JP2009155643A - Method for preparing polymer latex or polymer emulsion - Google Patents

Method for preparing polymer latex or polymer emulsion Download PDF

Info

Publication number
JP2009155643A
JP2009155643A JP2008310754A JP2008310754A JP2009155643A JP 2009155643 A JP2009155643 A JP 2009155643A JP 2008310754 A JP2008310754 A JP 2008310754A JP 2008310754 A JP2008310754 A JP 2008310754A JP 2009155643 A JP2009155643 A JP 2009155643A
Authority
JP
Japan
Prior art keywords
polymerization
temperature
parts
polymer
polymer latex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008310754A
Other languages
Japanese (ja)
Other versions
JP5751605B2 (en
Inventor
Toshitaka Nishioka
利恭 西岡
Akira Kishi
明 岸
Kazuyuki Miyamoto
和志 宮本
Seiji Tamai
清二 玉井
Takashi Hosoya
隆史 細谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon A&L Inc
Original Assignee
Nippon A&L Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon A&L Inc filed Critical Nippon A&L Inc
Priority to JP2008310754A priority Critical patent/JP5751605B2/en
Publication of JP2009155643A publication Critical patent/JP2009155643A/en
Application granted granted Critical
Publication of JP5751605B2 publication Critical patent/JP5751605B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polymerisation Methods In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for preparing a polymer latex or a polymer emulsion, in which few coarse aggregates are produced in a polymerization reaction and which is excellent in energy saving and efficient because excessive heating from the outside of the polymerization system is not needed. <P>SOLUTION: In the method for preparing a polymer latex or a polymer emulsion to be obtained by radical emulsion polymerization of a polymerizable monomer, after charging part of or all of the monomer, the polymerization is initiated at an internal temperature T1 of the polymerization system in a range of 0 to 50&deg;C and then the temperature T1 is raised to an internal temperature T2 of the polymerization system in a range of 60 to 100&deg;C, wherein the heat of the polymerization is utilized and this heat occupies &ge;15% of the quantity of heat needed for temperature raising (T2-T1). <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は重合体ラテックス、または重合体エマルジョンの製造方法に関するものである。詳しくは、重合反応中に発生する粗大凝集物が極めて少なく、かつ、製造初期において重合反応系外からの過大な加熱を必要とせず、省エネルギー性に優れた効率のよい重合体ラテックス、または重合体エマルジョンの製造方法に関するものである。   The present invention relates to a method for producing a polymer latex or a polymer emulsion. Specifically, the polymer agglomerates generated during the polymerization reaction are extremely small and do not require excessive heating from outside the polymerization reaction system in the initial stage of production. The present invention relates to a method for producing an emulsion.

近年、様々な用途に多種多様な重合体ラテックスや重合体エマルジョンが、ゴム強化樹脂、各種水系接着剤、紙塗工用バインダー、ディップ成型用ラテックスなどに広く利用されている。各用途において操業性に優れて使いやすく、最終製品に高度な物性バランスを与えるよう改良が重ねられているものの、更に高度な物性バランスが切望されている。また、重合体ラテックスや重合体エマルジョンの製造に際しては、それらの重合安定性が良好で粗大凝集物の発生を抑制できうる重合方法が安定生産体制構築の観点から切望されている。
上記のような要求性能に対して、例えば、特開平6−179772号公報(特許文献1)、特開平10−1504号公報(特許文献2)、特開2003−238635号公報(特許文献3)や特開2003−335807号公報(特許文献4)のような技術が提案されている。
また、重合体ラテックス、重合体エマルジョンの重合方法を工夫して、前記の目標を達成しようとする場合、重合途中の反応温度などを一定に保つ、あるいは2段階にして一定に保つことが提案されているが、その操作には、製造初期において重合系の外部から加熱することが必要である。特に比較的高温域での重合では、所定温度に到達させるのに必要とされる外部からの加熱エネルギーも大きく、地球温暖化や省エネルギーの観点からは、そのエネルギーの低減化についても社会的要請が高まるばかりである。
特開平6−179772号公報 特開平10−1504号公報 特開2003−238635号公報 特開2003−335807号公報
In recent years, a wide variety of polymer latexes and polymer emulsions for various applications have been widely used for rubber-reinforced resins, various aqueous adhesives, binders for paper coating, latex for dip molding, and the like. Although each product has excellent operability and is easy to use and has been improved to give a high balance of physical properties to the final product, a further high balance of physical properties is desired. Further, in the production of polymer latex and polymer emulsion, a polymerization method capable of suppressing the generation of coarse aggregates with good polymerization stability is desired from the viewpoint of establishing a stable production system.
For the required performance as described above, for example, JP-A-6-179772 (Patent Document 1), JP-A-10-1504 (Patent Document 2), JP-A-2003-238635 (Patent Document 3). And a technique such as Japanese Patent Application Laid-Open No. 2003-335807 (Patent Document 4) has been proposed.
Also, when trying to achieve the above goal by devising the polymerization method of polymer latex and polymer emulsion, it is proposed to keep the reaction temperature during the polymerization constant or keep it constant in two stages. However, the operation requires heating from the outside of the polymerization system at the initial stage of production. Particularly in the polymerization in a relatively high temperature range, the external heating energy required to reach the predetermined temperature is large, and from the viewpoint of global warming and energy saving, there is a social demand for reduction of the energy. It just increases.
Japanese Patent Laid-Open No. 6-179772 Japanese Patent Laid-Open No. 10-1504 JP 2003-238635 A JP 2003-335807 A

本発明は、従来から要求のあった製品の性能に加えて、近年急激に要求が高まった省エネルギーに関する上記課題の両者を解決するために成されたもので、重合反応中に発生する粗大凝集物の発生が極めて少なく、かつ、重合反応系外からの過大な加熱を必要とせず、省エネルギーに優れた効率のよい重合体ラテックス、または重合体エマルジョンの製造方法を提供することを目的とするものである。   The present invention was made in order to solve both of the above-mentioned problems related to energy saving, which have been rapidly demanded in recent years, in addition to the performance of products that have been conventionally demanded. Coarse aggregates generated during the polymerization reaction It is an object of the present invention to provide an efficient method for producing a polymer latex or a polymer emulsion that is extremely low in energy consumption, does not require excessive heating from outside the polymerization reaction system, and is excellent in energy saving. is there.

すなわち本発明は、重合性単量体をラジカル乳化重合して得られる重合体ラテックス、または重合体エマルジョンの製造方法であって、単量体の一部または全量を仕込み完了後、重合系内の温度T1が0〜50℃の範囲で重合を開始した後、重合系内の温度T2を60℃〜100℃の範囲に到達させるに際し、その温度上昇(T2−T1)に必要な熱量の15%以上を重合による重合熱を利用して昇温させることを特徴とする重合体ラテックス、または重合体エマルジョンの製造方法を提供するものである。   That is, the present invention relates to a method for producing a polymer latex obtained by radical emulsion polymerization of a polymerizable monomer, or a polymer emulsion. 15% of the amount of heat required for the temperature rise (T2-T1) when the temperature T1 in the polymerization system is started in the range of 0 to 50 ° C and then the temperature T2 in the polymerization system reaches the range of 60 ° C to 100 ° C. The present invention provides a method for producing a polymer latex or a polymer emulsion, characterized in that the temperature is raised using polymerization heat from polymerization.

本発明における製造方法を用いれば、重合初期における外部からの加熱エネルギーを大幅に低減できるとともに、重合反応における粗大凝集物性の発生を低く抑えることができる。また、本発明における製造方法によって製造される重合体ラテックス、または重合体エマルジョンはゴム強化樹脂用のゴム重合体、紙加工用、不織布含浸用、繊維加工用の共重合体ラテックス、ディップ成型用、ゴム発泡体成型用の共重合体ラテックス、粘着加工用の共重合体エマルジョンなど非常に幅広い分野に活用することができる。   If the manufacturing method in this invention is used, while the external heating energy in the superposition | polymerization initial stage can be reduced significantly, generation | occurrence | production of the coarse aggregate property in a polymerization reaction can be suppressed low. The polymer latex or polymer emulsion produced by the production method of the present invention is a rubber polymer for rubber-reinforced resin, paper processing, nonwoven fabric impregnation, fiber processing copolymer latex, dip molding, It can be used in a very wide range of fields such as copolymer latex for rubber foam molding and copolymer emulsion for adhesive processing.

以下、本発明の製造方法につき詳細に説明する。   Hereinafter, the production method of the present invention will be described in detail.

本発明において、重合で発生する重合熱は特定範囲の昇温コントロールに積極的に利用される。よって、単量体の一部または全量を仕込み(以下、初期仕込みと記す場合あり)完了後、温度T1(0〜50℃)の任意の温度で重合を開始すればよく、その後、反応系が60℃を越える温度まで、外部からの多大な熱源によって加熱する必要は無い。T1は好ましくは10〜50℃である。   In the present invention, the heat of polymerization generated in the polymerization is positively used for temperature increase control within a specific range. Therefore, after completion of charging part or all of the monomer (hereinafter sometimes referred to as initial charging), polymerization may be started at an arbitrary temperature of T1 (0 to 50 ° C.). It is not necessary to heat to a temperature exceeding 60 ° C. by a large heat source from the outside. T1 is preferably 10 to 50 ° C.

