することを特徴とする。   In the reheat steam temperature control method according to the present invention, when the temperature of the reheat steam becomes lower than a predetermined threshold temperature in the first step, the combustion exhaust gas recirculation amount regulating unit controls the combustion exhaust gas to the furnace. The amount of recirculation is increased, and the second step is performed after performing the first step at least once, and when the temperature of the reheat steam again becomes lower than the threshold temperature, the cleaning unit performs the reheat. The surface of the vessel is cleaned.

本発明による再熱蒸気温度制御方法は、前記第1のステップの前に前記燃焼排ガス再循環量規制部によって前記燃焼排ガスの再循環量を予め設定された設定再循環量とする第3のステップを行うことを特徴とする。この設定再循環量は、例えば、火炉ホッパーダンパーの開度が下限開度+10%となった際の再循環量である。   The reheat steam temperature control method according to the present invention is a third step in which the recirculation amount of the flue gas is set to a preset recirculation amount by the flue gas recirculation amount regulating unit before the first step. It is characterized by performing. This set recirculation amount is, for example, the recirculation amount when the opening degree of the furnace hopper damper becomes the lower limit opening degree + 10%.

本発明による再熱蒸気温度制御方法は、前記第2のステップの後に行われ前記再熱蒸気の温度が所定の温度となったか否かを判定する第4のステップを有し、前記再熱蒸気の温度が前記所定の温度となるまで前記第2のステップを繰り返し、前記所定の温度を前記燃焼排ガスの再循環量が前記下限再循環量である際の前記再熱蒸気の温度に略等しくすることを特徴とする。この所定の温度は、例えば、燃焼排ガスの再循環量が設定再循環量(例えば、火炉ホッパーダンパーの開度が下限開度+10%に対応する再循環量)である際の再熱蒸気の温度に略等しい温度である。   The reheat steam temperature control method according to the present invention includes a fourth step that is performed after the second step and determines whether or not the temperature of the reheat steam has reached a predetermined temperature. The second step is repeated until the temperature reaches the predetermined temperature, and the predetermined temperature is made substantially equal to the temperature of the reheat steam when the recirculation amount of the combustion exhaust gas is the lower limit recirculation amount. It is characterized by that. The predetermined temperature is, for example, the temperature of the reheat steam when the recirculation amount of the combustion exhaust gas is a set recirculation amount (for example, the recirculation amount corresponding to the opening degree of the furnace hopper damper corresponding to the lower limit opening degree + 10%). The temperature is approximately equal to.

本発明による再熱蒸気温度制御方法は、前記第2のステップの後に行われ前記再熱蒸気の温度が所定の温度となったか否かを判定する第4のステップを有し、前記再熱蒸気の温度が前記所定の温度となるまで前記第2のステップを繰り返すことを特徴とする。   The reheat steam temperature control method according to the present invention includes a fourth step that is performed after the second step and determines whether or not the temperature of the reheat steam has reached a predetermined temperature. The second step is repeated until the temperature reaches the predetermined temperature.

本発明による再熱蒸気温度制御方法は、前記清掃手段としてスートブローを用いることを特徴とする。   The reheat steam temperature control method according to the present invention is characterized in that soot blow is used as the cleaning means.

本発明による再熱蒸気温度制御方法は、前記再循環部が前記過熱器及び前記再熱器よりも下流側で前記燃焼排ガス路に連結され、前記燃焼排ガスを前記火炉に再循環する排ガス再循環ダクトと、前記排ガス再循環ダクト内に配置された排ガス再循環ファンとを有し、前記燃焼排ガス再循環量規制部が前記排ガス再循環ダクト内において前記排ガス再循環ファンと前記火炉との間に配設され、前記排ガス再循環ダクトの開口面積を規制する火炉ホッパーダンパーを備えており、前記第1のステップでは前記火炉ホッパーダンパーの開度を制御するようにしたことを特徴とする。   In the reheat steam temperature control method according to the present invention, the recirculation unit is connected to the combustion exhaust gas passage downstream of the superheater and the reheater, and the exhaust gas recirculation is performed to recirculate the combustion exhaust gas to the furnace. A duct and an exhaust gas recirculation fan disposed in the exhaust gas recirculation duct, and the combustion exhaust gas recirculation amount regulating unit is disposed between the exhaust gas recirculation fan and the furnace in the exhaust gas recirculation duct. A furnace hopper damper that is disposed and regulates an opening area of the exhaust gas recirculation duct is provided, and the opening degree of the furnace hopper damper is controlled in the first step.

以上のように、本発明によれば、燃焼排ガスの再循環量を調整して前記再熱蒸気の温度を制御する際、燃焼排ガスの再循環量を調整しても、燃焼排ガスの再循環量の上下限値によって再熱蒸気の温度制御が阻害されるという事態を防止して、常に精度よく再熱蒸気の温度を制御することができるという効果がある。   As described above, according to the present invention, when the recirculation amount of the combustion exhaust gas is adjusted to control the temperature of the reheat steam, even if the recirculation amount of the combustion exhaust gas is adjusted, the recirculation amount of the combustion exhaust gas is adjusted. This prevents the situation where the temperature control of the reheat steam is hindered by the upper and lower limit values, so that the temperature of the reheat steam can always be controlled with high accuracy.

