JP2009155699A - Method of forming lubricant coating of fluorine resin on surface of base - Google Patents

Method of forming lubricant coating of fluorine resin on surface of base Download PDF

Info

Publication number
JP2009155699A
JP2009155699A JP2007336600A JP2007336600A JP2009155699A JP 2009155699 A JP2009155699 A JP 2009155699A JP 2007336600 A JP2007336600 A JP 2007336600A JP 2007336600 A JP2007336600 A JP 2007336600A JP 2009155699 A JP2009155699 A JP 2009155699A
Authority
JP
Japan
Prior art keywords
film
ptfe
ball
comparative example
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007336600A
Other languages
Japanese (ja)
Other versions
JP4977599B2 (en
Inventor
Fumitaka Yoshioka
文孝 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okitsumo Inc
Original Assignee
Okitsumo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okitsumo Inc filed Critical Okitsumo Inc
Priority to JP2007336600A priority Critical patent/JP4977599B2/en
Publication of JP2009155699A publication Critical patent/JP2009155699A/en
Application granted granted Critical
Publication of JP4977599B2 publication Critical patent/JP4977599B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Lubricants (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of forming a solid lubricant coating of PTFE 100% on the surface or the like of a metal base with a simple method without using a binder or the like. <P>SOLUTION: The method of forming the abrasion-resistant solid lubricant coating of a fluorine resin on at least one side of two surfaces which perform relative sliding movement, is characterized in that the metal base of which the surface to be formed with film is rough finished is charged into a ball mill together with a polytetrafluoroethylene powder and the ball mill is rotated and continued to rotate until the film tightly adhered to the metal surface is formed by impact force of the falling balls. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、金属基材の表面に、潤滑性および耐摩耗のフッ素樹脂皮膜を形成する方法に関する。   The present invention relates to a method for forming a fluororesin film having lubricity and wear resistance on the surface of a metal substrate.

ポリテトラフルオロエチレン(PTFE)に代表されるフッ素樹脂は、耐熱性で低粘着性であり、固体潤滑剤として使用し得る程の低い摩擦抵抗を持っている。これらの特性を利用して、フッ素樹脂は台所用調理器具や加熱装置に付着した汚染物の除去を容易にする耐汚染性コーティングに使用されている。また低摩擦抵抗(潤滑性)を利用し、相対的に摺動する金属の二面間に膜を形成し、摩擦、摩耗を減少させる固体潤滑剤として使用される。   A fluororesin represented by polytetrafluoroethylene (PTFE) has heat resistance and low adhesiveness, and has low frictional resistance that can be used as a solid lubricant. Taking advantage of these properties, fluororesins are used in antifouling coatings that facilitate the removal of contaminants attached to kitchen utensils and heating equipment. In addition, a low friction resistance (lubricity) is used to form a film between two surfaces of a relatively sliding metal, and it is used as a solid lubricant that reduces friction and wear.

二硫化モリブデン、二硫化タングステン、黒鉛などを含めて、摺動するに面間に固体潤滑剤の薄膜を形成する方法には、単に粉末を擦り込む方法、結合剤で付着させる方法、スパッタリング法、イオンプレーティング法などがあるが、PTFEに適用可能で多用されているのは結合剤で付着させる方法である。この方法はポリサルホン、ポリイミドアミドなどの結合剤を含む塗料にPTFE粉末を分散し、この塗料の塗膜を表面に形成し、乾燥後塗膜を焼付けることよりなる(特許文献1および2参照)。   The method of forming a thin film of solid lubricant between sliding surfaces, including molybdenum disulfide, tungsten disulfide, graphite, etc., is simply a method of rubbing powder, a method of attaching with a binder, a sputtering method, There are ion plating methods and the like, but what is applicable to PTFE and frequently used is a method of attaching with a binder. This method comprises dispersing PTFE powder in a paint containing a binder such as polysulfone or polyimide amide, forming a paint film on the surface, and baking the paint film after drying (see Patent Documents 1 and 2). .

固体潤滑剤は、荷重が加えられた時接触する二面間で低いせん断力により自らが変形して下地材料を保護することが求められる。ところが結合剤にはせん断などにより自ら変形する能力が乏しいので、結合剤を使用して付着させた膜は、PTFE100%の膜に比較して固体潤滑剤としての性能が低下する。   The solid lubricant is required to be deformed by a low shear force between the two surfaces in contact with each other when a load is applied to protect the base material. However, since the binder does not have the ability to deform itself due to shearing or the like, the film attached using the binder has a lower performance as a solid lubricant than the film of 100% PTFE.

PTFEは非粘着性であり、溶剤にも溶けず、融点以上に加熱しても流動しないため、結合剤を使用せざるを得ず、これまでPTFE100%の固体潤滑膜をうまく形成する方法は知られていなかった。
特開昭63−5717号公報 特許第3051999号公報
Since PTFE is non-adhesive, does not dissolve in solvents, and does not flow even when heated to a melting point or higher, a binder must be used, and a method for successfully forming a solid lubricant film of 100% PTFE has been known so far. It was not done.
JP 63-5717 A Japanese Patent No. 3051999

そこで本発明は、結合剤などを用いず、簡単な方法で、金属基材の表面などにPTFE100%の固体潤滑皮膜を形成する方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a method of forming a solid lubricating film of 100% PTFE on the surface of a metal substrate by a simple method without using a binder or the like.