本発明において、初期仕込み完了後、重合を開始して重合系内の温度T2を60℃〜100℃の範囲に到達させるに際して、その温度上昇(T2−T1)に必要な熱量の15%以上を重合熱によって賄うことが必要である。15%未満では、外部から85%を超える熱量を与えねばならず、省エネルギー性に劣る。好ましくは、重合熱が温度上昇(T2−T1)に必要な熱量の25%以上、更に好ましくは50%以上を重合熱によって賄うことが好ましい。また、重合開始前に仕込む単量体は、単量体の一部又は全量の何れでもよく、単量体の一部を仕込む場合には、その後、重合を終了させる任意の間に残部の単量体を添加すればよい。   In the present invention, after completion of the initial charge, when the polymerization is started and the temperature T2 in the polymerization system reaches the range of 60 ° C. to 100 ° C., 15% or more of the amount of heat required for the temperature increase (T2-T1) is reduced. It is necessary to cover with polymerization heat. If it is less than 15%, a heat amount exceeding 85% must be given from the outside, and the energy saving property is poor. Preferably, it is preferable that the heat of polymerization covers 25% or more, more preferably 50% or more of the amount of heat necessary for temperature rise (T2-T1) by the heat of polymerization. Further, the monomer charged before the start of polymerization may be either a part or the whole amount of the monomer. A monomer may be added.

本発明において、重合系内の温度T2が60℃〜100℃に到達した後は、T2を60℃〜100℃の範囲内で一定に保っても、必要に応じて変化させても本発明の効果を妨げないが、温度T2に到達した後は実質的に重合温度は一定に保って重合を継続するか、もしくは一定時間重合温度を一定に保って重合した後、重合温度を上昇させて(上限は100℃)重合を行なうことが好ましい。また、重合系内の温度T2を60℃〜100℃の範囲を保って重合を継続する間、適宜、残部の単量体が添加され、さらには必要に応じて重合速度調節剤などを用いて重合反応による単位時間当たりの発熱量を制御できる。なお、本発明においては、T2−T1=10℃以上、好ましくは20℃以上であることが好ましい。
また、通常、反応槽を取り巻くジャケットなどに20〜35℃の常温冷却水を流して熱交換させることが省エネルギーの観点で最適であるが、必要に応じて20℃未満のチルド冷却水を用いたり、スチームや電熱ヒーターで加温した加温水を用いたりすることもできる。更には反応槽の任意の場所に空冷できるフィンを設置したり、従来公知の加熱冷却装置を重合槽に付帯させて補助的に活用したりすることも、本発明の効果を妨げない範囲で使用することができる。
In the present invention, after the temperature T2 in the polymerization system reaches 60 ° C. to 100 ° C., the T 2 may be kept constant within the range of 60 ° C. to 100 ° C. or may be changed as necessary. Although the effect is not hindered, after reaching the temperature T2, the polymerization temperature is kept substantially constant and the polymerization is continued, or the polymerization temperature is kept constant for a certain time, and then the polymerization temperature is raised ( The upper limit is 100 ° C.). Further, while the polymerization is continued while maintaining the temperature T2 in the polymerization system in the range of 60 ° C. to 100 ° C., the remaining monomer is appropriately added, and further, using a polymerization rate regulator or the like as necessary. The amount of heat generated per unit time by the polymerization reaction can be controlled. In the present invention, T2−T1 = 10 ° C. or higher, preferably 20 ° C. or higher.
In general, it is optimal from the viewpoint of energy saving to flow normal temperature cooling water of 20 to 35 ° C. through a jacket or the like surrounding the reaction tank, but if necessary, chilled cooling water of less than 20 ° C. may be used. It is also possible to use warm water heated by steam or an electric heater. Furthermore, it is also possible to install fins that can be air-cooled at any place in the reaction tank, or to use a known heating / cooling device as a supplement to the polymerization tank as long as it does not interfere with the effects of the present invention. can do.

本発明において、使用する重合水の量は特に限定されないが、重合性単量体合計100重量部に対して、65〜300重量部使用されることが好ましい。また、本発明においては、重合開始前に仕込む初期単量体とともに友重合体シードを添加して、公知のシード重合法を適応することも可能である。また、単量体を連続的または間欠的に添加する場合、均一な組成の単量体混合物を仕込む均一フィード法、途中で1回または数回にわたって単量体(混合物)の組成を変える二段重合法、または多段重合法、連続的に単量体組成を変化させて仕込むパワーフィード法など、いずれの添加方法も採用することができる。
また、本発明における単量体以外の各種成分の添加方法についても特に制限はなく、分割添加方法、連続添加方法などの何れであっても本発明の効果を妨げるものではない範囲で採用することができる。
In the present invention, the amount of polymerization water to be used is not particularly limited, but it is preferably 65 to 300 parts by weight with respect to 100 parts by weight of the total polymerizable monomers. In the present invention, it is also possible to apply a known seed polymerization method by adding a friend polymer seed together with an initial monomer charged before the start of polymerization. In addition, when the monomer is added continuously or intermittently, a uniform feed method in which a monomer mixture having a uniform composition is charged, and the composition of the monomer (mixture) is changed once or several times in the middle. Any addition method such as a polymerization method, a multistage polymerization method, or a power feed method in which a monomer composition is continuously changed can be employed.
In addition, there are no particular limitations on the method of adding various components other than the monomer in the present invention, and any method such as a divided addition method or a continuous addition method may be employed as long as the effect of the present invention is not hindered. Can do.

本発明においては、従来公知の重合性単量体を制限なく使用することができる。例えば、共役ジエン系単量体、芳香族ビニル系単量体、不飽和カルボン酸アルキルエステル系単量体、シアン化ビニル系単量体、ヒドロキシアルキル基を含有する不飽和単量体、エチレン系不飽和カルボン酸単量体、不飽和カルボン酸アミド系単量体、その他酢酸ビニル、プロピオン酸ビニル等の脂肪酸ビニルエステル類や塩化ビニル系単量体などが使用できる。これら重合性単量体のうち、特に共役ジエン系単量体を20〜100重量%含むことが好ましい。   In the present invention, conventionally known polymerizable monomers can be used without limitation. For example, conjugated diene monomers, aromatic vinyl monomers, unsaturated carboxylic acid alkyl ester monomers, vinyl cyanide monomers, unsaturated monomers containing hydroxyalkyl groups, ethylene monomers Unsaturated carboxylic acid monomers, unsaturated carboxylic acid amide monomers, other fatty acid vinyl esters such as vinyl acetate and vinyl propionate, and vinyl chloride monomers can be used. Among these polymerizable monomers, it is particularly preferable to contain 20 to 100% by weight of a conjugated diene monomer.

共役ジエン系単量体としては、1,3−ブタジエン、2−メチル−1,3−ブタジエン、2,3−ジメチル−1,3−ブタジエン、2−クロル−1,3−ブタジエンなどが挙げられ、これらを1種または2種以上使用することができる。特に1,3−ブタジエンの使用が好ましい。   Examples of the conjugated diene monomer include 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-chloro-1,3-butadiene and the like. These can be used alone or in combination of two or more. In particular, the use of 1,3-butadiene is preferred.

芳香族ビニル系単量体としては、スチレン、α−メチルスチレン、メチルα−メチルスチレン、ビニルトルエンおよびジビニルベンゼン等が挙げられ、これらを1種または2種以上使用することができる。特にスチレンの使用が好ましい。   Examples of the aromatic vinyl monomer include styrene, α-methylstyrene, methyl α-methylstyrene, vinyltoluene, and divinylbenzene, and these can be used alone or in combination of two or more. In particular, use of styrene is preferable.

不飽和カルボン酸アルキルエステル単量体としては、メチルアクリレート、メチルメタクリレート、エチルアクリレート、エチルメタクリレート、ブチルアクリレート、グリシジルメタクリレート、ジメチルフマレート、ジエチルフマレート、ジメチルマレエート、ジエチルマルエート、ジメチルイタコネート、モノメチルフマレート、モノエチルフマレート、2−エチルヘキシルアクリレート等が挙げられ、これらを1種または2種以上使用することができる。特にメチルメタクリレート、ブチルアクリレートの使用が好ましい。   Examples of unsaturated carboxylic acid alkyl ester monomers include methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, glycidyl methacrylate, dimethyl fumarate, diethyl fumarate, dimethyl maleate, diethyl malate, dimethyl itaconate, Examples thereof include monomethyl fumarate, monoethyl fumarate, 2-ethylhexyl acrylate, and the like can be used alone or in combination of two or more. In particular, use of methyl methacrylate or butyl acrylate is preferable.

シアン化ビニル系単量体としては、アクリロニトリル、メタクリロニトリル、α−クロルアクリロニトリル、α−エチルアクリロニトリルなどが挙げられ、これらを1種または2種以上使用することができる。特にアクリロニトリルまたはメタクリロニトリルの使用が好ましい。   Examples of the vinyl cyanide monomer include acrylonitrile, methacrylonitrile, α-chloroacrylonitrile, α-ethylacrylonitrile, and the like, and one or more of them can be used. The use of acrylonitrile or methacrylonitrile is particularly preferable.