本発明によれば、再熱蒸気の温度が予め定められた閾値温度未満となると、火炉への燃焼排ガスの再循環量を増加させ、このように再循環量を増加させても再熱蒸気の温度が閾値温度未満となると再熱器の表面を清掃するようにしたので、再熱器表面の清掃回数を減らして、常に精度よく再熱蒸気の温度を所望の温度に制御できるという効果がある。   According to the present invention, when the temperature of the reheat steam becomes lower than a predetermined threshold temperature, the recirculation amount of the combustion exhaust gas to the furnace is increased, and even if the recirculation amount is increased in this way, Since the surface of the reheater is cleaned when the temperature is lower than the threshold temperature, the number of times of cleaning the reheater surface is reduced, and there is an effect that the temperature of the reheat steam can always be controlled to a desired temperature with high accuracy. .

本発明によれば、最初に燃焼排ガスの再循環量を予め設定された設定再循環量に設定して、再熱蒸気温度制御を行うようにしたので、燃焼排ガスの再循環量の調整範囲を広く取れるという効果がある。   According to the present invention, the recirculation amount of the combustion exhaust gas is initially set to the preset recirculation amount and the reheat steam temperature control is performed. There is an effect that it can be taken widely.

本発明によれば、再熱蒸気の温度が所定の温度になるまで、再熱器の表面を清掃するようにしたので、この所定の温度を燃焼排ガスの再循環量が設定再循環量である際の再熱蒸気の温度に略等しくする設定しておけば、燃焼排ガスの再循環量を設定再循環量に容易に復帰させることができるという効果がある。   According to the present invention, since the surface of the reheater is cleaned until the temperature of the reheat steam reaches a predetermined temperature, the recirculation amount of the combustion exhaust gas is set to the predetermined recirculation amount. If the temperature is set to be approximately equal to the temperature of the reheated steam, the recirculation amount of the combustion exhaust gas can be easily returned to the set recirculation amount.

次に本発明の実施の形態による再熱蒸気温度制御方法の一例について説明する。図1を参照して、図1は本発明の実施の形態による再熱蒸気温度制御方法が用いられる火力発電所(火力発電プラント)の主要部を示す図であり、ボイラー装置11には、火炉12が規定されており、火炉12に連続する煙道(燃焼排ガス路)13には順次下流側に向かって2次過熱器14、第1の再熱器15、1次過熱器16、第2の再熱器17、及び節炭器18が配設されている。そして、煙道13は脱硝装置19、空気予熱器20、電気集塵器21、及び脱硫装置22を介して煙突23に繋がっている。   Next, an example of the reheat steam temperature control method according to the embodiment of the present invention will be described. Referring to FIG. 1, FIG. 1 is a diagram illustrating a main part of a thermal power plant (thermal power plant) in which a reheat steam temperature control method according to an embodiment of the present invention is used. 12 is defined, and a secondary superheater 14, a first reheater 15, a primary superheater 16, and a second superheater 13 are sequentially provided in a flue (combustion exhaust gas passage) 13 continuous with the furnace 12 toward the downstream side. The reheater 17 and the economizer 18 are disposed. The flue 13 is connected to a chimney 23 via a denitration device 19, an air preheater 20, an electrostatic precipitator 21, and a desulfurization device 22.

一方、節炭器18と脱硝装置19との間において煙道13に排ガス再循環ダクト24が連結され、この排ガス再循環ダクト24は火炉12の底部に連結されている。そして、排ガス再循環ダクト24には排ガス再循環ファン(GRF)25が配置されるとともに、火炉12の底部付近において火炉ホッパーダンパー(火炉ダンパー)26が配設されている。なお、排ガス再循環ダクト24及びGRF25は再循環部を構成し、火炉ホッパーダンパー26は燃焼排ガス再循環量規制部である。   On the other hand, an exhaust gas recirculation duct 24 is connected to the flue 13 between the economizer 18 and the denitration device 19, and the exhaust gas recirculation duct 24 is connected to the bottom of the furnace 12. An exhaust gas recirculation fan (GRF) 25 is disposed in the exhaust gas recirculation duct 24, and a furnace hopper damper (furnace damper) 26 is disposed near the bottom of the furnace 12. The exhaust gas recirculation duct 24 and the GRF 25 constitute a recirculation part, and the furnace hopper damper 26 is a combustion exhaust gas recirculation amount regulation part.

図示のように、火炉12には空気予熱器20を通過して通風ダクト27が接続されており、押込通風機(FDF)28によって通風ダクト27を介して火炉12に空気が送り込まれる。また、空気予熱器20よりも下流側において、通風ダクト27はバイパスダクト29を介して排ガス再循環ダクト24に接続されている。なお、バイパスダクト29には排ガス再循環昇圧ファン(GRBF)30が配置され、バイパスダクト29はGRF25と火炉ホッパーダンパー26との間において排ガス再循環ダクト24に接続されている。   As shown in the figure, a ventilation duct 27 is connected to the furnace 12 through the air preheater 20, and air is sent to the furnace 12 through the ventilation duct 27 by a forced air blower (FDF) 28. Further, on the downstream side of the air preheater 20, the ventilation duct 27 is connected to the exhaust gas recirculation duct 24 via a bypass duct 29. An exhaust gas recirculation booster fan (GRBF) 30 is disposed in the bypass duct 29, and the bypass duct 29 is connected to the exhaust gas recirculation duct 24 between the GRF 25 and the furnace hopper damper 26.

