JP6080567B2 - Operation control method for coal gasification combined cycle plant and coal gasification combined cycle plant - Google Patents

Operation control method for coal gasification combined cycle plant and coal gasification combined cycle plant Download PDF

Info

Publication number
JP6080567B2
JP6080567B2 JP2013014134A JP2013014134A JP6080567B2 JP 6080567 B2 JP6080567 B2 JP 6080567B2 JP 2013014134 A JP2013014134 A JP 2013014134A JP 2013014134 A JP2013014134 A JP 2013014134A JP 6080567 B2 JP6080567 B2 JP 6080567B2
Authority
JP
Japan
Prior art keywords
recovery boiler
evaporator
heat recovery
steam
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013014134A
Other languages
Japanese (ja)
Other versions
JP2014145521A (en
Inventor
泰浩 吉田
泰浩 吉田
矢敷 達朗
達朗 矢敷
幸徳 片桐
幸徳 片桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2013014134A priority Critical patent/JP6080567B2/en
Publication of JP2014145521A publication Critical patent/JP2014145521A/en
Application granted granted Critical
Publication of JP6080567B2 publication Critical patent/JP6080567B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Description

本発明は、石炭ガス化複合発電プラントの運転制御方法及び石炭ガス化複合発電プラントに関する。   The present invention relates to an operation control method for a coal gasification combined power plant and a coal gasification combined power plant.

石炭火力発電プラント、特に石炭を燃焼して蒸気タービン向け蒸気を得る石炭焚きボイラプラントでは、燃焼ガス中の灰がボイラ内の伝熱管表面に付着し伝熱性能が低下する。この問題に対し、ボイラにスートブロワを設置し、間欠的に伝熱管表面の灰を除去し、伝熱性能の低下を防止する技術がある。石炭焚きボイラと同様に、石炭をガス化してガスタービン燃料を得る石炭ガス化複合発電プラントにおいてもガス化によって発生した灰分が下流の熱回収ボイラに付着する。そのため、スートブロワにより伝熱性能の低下を防止している。このようなスートブロワの運用については、例えば、特許文献1に開示されたものがある。   In a coal-fired power plant, particularly a coal-fired boiler plant that burns coal to obtain steam for steam turbines, the ash in the combustion gas adheres to the surface of the heat transfer tube in the boiler and the heat transfer performance decreases. In order to solve this problem, there is a technique for installing a soot blower in a boiler, intermittently removing ash on the surface of the heat transfer tube, and preventing a decrease in heat transfer performance. Similarly to a coal-fired boiler, in a combined coal gasification combined power plant that gasifies coal to obtain gas turbine fuel, ash generated by gasification adheres to a downstream heat recovery boiler. Therefore, the soot blower prevents a decrease in heat transfer performance. As for the operation of such a soot blower, there is one disclosed in Patent Document 1, for example.

特許文献1は、石炭焚きボイラプラントに関するもので、再熱器のスートブロワにより再熱器出口蒸気温度が急上昇するので、それを避けるため、スートブロワ実施前にボイラ火炉後部伝熱部に設けられる再熱器と過熱器に対する燃焼排ガスの通過ガス流量をガス分配ダンパで調整する先行信号として付加し、再熱器側の通過ガス量を減少させて熱吸収量を少なくし、再熱器出口蒸気温度を予め下げる制御を行うことにより、再熱器出口蒸気温度が急上昇するのを防ぐようにしている。   Patent Document 1 relates to a coal-fired boiler plant, and the reheater outlet steam temperature rapidly rises due to the soot blower of the reheater. In order to avoid this, reheat provided in the rear heat transfer section of the boiler furnace before the soot blower is performed. Is added as a preceding signal to adjust the flow rate of the flue gas to the heater and superheater with the gas distribution damper, the amount of passing gas on the reheater side is reduced to reduce the amount of heat absorption, and the reheater outlet steam temperature is reduced. By performing the control to decrease in advance, the reheater outlet steam temperature is prevented from rapidly increasing.

特開2004-264002号公報JP 2004-264002 JP

しかしながら、特許文献1におけるガス分配ダンパ制御は、石炭焚きボイラの形状、及び伝熱面配置に特有なものあり、石炭ガス化複合発電プラントには適用できない。特に、石炭ガス化複合発電プラントでは、熱回収ボイラ通過後のガスをガスタービンの燃料として用いている。そのため、熱交換器通過ガス量を制御した場合にはガスタービンの出力変動、もしくはガス系統内の圧力変動をもたらすことになる。   However, the gas distribution damper control in Patent Document 1 is specific to the shape of the coal-fired boiler and the heat transfer surface arrangement, and cannot be applied to the combined coal gasification combined power plant. In particular, in a coal gasification combined power plant, gas after passing through a heat recovery boiler is used as fuel for a gas turbine. Therefore, when the amount of gas passing through the heat exchanger is controlled, the output fluctuation of the gas turbine or the pressure fluctuation in the gas system is caused.

本発明の課題は、スートブロワ作動による影響を低減して、熱回収ボイラ発生蒸気を安定に制御可能な石炭ガス化複合発電プラントの運転制御方法及び石炭ガス化複合発電プラントを提供することにある。   An object of the present invention is to provide an operation control method for a coal gasification combined power plant and a coal gasification combined power plant that can stably control the steam generated by a heat recovery boiler by reducing the influence of soot blower operation.

上記目的を達成するため、本発明は、熱回収ボイラ内の蒸発器循環流量を制御して熱回収ボイラの蒸発量の変動を抑制することを特徴とする。   In order to achieve the above object, the present invention is characterized in that the fluctuation of the evaporation amount of the heat recovery boiler is suppressed by controlling the evaporator circulation flow rate in the heat recovery boiler.

本発明によれば、スートブロワ作動による影響を低減して、ボイラ発生蒸気を安定に制御可能となる。   According to the present invention, it is possible to stably control boiler-generated steam by reducing the influence of soot blower operation.