ヒドロキシアルキル基を含有する不飽和単量体としては、β−ヒドロキシエチルアクリレート、β−ヒドロキシエチルメタクリレート、ヒドロキシプロピルアクリレート、ヒドロキシプロピルメタクリレート、ヒドロキシブチルアクリレート、ヒドロキシブチルメタクリレート、3−クロロ−2−ヒドロキシプロピルメタクリレート、ジ−(エチレングリコール)マレエート、ジ−(エチレングリコール)イタコネート、2−ヒドロキシエチルマレエート、ビス(2−ヒドロキシエチル)マレエート、2−ヒドロキシエチルメチルフマレートなどが挙げられ、これらを1種または2種以上使用することができる。特にβ−ヒドロキシエチルアクリレート、β−ヒドロキシエチルメタクリレートの使用が好ましい。   Examples of unsaturated monomers containing a hydroxyalkyl group include β-hydroxyethyl acrylate, β-hydroxyethyl methacrylate, hydroxypropyl acrylate, hydroxypropyl methacrylate, hydroxybutyl acrylate, hydroxybutyl methacrylate, and 3-chloro-2-hydroxypropyl. Methacrylate, di- (ethylene glycol) maleate, di- (ethylene glycol) itaconate, 2-hydroxyethyl maleate, bis (2-hydroxyethyl) maleate, 2-hydroxyethyl methyl fumarate, and the like. Or 2 or more types can be used. In particular, use of β-hydroxyethyl acrylate and β-hydroxyethyl methacrylate is preferable.

エチレン系不飽和カルボン酸単量体としては、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、フマール酸、イタコン酸などのモノまたはジカルボン酸(無水物)が挙げられ、これらを1種または2種以上使用することができる。特に、アクリル酸、メタクリル酸、フマール酸、イタコン酸の使用が好ましい。   Examples of the ethylenically unsaturated carboxylic acid monomer include mono- or dicarboxylic acids (anhydrides) such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, fumaric acid, and itaconic acid. It can be used above. In particular, the use of acrylic acid, methacrylic acid, fumaric acid and itaconic acid is preferred.

不飽和カルボン酸アミド単量体としては、アクリルアミド、メタクリルアミド、N−メチロールアクリルアミド、N−メチロールメタクリルアミド、N,N−ジメチルアクリルアミドなどが挙げられ、これらを1種または2種以上使用することができる。特にアクリルアミドまたはメタクリルアミドの使用が好ましい。   Examples of the unsaturated carboxylic acid amide monomer include acrylamide, methacrylamide, N-methylol acrylamide, N-methylol methacrylamide, N, N-dimethylacrylamide, and the like. One or more of these may be used. it can. Particularly preferred is the use of acrylamide or methacrylamide.

本発明において、重合体ラテックス、または重合体エマルジョンを製造する際には、公知の乳化剤や界面活性剤を使用することができる。例えば、高級アルコールの硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルジフェニルエーテルスルホン酸塩、脂肪族スルホン酸塩、脂肪族カルボン酸塩、デヒドロアビエチン酸塩、ナフタレンスルホン酸のホルマリン縮合物、非イオン性界面活性剤の硫酸エステル塩等のアニオン性界面活性剤あるいはポリエチレングリコールのアルキルエステル型、アルキルフェニルエーテル型、アルキルエーテル型等のノニオン性界面活性剤が挙げられ、これらを1種又は2種以上使用することができる。   In the present invention, when producing a polymer latex or a polymer emulsion, known emulsifiers and surfactants can be used. For example, sulfate esters of higher alcohols, alkylbenzene sulfonates, alkyl diphenyl ether sulfonates, aliphatic sulfonates, aliphatic carboxylates, dehydroabietic acid salts, formalin condensates of naphthalene sulfonic acid, nonionic surface activity Nonionic surfactants such as anionic surfactants such as sulfuric acid ester salts of polyethylene or alkyl ester type, alkyl phenyl ether type, alkyl ether type of polyethylene glycol, and the like, and one or more of these should be used Can do.

本発明においては、公知の連鎖移動剤を使用することができる。例えば、n−ヘキシルメルカプタン、n−オクチルメルカプタン、t−オクチルメルカプタン、n−ドデシルメルカプタン、t−ドデシルメルカプタン、n−ステアリルメルカプタン等のアルキルメルカプタン、ジメチルキサントゲンジサルファイド、ジイソプロピルキサントゲンジサルファイド等のキサントゲン化合物、ターピノレンや、テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラメチルチウラムモノスルフィド等のチウラム系化合物、2,6−ジ−t−ブチル−4−メチルフェノール、スチレン化フェノール等のフェノール系化合物、アリルアルコール等のアリル化合物、ジクロルメタン、ジブロモメタン、四臭化炭素等のハロゲン化炭化水素化合物、α−ベンジルオキシスチレン、α−ベンジルオキシアクリロニトリル、α−ベンジルオキシアクリルアミド等のビニルエーテル、トリフェニルエタン、ペンタフェニルエタン、アクロレイン、メタアクロレイン、チオグリコール酸、チオリンゴ酸、2−エチルヘキシルチオグリコレート等が挙げられ、これらを1種または2種以上使用することができる。さらに、連鎖移動剤としてはα−メチルスチレンダイマーも使用することができる。α−メチルスチレンダイマーには、異性体として2,4−ジフェニル−4−メチル−1−ペンテン、2,4−ジフェニル−4−メチル−2−ペンテンおよび1,1,3−トリメチル−3−フェニルインダンがあるが、α−メチルスチレンダイマーとしては、2,4−ジフェニル−4−メチル−1−ペンテンの含有量が60重量%以上、特に80重量%以上であることが好ましい。これらの連鎖移動剤の量は特に限定されないが、通常、単量体100重量部に対して0〜5重量部にて使用される。   In the present invention, a known chain transfer agent can be used. For example, xanthogen compounds such as alkyl mercaptans such as n-hexyl mercaptan, n-octyl mercaptan, t-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, n-stearyl mercaptan, dimethylxanthogen disulfide, diisopropylxanthogen disulfide, etc. Terpinolene, thiuram compounds such as tetramethylthiuram disulfide, tetraethylthiuram disulfide, tetramethylthiuram monosulfide, phenol compounds such as 2,6-di-t-butyl-4-methylphenol, styrenated phenol, allyl alcohol, etc. Allyl compounds, halogenated hydrocarbon compounds such as dichloromethane, dibromomethane, carbon tetrabromide, α-benzyloxystyrene, α-benzyloxy Examples include vinyl ethers such as xiaacrylonitrile and α-benzyloxyacrylamide, triphenylethane, pentaphenylethane, acrolein, methacrolein, thioglycolic acid, thiomalic acid, 2-ethylhexyl thioglycolate, and the like. It can be used above. Furthermore, α-methylstyrene dimer can also be used as the chain transfer agent. α-Methylstyrene dimer includes 2,4-diphenyl-4-methyl-1-pentene, 2,4-diphenyl-4-methyl-2-pentene and 1,1,3-trimethyl-3-phenyl as isomers. Although there is indane, the α-methylstyrene dimer preferably has a 2,4-diphenyl-4-methyl-1-pentene content of 60% by weight or more, particularly 80% by weight or more. The amount of these chain transfer agents is not particularly limited, but is usually 0 to 5 parts by weight with respect to 100 parts by weight of the monomer.

本発明においては、さらに公知の重合開始剤として、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等の水溶性重合開始剤、クメンハイドロパーオキサイド、過酸化ベンゾイル、t−ブチルハイドロパーオキサイド、アセチルパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、1,1,3,3−テトラメチルブチルハイドロパーオキサイド等の油溶性重合開始剤を適宜用いることができる。特に過硫酸カリウム、過硫酸ナトリウム、クメンハイドロパーオキサイド、t−ブチルハイドロパーオキサイドの使用が好ましい。単量体100部に対する重合開始剤の量は特に制限されないが、単量体組成、重合反応系のpH、他の添加剤などの組み合わせを考慮して、重合熱や温度上昇が本発明の範囲になるよう、適宜調整される。   In the present invention, further known polymerization initiators include water-soluble polymerization initiators such as potassium persulfate, sodium persulfate and ammonium persulfate, cumene hydroperoxide, benzoyl peroxide, t-butyl hydroperoxide, acetyl peroxide. Oil-soluble polymerization initiators such as diisopropylbenzene hydroperoxide and 1,1,3,3-tetramethylbutyl hydroperoxide can be used as appropriate. In particular, it is preferable to use potassium persulfate, sodium persulfate, cumene hydroperoxide, or t-butyl hydroperoxide. Although the amount of the polymerization initiator with respect to 100 parts of the monomer is not particularly limited, the polymerization heat and temperature increase are within the scope of the present invention in consideration of the combination of the monomer composition, the pH of the polymerization reaction system, and other additives. It adjusts suitably so that it may become.