前述の節炭器18には、復水器から復水(水)が給水ポンプ(図示せず)によって昇圧されて供給され、この節炭器18は火炉水壁(火炉水冷壁)31を介して1次過熱器16に接続されている。そして、1次過熱器16は2次過熱器14に接続され、2次過熱器14は高圧タービン(HP)32に接続されている。高圧タービン32には第2の再熱器17が接続され、第2の再熱器17には第1の再熱器15が接続されて、第1の再熱器15は中圧タービン(IP)33に接続されている。   The aforementioned economizer 18 is supplied with condensate (water) boosted by a water supply pump (not shown) from the condenser, and the economizer 18 is supplied via a furnace water wall (furnace water cooling wall) 31. It is connected to the primary superheater 16. The primary superheater 16 is connected to the secondary superheater 14, and the secondary superheater 14 is connected to a high-pressure turbine (HP) 32. The second reheater 17 is connected to the high pressure turbine 32, the first reheater 15 is connected to the second reheater 17, and the first reheater 15 is connected to the intermediate pressure turbine (IP ) 33.

中圧タービン33を通過した蒸気は低圧タービン34に与えられ、そして、低圧タービン34を通過した蒸気は復水器35で海水によって冷却されて復水(水)となる(復水される)。そして、復水器35には別に水(純水)が供給され、復水器35から復水が前述の節炭器18に供給される。また、タービン軸には発電機36が連結され、タービン軸の回転駆動によって発電機36が駆動されて発電が行われる。   The steam that has passed through the intermediate pressure turbine 33 is given to the low pressure turbine 34, and the steam that has passed through the low pressure turbine 34 is cooled by seawater in the condenser 35 to become condensed water (water) (condensed). Then, water (pure water) is separately supplied to the condenser 35, and the condensate is supplied from the condenser 35 to the aforementioned economizer 18. Further, a generator 36 is connected to the turbine shaft, and the generator 36 is driven by the rotational drive of the turbine shaft to generate power.

上述の火力発電システムでは、燃料管37から火炉12に燃料(例えば、原油)が供給され、通風ダクト27から空気予熱器20によって予熱された空気が火炉12に与えられて、火炉12で燃料が燃焼する。そして、燃焼排ガスが煙道13を通って排出されるが、この際、節炭器18、1次過熱器16、及び2次過熱器14によって復水が過熱されて加熱蒸気として高圧タービン32に供給される。つまり、復水器35から供給された復水は節炭器18で加熱された後、火炉水冷壁31を通って1次過熱器16に達し、ここで1次過熱されて、1次過熱蒸気となる。この1次過熱蒸気は2次過熱器14に送られて、さらに過熱されて過熱蒸気(2次過熱蒸気)として高圧タービン32に供給される。   In the above-described thermal power generation system, fuel (for example, crude oil) is supplied from the fuel pipe 37 to the furnace 12, air preheated by the air preheater 20 is supplied from the ventilation duct 27 to the furnace 12, and fuel is supplied to the furnace 12. Burn. The combustion exhaust gas is discharged through the flue 13. At this time, the condensate is superheated by the economizer 18, the primary superheater 16, and the secondary superheater 14 to the high pressure turbine 32 as heated steam. Supplied. That is, the condensate supplied from the condenser 35 is heated by the economizer 18, then passes through the furnace water cooling wall 31, reaches the primary superheater 16, where it is primarily superheated and primary superheated steam. It becomes. The primary superheated steam is sent to the secondary superheater 14 and further heated to be supplied to the high pressure turbine 32 as superheated steam (secondary superheated steam).

高圧タービン32を通過した蒸気は、第2の再熱器17に送られて、ここで再加熱された後、さらに第1の再熱器15で再加熱されて、再熱蒸気として中圧タービン33に送られる。そして、中圧タービン33を通過した蒸気は低圧タービン34に送られて、これらタービンの駆動によって発電機36が駆動されることになる。   The steam that has passed through the high-pressure turbine 32 is sent to the second reheater 17, where it is reheated and then reheated by the first reheater 15 to be reheated steam as an intermediate pressure turbine. 33. And the steam which passed the intermediate pressure turbine 33 is sent to the low pressure turbine 34, and the generator 36 is driven by the drive of these turbines.

一方、節炭器18を通過した燃焼排ガスは脱硝装置19において脱硝された後、空気予熱器20において通風ダクト27を通過する空気を予熱する。そして、電気集塵器21によって燃焼排ガス中の塵埃等が集塵された後、脱硫装置22で脱硫が行われて、煙突23から排出される。   On the other hand, the combustion exhaust gas that has passed through the economizer 18 is denitrated in the denitration device 19 and then preheats the air that passes through the ventilation duct 27 in the air preheater 20. Then, after dust and the like in the combustion exhaust gas are collected by the electric dust collector 21, desulfurization is performed by the desulfurization device 22 and discharged from the chimney 23.