本発明者らは、PTFEを金属基材の表面に固着および被覆する方法としてボールミルを用いた機械的コーティング方法に着目し、添加するPTFEの性状、被覆される金属基材の性状およびボールミルの処理条件などについて鋭意検討を重ねた結果、以下に述べるようなPTFE100%の固体潤滑皮膜を形成する新しい方法を発明した。   The present inventors paid attention to a mechanical coating method using a ball mill as a method for fixing and coating PTFE on the surface of a metal substrate, the properties of PTFE to be added, the properties of the metal substrate to be coated, and the treatment of the ball mill. As a result of intensive studies on the conditions, etc., a new method for forming a solid lubricating film of 100% PTFE as described below was invented.

本発明は、平均表面粗さRaが0.6μm以上の粗面仕上げした表面を有する金属基材と、PTFEの粉末と、粉砕媒体のボールを回転するボールミル内で流動させ、落下するボールの衝撃力により金属表面に密着したPTFE皮膜が形成されるまでボールミルの回転を継続することを特徴とする金属基材の表面にフッ素樹脂潤滑皮膜を形成する方法に存する。   The present invention relates to a metal base material having a roughened surface with an average surface roughness Ra of 0.6 μm or more, PTFE powder, and impact of a ball that is caused to fall in a ball mill that rotates a ball of grinding media and falls. The present invention resides in a method of forming a fluororesin lubricating film on the surface of a metal substrate, wherein the rotation of the ball mill is continued until a PTFE film adhered to the metal surface by force is formed.

皮膜の下地素材への高い密着性が望まれる場合は、皮膜をPTFEの融点以上の温度へ加熱し、焼成することができる。   When high adhesion of the film to the base material is desired, the film can be heated to a temperature equal to or higher than the melting point of PTFE and fired.

金属基材の平均表面粗さRaが0.6μm以上の粗面仕上げは、ブラスト処理、エッチング、化成処理、そしてアルミニウムの場合はプラズマ電解陽極酸化処理、および硫酸浴陽極酸化処理と組合せたブラスト処理などで達成される。   Roughing of metal substrates with an average surface roughness Ra of 0.6 μm or more is blasting, etching, chemical conversion, and in the case of aluminum, plasma electrolytic anodizing, and blasting combined with sulfuric acid bath anodizing And so on.

本発明の方法は、粉砕媒体であるボールの落下衝撃によって固体PTFEへせん断力を加え、基材表面へ薄い膜として展延することを原理とするので、PTFEの展性、ボールの落下衝撃力が重要である。PTFEの展性はその分子量に関係し、平均分子量1×10〜1×10の範囲が好ましいことがわかった。ボールの落下衝撃力はボールの重量、従って比重に関係し、比重の大きいセラミックス製または金属製のボールを使用し、表面の平滑な仕上がり状態および処理物の形状に追随した仕上げを可能とするため、直径3mmφ以下の大きさのボールが平滑な薄い膜の形成に適していることがわかった。 The method of the present invention is based on the principle that a shear force is applied to the solid PTFE by a drop impact of a ball as a grinding medium and spreads as a thin film on the surface of the base material. is important. It has been found that the malleability of PTFE is related to its molecular weight, and an average molecular weight in the range of 1 × 10 4 to 1 × 10 5 is preferable. The ball drop impact force is related to the weight of the ball, and therefore the specific gravity, so that a ceramic or metal ball with a large specific gravity can be used to achieve a smooth finish on the surface and a finish that follows the shape of the processed material. It was found that a ball having a diameter of 3 mmφ or less is suitable for forming a smooth thin film.

固体潤滑剤は、一般に油やグリースが使用不可能な又は望ましくない環境において使用される。PTFEはこれまで知られた固体潤滑剤のうち最も低い摩擦係数を有するので、結合剤を使用することなく100%PTFE潤滑膜の形成を可能とする本発明は、最も低い摩擦係数を有する固体潤滑膜の形成を可能とするものである。   Solid lubricants are generally used in environments where oils and greases are not available or desirable. Since PTFE has the lowest coefficient of friction among the solid lubricants known so far, the present invention, which enables the formation of a 100% PTFE lubricating film without using a binder, is a solid lubricant having the lowest coefficient of friction. The film can be formed.

下記に示す表1を参照して理解されるように、ボールミルを使用したPTFE皮膜の形成は、素材表面粗さRaに関係し、Raが0.6μm以上ないと所望の機能が発揮される皮膜が形成されない。粗面仕上げは、機械的なブラスト処理および化学的なエッチング、リン酸化合物による化成処理などがある。アルミニウムの場合は、単独でプラズマ電解陽極酸化処理を行うか、または硫酸浴陽極酸化処理後、ブラスト処理を組み合わせて実施することにより、より耐磨耗性の高い皮膜を得ることができる。いずれにしても本発明の処理において平均表面粗さRaが0.6μm以上になると、PTFE粉末の付着により、摩擦係数の低減若しくは耐磨耗性の向上に対して効果的なPTFE皮膜が形成される。   As will be understood with reference to Table 1 below, the formation of a PTFE film using a ball mill is related to the material surface roughness Ra, and a film that exhibits a desired function unless Ra is 0.6 μm or more. Is not formed. The rough surface finish includes mechanical blasting and chemical etching, and chemical conversion treatment with a phosphoric acid compound. In the case of aluminum, a film with higher wear resistance can be obtained by performing plasma electrolytic anodizing treatment alone or by performing blast treatment in combination after sulfuric acid bath anodizing treatment. In any case, when the average surface roughness Ra becomes 0.6 μm or more in the treatment of the present invention, the PTFE film effective for reducing the friction coefficient or improving the wear resistance is formed by the adhesion of the PTFE powder. The