重合反応系内に前記重合開始剤とともにごく微量の鉄イオンと還元剤を組み合わせて存在させることも可能であり、それらの量は使用する単量体組成、重合開始剤の種類と量、重合反応系のpH、他の添加剤などの組み合わせを考慮して適宜調整される。
還元剤の具体例としては、亜硫酸塩、亜硫酸水素塩、ピロ亜硫酸塩、亜ニチオン酸塩、ニチオン酸塩、チオ硫酸塩、また、ホルムアルデヒドスルホン酸塩、ベンズアルデヒドスルホン酸塩などの還元性スルホン酸塩、更にはL−アスコルビン酸、酒石酸、クエン酸などのカルボン酸類、更にはデキストロース、サッカロース、乳糖などの還元糖類、更にはジメチルアニリン、トリエタノールアミンなどのアミン類が上げられる。特に亜硫酸ナトリウム、ホルムアルデヒドスルホン酸ナトリウム、L−アスコルビン酸、乳糖、デキストロースが好ましい。
A very small amount of iron ions and a reducing agent can be present in combination in the polymerization reaction system together with the polymerization initiator, and their amounts are determined based on the monomer composition used, the type and amount of the polymerization initiator, and the polymerization reaction. It is adjusted as appropriate in consideration of the combination of the pH of the system and other additives.
Specific examples of the reducing agent include sulfite, bisulfite, pyrosulfite, nitrite, nithionate, thiosulfate, and reducing sulfonates such as formaldehyde sulfonate and benzaldehyde sulfonate. Furthermore, carboxylic acids such as L-ascorbic acid, tartaric acid and citric acid, further reducing saccharides such as dextrose, saccharose and lactose, and amines such as dimethylaniline and triethanolamine can be mentioned. Particularly preferred are sodium sulfite, sodium formaldehyde sulfonate, L-ascorbic acid, lactose, and dextrose.

本発明においては、ペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサン、シクロヘプタン等の飽和炭化水素、ペンテン、ヘキセン、ヘプテン、シクロペンテン、シクロヘキセン、シクロヘプテン、4−メチルシクロヘキセン、1−メチルシクロヘキセン等の不飽和炭化水素、ベンゼン、トルエン、キシレン等の芳香族炭化水素などの炭化水素化合物を使用することができる。特に、沸点が適度に低く、重合終了後に水蒸気蒸留などによって回収、再利用しやすいシクロヘキセンやトルエンが、重合体ラテックスまたは重合体エマルジョンの品質の面から好適である。   In the present invention, saturated hydrocarbons such as pentane, hexane, heptane, octane, cyclohexane and cycloheptane, and unsaturated hydrocarbons such as pentene, hexene, heptene, cyclopentene, cyclohexene, cycloheptene, 4-methylcyclohexene and 1-methylcyclohexene. Hydrocarbon compounds such as aromatic hydrocarbons such as benzene, toluene and xylene can be used. In particular, cyclohexene and toluene, which have a moderately low boiling point and can be easily recovered and reused by steam distillation after the completion of polymerization, are preferred from the viewpoint of the quality of the polymer latex or polymer emulsion.

本発明においては、必要に応じて酸素補足剤、キレート剤、分散剤、pH調整剤等の公知の添加剤を用いることも差し支えなく、これらは種類、使用量ともに特に限定されず、適宜適量使用することが出来る。更には消泡剤、老化防止剤、防腐剤、抗菌剤、難燃剤、紫外線吸収剤などの公知の添加剤を用いることも差し支えなく、これらも種類、使用量ともに特に限定されず、適宜適量使用することが出来る。また、本発明の製造方法で製造された重合体ラテックス、または重合体エマルジョンは、その使用目的に応じて他のラテックスと適宜適量ブレンドすることもできる。   In the present invention, known additives such as oxygen scavengers, chelating agents, dispersants, pH adjusters and the like may be used as necessary. These types and amounts are not particularly limited, and appropriate amounts are used as appropriate. I can do it. Furthermore, known additives such as antifoaming agents, anti-aging agents, antiseptics, antibacterial agents, flame retardants, and UV absorbers may be used. I can do it. Further, the polymer latex or polymer emulsion produced by the production method of the present invention can be appropriately blended with other latexes depending on the purpose of use.

〔実施例〕
以下に実施例を用いて本発明をさらに具体的に説明するが、本発明はこれらによって何ら制限されるものではない。また、特段の断りが無い限り、%や部は重量を基準とする。
〔Example〕
The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to these examples. Unless otherwise specified,% and parts are based on weight.

各物性の評価方法
重合転化率の評価方法:重合体ラテックスまたは、重合体エマルジョン約2g秤量し、この値を「乾燥前重量」とする。これを150℃で30分乾燥して秤量し、この値を「乾燥後重量」とする。重合槽へ仕込む単量体以外の固形分部数をSとし、Sと「重合水部数」と「単量体合計部数」との合計を「仕込み総部数」とすれば、下記の式(1)と式(2)を経て、式(3)によって、重合転化率が計算される。
式(1) 重合転化部数 = 仕込み総部数×乾燥後重量/乾燥前重量−S
式(2) 単量体合計部数 = 仕込み総部数−(重合水部数+S)
式(3) 重合転化率 = 重合転化部数/単量体合計部数
Evaluation Method of Physical Properties Evaluation Method of Polymerization Conversion Rate: About 2 g of polymer latex or polymer emulsion is weighed, and this value is defined as “weight before drying”. This is dried at 150 ° C. for 30 minutes and weighed, and this value is defined as “weight after drying”. Assuming that the solid content part other than the monomer charged into the polymerization tank is S, and the sum of S, “polymerization water part” and “total monomer part” is “total charge part”, the following formula (1) The polymerization conversion rate is calculated by the formula (3) through the formula (2).
Formula (1) Number of polymerization conversion parts = total number of charged parts × weight after drying / weight before drying−S
Formula (2) Total number of monomers = Total number of charged parts-(Polymerized water parts + S)
Formula (3) Polymerization conversion rate = number of polymerization conversion parts / total number of monomers

重合熱利用効率E(%)の計算:初期仕込みを完了後、重合系内の温度をT1℃からT2℃まで(T2−T1)℃だけ昇温させるのに必要な熱量Hr(kcal)は、T2℃に到達するまでに槽内に仕込まれた物質の全熱容量Ha(kcal/℃)を用いて、下記の式(4)で計算される。
式(4) Hr = Ha×(T2−T1)
ただし、Haの算出に際して便宜的に単量体および油溶性物質の比熱を全て0.5、単量体以外の水溶性物質と重合に使用した純水の比熱を全て1.0とした。
また、槽内がT2℃に到達した時点までの重合熱Hpは、T2℃に到達するまでに槽内に仕込まれた単量体の部数M(部)、単量体1部当たりの単位重合熱Hu(kcal/部)、T2℃に到達した時点での重合転化率CT2を用いて下記の式(5)で計算される。
式(5) Hp = M×Hu×CT2
最終的に重合熱利用効率E(%)は、式(4)のHrと式(5)のHpを用いて下記の式(6)で計算される。
式(6) E = Hp/Hr×100
ただし、単量体1部当たりの単位重合熱Huについては単量体の種類や共重合する際の共重合組成により変化するので、本発明では、株式会社培風館出版から昭和50年6月20日に初版が発行された高分子学会編「共重合1反応解析」の295項から307項にわたる記載を参考にして、全ての単量体について16.5kcal/molの値を用いた。
具体的には、同書296項の表30に記載されている中で工業的に大量消費されている代表的な単量体の重合熱、ブタジエン17.6kcal/mol、スチレン16.68kcal/mol、アクリロニトリル18.3kcal/mol、メタクリル酸メチル13.0〜13.9kcal/molの重合熱を算術平均して、16.5kcal/molを全ての重合体組成について一律に使用することにした。例えば、分子量が54.1であるブタジエンの場合、重量(g)/部数換算係数を1(g/部)として単量体部数当たりの重合熱は16.5÷54.1=0.305kcal/部となり、同様にスチレンで0.158kcal/部、アクリロニトリルで0.345kcal/部、メタクリル酸メチルで0.165kcal/部となる。
Calculation of polymerization heat utilization efficiency E (%): After completing the initial charge, the amount of heat Hr (kcal) required to raise the temperature in the polymerization system from T1 ° C. to T2 ° C. by (T2−T1) ° C. Using the total heat capacity Ha (kcal / ° C.) of the substance charged in the tank until the temperature reaches T2 ° C., the following equation (4) is used.
Formula (4) Hr = Ha × (T2-T1)
However, for the convenience of calculation of Ha, the specific heat of the monomer and the oil-soluble substance is all 0.5, and the specific heat of the pure water used for the polymerization with the water-soluble substance other than the monomer is 1.0.
Further, the polymerization heat Hp until the time when the inside of the tank reaches T2 ° C. is the number M (parts) of the monomer charged in the tank until the temperature reaches T 2 ° C., and the unit polymerization per 1 part of the monomer. thermal Hu (kcal / portion) is calculated by the following formula (5) with a polymerization conversion rate C T2 at the time it reaches the T2 ° C..
Formula (5) Hp = M × Hu × C T2
Finally, the polymerization heat utilization efficiency E (%) is calculated by the following formula (6) using Hr of formula (4) and Hp of formula (5).
Formula (6) E = Hp / Hr × 100
However, the unit polymerization heat Hu per part of the monomer varies depending on the type of the monomer and the copolymer composition at the time of copolymerization. Therefore, in the present invention, June 20, 1975 from Baifukan Publishing Co., Ltd. The value of 16.5 kcal / mol was used for all monomers with reference to the description from 295 to 307 in the “Polymerization 1 reaction analysis” edited by the Society of Polymer Sciences, the first edition of which was published.
Specifically, the polymerization heat of typical monomers which are industrially consumed in large quantities as described in Table 30 of the same paragraph 296, butadiene 17.6 kcal / mol, styrene 16.68 kcal / mol, The heat of polymerization of acrylonitrile 18.3 kcal / mol and methyl methacrylate 13.0 to 13.9 kcal / mol was arithmetically averaged, and 16.5 kcal / mol was uniformly used for all polymer compositions. For example, in the case of butadiene having a molecular weight of 54.1, assuming that the weight (g) / part conversion factor is 1 (g / part), the polymerization heat per monomer part is 16.5 ÷ 54.1 = 0.305 kcal / Similarly, styrene is 0.158 kcal / part, acrylonitrile is 0.345 kcal / part, and methyl methacrylate is 0.165 kcal / part.