燃焼排ガスの一部はGRF25によって排ガス再循環ダクト25に取り込まれ、火炉ホッパーダンパー26によってその流量が規制されつつ、火炉12の底部に送り込まれる。この際、GRBF30によってバイパスダクト29を介して排ガスが燃焼空気に取り込まれる。後述するようにして、火炉ホッパーダンパー26の開度が調整され、つまり、火炉12に送り込まれる燃焼排ガスの流量が規制され、再熱蒸気温度制御が行われる。   Part of the combustion exhaust gas is taken into the exhaust gas recirculation duct 25 by the GRF 25, and sent to the bottom of the furnace 12 while the flow rate is regulated by the furnace hopper damper 26. At this time, the exhaust gas is taken into the combustion air through the bypass duct 29 by the GRBF 30. As described later, the opening degree of the furnace hopper damper 26 is adjusted, that is, the flow rate of the combustion exhaust gas fed to the furnace 12 is regulated, and the reheat steam temperature control is performed.

ところで、燃焼排ガス中には燃焼の結果生成された灰分等の煤が含まれており、この煤は、電気集塵器21で除去されることになるが、電気集塵器21の前段において煙道13内に位置する第1及び第2の再熱器15及び17等に煤が付着して、これら第1及び第2の再熱器15及び17の蒸気管(伝熱管)が汚れると、熱交換効率が低下し、その結果、所望の再熱蒸気の温度が得られなくなってしまう。このため、後述する再熱蒸気温度制御が行われることになる。   By the way, the combustion exhaust gas contains soot such as ash generated as a result of combustion, and this soot is removed by the electric dust collector 21, but is smoked before the electric dust collector 21. When soot adheres to the first and second reheaters 15 and 17 and the like located in the path 13, and the steam tubes (heat transfer tubes) of the first and second reheaters 15 and 17 become dirty, The heat exchange efficiency is reduced, and as a result, the desired reheat steam temperature cannot be obtained. For this reason, the reheat steam temperature control mentioned later is performed.

ここで、図2を参照して、本発明の実施の形態による再熱温度制御方法で用いられる制御系について説明する。第1の再熱器15から出力される再加熱蒸気の温度は温度計測センサ等の温度計測手段(図示せず)で計測されており、温度計測手段で計測された再熱蒸気の温度は再加熱蒸気温度(再熱蒸気の温度)として制御装置38に与えられる。   Here, with reference to FIG. 2, a control system used in the reheat temperature control method according to the embodiment of the present invention will be described. The temperature of the reheated steam output from the first reheater 15 is measured by temperature measuring means (not shown) such as a temperature measuring sensor, and the temperature of the reheated steam measured by the temperature measuring means is re-measured. It is given to the control device 38 as the heating steam temperature (the temperature of the reheated steam).

図示の制御装置38は、例えば、コンピュータシステムであり、後述するようにして、再加熱蒸気温度に応じて火炉ダンパーモータ(例えば、ステッピングモータ)39を駆動制御して、火炉ホッパーダンパー26の開度(つまり、排ガス再循環ダクトの開口面積)を調整するとともに、スートブロー群(スートブロア:清掃手段)40を駆動して、第1及び第2の再熱器15及び17の汚れを除去する。   The illustrated control device 38 is, for example, a computer system, and drives and controls a furnace damper motor (for example, a stepping motor) 39 in accordance with the reheated steam temperature as described later, thereby opening the furnace hopper damper 26. (In other words, the opening area of the exhaust gas recirculation duct) is adjusted, and the soot blow group (soot blower: cleaning means) 40 is driven to remove dirt from the first and second reheaters 15 and 17.

続いて、図3も参照して、図2に示す制御装置38の動作について説明する。制御装置に内蔵されたメモリ(図示せず)には、火炉ホッパーダンパー26の開度下限値+10%が設定開度(この設定開度は燃焼排ガスの設定再循環量に対応する)として設定されており、制御装置38は初期状態で火炉ホッパーダンパー26の開度を設定開度とする。(ステップS1(第3のステップ))。   Next, the operation of the control device 38 shown in FIG. 2 will be described with reference to FIG. In a memory (not shown) built in the control device, the lower limit + 10% of the opening degree of the furnace hopper damper 26 is set as a set opening degree (this set opening degree corresponds to the set recirculation amount of the combustion exhaust gas). The control device 38 sets the opening degree of the furnace hopper damper 26 to the set opening degree in the initial state. (Step S1 (third step)).