Figure 2009155699
Figure 2009155699

先に述べたとおり、PTFEの分子量は皮膜の品質に影響する。平滑な表面を有する皮膜を形成するためには、平均分子量(数平均分子量)が1×10〜1×10の範囲にあるもの、例えば2〜5万のものが好ましい。分子量が過大であると形成される皮膜の表面粗さが大きくなり易く、またPTFEの付着性も悪化するため良好なフッ素皮膜を形成し難くなる。反対に過小の場合は基材表面に付着し易く、薄膜にコントロールするのが困難になる。 As mentioned earlier, the molecular weight of PTFE affects the quality of the coating. In order to form a film having a smooth surface, those having an average molecular weight (number average molecular weight) in the range of 1 × 10 4 to 1 × 10 5 , for example, 2 to 50,000 are preferable. When the molecular weight is excessive, the surface roughness of the formed film tends to increase, and the adhesion of PTFE deteriorates, so that it is difficult to form a good fluorine film. On the other hand, if it is too small, it tends to adhere to the surface of the substrate, making it difficult to control it to a thin film.

ボールの重量は、その落下衝撃力によって基材表面でPTFEへせん断力を加え、展延させるのに過不足ない重量であることが理想的であるが、ボールの材質がアルミナのようなセラミックス製の場合、ボールの直径は3mmφ以下であることが適当である。匹敵する比重を有する他のセラミックス製または金属製のボールについても同様である。このボール直径は、円筒面のような曲面に皮膜を形成する場合にも適応する。これは、フッ素粉末はボール表面に一旦付着し、各ボールに付着したフッ素が製品表面に叩き付けられるため、より均一に製品表面にフッ素が付着する効果があるからであり、このためPTFEの粒子径はそれ程重要ではなく、1〜20μmの範囲のものであればよい。   Ideally, the ball should be made of a ceramic material such as alumina, although the ball should have a weight that is sufficient to apply a shear force to PTFE on the surface of the base material due to its drop impact force and spread it. In this case, it is appropriate that the diameter of the ball is 3 mmφ or less. The same applies to other ceramic or metal balls having comparable specific gravity. This ball diameter is also applicable when a film is formed on a curved surface such as a cylindrical surface. This is because the fluorine powder once adheres to the ball surface, and the fluorine adhering to each ball is struck against the product surface, so that the fluorine adheres more uniformly to the product surface. Therefore, the particle size of PTFE Is not so important and may be in the range of 1 to 20 μm.

ボールミルへのPTFEとボールの合計仕込量およびボールミルの回転数は、ボールの落下距離が最大になるように制御される。ボールの落下衝撃はPTFEが過剰に付着するのを妨げるようにも作用するので、本発明の方法によって形成されるPTFE皮膜の厚みは適切にセルフコントロールされる。下記の表2より、セルフコントロールにより膜が一定の厚みに達するまでには、上に述べた適切な条件が満たされれば通常1時間で十分である。   The total amount of PTFE and balls fed to the ball mill and the number of rotations of the ball mill are controlled so that the ball drop distance is maximized. Since the ball drop impact also acts to prevent excessive PTFE adhesion, the thickness of the PTFE coating formed by the method of the present invention is appropriately self-controlled. From Table 2 below, one hour is usually sufficient as long as the appropriate conditions described above are satisfied until the film reaches a certain thickness by self-control.

Figure 2009155699
Figure 2009155699

このようにして形成された薄い皮膜は、単にPTFE粉末を擦り込んだものと異なり、通常下地基材への十分な密着性を発揮する。しかしながら高い荷重が加わる場合のように、基材への一層高い密着性が求められる場合には、皮膜をPTFEの融点(327℃)以上の温度で焼成することが有用である。高分子量のPTFEは融点に達しても流動しないが、本発明のように分子量が1×10〜1×10の範囲にある場合、分子量10万以上のPTFEと比べ流動し易い傾向を示す。また焼成は、皮膜の動摩擦係数を有意に低下させる効果がある。 The thin film formed in this way usually exhibits sufficient adhesion to the underlying substrate, unlike the case of simply rubbing PTFE powder. However, when higher adhesion to the substrate is required, such as when a high load is applied, it is useful to fire the coating at a temperature equal to or higher than the melting point (327 ° C.) of PTFE. High molecular weight PTFE does not flow even when reaching the melting point, but when the molecular weight is in the range of 1 × 10 4 to 1 × 10 5 as in the present invention, it tends to flow more easily than PTFE having a molecular weight of 100,000 or more. . Firing also has the effect of significantly reducing the dynamic friction coefficient of the coating.

以下、本発明を実施例により説明する。なお、本発明は以下に示される実施例に限定されるものではなく、本発明の技術的思想を逸脱しない範囲内で各種の変更が可能である。   Hereinafter, the present invention will be described with reference to examples. In addition, this invention is not limited to the Example shown below, A various change is possible within the range which does not deviate from the technical idea of this invention.