省エネルギー性:前記の重合熱利用効率E(%)を下記の様に相対区分して評価した。値が高いほど外部からの加熱熱量が少なく省エネルギー性が良い。
◎(優秀):50%以上
○(良好):50%未満〜15%以上
△(微劣):15%未満〜5%以上
×(不良): 5%未満
Energy saving property: The polymerization heat utilization efficiency E (%) was evaluated by relative classification as follows. The higher the value, the less the amount of heat from the outside and the better the energy saving.
◎ (Excellent): 50% or more ○ (Good): Less than 50% to 15% or more

粗大凝集物の発生量:得られた重合体ラテックス、または重合体エマルジョン1リットルを重量既知の200メッシュのステンレス製金網でろ過した。その際、金網上に捕捉された粗大凝集物を120℃で60分間乾燥して水分を除去し、その乾燥重量を測定した。測定された粗大凝集物の乾燥重量をろ過前の試料中の固形分重量で除して、粗大凝集物の発生量(重量%)を求めた。得られた測定結果に基づいて下記の様に相対区分、評価した。
◎(優秀):0.01未満
○(良好):0.01以上〜0.1未満
△(微劣):0.1以上〜0.5未満
×(不良):0.5以上
Generation amount of coarse aggregates: 1 liter of the obtained polymer latex or polymer emulsion was filtered through a 200-mesh stainless steel wire mesh having a known weight. At that time, coarse aggregates captured on the wire mesh were dried at 120 ° C. for 60 minutes to remove moisture, and the dry weight was measured. The measured dry weight of the coarse agglomerates was divided by the solid content weight in the sample before filtration to determine the amount of coarse agglomerates generated (% by weight). Based on the obtained measurement results, relative classification and evaluation were performed as follows.
◎ (Excellent): Less than 0.01 ○ (Good): 0.01 or more to less than 0.1 △ (Slightly inferior): 0.1 or more to less than 0.5 × (Bad): 0.5 or more

数平均粒子径の測定方法:重合体ラテックスまたは、重合体エマルジョンを透過型電子顕微鏡で撮影し、2000個の粒子の直径を測定して単純数平均値(nm)を算出した。
Method for measuring number average particle diameter: Polymer latex or polymer emulsion was photographed with a transmission electron microscope, the diameter of 2000 particles was measured, and a simple number average value (nm) was calculated.

ゴム強化樹脂用ゴム重合体ラテックスの作製
(実施例1)
重合体ラテックス1の作製:ステンレス製耐圧重合反応機に、減圧下で純水140部、ロジン酸カリウム2.5部、ブタジエン95部、スチレン4部、アクリロニトリル1部、t−ドデシルメルカプタン0.3部、硫酸第一鉄0.002部、ブドウ糖0.10部、燐酸ナトリウム0.05部を仕込み、初期仕込みを完了した。槽内温度は30℃であった。次にクメンハイドロパーオキサイド0.2部を仕込んで30℃(T1)で重合を開始した。重合開始から120分かけて、重合熱を利用しながら重合温度T2を70℃に上昇させた。この時点での槽内ラテックスの固形分濃度は17.9%、重合転化率は0.406であった。重合熱利用効率Eは158%であった。重合開始120分後から540分後までは、重合温度を70℃に保ち重合を継続した。重合開始540分後に重合転化率が0.97を超えたことを確認して槽内温度を35℃以下に冷却し、重合体ラテックス1を得た。
重合体ラテックス1の数平均粒子径は120nm、pH10.2、固形分濃度41.7%、粗大凝集物の発生量は0.006%であった。
Preparation of rubber polymer latex for rubber reinforced resin (Example 1)
Preparation of polymer latex 1: 140 parts of pure water, 2.5 parts of potassium rosinate, 95 parts of butadiene, 4 parts of styrene, 1 part of acrylonitrile, t-dodecyl mercaptan 0.3 in a pressure resistant polymerization reactor made of stainless steel under reduced pressure Part, 0.002 part of ferrous sulfate, 0.10 part of glucose, and 0.05 part of sodium phosphate were added to complete the initial charge. The temperature in the tank was 30 ° C. Next, 0.2 part of cumene hydroperoxide was charged and polymerization was started at 30 ° C. (T1). Over 120 minutes from the start of polymerization, the polymerization temperature T2 was raised to 70 ° C. while utilizing the heat of polymerization. At this time, the solid content concentration of the latex in the tank was 17.9%, and the polymerization conversion rate was 0.406. The polymerization heat utilization efficiency E was 158%. From 120 minutes after the start of the polymerization to 540 minutes later, the polymerization temperature was kept at 70 ° C. and the polymerization was continued. After confirming that the polymerization conversion rate exceeded 0.97 540 minutes after the start of the polymerization, the temperature in the tank was cooled to 35 ° C. or less, and a polymer latex 1 was obtained.
The number average particle size of the polymer latex 1 was 120 nm, the pH was 10.2, the solid content concentration was 41.7%, and the amount of coarse aggregates generated was 0.006%.

(実施例2)
重合体ラテックス2の作製:ステンレス製耐圧重合反応機に、減圧下で純水130部、ロジン酸カリウム1.5部、ブタジエン28部、スチレン1部、アクリロニトリル1部、t−ドデシルメルカプタン0.2部、硫酸第一鉄0.0015部、ブドウ糖0.11部、燐酸ナトリウム0.06部を仕込み、初期仕込みを完了した。槽内温度は35℃であった。次にt−ブチルハイドロパーオキサイド0.2部を仕込んで35℃(T1)で重合を開始した。重合開始から90分かけて、重合熱を利用しながら重合温度T2を74℃に上昇させると共に、重合開始60分後から360分後まで、ブタジエン69部、アクリロニトリル1部、ロジン酸カリウム1.0部、純水10部を連続的に添加した。重合開始から90分経過した時点で、槽内ラテックスの固形分濃度は12.5%、重合転化率は0.518であった。重合熱利用効率Eは98%であった。重合開始90分後から510分後までは、重合温度を74℃に保ち重合を継続した。重合開始510分後に重合転化率が0.97を超えたことを確認して槽内温度を35℃以下に冷却し、重合体ラテックス2を得た。
重合体ラテックス2の数平均粒子径は105nm、pH10.3、固形分濃度41.7%、粗大凝集物の発生量は0.002%であった。
(Example 2)
Preparation of polymer latex 2: In a stainless steel pressure-resistant polymerization reactor, 130 parts of pure water, 1.5 parts of potassium rosinate, 28 parts of butadiene, 1 part of styrene, 1 part of acrylonitrile, 1 part of t-dodecyl mercaptan 0.2 Part, 0.0015 part of ferrous sulfate, 0.11 part of glucose, and 0.06 part of sodium phosphate were added to complete the initial charge. The temperature in the tank was 35 ° C. Next, 0.2 part of t-butyl hydroperoxide was charged, and polymerization was started at 35 ° C. (T1). Over 90 minutes from the start of polymerization, the polymerization temperature T2 is increased to 74 ° C. while utilizing the heat of polymerization. From 60 minutes to 360 minutes after the start of polymerization, 69 parts of butadiene, 1 part of acrylonitrile, 1.0 rosin potassium Part and 10 parts of pure water were continuously added. When 90 minutes passed from the start of polymerization, the solid content concentration of the latex in the tank was 12.5%, and the polymerization conversion rate was 0.518. The polymerization heat utilization efficiency E was 98%. From 90 minutes after the start of polymerization to 510 minutes later, the polymerization temperature was kept at 74 ° C. and the polymerization was continued. After confirming that the polymerization conversion rate exceeded 0.97 510 minutes after the start of the polymerization, the temperature in the tank was cooled to 35 ° C. or lower to obtain a polymer latex 2.
The number average particle diameter of the polymer latex 2 was 105 nm, pH was 10.3, the solid content concentration was 41.7%, and the amount of coarse aggregates generated was 0.002%.