制御装置38は再熱温度制御開始指令を受けると、再熱温度制御を開始する。前述のように、制御装置38には再熱蒸気の温度が与えられており、再熱蒸気の温度が予め定められた閾値温度未満であるか否かを判定する(ステップS2)。そして、再熱蒸気の温度が閾値温度未満となると、制御装置38は火炉ダンパーモータ39を駆動制御して、火炉ホッパーダンパー26の開度を大きくする(開度を上げる:ステップS3。ステップS2及びS3は第1のステップである)。つまり、燃焼排ガスの火炉12への再循環量を設定再循環量よりも大きくして、第1及び第2の再熱器15及び17の再熱温度を高くする。そして、制御装置は火炉ホッパーダンパー26の開度を監視しつつ、再熱蒸気温度と閾値との比較を行い(ステップS4)、火炉ホッパーダンパー26の開度上限開度となっても、再熱蒸気温度が閾値温度にならない場合、スートブロー群40を起動して、火炉ホッパーダンパー26の開度を設定開度に戻す。   When receiving the reheat temperature control start command, the control device 38 starts the reheat temperature control. As described above, the temperature of the reheat steam is given to the control device 38, and it is determined whether or not the temperature of the reheat steam is less than a predetermined threshold temperature (step S2). When the temperature of the reheated steam becomes lower than the threshold temperature, the control device 38 drives and controls the furnace damper motor 39 to increase the opening degree of the furnace hopper damper 26 (increase the opening degree: step S3, step S2 and step S2). S3 is the first step). That is, the recirculation amount of the combustion exhaust gas to the furnace 12 is made larger than the set recirculation amount, and the reheat temperatures of the first and second reheaters 15 and 17 are increased. Then, the control device compares the reheat steam temperature with the threshold value while monitoring the opening degree of the furnace hopper damper 26 (step S4), and even if the opening degree upper limit opening degree of the furnace hopper damper 26 is reached, the reheating is performed. When the steam temperature does not reach the threshold temperature, the soot blow group 40 is activated and the opening degree of the furnace hopper damper 26 is returned to the set opening degree.

つまり、制御装置38は、再熱蒸気温度が閾値温度未満である際には火炉ホッパーダンパー26の開度を上げて、燃焼排ガスの再循環量を大きくするが、火炉ホッパーダンパー26の開度が予め設定された上限開度となっても、再熱蒸気温度が閾値温度未満であると、制御装置38は第1及び第2の再熱器15及び17の伝熱管表面が煤等で汚れて吸熱効率が低下していると判断し、スートブロー群40を駆動して(ステップS5)、第1及び第2の再熱器15及び17へ付着した煤等を除去する(ステップS4及びS5は第2のステップである)。   That is, when the reheat steam temperature is lower than the threshold temperature, the control device 38 increases the opening degree of the furnace hopper damper 26 to increase the recirculation amount of the combustion exhaust gas, but the opening degree of the furnace hopper damper 26 is increased. Even if the preset upper limit opening is reached, if the reheat steam temperature is lower than the threshold temperature, the controller 38 causes the heat transfer tube surfaces of the first and second reheaters 15 and 17 to become dirty with soot and the like. It is determined that the heat absorption efficiency is lowered, the soot blow group 40 is driven (step S5), and soot and the like adhering to the first and second reheaters 15 and 17 are removed (steps S4 and S5 are the first) 2 steps).

このように、制御装置38は、燃焼排ガスの再循環量を調整して再熱蒸気の温度を所望の温度に制御し、燃焼排ガスの再循環量を調整しても再熱蒸気の温度が低下する場合に、スートブローを実行することになる。言い換えると、再熱蒸気の温度が閾値温度未満となった際には、火炉ホッパーダンパー26の開度を開いて再熱蒸気の温度を調整・制御する動作を少なくとも1回行って、それでも再熱蒸気の温度が閾値温度を下回ると初めてスートブローを実行することになる。   Thus, the control device 38 adjusts the recirculation amount of the combustion exhaust gas to control the temperature of the reheat steam to a desired temperature, and the temperature of the reheat steam decreases even if the recirculation amount of the combustion exhaust gas is adjusted. If so, the soot blow is executed. In other words, when the temperature of the reheat steam becomes less than the threshold temperature, the operation of adjusting and controlling the temperature of the reheat steam by opening the opening of the furnace hopper damper 26 is performed at least once. The soot blow is performed only when the temperature of the steam falls below the threshold temperature.

なお、図3には示されていないが、制御装置38はスートブローを行った後、再熱蒸気の温度が所定の温度(この所定の温度は、例えば、第1及び第2の再熱器15及び17の表面がきれいである場合において、燃焼排ガスの再循環量が設定再循環量である際の再熱蒸気の温度に略等しい温度であり、火炉ホッパーダンパー26の設定開度に対応する)となったか否かを判定して、再熱蒸気の温度が所定の温度となっていないと再度スートブローを行う。   Although not shown in FIG. 3, after the controller 38 performs the soot blow, the temperature of the reheated steam is a predetermined temperature (this predetermined temperature is, for example, the first and second reheaters 15). In the case where the surfaces of No. 17 and No. 17 are clean, the recirculation amount of the combustion exhaust gas is substantially equal to the temperature of the reheat steam when the recirculation amount is the set recirculation amount, and corresponds to the set opening of the furnace hopper damper 26) When the temperature of the reheat steam is not a predetermined temperature, soot blow is performed again.

その後、制御装置38はボイラー装置11が停止されたか否かを判定し(ステップS6)、ボイラー装置11が停止していなければ、ステップS1に戻る。   Thereafter, the control device 38 determines whether or not the boiler device 11 is stopped (step S6). If the boiler device 11 is not stopped, the control device 38 returns to step S1.