上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。   Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.

本発明の第1の実施例による石炭ガス化複合発電プラントの要部概略図。The principal part schematic of the coal gasification combined cycle power plant by the 1st example of the present invention. 本発明の実施形態にかかるスートブロワ等噴射時の蒸発量と循環水流量を示す模式図。The schematic diagram which shows the evaporation amount at the time of injections, such as a soot blower concerning embodiment of this invention, and a circulating water flow rate. 本発明の第2の実施例による石炭ガス化複合発電プラントの要部概略図。The principal part schematic of the coal gasification combined cycle power plant by the 2nd example of the present invention. 本発明が適用される石炭ガス化複合発電プラントの一例の概略図。Schematic of an example of a coal gasification combined power plant to which the present invention is applied.

以下、図面を用いて本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

先ず、図4を用いて本発明の実施例が適用される石炭ガス化複合発電プラントの一例を説明する。石炭ガス化複合発電プラントは、燃料のガス化を行うガス化部分、得られたガスを精製するガス精製部分、精製されたガス及び得られた蒸気から動力を取り出す発電部分から構成されている。   First, an example of a combined coal gasification combined power plant to which the embodiment of the present invention is applied will be described with reference to FIG. The coal gasification combined power plant is composed of a gasification part that gasifies fuel, a gas purification part that purifies the obtained gas, a power generation part that extracts power from the purified gas and the obtained steam.

ガス化部分は、ガス化炉1と熱回収ボイラ(シンガスクーラ)3により構成されている。ガス化炉1では燃料搬送管9により搬送された燃料をガス化する。ガス化された燃料(高温の燃料ガス)は、連絡管2により熱回収ボイラ3に導入され、熱回収ボイラ3において節炭器5及び蒸発器6との熱交換により冷却される。また、熱回収ボイラ3では、燃料ガスとの熱交換により蒸気を得る。節炭器5への給水は排熱回収ボイラ16(排熱回収ボイラの低圧節炭器)から供給する。蒸発器6への循環水は蒸気ドラム4から循環ポンプ7により強制循環させる。熱回収ボイラ3で発生した蒸気は蒸気ドラム4で回収される。尚、図4には図示していないが、後述のように、熱回収ボイラ3の節炭器5、蒸発器6の伝熱管表面に堆積した燃料の灰分を除去するためのスートブロワが設けられている。   The gasification part includes a gasification furnace 1 and a heat recovery boiler (syngas cooler) 3. In the gasification furnace 1, the fuel transported by the fuel transport pipe 9 is gasified. The gasified fuel (high-temperature fuel gas) is introduced into the heat recovery boiler 3 through the communication pipe 2 and cooled by heat exchange with the economizer 5 and the evaporator 6 in the heat recovery boiler 3. Moreover, in the heat recovery boiler 3, steam is obtained by heat exchange with the fuel gas. The water supply to the economizer 5 is supplied from the exhaust heat recovery boiler 16 (the low pressure economizer of the exhaust heat recovery boiler). Circulating water to the evaporator 6 is forcedly circulated from the steam drum 4 by the circulation pump 7. Steam generated in the heat recovery boiler 3 is recovered by the steam drum 4. Although not shown in FIG. 4, as will be described later, a soot blower is provided to remove fuel ash accumulated on the surface of the heat transfer tubes of the heat saving boiler 3 and the evaporator 6 of the heat recovery boiler 3. Yes.

熱回収ボイラ3にて熱交換を終えた燃料ガスはガス精製部分に導入される。ガス精製部分は、燃料ガスから未燃分を回収する集塵装置11と、不要物質を除去して精製ガスとするガス精製設備12により構成されている。精製ガスは、燃料配管13を通してガスタービン15に供給する。燃料配管13には燃料調節弁14が設置されており、燃料調節弁14によりガスタービン15の燃焼器に供給する精製ガス流量を制御する。   The fuel gas that has finished heat exchange in the heat recovery boiler 3 is introduced into the gas purification section. The gas purification part is constituted by a dust collector 11 that collects unburned components from the fuel gas, and a gas purification facility 12 that removes unnecessary substances to produce purified gas. The purified gas is supplied to the gas turbine 15 through the fuel pipe 13. A fuel control valve 14 is installed in the fuel pipe 13, and the flow rate of purified gas supplied to the combustor of the gas turbine 15 is controlled by the fuel control valve 14.

発電部分は、ガスタービン15と排熱回収ボイラ16と蒸気タービン19とから構成されている。ガスタービン15では精製ガスを燃焼して動力を得る(発電機の図示は省略している。)。排熱回収ボイラ16ではガスタービン15からの排ガスを導入し、給水ポンプ10からの給水とガスタービン排ガスの熱交換により蒸気を発生する。蒸気は排熱回収ボイラドラム17で回収される。排熱回収ボイラドラム17には熱回収ボイラの蒸気ドラム4からの蒸気が合流するようになっている。排熱回収ボイラドラム17の蒸気は排熱回収ボイラ16の過熱器により過熱され、主蒸気配管18を介して蒸気タービン19に供給され、蒸気タービン19にて動力を得る(発電機の図示は省略している。)。   The power generation portion includes a gas turbine 15, an exhaust heat recovery boiler 16, and a steam turbine 19. In the gas turbine 15, purified gas is burned to obtain power (the generator is not shown). The exhaust heat recovery boiler 16 introduces exhaust gas from the gas turbine 15 and generates steam by heat exchange between the feed water from the feed water pump 10 and the gas turbine exhaust gas. The steam is recovered by the exhaust heat recovery boiler drum 17. Steam from the steam drum 4 of the heat recovery boiler joins the exhaust heat recovery boiler drum 17. The steam of the exhaust heat recovery boiler drum 17 is superheated by the superheater of the exhaust heat recovery boiler 16 and supplied to the steam turbine 19 through the main steam pipe 18 to obtain power by the steam turbine 19 (the generator is not shown). doing.).