(比較例A)
重合体ラテックスAの作製:ステンレス製耐圧重合反応機に、減圧下で純水130部、ロジン酸カリウム1.5部、ブタジエン29部、スチレン5部、アクリロニトリル1部、t−ドデシルメルカプタン0.3部、硫酸第一鉄0.0017部、ブドウ糖0.09部、燐酸ナトリウム0.08部を仕込み、初期仕込みを完了した。槽内温度は35℃であった。重合熱を利用せずに外部ジャケットに高温水を流しながら90分かけて槽内温度を62℃に上昇させた。その後、過硫酸カリウム0.3部を仕込んで62℃で重合を開始した。重合開始と同時に300分かけて、ブタジエン64部、アクリロニトリル1部、ロジン酸カリウム1.0部、純水10部を連続的に添加した。重合開始時点、つまり62℃到達時点で、槽内ラテックスの固形分濃度は1.00%、重合転化率は0であった。重合熱利用効率Eは0%であった。重合開始直後から300分後までは、重合温度を62℃に保ち重合を継続した。重合開始300分後から510分後までは重合温度を62℃から70℃へ上昇させながら重合を継続した。重合開始510分後に重合転化率が0.97を超えたことを確認して槽内温度を35℃以下に冷却し、重合体ラテックスAを得た。
重合体ラテックス2の数平均粒子径は115nm、pH10.2、固形分濃度41.9%、粗大凝集物の発生量は0.012%であった。
(Comparative Example A)
Production of polymer latex A: In a pressure resistant polymerization reactor made of stainless steel, 130 parts of pure water, 1.5 parts of potassium rosinate, 29 parts of butadiene, 5 parts of styrene, 1 part of acrylonitrile, 0.3 part of t-dodecyl mercaptan under reduced pressure. Part, 0.0017 part of ferrous sulfate, 0.09 part of glucose and 0.08 part of sodium phosphate were charged, and the initial charge was completed. The temperature in the tank was 35 ° C. The temperature inside the tank was raised to 62 ° C. over 90 minutes while flowing high temperature water through the outer jacket without using polymerization heat. Thereafter, 0.3 part of potassium persulfate was charged and polymerization was started at 62 ° C. Over 300 minutes simultaneously with the start of polymerization, 64 parts of butadiene, 1 part of acrylonitrile, 1.0 part of potassium rosinate, and 10 parts of pure water were continuously added. When the polymerization started, that is, when the temperature reached 62 ° C., the solid content concentration of the latex in the tank was 1.00%, and the polymerization conversion rate was 0. The polymerization heat utilization efficiency E was 0%. From immediately after the start of polymerization to 300 minutes later, the polymerization temperature was kept at 62 ° C. and the polymerization was continued. Polymerization was continued while raising the polymerization temperature from 62 ° C. to 70 ° C. from 300 minutes to 510 minutes after the start of the polymerization. After confirming that the polymerization conversion rate exceeded 0.97 510 minutes after the start of polymerization, the temperature in the tank was cooled to 35 ° C. or lower, and a polymer latex A was obtained.
The number average particle diameter of the polymer latex 2 was 115 nm, the pH was 10.2, the solid content concentration was 41.9%, and the amount of coarse aggregates generated was 0.012%.

(比較例B)
重合体ラテックスBの作製:ステンレス製耐圧重合反応機に、減圧下で純水120部、ロジン酸カリウム1.5部、ブタジエン95部、スチレン5部、t−ドデシルメルカプタン0.3部、硫酸第一鉄0.002部、ブドウ糖0.10部、燐酸ナトリウム0.05部を仕込み、初期仕込みを完了した。槽内温度は33℃であった。次にクメンハイドロパーオキサイド0.2部を仕込んで33℃(T1)で重合を開始した。重合開始から180分かけて、重合熱を利用しながら重合温度T2を54℃に上昇させると共に、重合開始180分後から780分後までロジン酸カリウム1.5部と純水20部を連続的に添加した。重合開始から180分経過した時点で、槽内ラテックスの固形分濃度は11.2%、重合転化率は0.229であった。重合熱利用効率Eは190%であった。重合開始180分後から900分後までは、重合温度を54℃に保ち重合を継続した。重合開始900分後に重合転化率が0.97を超えたことを確認して槽内温度を35℃以下に冷却し、重合体ラテックスBを得た。
重合体ラテックスBの数平均粒子径は170nm、pH10.3、固形分濃度42.0%、粗大凝集物の発生量は0.618%であった。
(Comparative Example B)
Preparation of polymer latex B: In stainless steel pressure-resistant polymerization reactor, 120 parts of pure water, 1.5 parts of potassium rosinate, 95 parts of butadiene, 5 parts of styrene, 0.3 part of t-dodecyl mercaptan, sulfuric acid The initial charge was completed by charging 0.002 part of ferrous iron, 0.10 part of glucose, and 0.05 part of sodium phosphate. The temperature in the tank was 33 ° C. Next, 0.2 part of cumene hydroperoxide was charged, and polymerization was started at 33 ° C. (T1). Over 180 minutes from the start of polymerization, the polymerization temperature T2 is increased to 54 ° C. using polymerization heat, and 1.5 parts of potassium rosinate and 20 parts of pure water are continuously added from 180 minutes to 780 minutes after the start of polymerization. Added to. When 180 minutes passed from the start of polymerization, the solid content concentration of the latex in the tank was 11.2%, and the polymerization conversion rate was 0.229. The polymerization heat utilization efficiency E was 190%. From 180 minutes after the start of polymerization to 900 minutes later, the polymerization temperature was kept at 54 ° C. and the polymerization was continued. 900 minutes after the start of the polymerization, it was confirmed that the polymerization conversion rate exceeded 0.97, and the temperature in the tank was cooled to 35 ° C. or lower to obtain a polymer latex B.
The number average particle diameter of the polymer latex B was 170 nm, the pH was 10.3, the solid content concentration was 42.0%, and the amount of coarse aggregates generated was 0.618%.

ディップ成型用ゴム重合体ラテックスの作製
(実施例3)
重合体ラテックス3の作製:ステンレス製耐圧重合反応機に、減圧下で純水130部、ドデシルベンゼンスルホン酸ナトリウム1.5部、ブタジエン67部、アクリロニトリル29部、メタクリル酸4部、t−ドデシルメルカプタン0.3部、硫酸第一鉄0.0015部、L−アスコルビン酸0.20部を仕込み、初期仕込みを完了した。槽内温度は35℃であった。次にクメンハイドロパーオキサイド0.2部を仕込んで35℃(T1)で重合を開始した。重合開始から60分かけて、重合熱を利用しながら重合温度T2を65℃に上昇させた。この時点での槽内ラテックスの固形分濃度は9.29%、重合転化率は0.196であった。重合熱利用効率Eは112%であった。重合開始60分後から120分後までは、重合温度を65℃に保ちながら、重合開始120分後から540分後までは、重合温度を65℃から70℃へ上昇させながら重合を継続した。また、重合開始60分後から360分後までは、ドデシルベンゼンスルホン酸ナトリウム0.5部と純水10部を連続的に添加した。重合開始540分後に重合転化率が0.97を超えたことを確認してからジエチルヒドロキシアミン0.01部を添加し、アンモニア水でpHを8以上に保ちながら、水蒸気蒸留によって未反応単量体を除去して重合体ラテックス3を得た。
重合体ラテックス3の数平均粒子径は115nm、pH8.2、固形分濃度45.7%、粗大凝集物の発生量は0.002%であった。
Preparation of rubber polymer latex for dip molding (Example 3)
Production of polymer latex 3: In a stainless steel pressure-resistant polymerization reactor, 130 parts of pure water, 1.5 parts of sodium dodecylbenzenesulfonate, 67 parts of butadiene, 29 parts of acrylonitrile, 4 parts of methacrylic acid, t-dodecyl mercaptan under reduced pressure 0.3 parts, ferrous sulfate 0.0015 parts, and L-ascorbic acid 0.20 parts were charged to complete the initial charge. The temperature in the tank was 35 ° C. Next, 0.2 part of cumene hydroperoxide was charged and polymerization was started at 35 ° C. (T1). Over 60 minutes from the start of polymerization, the polymerization temperature T2 was increased to 65 ° C. while utilizing the heat of polymerization. At this time, the solid content concentration of the latex in the tank was 9.29%, and the polymerization conversion was 0.196. The polymerization heat utilization efficiency E was 112%. From 60 minutes after the start of polymerization to 120 minutes later, while maintaining the polymerization temperature at 65 ° C., from 120 minutes after the start of polymerization to 540 minutes later, the polymerization was continued while increasing the polymerization temperature from 65 ° C. to 70 ° C. From 60 minutes after the start of polymerization to 360 minutes later, 0.5 parts of sodium dodecylbenzenesulfonate and 10 parts of pure water were continuously added. After confirming that the polymerization conversion rate exceeded 0.97 540 minutes after the start of the polymerization, 0.01 part of diethylhydroxyamine was added, and the unreacted single amount was obtained by steam distillation while maintaining the pH at 8 or higher with aqueous ammonia. The body was removed to obtain a polymer latex 3.
The number average particle diameter of the polymer latex 3 was 115 nm, pH 8.2, the solid content concentration was 45.7%, and the amount of coarse aggregates generated was 0.002%.

(実施例4)
重合体ラテックス4の作製:ステンレス製耐圧重合反応機に、減圧下で純水130部、ドデシルベンゼンスルホン酸ナトリウム1.0部、ブタジエン27部、アクリロニトリル9部、メタクリル酸4部、t−ドデシルメルカプタン0.3部、硫酸第一鉄0.0010部、L−アスコルビン酸0.20部を仕込み、初期仕込みを完了した。槽内温度は30℃であった。次にクメンハイドロパーオキサイド0.2部を仕込んで30℃(T1)で重合を開始した。重合開始から90分かけて、重合熱を利用しながら重合温度T2を60℃に上昇させると共に、重合開始60分後から360分後まで、ブタジエン40部、アクリロニトリル20部、ドデシルベンゼンスルホン酸ナトリウム1.5部、純水10部を連続的に添加した。重合開始から90分経過した時点で、槽内ラテックスの固形分濃度は12.5%、重合転化率は0.449であった。重合熱利用効率Eは135%であった。重合開始90分後から180分後までは、重合温度を60℃に保ち、重合開始180分後から510分後までは重合温度を60℃から70℃へ上昇させながら重合を継続した。重合開始510分後に重合転化率が0.97を超えたことを確認してからジエチルヒドロキシアミン0.01部を添加し、アンモニア水でpHを8以上に保ちながら、水蒸気蒸留によって未反応単量体を除去して重合体ラテックス4を得た。
重合体ラテックス4の数平均粒子径は125nm、pH8.2、固形分濃度45.6%、粗大凝集物の発生量は0.003%であった。
Example 4
Preparation of polymer latex 4: In a stainless steel pressure-resistant polymerization reactor, 130 parts of pure water, 1.0 part of sodium dodecylbenzenesulfonate, 27 parts of butadiene, 9 parts of acrylonitrile, 4 parts of methacrylic acid, t-dodecyl mercaptan under reduced pressure 0.3 parts, ferrous sulfate 0.0010 parts and L-ascorbic acid 0.20 parts were charged to complete the initial charge. The temperature in the tank was 30 ° C. Next, 0.2 part of cumene hydroperoxide was charged, and polymerization was started at 30 ° C. (T1). Over 90 minutes from the start of polymerization, the polymerization temperature T2 is increased to 60 ° C. while utilizing the heat of polymerization. From 60 minutes to 360 minutes after the start of polymerization, 40 parts of butadiene, 20 parts of acrylonitrile, sodium dodecylbenzenesulfonate 1 .5 parts and 10 parts of pure water were continuously added. When 90 minutes passed from the start of polymerization, the solid content concentration of the latex in the tank was 12.5%, and the polymerization conversion rate was 0.449. The polymerization heat utilization efficiency E was 135%. From 90 minutes to 180 minutes after the start of polymerization, the polymerization temperature was maintained at 60 ° C., and from 180 minutes to 510 minutes after the start of polymerization, the polymerization was continued while increasing the polymerization temperature from 60 ° C. to 70 ° C. After confirming that the polymerization conversion rate exceeded 0.97 510 minutes after the start of the polymerization, 0.01 part of diethylhydroxyamine was added, and the unreacted single amount was obtained by steam distillation while maintaining the pH at 8 or higher with aqueous ammonia. The body was removed to obtain a polymer latex 4.
The number average particle diameter of the polymer latex 4 was 125 nm, pH 8.2, the solid content concentration was 45.6%, and the amount of coarse aggregates generated was 0.003%.

(比較例C)
重合体ラテックスCの作製:ステンレス製耐圧重合反応機に、減圧下で純水130部、ドデシルベンゼンスルホン酸ナトリウム1.5部、ブタジエン24.5部、アクリロニトリル18.5部、メタクリル酸3部、t−ドデシルメルカプタン0.3部、硫酸第一鉄0.0015部、L−アスコルビン酸0.25部を仕込み、初期仕込みを完了した。槽内温度は35℃であった。重合熱を利用せずに外部ジャケットに高温水を流しながら90分かけて槽内温度を62℃に上昇させた。その後、過硫酸カリウム0.5部を仕込んで62℃で重合を開始した。重合開始と同時に300分かけて、ブタジエン42部、アクリロニトリル10部、ドデシルベンゼンスルホン酸ナトリウム1.0部、メタクリル酸2部を連続的に添加した。重合開始時点、つまり62℃到達時点で、槽内ラテックスの固形分濃度は0.98%、重合転化率は0であった。重合熱利用効率Eは0%であった。重合開始直後から300分後までは、重合温度を62℃に保ち重合を継続した。重合開始300分後から重合開始510分後までは重合温度を62℃から70℃へ上昇させながら重合を継続した。重合開始510分後に重合転化率が0.97を超えたことを確認してからジエチルヒドロキシアミン0.01部を添加し、アンモニア水でpHを8以上に保ちながら、水蒸気蒸留によって未反応単量体を除去して重合体ラテックスCを得た。
重合体ラテックスCの数平均粒子径は130nm、pH8.0、固形分濃度45.0%、粗大凝集物の発生量は0.025%であった。
(Comparative Example C)
Production of polymer latex C: In a pressure-resistant polymerization reactor made of stainless steel, 130 parts of pure water, 1.5 parts of sodium dodecylbenzenesulfonate, 24.5 parts of butadiene, 18.5 parts of acrylonitrile, 3 parts of methacrylic acid, The initial charge was completed by charging 0.3 part of t-dodecyl mercaptan, 0.0015 part of ferrous sulfate and 0.25 part of L-ascorbic acid. The temperature in the tank was 35 ° C. The temperature inside the tank was raised to 62 ° C. over 90 minutes while flowing high temperature water through the outer jacket without using polymerization heat. Thereafter, 0.5 part of potassium persulfate was charged and polymerization was started at 62 ° C. Over the course of 300 minutes simultaneously with the start of polymerization, 42 parts of butadiene, 10 parts of acrylonitrile, 1.0 part of sodium dodecylbenzenesulfonate, and 2 parts of methacrylic acid were continuously added. When the polymerization started, that is, when the temperature reached 62 ° C., the solid content concentration of the latex in the tank was 0.98%, and the polymerization conversion rate was 0. The polymerization heat utilization efficiency E was 0%. From immediately after the start of polymerization to 300 minutes later, the polymerization temperature was kept at 62 ° C. and the polymerization was continued. From 300 minutes after the start of polymerization to 510 minutes after the start of polymerization, the polymerization was continued while raising the polymerization temperature from 62 ° C to 70 ° C. After confirming that the polymerization conversion rate exceeded 0.97 510 minutes after the start of the polymerization, 0.01 part of diethylhydroxyamine was added, and the unreacted single amount was obtained by steam distillation while maintaining the pH at 8 or higher with aqueous ammonia. The body was removed to obtain a polymer latex C.
The number average particle diameter of the polymer latex C was 130 nm, pH 8.0, the solid content concentration was 45.0%, and the amount of coarse aggregates generated was 0.025%.

(比較例D)
重合体ラテックスDの作製:ステンレス製耐圧重合反応機に、減圧下で純水120部、ドデシルベンゼンスルホン酸ナトリウム1.5部、ブタジエン66部、アクリロニトリル29部、メタクリル酸5部、t−ドデシルメルカプタン0.3部、硫酸第一鉄0.0010部、L−アスコルビン酸0.20部を仕込み、初期仕込みを完了した。槽内温度は28℃であった。次にクメンハイドロパーオキサイド0.2部を仕込んで28℃(T1)で重合を開始した。重合開始から180分かけて、重合熱を利用しながら重合温度T2を52℃に上昇させると共に、重合開始180分後から780分後までドデシルベンゼンスルホン酸ナトリウム1.5部と純水20部を連続的に添加した。重合開始から180分経過した時点で、槽内ラテックスの固形分濃度は11.2%、重合転化率は0.228であった。重合熱利用効率Eは170%であった。重合開始180分後から900分後までは、重合温度を52℃に保ち重合を継続した。重合開始900分後に重合転化率が0.97を超えたことを確認してからジエチルヒドロキシアミン0.01部を添加し、アンモニア水でpHを8以上に保ちながら、水蒸気蒸留によって未反応単量体を除去して重合体ラテックスDを得た。
重合体ラテックスDの数平均粒子径は165nm、pH8.1、固形分濃度45.2%、粗大凝集物の発生量は0.425%であった。
(Comparative Example D)
Preparation of polymer latex D: In stainless steel pressure-resistant polymerization reactor, 120 parts of pure water, 1.5 parts of sodium dodecylbenzenesulfonate, 66 parts of butadiene, 29 parts of acrylonitrile, 5 parts of methacrylic acid, t-dodecyl mercaptan under reduced pressure 0.3 parts, ferrous sulfate 0.0010 parts and L-ascorbic acid 0.20 parts were charged to complete the initial charge. The temperature in the tank was 28 ° C. Next, 0.2 part of cumene hydroperoxide was charged, and polymerization was started at 28 ° C. (T1). Over 180 minutes from the start of polymerization, the polymerization temperature T2 is increased to 52 ° C. while utilizing the heat of polymerization, and 1.5 parts of sodium dodecylbenzenesulfonate and 20 parts of pure water are added from 180 minutes to 780 minutes after the start of polymerization. Added continuously. When 180 minutes passed from the start of the polymerization, the solid content concentration of the latex in the tank was 11.2%, and the polymerization conversion rate was 0.228. The polymerization heat utilization efficiency E was 170%. From 180 minutes after the start of polymerization to 900 minutes later, the polymerization temperature was kept at 52 ° C. and the polymerization was continued. After confirming that the polymerization conversion rate exceeded 0.97 900 minutes after the start of the polymerization, 0.01 part of diethylhydroxyamine was added, and the unreacted single amount was obtained by steam distillation while maintaining the pH at 8 or higher with aqueous ammonia. The body was removed to obtain a polymer latex D.
The number average particle diameter of the polymer latex D was 165 nm, pH 8.1, the solid content concentration was 45.2%, and the generation amount of coarse aggregates was 0.425%.

以上の重合体ラテックスの重合結果を表1にまとめた。   The polymerization results of the above polymer latex are summarized in Table 1.

以上のとおり、本発明は重合反応中に発生する粗大凝集物の発生が極めて少なく、かつ、製造初期において重合反応系外からの過大な加熱を必要とせず、省エネルギー性に優れた効率のよい重合体ラテックス、または重合体エマルジョンの製造を可能にするものである。   As described above, the present invention generates very little aggregates during the polymerization reaction, and does not require excessive heating from the outside of the polymerization reaction system in the initial stage of production, and is an efficient heavy with excellent energy savings. It enables the production of a combined latex or polymer emulsion.

Claims (7)

重合性単量体をラジカル乳化重合して得られる重合体ラテックス、または重合体エマルジョンの製造方法であって、単量体の一部または全量を仕込み完了後、重合系内の温度T1が0〜50℃の範囲で重合を開始した後、重合系内の温度T2を60℃〜100℃の範囲に到達させるに際し、その温度上昇(T2−T1)に必要な熱量の15%以上を重合による重合熱を利用して昇温させることを特徴とする重合体ラテックス、または重合体エマルジョンの製造方法。   A method for producing a polymer latex obtained by radical emulsion polymerization of a polymerizable monomer, or a polymer emulsion, and after completion of charging part or all of the monomer, the temperature T1 in the polymerization system is 0 to 0. After starting the polymerization in the range of 50 ° C., when the temperature T2 in the polymerization system reaches the range of 60 ° C. to 100 ° C., 15% or more of the amount of heat required for the temperature rise (T2-T1) is polymerized by polymerization. A method for producing a polymer latex or a polymer emulsion, wherein the temperature is raised using heat. 重合開始から180〜900分で重合性単量体の重合転化率を0.9以上に到達させる請求項1に記載の重合体ラテックス、または重合体エマルジョンの製造方法。   The method for producing a polymer latex or a polymer emulsion according to claim 1, wherein the polymerization conversion rate of the polymerizable monomer reaches 0.9 or more in 180 to 900 minutes from the start of polymerization. 重合開始から180〜540分で重合性単量体の重合転化率を0.9以上に到達させる請求項1に記載の重合体ラテックス、または重合体エマルジョンの製造方法。   The method for producing a polymer latex or a polymer emulsion according to claim 1, wherein the polymerization conversion rate of the polymerizable monomer reaches 0.9 or more in 180 to 540 minutes from the start of polymerization. 重合性単量体合計100重量部に対して65〜300重量部の重合水を使用してなる請求項1〜3何れかに記載の重合体ラテックス、または重合体エマルジョンの製造方法。   The method for producing a polymer latex or polymer emulsion according to any one of claims 1 to 3, wherein 65 to 300 parts by weight of polymerization water is used with respect to 100 parts by weight of the total amount of polymerizable monomers. T2−T1=10℃以上である請求項1〜4何れかに記載の重合体ラテックス、または重合体エマルジョンの製造方法。   It is T2-T1 = 10 degreeC or more, The manufacturing method of the polymer latex in any one of Claims 1-4, or a polymer emulsion. 温度上昇(T2−T1)に必要な熱量の50%以上を重合による重合熱によって昇温させることを特徴とする請求項1〜5何れかに記載の重合体ラテックス、または重合体エマルジョンの製造方法。   The method for producing a polymer latex or a polymer emulsion according to any one of claims 1 to 5, wherein a temperature of 50% or more of the amount of heat necessary for the temperature rise (T2-T1) is raised by polymerization heat by polymerization. . 重合性単量体が共役ジエン系単量体を20〜100重量%含むことを特徴とする請求項1〜6何れかに記載の重合体ラテックス、または重合体エマルジョンの製造方法。   The method for producing a polymer latex or a polymer emulsion according to any one of claims 1 to 6, wherein the polymerizable monomer contains 20 to 100% by weight of a conjugated diene monomer.
JP2008310754A 2007-12-07 2008-12-05 Method for producing polymer latex or polymer emulsion Active JP5751605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008310754A JP5751605B2 (en) 2007-12-07 2008-12-05 Method for producing polymer latex or polymer emulsion

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007317014 2007-12-07
JP2007317014 2007-12-07
JP2008310754A JP5751605B2 (en) 2007-12-07 2008-12-05 Method for producing polymer latex or polymer emulsion

Publications (2)

Publication Number Publication Date
JP2009155643A true JP2009155643A (en) 2009-07-16
JP5751605B2 JP5751605B2 (en) 2015-07-22

Family

ID=40959976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008310754A Active JP5751605B2 (en) 2007-12-07 2008-12-05 Method for producing polymer latex or polymer emulsion

Country Status (1)

Country Link
JP (1) JP5751605B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009215536A (en) * 2008-02-14 2009-09-24 Nippon A&L Inc Method of producing copolymer latex for paper coating, copolymer latex for paper coating and composition for paper coating
JP2014088536A (en) * 2012-10-30 2014-05-15 Jintex Corporation Ltd Method for producing carboxylated nitrile butadiene rubber latex and product obtained thereby

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5740511A (en) * 1980-07-01 1982-03-06 Stamicarbon Manufacture of copolymer
JPH06179772A (en) * 1992-12-11 1994-06-28 Asahi Chem Ind Co Ltd Production of carboxyl-modified butadiene-based copolymer latex
JPH09176212A (en) * 1995-12-04 1997-07-08 Basf Ag Method for preparing aqueous polymer dispersion
JP2003238635A (en) * 2002-02-20 2003-08-27 Asahi Kasei Corp Copolymer latex and composition for paper coating
JP2005133000A (en) * 2003-10-31 2005-05-26 Dainippon Ink & Chem Inc Method for producing aqueous dispersion-type acrylic polymer
JP2008291221A (en) * 2007-04-26 2008-12-04 Dic Corp Process for preparing aqueous dispersion of emulsion polymer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5740511A (en) * 1980-07-01 1982-03-06 Stamicarbon Manufacture of copolymer
JPH06179772A (en) * 1992-12-11 1994-06-28 Asahi Chem Ind Co Ltd Production of carboxyl-modified butadiene-based copolymer latex
JPH09176212A (en) * 1995-12-04 1997-07-08 Basf Ag Method for preparing aqueous polymer dispersion
JP2003238635A (en) * 2002-02-20 2003-08-27 Asahi Kasei Corp Copolymer latex and composition for paper coating
JP2005133000A (en) * 2003-10-31 2005-05-26 Dainippon Ink & Chem Inc Method for producing aqueous dispersion-type acrylic polymer
JP2008291221A (en) * 2007-04-26 2008-12-04 Dic Corp Process for preparing aqueous dispersion of emulsion polymer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009215536A (en) * 2008-02-14 2009-09-24 Nippon A&L Inc Method of producing copolymer latex for paper coating, copolymer latex for paper coating and composition for paper coating
JP2014088536A (en) * 2012-10-30 2014-05-15 Jintex Corporation Ltd Method for producing carboxylated nitrile butadiene rubber latex and product obtained thereby

Also Published As

Publication number Publication date
JP5751605B2 (en) 2015-07-22

Similar Documents

Publication Publication Date Title
JP5185146B2 (en) Method for producing copolymer latex for paper coating, copolymer latex for paper coating, and composition for paper coating
JP2012528910A5 (en)
JP5751605B2 (en) Method for producing polymer latex or polymer emulsion
AU659315B2 (en) Method of producing polymeric latex
JP6600438B1 (en) Process for producing conjugated diene copolymer latex
JP4503261B2 (en) Copolymer latex with excellent long-term storage stability
JP6662937B2 (en) Extended surfactants for emulsion polymerization
JPH05279407A (en) Preparation of carboxylated latex by selective monomer addition and polymerization
JP7122351B2 (en) Copolymer latex and composition
JP5200279B2 (en) Method for producing copolymer latex for rubber and fiber adhesive
JP5648554B2 (en) Method for adjusting pH of polymer latex
CN105273119B (en) A kind of preparation method of high degree of polymerization of polyvinyl chloride resin
JP5859693B1 (en) Foam rubber aqueous composition and foam rubber
JP5602215B2 (en) Copolymer latex for adhesive of rubber and fiber and composition for adhesive
JP5302251B2 (en) Copolymer latex
JP2004131734A (en) Latex and its production method
JP2697410B2 (en) Latex manufacturing method
TWI820214B (en) Method for preparing conjugated diene-based polymer and method for preparing graft copolymer comprising the same
JP6582161B1 (en) Process for producing conjugated diene copolymer latex
JPS61278341A (en) Emulsifier for emulsion polymerization
JP2009120676A (en) Copolymer and method for producing the same
JPH0445102A (en) Production of emulsion polymer and emulsion polymer obtained by the same production
JP2003335807A (en) Method for producing polymer latex
JP5797681B2 (en) Method for producing copolymer latex and copolymer latex
JP5609847B2 (en) Method for producing aqueous resin dispersion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150514

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5751605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150