このようにして、再熱蒸気の温度が閾値温度未満となると、火炉ホッパーダンパー26の開度を大きくする。そして、火炉ホッパーダンパー26の開度を大きくしても再熱蒸気の温度が閾値温度未満であると、初めてスートブローによって第1及び第2の再熱器15及び17の伝熱管表面を清掃するようにしたので、常に精度よく再熱蒸気の温度を所望の温度に制御できるという効果がある。   In this way, when the temperature of the reheat steam becomes lower than the threshold temperature, the opening degree of the furnace hopper damper 26 is increased. And even if the opening degree of the furnace hopper damper 26 is increased, when the temperature of the reheat steam is lower than the threshold temperature, the surface of the heat transfer tubes of the first and second reheaters 15 and 17 is first cleaned by soot blow. Therefore, there is an effect that the temperature of the reheated steam can be controlled to a desired temperature with high accuracy at all times.

上述の説明では、燃料として原油を用いる火力発電システムについて説明したが、燃料として、例えば、石炭、液化天然ガス、又は液化石油ガスを用いる火力発電システムにおいても同様に適用できる。   In the above description, the thermal power generation system using crude oil as the fuel has been described. However, the present invention can be similarly applied to, for example, a thermal power generation system using coal, liquefied natural gas, or liquefied petroleum gas as the fuel.

本発明の実施の形態による再熱蒸気温度制御方法が用いられる火力発電システムの主要部の一例を示す図である。It is a figure which shows an example of the principal part of the thermal power generation system with which the reheat steam temperature control method by embodiment of this invention is used. 本発明の実施の形態による再熱蒸気温度制御方法で用いられる制御系の一例を示すブロック図である。It is a block diagram which shows an example of the control system used with the reheat steam temperature control method by embodiment of this invention. 図2に示す制御装置の動作を説明するためのフローチャートである。3 is a flowchart for explaining the operation of the control device shown in FIG. 2.

符号の説明Explanation of symbols

11 ボイラー装置
12 火炉
13 煙道
14 2次過熱器
15 第1の再熱器
16 1次過熱器
17 第2の再熱器
18 節炭器
19 脱硝装置
20 空気予熱器
21 電気集塵器
22 脱硫装置
23 煙突
24 排ガス再循環ダクト
25 排ガス再循環ファン(GRF)
26 火炉ホッパーダンパー(火炉ダンパー)
27 通風ダクト
28 押込通風機(FDF)
29 バイパスダクト
30 排ガス再循環昇圧ファン(GRBF)
31 火炉水壁(火炉水冷壁)
32 高圧タービン(HP)
33 中圧タービン(IP)
34 低圧タービン(LP)
35 復水器
36 発電機
37 燃料管
38 制御装置
39 火炉ダンパーモータ
40 スートブロー群
DESCRIPTION OF SYMBOLS 11 Boiler apparatus 12 Furnace 13 Flue 14 Secondary superheater 15 1st reheater 16 1st superheater 17 2nd reheater 18 Carbon-saving device 19 Denitration device 20 Air preheater 21 Electric dust collector 22 Desulfurization Equipment 23 Chimney 24 Exhaust gas recirculation duct 25 Exhaust gas recirculation fan (GRF)
26 Furnace hopper damper (furnace damper)
27 Ventilation duct 28 Pushing ventilator (FDF)
29 Bypass duct 30 Exhaust gas recirculation booster fan (GRBF)
31 Furnace water wall (furnace water wall)
32 High-pressure turbine (HP)
33 Medium pressure turbine (IP)
34 Low pressure turbine (LP)
35 Condenser 36 Generator 37 Fuel Pipe 38 Control Device 39 Furnace Damper Motor 40 Soot Blow Group

Claims (7)