皮膜形成方法
本発明によるフッ素樹脂潤滑皮膜の形成方法として、平均分子量1×10〜1×10のポリテトラフルオロエチレン粉末(粒子径:1〜20μm)と、セラミックス製または金属製メディアと、表面に微細な凹凸を形成した製品をボールミルのポット内に収納し、ポットごと回転させることにより発生する機械的エネルギーを利用して製品表面にフッ素樹脂のコーティング皮膜を形成した。
Film Forming Method As a method for forming a fluororesin lubricating film according to the present invention, polytetrafluoroethylene powder having an average molecular weight of 1 × 10 4 to 1 × 10 5 (particle diameter: 1 to 20 μm), ceramic or metal media, A product with fine irregularities formed on the surface was stored in a pot of a ball mill, and a fluororesin coating film was formed on the surface of the product using mechanical energy generated by rotating the pot together.

本発明によるフッ素処理条件
本発明によるフッ素処理条件として、ボールミルに仕込んだボールとPTFEの重量比は、ボール/PTFE=40/1〜120/1の範囲が処理可能な範囲であり、下記に述べる実施例においては全てボール/PTFE=50/1の重量比でボールミルを用いたフッ素コーティングを実施した。また、本発明の実施例2〜14においてフッ素樹脂潤滑皮膜の形成に用いたコーティング材は、全て分子量2万のPTFEを使用した。
Fluorine treatment conditions according to the present invention As the fluorine treatment conditions according to the present invention, the ball / PTFE weight ratio in the range of ball / PTFE = 40/1 to 120/1 can be treated as described below. In all the examples, fluorine coating using a ball mill was performed at a weight ratio of ball / PTFE = 50/1. Moreover, the coating materials used for forming the fluororesin lubricating film in Examples 2 to 14 of the present invention were all PTFE having a molecular weight of 20,000.

摩擦係数及び耐摩耗性の評価方法
・ 評価機器:新東科学製表面性測定機 トライボギア14FW
・ 相手材:5mmφ鋼球
・ 荷重:1Kg
・ 摩耗速度:2400mm/min
・ 摩耗距離:10mm 往復摩耗
・ 環境:室温ドライ雰囲気
本発明の実施例(フッ素樹脂潤滑皮膜)およびその比較例については、上記の試験条件および試験機で各サンプルの摩擦係数及び耐摩耗性について測定を行い評価した。摩擦係数については、静摩擦係数:μsと動摩擦係数:μkとを測定した。また、耐摩耗性は、摩耗時摩擦力が急激に上昇し始める摩耗回数によって判定した(したがって、摩耗回数が大きいほど耐摩耗性が良いことを示している)。
以下に、本発明の実施例(フッ素樹脂潤滑皮膜)およびその比較例のサンプル作製条件を示す。
Friction coefficient and abrasion resistance evaluation method and evaluation equipment: Shinto Kagaku surface quality measuring machine Tribogear 14FW
・ Mating material: 5mmφ steel ball ・ Load: 1Kg
・ Wear rate: 2400mm / min
・ Wear distance: 10mm reciprocating wear
-Environment: room temperature dry atmosphere For the examples of the present invention (fluororesin lubricating film) and comparative examples thereof, the friction coefficient and wear resistance of each sample were measured and evaluated with the above test conditions and tester. As for the friction coefficient, a static friction coefficient: μs and a dynamic friction coefficient: μk were measured. Further, the wear resistance was determined by the number of wears at which the frictional force during wear began to increase rapidly (thus, the greater the number of wears, the better the wear resistance).
The sample preparation conditions for the examples of the present invention (fluororesin lubricating film) and comparative examples thereof are shown below.

実施例1
実施例1では、処理原料となるフッ素樹脂(四フッ化エチレン樹脂,PTFE)粉末の分子量を変化させたものを使用し、ブラスト処理したSPCC(冷延鋼板)板をボールミルポットにて1時間処理した場合の、フッ素コーティング皮膜の表面粗さRa,摩擦係数,耐摩耗性について上述された評価方法にて評価を行った。
Example 1
In Example 1, using a fluororesin (tetrafluoroethylene resin, PTFE) powder having a changed molecular weight as a processing raw material, a blasted SPCC (cold rolled steel sheet) plate was treated in a ball mill pot for 1 hour. In this case, the surface roughness Ra, the friction coefficient, and the wear resistance of the fluorine coating film were evaluated by the evaluation methods described above.

表3は、フッ素樹脂粉末の変化させた分子量および各分子量における表面粗さRaなどの測定結果である。表3から、原料であるPTFE粉末の分子量が20〜30万ぐらいになると、処理後のテストピース表面粗さが粗くなる傾向が認められるとともに、ポット内においてフッ素粉末の凝集が生じやすい傾向があることがわかった。したがって、皮膜の耐摩耗性、仕上げ表面状態、連続コーティング処理性を考慮すると、PTFEの平均分子量は1×10〜1×10の範囲にあることが好ましい。 Table 3 shows the measurement results such as the changed molecular weight of the fluororesin powder and the surface roughness Ra at each molecular weight. From Table 3, when the molecular weight of the PTFE powder as a raw material is about 200,000 to 300,000, the test piece surface roughness after the treatment tends to be coarse and the fluorine powder tends to aggregate in the pot. I understood it. Therefore, in consideration of the abrasion resistance of the film, the finished surface state, and the continuous coating processability, the average molecular weight of PTFE is preferably in the range of 1 × 10 4 to 1 × 10 5 .

Figure 2009155699
Figure 2009155699

比較例1
比較例1は、溶剤系潤滑塗料を使用した皮膜の形成例であって、ポリエーテルサルフォン樹脂をバインダーとしたフッ素樹脂タイプの塗料(PTFE/バインダーの重量比=64/36)をブラスト処理したSPCC板に塗装後、380℃×20分焼付けを実施して作製したものである。
Comparative Example 1
Comparative Example 1 is an example of forming a film using a solvent-based lubricating paint, and a fluorinated resin type paint (polyether sulfone resin as a binder) (PTFE / binder weight ratio = 64/36) was blasted. After coating on the SPCC plate, it was produced by baking at 380 ° C. for 20 minutes.

比較例2
比較例2は、溶剤系潤滑塗料を使用した皮膜の形成例であって、エポキシ樹脂をバインダーとしたフッ素樹脂タイプの塗料(PTFE/バインダーの重量比=38/62)をブラスト処理したSPCC板に塗装後、180℃×20分焼付けを実施して作製したものである。
Comparative Example 2
Comparative Example 2 is an example of forming a film using a solvent-based lubricating paint on a SPCC plate blasted with a fluororesin type paint (PTFE / binder weight ratio = 38/62) using an epoxy resin as a binder. After painting, it is produced by baking at 180 ° C. for 20 minutes.

比較例3
比較例3は、溶剤系潤滑塗料を使用した皮膜の形成例であって、ポリアミドイミド樹脂をバインダーとしたフッ素樹脂タイプの塗料(PTFE/バインダーの重量比=1/1)をブラスト処理したSPCC板に塗装後、230℃×20分焼付けを実施して作製したものである。
Comparative Example 3
Comparative Example 3 is an example of forming a film using a solvent-based lubricating paint, and an SPCC plate blasted with a fluororesin type paint (PTFE / binder weight ratio = 1/1) using a polyamide-imide resin as a binder After coating, it was produced by baking at 230 ° C. for 20 minutes.

比較例4
比較例4は、ブラスト処理していないSPCC板のブランク材である。
Comparative Example 4
Comparative Example 4 is a blank material of an SPCC plate that has not been blasted.

実施例2
実施例2は、ブラスト処理したSPCC板に分子量2万のPTFE粉末を用い、実施例1と同条件で処理した後、380℃×10分焼付けを実施して作製したものである。
Example 2
Example 2 was prepared by using PTFE powder having a molecular weight of 20,000 on a blasted SPCC plate and treating it under the same conditions as in Example 1, followed by baking at 380 ° C. for 10 minutes.

比較例5
比較例5は、ブラスト処理していないSPCC板のブランク材に実施例2と同条件でフッ素コーティングを実施した後、380℃×10分焼付けを実施して作製したものである。
Comparative Example 5
Comparative Example 5 was prepared by performing fluorine coating on a blank material of an SPCC plate not subjected to blasting under the same conditions as in Example 2 and baking at 380 ° C. for 10 minutes.

実施例3
実施例3は、ブラスト処理したSPCC板に実施例2と同条件でフッ素コーティングを実施した後、焼付けを実施せずに作製したものである。
Example 3
In Example 3, the SPCC plate subjected to blasting was subjected to fluorine coating under the same conditions as in Example 2, and then produced without baking.

比較例6
比較例6は、ブラスト処理していないSPCC板のブランク材に実施例2と同条件でフッ素コーティングを実施した後、焼付けを実施せずに作製したものである。
Comparative Example 6
The comparative example 6 is produced without performing baking after performing fluorine coating on the blank material of the SPCC board which has not been blasted on the same conditions as Example 2. FIG.

比較例7
比較例7は、ブラスト処理していないSUS430板のブランク材である。
Comparative Example 7
Comparative Example 7 is a blank material of SUS430 plate that has not been blasted.

実施例4
実施例4は、ブラスト処理したSUS430板を実施例2と同条件でフッ素コーティングを実施した後、380℃×10分焼付けを実施して作製したものである。
Example 4
In Example 4, the blasted SUS430 plate was subjected to fluorine coating under the same conditions as in Example 2, and then baked at 380 ° C. for 10 minutes.

比較例8
比較例8は、ブラスト処理していない純アルミニウム板(1100)のブランク材である。
Comparative Example 8
Comparative Example 8 is a blank material of a pure aluminum plate (1100) that has not been blasted.

実施例5
実施例5は、ブラスト処理した純アルミニウム板(1100)を実施例2と同条件でフッ素コーティングを実施した後、380℃×10分焼付けを実施して作製したものである。
Example 5
In Example 5, a blasted pure aluminum plate (1100) was subjected to fluorine coating under the same conditions as in Example 2, and then baked at 380 ° C. for 10 minutes.

実施例6
実施例6は、ブラスト処理した純アルミニウム板(1100)を実施例2と同条件でフッ素コーティングを実施した後、焼付けを実施せずに作製したものである。
Example 6
In Example 6, a blasted pure aluminum plate (1100) was prepared by performing fluorine coating under the same conditions as in Example 2 and then without baking.

実施例7
実施例7は、30%NaOH,40℃×10分のエッチング処理を実施したアルミニウム板を実施例2と同条件でフッ素コーティングを実施した後、焼付けを実施せずに作製したものである。
Example 7
In Example 7, an aluminum plate subjected to an etching treatment of 30% NaOH and 40 ° C. × 10 minutes was prepared by performing fluorine coating under the same conditions as in Example 2 and then without baking.