本実施例では、蒸気タービン19は高圧タービンと低圧タービンとにより構成されており、高圧タービンの排気蒸気は排熱回収ボイラ16の過熱器により過熱され、主蒸気管18を介して低圧タービンに導入されるようになっている。低圧タービンの排気蒸気は復水器20にて復水され、給水ポンプ10にて再び排熱回収ボイラ16の低圧節炭器に供給される。尚、図4に示す排熱回収ボイラでは低圧ドラム等の図示が省略されている。   In this embodiment, the steam turbine 19 is composed of a high-pressure turbine and a low-pressure turbine, and the exhaust steam of the high-pressure turbine is superheated by the superheater of the exhaust heat recovery boiler 16 and introduced into the low-pressure turbine via the main steam pipe 18. It has come to be. The exhaust steam from the low-pressure turbine is condensed by the condenser 20 and supplied again to the low-pressure economizer of the exhaust heat recovery boiler 16 by the feed water pump 10. In the exhaust heat recovery boiler shown in FIG. 4, illustration of a low-pressure drum and the like is omitted.

次に、図1を用いて本発明の第1の実施例を詳細に説明する。   Next, the first embodiment of the present invention will be described in detail with reference to FIG.

熱回収ボイラの節炭器5、蒸発器6には表面に堆積した燃料の灰分を除去するためのスートブロワが多数取り付けられている。スートブロワガスは高圧に保持されたスートブロワホルダ8より供給する。なお、スートブロワの流量、作動時間、作動間隔はスートブロワ量決定手段31により決定し、節炭器スートブロワ流量制御弁24、および蒸発器スートブロワ流量制御弁25により制御する。これらは従前のものを用いることができ、詳細な説明を省略する。   A large number of soot blowers are attached to the economizer 5 and the evaporator 6 of the heat recovery boiler for removing the ash content of fuel accumulated on the surface. The soot blower gas is supplied from a soot blower holder 8 held at a high pressure. The flow rate, operation time, and operation interval of the soot blower are determined by the soot blower amount determining means 31 and controlled by the economizer soot blower flow control valve 24 and the evaporator soot blower flow control valve 25. As these, conventional ones can be used, and detailed description is omitted.

本発明では、熱回収ボイラの蒸発量を安定制御するために、蒸発器循環流量を制御している。即ち、上述のスートブロワ作動に影響されることなく、熱回収ボイラにおいて燃料ガスから蒸気への所定の伝熱量を得るようにしている。   In the present invention, the evaporator circulation flow rate is controlled in order to stably control the evaporation amount of the heat recovery boiler. That is, a predetermined heat transfer amount from the fuel gas to the steam is obtained in the heat recovery boiler without being affected by the above-described soot blower operation.

燃料ガスから蒸気への伝熱量は、系統外への熱損失を無視した場合、燃料ガスの温度低下量によって決まる。従って、蒸発器出口(ガス側出口)のガス温度と蒸発器入口(循環水側入口)の循環水温度の温度差を制御することにより、燃料ガスから蒸気への伝熱量を実質的に制御することができる(言い換えれば、蒸発器出口のガス温度と蒸発器入口の循環水温度の温度差を制御することは、燃料ガスから蒸気への伝熱量を制御することと同義である。)。   The amount of heat transfer from the fuel gas to the steam is determined by the amount of temperature drop of the fuel gas when heat loss outside the system is ignored. Therefore, by controlling the temperature difference between the gas temperature at the evaporator outlet (gas side outlet) and the circulating water temperature at the evaporator inlet (circulated water side inlet), the amount of heat transfer from the fuel gas to the steam is substantially controlled. (In other words, controlling the temperature difference between the gas temperature at the evaporator outlet and the circulating water temperature at the evaporator inlet is synonymous with controlling the amount of heat transfer from the fuel gas to the steam).

そこで、本実施例では、熱回収ボイラ内の蒸発器出口のガス温度と蒸発器入口の循環水温度の温度差が温度差設定値と近くなるよう蒸発器循環流量を制御する。具体的には、燃料ガス温度計測装置21より蒸発器出口ガス温度を計測し、循環水温度計測装置22により蒸発器入口循環水温度を計測し、そして、蒸発器循環流量制御手段33において、蒸発器出口ガス温度と蒸発器入口循環水温度の温度差が所定値(温度差設定値)と近くなるようにPID制御を用いて蒸発器循環流量制御弁23の開度を調節している。   Therefore, in this embodiment, the evaporator circulation flow rate is controlled so that the temperature difference between the gas temperature at the evaporator outlet in the heat recovery boiler and the circulating water temperature at the evaporator inlet is close to the temperature difference set value. Specifically, the evaporator outlet gas temperature is measured by the fuel gas temperature measuring device 21, the evaporator inlet circulating water temperature is measured by the circulating water temperature measuring device 22, and the evaporator circulating flow rate control means 33 evaporates. The opening degree of the evaporator circulation flow control valve 23 is adjusted using PID control so that the temperature difference between the evaporator outlet gas temperature and the evaporator inlet circulating water temperature is close to a predetermined value (temperature difference set value).

本実施例の作用について説明する。熱回収ボイラの節炭器5,蒸発器6において、伝熱菅への灰分の堆積、スートブロワ作動による灰分の除去を繰り返すことで、燃料ガスと伝熱管間の伝熱性能が常に変動する。灰分の堆積により燃料ガスと伝熱管間の伝熱性能が低下した場合は、蒸発器6の循環水流量を増加することで、循環水流速を上昇、および伝熱管と循環水の温度差を増大し、伝熱を促進する。即ち、蒸発器循環流量が一定とすると、燃料ガスと伝熱管間の伝熱性能が低下した場合は、蒸発器出口ガス温度と蒸発器入口循環水温度の温度差が温度差設定値よりも大きくなる。本実施例では循環水流量を増加して伝熱管と循環水間の伝熱を促進することによって蒸発器出口ガス温度と蒸発器入口循環水温度の温度差が温度差設定値と近くなるようにしている。また、スートブロワにより燃料ガスと伝熱管間の伝熱性能が回復した場合は、蒸発器6の循環水流量を減少することで、循環水流速を低下、および伝熱管と循環水の温度差を減少し、伝熱を抑制する。即ち、燃料ガスと伝熱管間の伝熱性能が回復した場合は、循環水流量を増加させたままでは、蒸発器出口ガス温度と蒸発器入口循環水温度の温度差が温度差設定値よりも小さくなる。循環水流量を減少して伝熱管と循環水間の伝熱を抑制することによって蒸発器出口ガス温度と蒸発器入口循環水温度の温度差が温度差設定値と近くなるようにしている。つまり、本実施例では、燃料ガスと伝熱管間の伝熱性能の変化を伝熱管と循環水間の伝熱性能の調整で補償し、燃料ガスから循環水までの全体の伝熱性能が変動しないようにていると言える。   The operation of the present embodiment will be described. The heat transfer performance between the fuel gas and the heat transfer tube is always changed by repeating the accumulation of ash on the heat transfer tank and the removal of the ash by the operation of the soot blower in the economizer 5 and the evaporator 6 of the heat recovery boiler. If the heat transfer performance between the fuel gas and the heat transfer tube is reduced due to the accumulation of ash, increasing the circulating water flow rate in the evaporator 6 will increase the circulating water flow rate and increase the temperature difference between the heat transfer tube and the circulating water. And promote heat transfer. That is, assuming that the evaporator circulation flow rate is constant, if the heat transfer performance between the fuel gas and the heat transfer pipe is reduced, the temperature difference between the evaporator outlet gas temperature and the evaporator inlet circulating water temperature is larger than the temperature difference set value. Become. In this embodiment, the circulating water flow rate is increased to promote heat transfer between the heat transfer pipe and the circulating water so that the temperature difference between the evaporator outlet gas temperature and the evaporator inlet circulating water temperature is close to the temperature difference set value. ing. In addition, when the heat transfer performance between the fuel gas and the heat transfer tube is restored by the soot blower, the circulating water flow rate of the evaporator 6 is decreased to reduce the circulating water flow rate and the temperature difference between the heat transfer tube and the circulating water. And suppresses heat transfer. That is, when the heat transfer performance between the fuel gas and the heat transfer pipe is restored, the temperature difference between the evaporator outlet gas temperature and the evaporator inlet circulating water temperature is higher than the temperature difference setting value while the circulating water flow rate is increased. Get smaller. The temperature difference between the evaporator outlet gas temperature and the evaporator inlet circulating water temperature is made close to the temperature difference set value by reducing the circulating water flow rate and suppressing the heat transfer between the heat transfer tube and the circulating water. In other words, in this example, the change in the heat transfer performance between the fuel gas and the heat transfer tube is compensated by adjusting the heat transfer performance between the heat transfer tube and the circulating water, and the overall heat transfer performance from the fuel gas to the circulating water varies. It can be said that they do not.

図2は、上述の作用を熱回収ボイラ蒸発量と蒸発器循環流量との関係で説明するもので、本実施例の石炭ガス化複合発電プラントにおけるスートブロワ流量、熱回収ボイラ蒸発量、蒸発器循環流量を図示したものである。   FIG. 2 illustrates the above-described operation in terms of the relationship between the heat recovery boiler evaporation amount and the evaporator circulation flow rate. The soot blower flow rate, the heat recovery boiler evaporation amount, and the evaporator circulation in the coal gasification combined power plant of this embodiment. The flow rate is illustrated.

蒸発器循環流量が一定であると、燃料ガスと伝熱管間の伝熱性能の影響により図2のBにおける点線で示すように熱回収ボイラ蒸発量が変動する。即ち、灰分の堆積により燃料ガスと伝熱管間の伝熱性能が徐々に低下し、スートブロワ作動により燃料ガスと伝熱管の伝熱性能が急激に回復することから、スートブロワ作動まで熱回収ボイラ蒸発量が徐々に低下し、スートブロワ作動により熱回収ボイラ蒸発量が急激に回復するという変動を繰り返す。これに対して、本実施例では、蒸発器循環流量を蒸発器出口ガス温度と蒸発器入口循環水温度の温度差が温度差設定値と近くなるように制御することにより、図2のCにおける実線のように蒸発器循環流量を操作している。これにより、燃料ガスと伝熱管間の伝熱性能の変動が、伝熱管と循環水間の伝熱性能を調整することで補償され、図2のBにおける実線のように熱回収ボイラ蒸発量の安定制御が可能となる。   If the evaporator circulation flow rate is constant, the amount of heat recovery boiler evaporation varies as shown by the dotted line in FIG. 2B due to the influence of the heat transfer performance between the fuel gas and the heat transfer tube. That is, the heat transfer performance between the fuel gas and the heat transfer tube gradually decreases due to the accumulation of ash, and the heat transfer performance of the fuel gas and the heat transfer tube recovers rapidly due to the soot blower operation. Gradually decreases and repeats the fluctuation that the amount of evaporation of the heat recovery boiler is rapidly recovered by the operation of the soot blower. On the other hand, in this embodiment, the evaporator circulation flow rate is controlled so that the temperature difference between the evaporator outlet gas temperature and the evaporator inlet circulating water temperature is close to the temperature difference set value. The evaporator circulation flow rate is controlled as shown by the solid line. Thereby, the fluctuation of the heat transfer performance between the fuel gas and the heat transfer tube is compensated by adjusting the heat transfer performance between the heat transfer tube and the circulating water, and the amount of heat recovery boiler evaporation as shown by the solid line in FIG. Stable control is possible.

従って、本実施例によれば、スートブロワ作動に影響されることなく、熱回収ボイラにおいて燃料ガスから蒸気への所定の伝熱量を得ることができ、熱回収ボイラの蒸発量を安定制御することができる。   Therefore, according to the present embodiment, it is possible to obtain a predetermined heat transfer amount from the fuel gas to the steam in the heat recovery boiler without being affected by the soot blower operation, and to stably control the evaporation amount of the heat recovery boiler. it can.

また、本実施例では、熱回収ボイラにおいて、ガス化炉負荷に応じた燃料ガスから蒸気への伝熱量を得るようにしている。具体的には、本実施例では、蒸発器出口温度差決定手段32を用いて温度差設定値を決定している。即ち、ガス化炉負荷指令を蒸発器出口温度差決定手段32に入力し、蒸発器出口ガス温度と蒸発器入口循環水温度の温度差設定値ΔTDemandを決定するようにしている。本実施例では、温度差設定値ΔTDemandは、プラント熱バランスと一致するようガス化炉負荷の関数で定義している。ただし、実機運転データを参照し、前記関数を調整してもよい。そして、蒸発器出口温度差決定手段32で得られた温度差設定値ΔTDemandに基づき、蒸発器循環流量制御手段33において、計測された蒸発器出口ガス温度と蒸発器入口循環水温度の温度差実測値ΔTが、温度差設定値ΔTDemandと近くなるようPID制御を用いて蒸発器循環流量制御弁23を調節する。 In this embodiment, in the heat recovery boiler, the amount of heat transfer from the fuel gas to the steam corresponding to the gasifier load is obtained. Specifically, in this embodiment, the temperature difference set value is determined using the evaporator outlet temperature difference determining means 32. That is, the gasifier load command is input to the evaporator outlet temperature difference determining means 32, and the temperature difference set value ΔT Demand between the evaporator outlet gas temperature and the evaporator inlet circulating water temperature is determined. In this embodiment, the temperature difference set value ΔT Demand is defined as a function of the gasifier load so as to coincide with the plant heat balance. However, the function may be adjusted with reference to actual machine operation data. Then, based on the temperature difference set value ΔT Demand obtained by the evaporator outlet temperature difference determining means 32, the temperature difference between the measured evaporator outlet gas temperature and the evaporator inlet circulating water temperature in the evaporator circulation flow control means 33. The evaporator circulation flow control valve 23 is adjusted using PID control so that the actual measurement value ΔT is close to the temperature difference set value ΔT Demand .

また、図2からも分かるように、スートブロワ作動時は、燃料ガスと伝熱管間の伝熱性能の急激な変化により熱回収ボイラ蒸発量が急変動するのを抑制するために蒸発器循環流量を速やかに変化させることが望まれる。そこで、本実施例では、スートブロワ量決定手段31から蒸発器循環流量制御手段33にもスートブロワ作動指令が送信されるように構成されている。即ち、本実施例の制御装置では、スートブロワ作動指令を検知し、蒸発器循環流量制御弁開度指令にスートブロワ作動時間、および作動位置に応じた先行指令(減バイアス)を加算するようにしている。これにより、スートブロワ作動時は、蒸発器循環流量を速やかに変化させることができ、また、スートブロワによる伝熱性能変化の影響を先行的に抑制することができる。   In addition, as can be seen from FIG. 2, when the soot blower is operated, the evaporator circulation flow rate is set in order to prevent the heat recovery boiler evaporation from fluctuating rapidly due to a sudden change in the heat transfer performance between the fuel gas and the heat transfer tube. It is desirable to change it quickly. Therefore, in the present embodiment, the soot blower operation command is also transmitted from the soot blower amount determination means 31 to the evaporator circulation flow rate control means 33. That is, in the control device of this embodiment, the soot blower operation command is detected, and the soot blower operation time and the preceding command (reduction bias) corresponding to the operation position are added to the evaporator circulation flow control valve opening command. . Thereby, at the time of a soot blower operation | movement, an evaporator circulation flow rate can be changed rapidly and the influence of the heat-transfer performance change by a soot blower can be suppressed in advance.

図3を用いて第2の実施例を説明する。本実施例は、第一の実施例と同様に、図4に示す石炭ガス化複合プラントなどに適用され、ガス化炉1、連絡管2、熱回収ボイラ3、節炭器5、蒸発器6、蒸気ドラム4、循環ポンプ7、スートブロワホルダ8、スートブロワ量決定手段31、節炭器スートブロワ流量制御弁24、蒸発器スートブロワ流量制御弁25から構成される。これらについては第一の実施例と同様であり、詳細な説明を省略する。さらに本実施例では、蒸気ドラム4の蒸気配管出口に蒸気流量計測装置26と、蒸発器出口流量決定手段34を備える。   A second embodiment will be described with reference to FIG. This embodiment is applied to the coal gasification complex plant shown in FIG. 4 as in the first embodiment, and includes a gasification furnace 1, a connecting pipe 2, a heat recovery boiler 3, a economizer 5, and an evaporator 6. The steam drum 4, the circulation pump 7, the soot blower holder 8, the soot blower amount determining means 31, the economizer soot blower flow control valve 24, and the evaporator soot blower flow control valve 25. These are the same as in the first embodiment, and detailed description thereof is omitted. Further, in this embodiment, a steam flow measuring device 26 and an evaporator outlet flow rate determining means 34 are provided at the steam piping outlet of the steam drum 4.

本実施例では、蒸発器出口のガス温度と蒸発器入口循環水温度の温度差を制御に代えて、蒸発器出口流量(蒸気ドラム4の蒸気配管出口の蒸気流量)が所定値(出口流量設定値)と近くなるような制御を実施している。   In this embodiment, instead of controlling the temperature difference between the gas temperature at the evaporator outlet and the circulating water temperature at the evaporator inlet, the evaporator outlet flow rate (steam flow rate at the steam piping outlet of the steam drum 4) is a predetermined value (outlet flow rate setting). Value)).

そして、本実施例では、ガス化炉負荷に応じた燃料ガスから蒸気への伝熱量を得るようにするため、ガス化炉負荷指令を蒸発器出口流量決定手段34に入力し、蒸発器出口流量設定値FDemandを決定し、この蒸発器出口流量設定値FDemandを目標値として制御を実施している。蒸発器出口流量設定値FDemandは、第一の実施例と同様に、プラント熱バランスと一致するようガス化炉負荷の関数で定義する。ただし、実機運転データを参照し、前記関数を調整してもよい。そして、蒸気流量計測装置26にて計測された実流量Fが、蒸発器出口流量設定値FDemandと近くなるようPID制御を用いて蒸発器循環流量制御弁23を調節している。 In this embodiment, in order to obtain a heat transfer amount from the fuel gas to the steam corresponding to the gasifier load, a gasifier load command is input to the evaporator outlet flow rate determining means 34, and the evaporator outlet flow rate is determined. A set value F Demand is determined, and control is performed with the evaporator outlet flow rate set value F Demand as a target value. The evaporator outlet flow rate set value F Demand is defined as a function of the gasifier load so as to coincide with the plant heat balance, as in the first embodiment. However, the function may be adjusted with reference to actual machine operation data. Then, the evaporator circulation flow rate control valve 23 is adjusted using PID control so that the actual flow rate F measured by the steam flow rate measuring device 26 is close to the evaporator outlet flow rate setting value F Demand .

本実施例によれば、スートブロワ作動、および燃料ガス流量変化による燃料ガスと伝熱管間の伝熱性能の変化に関わらず、ガス化炉負荷に対して所望の蒸気流量を蒸気ドラム4から取り出すことができる。   According to the present embodiment, the desired steam flow rate is taken out from the steam drum 4 with respect to the gasifier load regardless of the change in the heat transfer performance between the fuel gas and the heat transfer tube due to the soot blower operation and the change in the fuel gas flow rate. Can do.

さらに本実施例では、プラント負荷指令を蒸発器循環流量制御手段33に入力し、プラント負荷変化指令に対して蒸発器循環流量制御弁開度指令に先行指令を加算するようにしている。プラント負荷指令が負荷上昇指令の場合には、先行指令は、蒸発器循環流量制御弁開度指令に増バイアスを付加する指令となり、プラント負荷指令が負荷降下指令の場合には、先行指令は、蒸発器循環流量制御弁開度指令に減バイアスを付加する指令となる。蒸気ドラム4の蒸気流量を先行的に制御することで伝熱管と循環水間の伝熱性能を変化させ、燃料ガスから蒸気への伝熱の遅れを補償する効果を得るようにしている。これによりプラントの負荷追従性能向上させることができる。   Furthermore, in this embodiment, the plant load command is input to the evaporator circulation flow rate control means 33, and the preceding command is added to the evaporator circulation flow rate control valve opening degree command with respect to the plant load change command. When the plant load command is a load increase command, the preceding command is a command to add an increasing bias to the evaporator circulation flow control valve opening command, and when the plant load command is a load decrease command, the preceding command is This is a command for adding a debiasing to the evaporator circulation flow control valve opening command. By controlling the steam flow rate of the steam drum 4 in advance, the heat transfer performance between the heat transfer pipe and the circulating water is changed, and the effect of compensating for the delay in heat transfer from the fuel gas to the steam is obtained. As a result, the load following performance of the plant can be improved.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加,削除,置換をすることが可能である。例えば、第二の実施例におけるプラント負荷指令に基づく先行制御は、第一の実施例にも適用することが可能である。   In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Moreover, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment. For example, the advance control based on the plant load command in the second embodiment can be applied to the first embodiment.

また、水や蒸気の流れ,熱交換などは説明上必要と考えられるものを示しており、プラント上必ずしも全ての水や蒸気の流れ,熱交換などを示しているとは限らない。実際にはプラントの熱効率などを向上させるために、水や蒸気の流れ、熱交換などの工夫が種々行われている。   In addition, the flow of water and steam, heat exchange, and the like are those that are considered necessary for explanation, and not all the flow of water and steam, heat exchange, etc. are necessarily shown on the plant. Actually, various devices such as water and steam flow and heat exchange have been made in order to improve the thermal efficiency of the plant.

1… ガス化炉
2… 連絡管
3… 熱回収ボイラ
4… 蒸気ドラム
5… 節炭器
6… 蒸発器
7… 循環ポンプ
8… スートブロワホルダ
9… 燃料搬送管
10… 給水ポンプ
11… 集塵装置
12… ガス精製設備
13… 燃料配管
14… 燃料調節弁
15… ガスタービン
16… 排熱回収ボイラ
17… 排熱回収ボイラドラム
18… 主蒸気配管
19… 蒸気タービン
20… 復水器
21… 燃料ガス温度計測装置
22… 循環水温度計測装置
23… 蒸発器循環流量制御弁
24… 節炭器スートブロワ流量制御弁
25… 蒸発器スートブロワ流量制御弁
26… 蒸気流量計測装置
31… スートブロワ量決定手段
32… 蒸発器出口温度差決定手段
33… 蒸発器循環流量制御手段
34… 蒸発器出口流量決定手段
1 ... Gasification furnace
2 ... Connecting pipe
3 ... Heat recovery boiler
4 ... Steam drum
5 ... economizer
6 ... Evaporator
7 ... Circulation pump
8 ... Soot blower holder
9… Fuel transfer pipe
10 ... Water supply pump
11 ... Dust collector
12… Gas purification equipment
13… Fuel piping
14 ... Fuel control valve
15 ... Gas turbine
16… Waste heat recovery boiler
17… Waste heat recovery boiler drum
18 ... Main steam piping
19… Steam turbine
20 ... Condenser
21… Fuel gas temperature measuring device
22… Circulating water temperature measuring device
23… Evaporator circulation flow control valve
24… economizer soot blower flow control valve
25… Evaporator soot blower flow control valve
26… Steam flow measuring device
31 ... Soot blower amount determining means
32… Evaporator outlet temperature difference determining means
33 ... Evaporator circulation flow rate control means
34 ... Evaporator outlet flow rate determination means

Claims (5)

石炭ガス化複合発電プラントの燃料ガスから熱を回収する熱回収ボイラの蒸発量を制御する石炭ガス化複合発電プラントの運転制御方法であって、
前記熱回収ボイラの蒸発器ガス側出口のガス温度を計測し、前記熱回収ボイラの蒸発器循環水側入口の循環水温度を計測し、前記ガス温度と前記循環水温度の実温度差が温度差設定値と近くなるよう前記熱回収ボイラの蒸発器循環流量を制御し、
前記熱回収ボイラの伝熱管の表面に堆積した燃料の灰分を除去するスートブロワ作動指令に基づき前記熱回収ボイラの蒸発器循環流量を先行制御することを特徴とする石炭ガス化複合発電プラントの運転制御方法。
An operation control method for a coal gasification combined power plant that controls the evaporation amount of a heat recovery boiler that recovers heat from the fuel gas of the coal gasification combined power plant,
The gas temperature at the evaporator gas side outlet of the heat recovery boiler is measured, the circulating water temperature at the evaporator circulating water side inlet of the heat recovery boiler is measured, and the actual temperature difference between the gas temperature and the circulating water temperature is the temperature. The evaporator circulation flow rate of the heat recovery boiler is controlled so as to be close to the difference set value,
Operation control of a coal gasification combined power plant characterized in that the evaporator circulation flow rate of the heat recovery boiler is controlled in advance based on a soot blower operation command for removing the ash content of fuel accumulated on the surface of the heat transfer tube of the heat recovery boiler. Method.
請求項1において、前記温度差設定値は、前記石炭ガス化複合発電プラントのガス化炉負荷指令に基づき決定することを特徴とする石炭ガス化複合発電プラントの運転制御方法。   The operation control method for a coal gasification combined cycle plant according to claim 1, wherein the temperature difference set value is determined based on a gasification furnace load command of the coal gasification combined cycle plant. 燃料をガス化して燃料ガスを生成するガス化炉と、前記燃料ガスから節炭器および蒸発器により熱を回収して蒸気を生成する熱回収ボイラと、前記ガス化炉と前記熱回収ボイラを接続する連絡管と、前記熱回収ボイラから得られる蒸気を回収する蒸気ドラムと、前記蒸気ドラムの缶水を循環させる循環ポンプと、前記燃料ガスを燃料とするガスタービンと、前記ガスタービンの排ガスから熱を回収して蒸気を得る排熱回収ボイラと、前記排熱回収ボイラおよび前記蒸気ドラムから得られる蒸気を動力源とする蒸気タービンと、前記節炭器および前記蒸発器の表面に堆積した燃料の灰分を除去するスートブロワと、前記蒸発器の循環水流量を制御する循環流量制御弁と、前記循環流量制御弁の制御装置とを備え、
前記制御装置は、前記スートブロワの作動に伴う前記熱回収ボイラの蒸発量の変動を抑制するよう前記循環流量制御弁を制御することを特徴とする石炭ガス化複合発電プラント。
A gasification furnace that gasifies fuel to generate fuel gas; a heat recovery boiler that recovers heat from the fuel gas by a economizer and an evaporator to generate steam; and the gasification furnace and the heat recovery boiler A connecting pipe to be connected, a steam drum that recovers steam obtained from the heat recovery boiler, a circulation pump that circulates can water of the steam drum, a gas turbine that uses the fuel gas as fuel, and an exhaust gas of the gas turbine An exhaust heat recovery boiler that collects heat from the steam to obtain steam, a steam turbine that uses steam obtained from the exhaust heat recovery boiler and the steam drum as a power source, and deposited on the surface of the economizer and the evaporator A soot blower for removing fuel ash, a circulation flow rate control valve for controlling the circulating water flow rate of the evaporator, and a control device for the circulation flow rate control valve;
The said control apparatus controls the said circulation flow control valve so that the fluctuation | variation of the evaporation amount of the said heat recovery boiler accompanying the operation | movement of the said soot blower may be controlled, The coal gasification combined power plant characterized by the above-mentioned.
請求項において、前記熱回収ボイラの蒸発器ガス側出口に設けられたガス温度計測装置と、前記熱回収ボイラの蒸発器循環水側入口に設けられた循環水温度計測装置とを備え、前記制御装置は、前記ガス温度計測装置で計測されたガス温度と前記循環水温度計測装置で計測された循環水温度の温度差が、ガス化炉負荷指令に基づき決定された温度差設定値と近くなるよう前記循環流量制御弁を制御すること特徴とすることを特徴とする石炭ガス化複合発電プラント。 The gas temperature measuring device provided at the evaporator gas side outlet of the heat recovery boiler according to claim 3 , and the circulating water temperature measuring device provided at the evaporator circulating water side inlet of the heat recovery boiler , The control device is configured such that the temperature difference between the gas temperature measured by the gas temperature measuring device and the circulating water temperature measured by the circulating water temperature measuring device is close to the temperature difference set value determined based on the gasifier load command. The coal gasification combined power plant characterized by controlling said circulation flow control valve so that it may become. 請求項において、前記蒸気ドラムの蒸気配管出口に設けられた蒸気流量計測装置を備え、前記制御装置は、前記蒸気流量計測装置にて計測された実流量が、ガス化炉負荷指令に基づき決定された蒸発器出口流量設定値と近くなるよう前記循環流量制御弁を制御すること特徴とすることを特徴とする石炭ガス化複合発電プラント。 The steam flow measuring device provided at the steam pipe outlet of the steam drum according to claim 3 , wherein the control device determines an actual flow rate measured by the steam flow measuring device based on a gasifier load command. And controlling the circulating flow rate control valve so as to be close to the evaporator outlet flow rate set value.
JP2013014134A 2013-01-29 2013-01-29 Operation control method for coal gasification combined cycle plant and coal gasification combined cycle plant Active JP6080567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013014134A JP6080567B2 (en) 2013-01-29 2013-01-29 Operation control method for coal gasification combined cycle plant and coal gasification combined cycle plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013014134A JP6080567B2 (en) 2013-01-29 2013-01-29 Operation control method for coal gasification combined cycle plant and coal gasification combined cycle plant

Publications (2)

Publication Number Publication Date
JP2014145521A JP2014145521A (en) 2014-08-14
JP6080567B2 true JP6080567B2 (en) 2017-02-15

Family

ID=51425911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013014134A Active JP6080567B2 (en) 2013-01-29 2013-01-29 Operation control method for coal gasification combined cycle plant and coal gasification combined cycle plant

Country Status (1)

Country Link
JP (1) JP6080567B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101946869B1 (en) * 2017-01-26 2019-02-14 한국바이오플랜트 주식회사 Heat exchanging apparatus for geothermal, water heat and waste heat and complex power generating system using thereof
KR20190007301A (en) * 2017-07-12 2019-01-22 한국전력공사 Engine system linked to steam generation and power generation
CN112946220B (en) * 2021-02-04 2022-12-23 华能(天津)煤气化发电有限公司 IGCC combined cycle power generation-based online detection water quality sampling detection method

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55150401A (en) * 1979-04-09 1980-11-22 Mitsui Shipbuilding Eng Control method of waste heat regeneration system
JPS5682302A (en) * 1979-12-07 1981-07-06 Kawasaki Heavy Ind Ltd Multistage flush type exhaust heat recovering device
JPS62245009A (en) * 1986-04-18 1987-10-26 株式会社日立製作所 Automatic controller for boiler
JP2675549B2 (en) * 1987-03-04 1997-11-12 三菱重工業株式会社 Exhaust heat recovery boiler feed water temperature adjustment device
JPS6419201A (en) * 1987-07-10 1989-01-23 Nippon Kokan Kk Control of boiler
JP3652743B2 (en) * 1995-09-11 2005-05-25 三菱重工業株式会社 Gasification combined power plant
JP2000110511A (en) * 1998-10-08 2000-04-18 Kawasaki Heavy Ind Ltd Cogeneration method and its system
JP4117517B2 (en) * 1999-04-23 2008-07-16 株式会社日立製作所 Coal gasification combined power plant and its operation control device.
JP2002053874A (en) * 2000-08-07 2002-02-19 Hitachi Ltd Apparatus for producing gas fuel and method for operating the same
JP2004052612A (en) * 2002-07-18 2004-02-19 Hitachi Zosen Corp Gas turbine power generation plant
JP4117733B2 (en) * 2003-03-04 2008-07-16 バブコック日立株式会社 Method and apparatus for boiler reheat steam temperature control
JP2007205187A (en) * 2006-01-31 2007-08-16 Hitachi Engineering & Services Co Ltd Heat recovery system attached to boiler-steam turbine system
JP4854422B2 (en) * 2006-07-31 2012-01-18 バブコック日立株式会社 Control method for once-through exhaust heat recovery boiler
JP5292014B2 (en) * 2008-08-07 2013-09-18 バブコック日立株式会社 Cross-flow type exhaust heat recovery boiler and control method thereof

Also Published As

Publication number Publication date
JP2014145521A (en) 2014-08-14

Similar Documents

Publication Publication Date Title
JP6038448B2 (en) Solar thermal combined power generation system and solar thermal combined power generation method
JP4854422B2 (en) Control method for once-through exhaust heat recovery boiler
JP2010038537A (en) System and method for controlling stack temperature
US9097418B2 (en) System and method for heat recovery steam generators
US9739478B2 (en) System and method for heat recovery steam generators
CN102575840A (en) Method for operating a forced-flow steam generator operating at a steam temperature above 650 DEG C and forced-flow steam generator
JP2011190696A (en) Coal-fired power plant, and method for operating coal-fired power plant
KR20130010470A (en) Method for generating power from exhaust heat and system for generating power from exhaust heat
JP6080567B2 (en) Operation control method for coal gasification combined cycle plant and coal gasification combined cycle plant
US20130192541A1 (en) Method and device for controlling the temperature of steam in a boiler
US10287922B2 (en) Steam turbine plant, combined cycle plant provided with same, and method of operating steam turbine plant
JP4847213B2 (en) Once-through exhaust heat recovery boiler
JP2011214732A (en) Solar heat utilizing waste power generation device and method of operating the same
JP4117733B2 (en) Method and apparatus for boiler reheat steam temperature control
JP2006125760A (en) Exhaust heat recovery boiler and its control system
JP7183130B2 (en) HOT WATER STORAGE GENERATION SYSTEM AND HOT WATER STORAGE GENERATION SYSTEM OPERATION METHOD
JP7261113B2 (en) BOILER CONTROL DEVICE, BOILER SYSTEM, POWER PLANT, AND BOILER CONTROL METHOD
JP2007298244A (en) Exhaust heat recovery boiler
JP5766527B2 (en) Method and apparatus for controlling once-through boiler
JP6101604B2 (en) Steam turbine plant, combined cycle plant equipped with the same, and method of operating a steam turbine plant
JP3652743B2 (en) Gasification combined power plant
JP2010196935A (en) Reheat steam temperature control system
JP5890221B2 (en) Coal gasification combined power plant and its operation control method
Haqim et al. Performance degradation analysis of a medium pressure superheater due to tube deactivation
Shaposhnikov et al. Effectiveness of the joint scheme of steam-power and combined-cycle power units using the example of the Nevinnomyssk State Regional Thermal Power Plant

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140828

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160802

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20161003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170117

R150 Certificate of patent or registration of utility model

Ref document number: 6080567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250