火炉が規定されたボイラー装置と、該ボイラー装置の燃焼排ガスが通過する燃焼排ガス路内に配設された過熱器及び再熱器と、前記過熱器から得られる過熱蒸気によって駆動されるとともに、前記過熱蒸気が仕事した後に得られる蒸気を前記再熱器で再加熱して得られた再熱蒸気で駆動されるタービンと、該タービンの駆動によって駆動される発電機とを有する発電システムで用いられ、前記再熱蒸気の温度を制御するための再熱蒸気温度制御方法であって、
前記発電システムには前記燃焼排ガスを前記火炉に再循環する再循環部と、前記燃焼排ガスの再循環量を規制する燃焼排ガス再循環量規制部と、前記再熱器の表面を清掃する清掃手段とが備えられており、
前記燃焼排ガス再循環量規制部によって前記燃焼排ガスの再循環量を調整して前記再熱蒸気の温度を制御する第1のステップと、
前記第1のステップにおける再循環量の制御範囲を温度制御に最適な範囲で行うため、前記清掃手段によって前記再熱器の表面を清掃する第2のステップとを有することを特徴とする再熱蒸気温度制御方法。
A boiler device in which a furnace is defined, a superheater and a reheater disposed in a flue gas passage through which the flue gas of the boiler device passes, and driven by superheated steam obtained from the superheater, It is used in a power generation system having a turbine driven by reheat steam obtained by reheating steam obtained after superheated steam works by the reheater and a generator driven by driving the turbine. A reheat steam temperature control method for controlling the temperature of the reheat steam,
The power generation system includes a recirculation unit that recirculates the combustion exhaust gas to the furnace, a combustion exhaust gas recirculation amount regulation unit that regulates a recirculation amount of the combustion exhaust gas, and a cleaning unit that cleans the surface of the reheater. And
A first step of controlling a temperature of the reheat steam by adjusting a recirculation amount of the flue gas by the flue gas recirculation amount regulating unit;
In order to perform the control range of the recirculation amount in the first step in an optimum range for temperature control, the reheating includes a second step of cleaning the surface of the reheater by the cleaning means. Steam temperature control method.
前記第1のステップでは前記再熱蒸気の温度が予め定められた閾値温度未満となると前記燃焼排ガス再循環量規制部によって前記火炉への前記燃焼排ガスの再循環量を増加させ、
前記第2のステップは、前記第1のステップを少なくとも1回行った後に行われ、再度前記再熱蒸気の温度が前記閾値温度未満となると前記清掃手段によって前記再熱器の表面を清掃することを特徴とする請求項1記載の再熱蒸気温度制御方法。
In the first step, when the temperature of the reheat steam becomes less than a predetermined threshold temperature, the combustion exhaust gas recirculation amount regulating unit increases the recirculation amount of the combustion exhaust gas to the furnace,
The second step is performed after the first step is performed at least once, and the surface of the reheater is cleaned by the cleaning means when the temperature of the reheated steam becomes lower than the threshold temperature again. The reheat steam temperature control method according to claim 1.
前記第1のステップの前に前記燃焼排ガス再循環量規制部によって前記燃焼排ガスの再循環量を予め設定された設定再循環量とする第3のステップを行うことを特徴とする請求項2記載の再熱蒸気温度制御方法。   The third step of performing the third step of setting the recirculation amount of the combustion exhaust gas to a preset recirculation amount set in advance by the combustion exhaust gas recirculation amount regulating unit before the first step. Reheat steam temperature control method. 前記第2のステップの後に行われ前記再熱蒸気の温度が所定の温度となったか否かを判定する第4のステップを有し、
前記再熱蒸気の温度が前記所定の温度となるまで前記第2のステップを繰り返し、
前記所定の温度は前記燃焼排ガスの再循環量が前記下限再循環量である際の前記再熱蒸気の温度に略等しいことを特徴とする請求項3記載の再熱蒸気温度制御方法。
A fourth step is performed after the second step to determine whether or not the temperature of the reheat steam has reached a predetermined temperature;
Repeating the second step until the temperature of the reheated steam reaches the predetermined temperature,
4. The reheat steam temperature control method according to claim 3, wherein the predetermined temperature is substantially equal to a temperature of the reheat steam when the recirculation amount of the combustion exhaust gas is the lower limit recirculation amount.
前記第2のステップの後に行われ前記再熱蒸気の温度が所定の温度となったか否かを判定する第4のステップを有し、
前記再熱蒸気の温度が前記所定の温度となるまで前記第2のステップを繰り返すことを特徴とする請求項1〜3いずれか1項記載の再熱蒸気温度制御方法。
A fourth step is performed after the second step to determine whether or not the temperature of the reheat steam has reached a predetermined temperature;
The reheat steam temperature control method according to any one of claims 1 to 3, wherein the second step is repeated until the temperature of the reheat steam reaches the predetermined temperature.
前記清掃手段としてスートブローを用いることを特徴とする請求項1〜5いずれか1項記載の再熱蒸気温度制御方法。   The reheat steam temperature control method according to any one of claims 1 to 5, wherein a soot blow is used as the cleaning means. 前記再循環部は前記過熱器及び前記再熱器よりも下流側で前記燃焼排ガス路に連結され、前記燃焼排ガスを前記火炉に再循環する排ガス再循環ダクトと、前記排ガス再循環ダクト内に配置された排ガス再循環ファンとを有し、
前記燃焼排ガス再循環量規制部は前記排ガス再循環ダクト内において前記排ガス再循環ファンと前記火炉との間に配設され、前記排ガス再循環ダクトの開口面積を規制する火炉ホッパーダンパーを備え、
前記第1のステップでは前記火炉ホッパーダンパーの開度を制御するようにしたことを特徴とする請求項1〜6いずれか1項記載の再熱蒸気温度制御方法。
The recirculation unit is connected to the combustion exhaust gas passage downstream of the superheater and the reheater, and is disposed in the exhaust gas recirculation duct that recirculates the combustion exhaust gas to the furnace, and the exhaust gas recirculation duct. An exhaust gas recirculation fan,
The combustion exhaust gas recirculation amount regulating unit is provided between the exhaust gas recirculation fan and the furnace in the exhaust gas recirculation duct, and includes a furnace hopper damper that regulates an opening area of the exhaust gas recirculation duct,
The reheat steam temperature control method according to any one of claims 1 to 6, wherein an opening degree of the furnace hopper damper is controlled in the first step.
JP2007338165A 2007-12-27 2007-12-27 Reheat steam temperature control method Expired - Fee Related JP5164561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007338165A JP5164561B2 (en) 2007-12-27 2007-12-27 Reheat steam temperature control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007338165A JP5164561B2 (en) 2007-12-27 2007-12-27 Reheat steam temperature control method