比較例9
比較例9は、アルミニウム板(5052)にプラズマ電解陽極酸化処理(プラズマ電解陽極酸化処理,20℃×40分,膜厚25μm)を実施して作製したものである。
Comparative Example 9
Comparative Example 9 was produced by performing plasma electrolytic anodizing treatment (plasma electrolytic anodizing treatment, 20 ° C. × 40 minutes, film thickness 25 μm) on an aluminum plate (5052).

実施例8
実施例8は、比較例9と同条件でプラズマ電解陽極酸化処理したアルミニウム板(5052)を、実施例2と同条件でフッ素樹脂コーティングを実施した後、焼付けを実施せずに作製したものである。
Example 8
In Example 8, an aluminum plate (5052) subjected to plasma electrolytic anodization treatment under the same conditions as in Comparative Example 9 was prepared without performing baking after performing fluororesin coating under the same conditions as in Example 2. is there.

実施例9
実施例9は、比較例9と同条件でプラズマ電解陽極酸化処理したアルミニウム板(5052)を、実施例2と同条件でフッ素樹脂コーティングを実施した後、380℃×10分焼付けを実施して作製したものである。
Example 9
In Example 9, an aluminum plate (5052) that was plasma electrolytically anodized under the same conditions as in Comparative Example 9 was coated with a fluororesin under the same conditions as in Example 2, followed by baking at 380 ° C. for 10 minutes. It was produced.

比較例10
比較例10は、アルミニウム板(5052)に硫酸浴陽極酸化処理(15%HSO,18℃,1.5A/dm,30分,膜厚10μm)を実施して作製したものである。
Comparative Example 10
Comparative Example 10 was prepared by subjecting an aluminum plate (5052) to sulfuric acid bath anodization treatment (15% H 2 SO 4 , 18 ° C., 1.5 A / dm 2 , 30 minutes, film thickness 10 μm). .

実施例10
実施例10は、比較例10と同条件で硫酸浴陽極酸化処理したアルミニウム陽極酸化皮膜面上をブラスト処理し、実施例2と同条件でフッ素コーティングを実施した後、焼付けを実施せずに作製したものである。
Example 10
In Example 10, the surface of the aluminum anodic oxide film that had been subjected to sulfuric acid bath anodization under the same conditions as in Comparative Example 10 was blasted, and after fluorine coating was performed under the same conditions as in Example 2, baking was not performed. It is what.

比較例11
比較例11は、アルミニウム板(5052)に硬質陽極酸化処理(20%HSO,3A/dm,5℃,30分,膜厚20μm)を実施して作製したものである。
Comparative Example 11
In Comparative Example 11, a hard anodizing treatment (20% H 2 SO 4 , 3 A / dm 2 , 5 ° C., 30 minutes, film thickness 20 μm) was performed on an aluminum plate (5052).

実施例11
実施例11は、比較例11と同条件で硬質陽極酸化処理したアルミニウム陽極酸化皮膜面上をブラスト処理し、実施例2と同条件でフッ素コーティングを実施した後、焼付けを実施せずに作製したものである。
Example 11
In Example 11, the aluminum anodized film surface hard-anodized under the same conditions as in Comparative Example 11 was blasted, and after fluorine coating was carried out under the same conditions as in Example 2, it was produced without baking. Is.

比較例12
比較例12は、SPCC板に燐酸マンガン処理を施して作製したものである。
Comparative Example 12
Comparative Example 12 was prepared by applying a manganese phosphate treatment to an SPCC plate.

実施例12
実施例12は、比較例12と同条件で燐酸マンガン処理したSPCC板を、実施例2と同条件でフッ素コーティングを実施した後、焼付けを実施せずに作製したものである。
Example 12
In Example 12, an SPCC plate treated with manganese phosphate under the same conditions as in Comparative Example 12 was prepared without applying baking after performing fluorine coating under the same conditions as in Example 2.

比較例13
比較例13は、SPCC板に燐酸亜鉛処理を実施して作製したものである。
Comparative Example 13
In Comparative Example 13, the SPCC plate was prepared by performing zinc phosphate treatment.

実施例13
実施例13は、比較例13と同条件で燐酸亜鉛処理したSPCC板を、実施例2と同条件でフッ素樹脂コーティングを実施した後、焼付けを実施せずに作製したものである。
Example 13
In Example 13, an SPCC plate treated with zinc phosphate under the same conditions as in Comparative Example 13 was prepared without performing baking after performing fluororesin coating under the same conditions as in Example 2.

実施例14
実施例14は、ブラスト処理することにより表面粗さRaが1.85μmとなったポリフェニレンサルファイド(PPS)成形体にフッ素樹脂コーティングを実施して作製したものである。
Example 14
In Example 14, a polyphenylene sulfide (PPS) molded body having a surface roughness Ra of 1.85 μm by blasting was coated with a fluororesin.

比較例14
比較例14は、無処理のPPS成形体である。
Comparative Example 14
Comparative Example 14 is an untreated PPS molded body.

上述された実施例2〜14および比較例1〜14のサンプルについて、被表面処理素材の表面処理条件などを変化させた場合の摩擦係数および耐磨耗性等についての測定結果を表4に示す。   Table 4 shows the measurement results of the coefficient of friction, the wear resistance, and the like when the surface treatment conditions of the surface-treated material are changed for the samples of Examples 2 to 14 and Comparative Examples 1 to 14 described above. .

Figure 2009155699
Figure 2009155699
Figure 2009155699
Figure 2009155699
Figure 2009155699
Figure 2009155699
Figure 2009155699
Figure 2009155699
Figure 2009155699
Figure 2009155699
Figure 2009155699
Figure 2009155699

表1に示されるPTFE皮膜の付着量確保の観点からの他、表4に示されるPTFE皮膜の摩擦係数の低減および耐摩耗性向上の観点からも、ボールミルを使用したPTFE皮膜の形成は少なくとも表面粗さRaが0.6μm以上の素材に適用されることが好ましいことが確認された。   From the viewpoint of securing the adhesion amount of the PTFE film shown in Table 1, and also from the viewpoint of reducing the friction coefficient and improving the wear resistance of the PTFE film shown in Table 4, the formation of the PTFE film using a ball mill is at least the surface It was confirmed that the material is preferably applied to a material having a roughness Ra of 0.6 μm or more.

また、本発明によるPTFE皮膜の形成に適した粗面仕上げは、実施例2〜4で示されるような機械的なブラスト処理の他、実施例12,13で示されるような化学的なエッチングおよびリン酸化合物による化成処理などを使用することも有効である。また、被処理材がアルミニウムの場合は、単独でプラズマ電解陽極酸化処理を行うか、または硫酸浴陽極酸化処理後、ブラスト処理を組み合わせて実施することにより、より耐磨耗性の高い皮膜を得ることができる。(実施例5〜11及び比較例8〜11参照)。さらに、素材がポリフェニレンサルファイド(PPS)のような素材であっても、本発明によるフッ素樹脂固体潤滑皮膜の形成方法を有効に適用できることがわかった。   In addition, the rough surface finish suitable for the formation of the PTFE film according to the present invention includes chemical blasting as shown in Examples 12 and 13 as well as mechanical blasting as shown in Examples 2 to 4. It is also effective to use a chemical conversion treatment with a phosphoric acid compound. In addition, when the material to be treated is aluminum, plasma electrolytic anodizing treatment is performed alone, or after a sulfuric acid bath anodizing treatment, a blast treatment is performed in combination to obtain a film with higher wear resistance. be able to. (See Examples 5 to 11 and Comparative Examples 8 to 11). Furthermore, it has been found that the method for forming a fluororesin solid lubricating film according to the present invention can be effectively applied even if the material is a material such as polyphenylene sulfide (PPS).

また、ボールミル処理により形成したフッ素樹脂固体潤滑皮膜の焼付け・焼成は、皮膜の動摩擦係数を有意に低下させる効果があることがわかった。このため、被処理材への皮膜のより高い密着性および高い耐磨耗性を望む場合は、形成されたフッ素樹脂固体潤滑皮膜をPTFEの融点(327℃)以上の温度で焼成することが効果的である。   It was also found that baking and baking of a fluororesin solid lubricating film formed by ball milling has the effect of significantly reducing the dynamic friction coefficient of the film. For this reason, when higher adhesion of the film to the material to be treated and higher wear resistance are desired, it is effective to fire the formed fluororesin solid lubricating film at a temperature equal to or higher than the melting point (327 ° C.) of PTFE. Is.

Claims (5)

相対的に摺動運動する二面間の少なくとも一方に耐摩耗性のフッ素樹脂固体潤滑皮膜を形成する方法であって、膜を形成すべき表面が粗面仕上げされた金属基材を、ポリテトラフルオロエチレン粉末と粉砕媒体ボールと共にボールミルに装填してボールミルを回転し、落下するボールの衝撃力により金属表面に密着したボリテトラフルオロエチレンの膜が形成されるまで回転を継続することを特徴とする方法。   A method of forming a wear-resistant fluororesin solid lubricating film on at least one of two surfaces that slide relatively, wherein a metal substrate having a roughened surface on which a film is to be formed is made of polytetra The ball mill is loaded together with the fluoroethylene powder and the grinding media ball and rotated, and the rotation is continued until a film of polytetrafluoroethylene adhered to the metal surface is formed by the impact force of the falling ball. Method. 形成されたポリテトラフルオロエチレンの皮膜をその融点以上の温度において焼成する工程をさらに含む請求項1の方法。   The method of claim 1, further comprising the step of firing the formed polytetrafluoroethylene film at a temperature above its melting point. 基材の平均表面粗さRaが0.6μm以上の表面粗さを有し、その仕上げ方法としては、機械的なブラスト処理、エッチング処理、リン酸塩化成処理、またはアルミニウムの電解陽極酸化処理によって実施される請求項1または2の方法。   The average surface roughness Ra of the substrate has a surface roughness of 0.6 μm or more, and the finishing method is mechanical blasting, etching, phosphate chemical conversion, or electrolytic anodization of aluminum. The method of claim 1 or 2 being performed. ポリテトラフルオロエチレンの平均分子量が、1×10ないし1×10の範囲にある請求項1ないし3のいずれかの方法。 The method according to any one of claims 1 to 3, wherein the average molecular weight of the polytetrafluoroethylene is in the range of 1 x 10 4 to 1 x 10 5 . 粉砕媒体であるボールがセラミックス製または金属製であり、その直径が3mmφ以下である請求項1ないし4のいずれかの方法。   The method according to any one of claims 1 to 4, wherein the ball as the grinding medium is made of ceramics or metal and has a diameter of 3 mmφ or less.
JP2007336600A 2007-12-27 2007-12-27 Method for forming a fluororesin lubricating film on the surface of a substrate Active JP4977599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007336600A JP4977599B2 (en) 2007-12-27 2007-12-27 Method for forming a fluororesin lubricating film on the surface of a substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007336600A JP4977599B2 (en) 2007-12-27 2007-12-27 Method for forming a fluororesin lubricating film on the surface of a substrate

Publications (2)

Publication Number Publication Date
JP2009155699A true JP2009155699A (en) 2009-07-16
JP4977599B2 JP4977599B2 (en) 2012-07-18

Family

ID=40960014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007336600A Active JP4977599B2 (en) 2007-12-27 2007-12-27 Method for forming a fluororesin lubricating film on the surface of a substrate

Country Status (1)

Country Link
JP (1) JP4977599B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208215A (en) * 2010-03-30 2011-10-20 Dowa Thermotech Kk Member coated with sulfurized layer and method for manufacturing the same
JP2016199794A (en) * 2015-04-13 2016-12-01 Jfeスチール株式会社 Steel sheet and method for manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022011627A1 (en) * 2020-07-16 2022-01-20 Covidien Lp Composite coating for electrosurgical electrode

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06159373A (en) * 1992-11-12 1994-06-07 Nippon Seiko Kk Self-lubricant coating roller bearing
JP2000312858A (en) * 1999-04-28 2000-11-14 Fuji Seisakusho:Kk Method for forming thin film of fluoroplastic or copolymer resin with fluoroplastic
JP2001049461A (en) * 1999-08-09 2001-02-20 Rubutekku:Kk Method for formation of solid lubricating film
JP2001220686A (en) * 2000-02-02 2001-08-14 Daido Steel Co Ltd Method for producing member coated with lubricated layer and member coated with lubricated layer
JP2003145039A (en) * 2001-11-16 2003-05-20 Fuji Kihan:Kk Method of forming fluororesin coating film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06159373A (en) * 1992-11-12 1994-06-07 Nippon Seiko Kk Self-lubricant coating roller bearing
JP2000312858A (en) * 1999-04-28 2000-11-14 Fuji Seisakusho:Kk Method for forming thin film of fluoroplastic or copolymer resin with fluoroplastic
JP2001049461A (en) * 1999-08-09 2001-02-20 Rubutekku:Kk Method for formation of solid lubricating film
JP2001220686A (en) * 2000-02-02 2001-08-14 Daido Steel Co Ltd Method for producing member coated with lubricated layer and member coated with lubricated layer
JP2003145039A (en) * 2001-11-16 2003-05-20 Fuji Kihan:Kk Method of forming fluororesin coating film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208215A (en) * 2010-03-30 2011-10-20 Dowa Thermotech Kk Member coated with sulfurized layer and method for manufacturing the same
JP2016199794A (en) * 2015-04-13 2016-12-01 Jfeスチール株式会社 Steel sheet and method for manufacturing the same

Also Published As

Publication number Publication date
JP4977599B2 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
JP5779647B2 (en) Non-stick coating with improved wear resistance and hardness on substrates
CN106086766B (en) A kind of preparation method of high wear-resistant low-friction coefficient thermal Sperayed Ceramic Coatings
WO2013032547A1 (en) Self-lubricating surface coating composition for low friction or soft substrate applications
JP2002372189A (en) Solid lubricating film forming method, and cam plate for compressor
JP4977599B2 (en) Method for forming a fluororesin lubricating film on the surface of a substrate
Hanjun et al. Effects of substrate roughness on the vacuum tribological properties of duplex PEO/bonded-MoS2 coatings on Ti6Al4V
JP2009150518A (en) Sliding member for thrust bearing
JP6973708B2 (en) The dry lubricating film composition and the sliding member constituting the sliding layer by the dry lubricating film composition.
JP4634093B2 (en) Composition for sliding member
Lind et al. Tribological properties of PVD coatings with lubricating films
JP3982498B2 (en) ETFE lining material
Lesnevskiy et al. Tribological properties of TiN-Pb system solid lubricant coatings with various morphologies
JP2007238686A (en) Coating composition and coated article
WO2014034180A1 (en) Piston ring
Yamane et al. Wear and friction mechanism of PTFE reservoirs embedded into thermal sprayed metallic coatings
Cheng et al. Low frictional TiO2 and MoS2/TiO2 coatings on Ti-6Al-4V alloy
JP2005138294A (en) Coated metal sheet excellent in lubricity and processability
Lee et al. Metal nitride coatings by physical vapor deposition (PVD) for a wear resistant aluminum extrusion die
WO2023248711A1 (en) Scroll-type fluid machine
Matijošius et al. Effects of electrolyte and Ti layers on static and dynamic friction of anodized alumina
RU2812667C1 (en) Composite fluoropolymer coating on steel with metal adhesion layer
Tu et al. Tribological behavior of plasma-sprayed Cr2O3 coatings on C/C composites sliding against different counterparts
Jakubéczyová et al. Analysis of Tribological Properties of Multi-and Nanocomposite Coatings Deposited on a PM Substrate
JPS6262868A (en) Surface treatment having corrosion and abrasion resistance
Dhiflaoui et al. Scratch Resistance and Wear Energy Analysis Stainless of Steel TiO2 Coatings on 316L

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

R150 Certificate of patent or registration of utility model

Ref document number: 4977599

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250