Publications (2)

Publication Number Publication Date
JP2009156553A true JP2009156553A (en) 2009-07-16
JP5164561B2 JP5164561B2 (en) 2013-03-21

Family

ID=40960759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007338165A Expired - Fee Related JP5164561B2 (en) 2007-12-27 2007-12-27 Reheat steam temperature control method

Country Status (1)

Country Link
JP (1) JP5164561B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103968368A (en) * 2013-02-05 2014-08-06 阿尔斯通技术有限公司 Method and apparatus for reheat steam temperature control of oxy-fired boiler
CN104102134A (en) * 2014-07-22 2014-10-15 东南大学 Method for realizing reheat steam temperature multivariable coordinate predictive control through performance indexes
CN106287659A (en) * 2016-08-02 2017-01-04 中国神华能源股份有限公司 Reheat steam temperature degree control method and device
CN106524131A (en) * 2016-09-23 2017-03-22 华北电力大学(保定) Feedforward control method for steam temperature of thermal power generating unit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05248620A (en) * 1991-10-16 1993-09-24 Babcock Hitachi Kk Soot blower control device
JP2004264002A (en) * 2003-03-04 2004-09-24 Babcock Hitachi Kk Reheat steam temperature control method and apparatus for boiler

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05248620A (en) * 1991-10-16 1993-09-24 Babcock Hitachi Kk Soot blower control device
JP2004264002A (en) * 2003-03-04 2004-09-24 Babcock Hitachi Kk Reheat steam temperature control method and apparatus for boiler

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103968368A (en) * 2013-02-05 2014-08-06 阿尔斯通技术有限公司 Method and apparatus for reheat steam temperature control of oxy-fired boiler
CN103968368B (en) * 2013-02-05 2017-04-12 通用电器技术有限公司 Method and apparatus for reheat steam temperature control of oxy-fired boiler
US10914467B2 (en) 2013-02-05 2021-02-09 General Electric Technology Gmbh Method and apparatus for reheat steam temperature control of oxy-fired boilers
CN104102134A (en) * 2014-07-22 2014-10-15 东南大学 Method for realizing reheat steam temperature multivariable coordinate predictive control through performance indexes
CN104102134B (en) * 2014-07-22 2016-08-31 东南大学 A kind of method realizing reheat steam temperature multivariate predictive coordinated control by performance indications
CN106287659A (en) * 2016-08-02 2017-01-04 中国神华能源股份有限公司 Reheat steam temperature degree control method and device
CN106524131A (en) * 2016-09-23 2017-03-22 华北电力大学(保定) Feedforward control method for steam temperature of thermal power generating unit

Also Published As

Publication number Publication date
JP5164561B2 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
CA1235344A (en) Control system for economic operation of a steam generator
RU2539449C2 (en) Method and installation for recovering heat from ash residues
JP5260585B2 (en) Coal-fired power plant and method for operating coal-fired power plant
JP2010038537A (en) System and method for controlling stack temperature
JP3783195B2 (en) Current generation in a combined power plant with gas and steam turbines.
JP6034154B2 (en) Waste heat recovery equipment, waste heat recovery method and waste treatment furnace
JP7064078B2 (en) Combustion furnace ash deposit control condition determination device, combustion system, and ash adhesion control condition determination method
JP5164561B2 (en) Reheat steam temperature control method
JP2018155448A (en) Power generation plant and operation method for the same
JP5537195B2 (en) Waste heat recovery system for stoker-type incinerator
JP4690924B2 (en) Coal-fired boiler control equipment
JP2010196935A (en) Reheat steam temperature control system
JP7305347B2 (en) BYPASS CONTROL SYSTEM FOR POWER PLANT AND CONTROL METHOD AND CONTROL PROGRAM THEREOF, POWER PLANT
JP2018189276A (en) Power generation plant and method for operating the same
JP6080567B2 (en) Operation control method for coal gasification combined cycle plant and coal gasification combined cycle plant
JP5137598B2 (en) Ventilation system in steam power generation facilities
JP4117733B2 (en) Method and apparatus for boiler reheat steam temperature control
JP4625374B2 (en) Furnace cleaning method and furnace cleaning apparatus
JP5766527B2 (en) Method and apparatus for controlling once-through boiler
JP4186181B2 (en) Cogeneration method and cogeneration system
JP7261113B2 (en) BOILER CONTROL DEVICE, BOILER SYSTEM, POWER PLANT, AND BOILER CONTROL METHOD
JP3670791B2 (en) Steam supply method and apparatus for coke dry fire extinguishing equipment
JP2002106804A (en) Feedwater flow-rate controller of variable once- through boiler
JP2019090559A (en) Temperature controller of heat exchanger for boiler exhaust gas
Forman et al. Reference Case Lignite-Fired Power Station

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5164561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees