JP2009154070A - Purified water recovering apparatus and method for recovering purified water - Google Patents

Purified water recovering apparatus and method for recovering purified water Download PDF

Info

Publication number
JP2009154070A
JP2009154070A JP2007333795A JP2007333795A JP2009154070A JP 2009154070 A JP2009154070 A JP 2009154070A JP 2007333795 A JP2007333795 A JP 2007333795A JP 2007333795 A JP2007333795 A JP 2007333795A JP 2009154070 A JP2009154070 A JP 2009154070A
Authority
JP
Japan
Prior art keywords
water
reverse osmosis
osmosis membrane
purified water
membrane unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007333795A
Other languages
Japanese (ja)
Inventor
Susumu Hasegawa
進 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco Solutions Co Ltd filed Critical Kobelco Eco Solutions Co Ltd
Priority to JP2007333795A priority Critical patent/JP2009154070A/en
Priority to CN2012101869180A priority patent/CN102745775A/en
Priority to KR1020107005808A priority patent/KR20100075839A/en
Priority to BRPI0817155A priority patent/BRPI0817155A2/en
Priority to PCT/JP2008/069206 priority patent/WO2009057501A1/en
Priority to CN200880107777.0A priority patent/CN101801857B/en
Publication of JP2009154070A publication Critical patent/JP2009154070A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a purified water recovering apparatus which can relatively stably obtain purified water with high purity even in the case of waste water such as domestic waste water and industrial waste water. <P>SOLUTION: In the purified water recovering apparatus comprising a reverse osmosis membrane unit separating feed water into purified water as permeated water and concentrated water as non-permeated water by reverse osmosis membrane filtration, where waste water is fed as the feed water, and the purified water exhausted from the reverse osmosis membrane unit is recovered, the apparatus comprises: at least one selected from an impurity degree measuring device measuring the impurity degree of the feed water, the concentrated water or the purified water; and a valve mechanism including at least either a purified water valve regulating the flow rate of the purified water or a concentrated water valve regulating the flow rate of the concentrated water, and in the case the measured value measured by the impurity degree measuring device is not less than a standard value or exceeds the standard value, the permeability in the reverse osmosis membrane unit is limited by the valve mechanism. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、逆浸透膜ユニットを備えた浄化水回収装置及びその装置を用いた浄化水の回収方法に関する。   The present invention relates to a purified water recovery device including a reverse osmosis membrane unit and a purified water recovery method using the device.

従来より、この種の浄化水回収装置は、海水の淡水化、鹹水の軟水化、一般生活用の純水の製造などに於いて使用されている(例えば、特許文献1)。
そして、この種の浄化水回収装置は、比較的高純度の浄化水を得ることができるという利点を有している。
特開2005−279614号公報
Conventionally, this type of purified water recovery apparatus has been used in desalination of seawater, softening of brine, production of pure water for general use, and the like (for example, Patent Document 1).
And this kind of purified water collection | recovery apparatus has the advantage that relatively high purity purified water can be obtained.
JP 2005-279614 A

しかしながら、斯かる浄化水回収装置は、濾過される原水の逆浸透膜ユニットに供給される供給水(原水)の水質が悪化すると、それに応じて得られる浄化水の水質も悪化するという欠点を有しており、原水として、生活廃水、工場廃水等が使用される場合に於いては、安定して高純度の浄化水が得られないという問題を有している。
即ち、生活廃水、工場廃水等の廃水は、無機塩濃度が1日の間でも時間帯等によって数倍も異なるというぐらい変動の激しいものであり、それに比例して、浄化水の純度も変動することとなる。
However, such a purified water recovery apparatus has a drawback that when the quality of the feed water (raw water) supplied to the reverse osmosis membrane unit to be filtered is deteriorated, the quality of the purified water obtained accordingly is also deteriorated. However, when domestic wastewater, factory wastewater, or the like is used as raw water, there is a problem that purified water with high purity cannot be obtained stably.
In other words, wastewater such as domestic wastewater and factory wastewater is so fluctuating that the inorganic salt concentration varies several times depending on the time zone even during one day, and the purity of purified water also fluctuates in proportion to it. It will be.

斯かる問題点に鑑み、本発明は、生活廃水、工場廃水、ゴミ浸出水等の廃水であっても比較的安定して純度の高い浄化水をうることができる浄化水回収装置及び浄化水の回収方法を提供することを課題とするものである。   In view of such problems, the present invention provides a purified water recovery apparatus and purified water that can obtain purified water with relatively high purity even in waste water such as domestic waste water, factory waste water, and waste leachate. It is an object to provide a recovery method.

上記課題を解決すべく、本発明は、供給水を逆浸透膜濾過により透過水たる浄化水と非透過水たる濃縮水とに分離する逆浸透膜ユニットを備え、前記供給水として廃水が供給され、前記逆浸透膜ユニットから排出された浄化水を回収するように構成された浄化水回収装置であって、
前記供給水、前記濃縮水又は前記浄化水の不純度を測定する不純度測定装置の少なくとも一つと、前記浄化水の流量を調節する浄化水バルブ及び前記濃縮水の流量を調節する濃縮水バルブの少なくとも何れか一方を含むバルブ機構とを備え、前記不純度測定装置によって測定された測定値に基づいて、前記バルブ機構により前記逆浸透膜ユニットにおける透過率が制御されていることを特徴とする浄化水回収装置を提供する。
In order to solve the above problems, the present invention includes a reverse osmosis membrane unit that separates supply water into purified water that is permeated water and concentrated water that is non-permeated water by reverse osmosis membrane filtration, and waste water is supplied as the supplied water. A purified water recovery device configured to recover purified water discharged from the reverse osmosis membrane unit,
At least one impurity measuring device for measuring the purity of the supply water, the concentrated water or the purified water, a purified water valve for adjusting the flow rate of the purified water, and a concentrated water valve for adjusting the flow rate of the concentrated water. And a valve mechanism including at least one of them, and the transmittance in the reverse osmosis membrane unit is controlled by the valve mechanism based on the measured value measured by the impurity measuring device. A water recovery device is provided.

また、本発明は、供給水を逆浸透膜濾過により透過水たる浄化水と非透過水たる濃縮水とに分離する逆浸透膜ユニットを流れ方向に複数段備え、最上流側の逆浸透膜ユニットは供給水として廃水が供給され、他の逆浸透膜ユニットは供給水として前段の逆浸透膜ユニットから排出された濃縮水が供給されるように配列され、各逆浸透膜ユニットから排出された浄化水が回収されるように構成された浄化水回収装置であって、
少なくとも何れか一の逆浸透膜ユニットについて供給される供給水、排出された濃縮水、排出された浄化水の不純度を測定する不純度測定装置の少なくとも一つと、該一の逆浸透膜ユニットから排出される浄化水の流量を調節する浄化水バルブ及び該一の逆浸透膜ユニットから排出される濃縮水の流量を調節する濃縮水バルブの少なくとも何れか一方を含むバルブ機構とを備え、前記不純度測定装置によって測定された測定値に基づいて、前記バルブ機構により前記逆浸透膜ユニットにおける透過率が制御されていることを特徴とする浄化水回収装置を提供する。
The present invention further includes a reverse osmosis membrane unit that separates supply water into purified water that is permeated water and concentrated water that is non-permeated water by reverse osmosis membrane filtration in the flow direction, and a reverse osmosis membrane unit on the most upstream side. The waste water is supplied as the supply water, and the other reverse osmosis membrane units are arranged so that the concentrated water discharged from the preceding reverse osmosis membrane unit is supplied as the supply water, and the purification discharged from each reverse osmosis membrane unit. A purified water recovery device configured to recover water,
At least one of the purity measuring device for measuring the purity of the supplied water, the drained concentrated water, and the drained purified water supplied for at least one of the reverse osmosis membrane units, and the one reverse osmosis membrane unit A valve mechanism including at least one of a purified water valve for adjusting the flow rate of the purified water discharged and a concentrated water valve for adjusting the flow rate of the concentrated water discharged from the one reverse osmosis membrane unit, Provided is a purified water recovery apparatus characterized in that the permeability in the reverse osmosis membrane unit is controlled by the valve mechanism based on a measurement value measured by a purity measuring apparatus.

また、本発明は、供給水を逆浸透膜濾過により透過水と非透過水たる濃縮水とに分離する逆浸透膜ユニットを流れ方向に複数段備え、最上流側の逆浸透膜ユニットは供給水として廃水が供給され、他の逆浸透膜ユニットは供給水として前段の逆浸透膜ユニットから排出された透過水が供給されるように配列され、少なくとも何れかの逆浸透膜ユニットからの透過水が浄化水として回収されるように構成された浄化水回収装置であって、
少なくとも何れか一の逆浸透膜ユニットについて供給される供給水、排出された濃縮水、排出された透過水の不純度を測定する不純度測定装置の少なくとも一つと、該一の逆浸透膜ユニットから排出される透過水の流量を調節する透過水バルブ及び該一の逆浸透膜ユニットから排出される濃縮水の流量を調節する濃縮水バルブの少なくとも何れか一方を含むバルブ機構とを備え、前記不純度測定装置によって測定された測定値に基づいて、前記バルブ機構により前記一の逆浸透膜ユニットにおける透過率が制御されていることを特徴とする浄化水回収装置を提供する。
Further, the present invention includes a plurality of reverse osmosis membrane units in the flow direction for separating the feed water into permeated water and concentrated water that is non-permeated water by reverse osmosis membrane filtration. The other reverse osmosis membrane units are arranged so that the permeated water discharged from the previous reverse osmosis membrane unit is supplied as the feed water, and the permeated water from at least one of the reverse osmosis membrane units is supplied. A purified water recovery device configured to be recovered as purified water,
At least one of a purity measuring device for measuring the purity of supplied water, discharged concentrated water, discharged permeated water for at least one of the reverse osmosis membrane units, and from the one reverse osmosis membrane unit A valve mechanism including at least one of a permeate valve for adjusting the flow rate of discharged permeated water and a concentrated water valve for adjusting the flow rate of concentrated water discharged from the one reverse osmosis membrane unit. Provided is a purified water recovery apparatus characterized in that the transmittance of the one reverse osmosis membrane unit is controlled by the valve mechanism based on a measurement value measured by a purity measuring apparatus.

更に、本発明は、斯かる浄化水回収装置を用いて、廃水から浄化水を精製し回収することを特徴とする浄化水の回収方法を提供する。   Furthermore, the present invention provides a purified water recovery method characterized by purifying and recovering purified water from wastewater using such purified water recovery apparatus.

これらの浄化水回収装置及び浄化水の回収方法に於いては、廃水の不純度が高い場合、不純度測定装置にてその状況を把握することができ、それに基づいて、逆浸透膜ユニットにおける透過率を制御することにより、得られる浄化水の悪化を抑制することができる。   In these purified water recovery devices and purified water recovery methods, if the purity of the wastewater is high, the status can be grasped by the impurity measuring device, and based on this, the permeation in the reverse osmosis membrane unit By controlling the rate, deterioration of the purified water obtained can be suppressed.

以上の通り、本発明によれば、生活廃水、工場廃水等の廃水であっても比較的安定して純度の高い浄化水をうることができる。   As described above, according to the present invention, purified water having relatively high purity can be obtained even with wastewater such as domestic wastewater and factory wastewater.

以下、本発明の実施の形態について、図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

第1実施形態
先ず、第1実施形態の浄化水回収装置について説明する。
図1は、第1実施形態の浄化水回収装置を示す概略図である。
図1に示すように、第1実施形態の浄化水回収装置は、供給水を逆浸透膜濾過により透過水たる浄化水Bと非透過水たる濃縮水Cとに分離する逆浸透膜ユニット1を1つ備えて構成されている。
First Embodiment First, a purified water recovery apparatus according to a first embodiment will be described.
FIG. 1 is a schematic view showing a purified water recovery apparatus according to the first embodiment.
As shown in FIG. 1, the purified water recovery apparatus of the first embodiment includes a reverse osmosis membrane unit 1 that separates supply water into purified water B that is permeated water and concentrated water C that is non-permeated water by reverse osmosis membrane filtration. One is provided.

図1の装置において、供給水として廃水Aが供給され、該廃水Aを浄化水Bと濃縮水とに分離して排出する逆浸透膜ユニット1を備え、浄化水Bが回収され且つ濃縮水Cが系外若しくは濃縮水貯留槽(図示せず)に移送されるようになっている。   1 includes a reverse osmosis membrane unit 1 that supplies waste water A as supply water, separates the waste water A into purified water B and concentrated water, and discharges the purified water B and concentrates C. Is transferred to the outside of the system or to a concentrated water storage tank (not shown).

第1実施形態の浄化水回収装置は、浄化水Bを移送する浄化水移送経路2、濃縮水Cを移送する濃縮水移送経路3が形成されている。   In the purified water recovery apparatus of the first embodiment, a purified water transfer path 2 for transferring purified water B and a concentrated water transfer path 3 for transferring concentrated water C are formed.

また、第1実施形態の浄化水回収装置は、浄化水Bの流量を調節する浄化水バルブ11及び濃縮水Cの流量を調節する濃縮水バルブ12を含むバルブ機構を備えており、各バルブの開閉操作によって流量が決定されるようになっている。
尚、図1の装置は、浄化水移送経路2、及び濃縮水移送経路3にぞれぞれ介装された、浄化水バルブ11、及び濃縮水バルブ12を備えたバルブ機構を備えており、各バルブの開閉操作によって流量が決定されるようになっている。
Further, the purified water recovery apparatus of the first embodiment includes a valve mechanism including a purified water valve 11 for adjusting the flow rate of the purified water B and a concentrated water valve 12 for adjusting the flow rate of the concentrated water C. The flow rate is determined by the opening / closing operation.
The apparatus of FIG. 1 includes a valve mechanism including a purified water valve 11 and a concentrated water valve 12 interposed in the purified water transfer path 2 and the concentrated water transfer path 3, respectively. The flow rate is determined by opening and closing each valve.

また、第1実施形態に於いては、廃水たる供給水の不純度を測定する供給水不純度測定装置20a1、濃縮水の不純度を測定する供給水不純度測定装置20b1、浄化水の不純度を測定する供給水不純度測定装置20c1の少なくとも何れか一の不純度測定装置20を備えている。
更に、該不純度測定装置20の不純度測定装置によって測定された測定値が基準値以上である若しくは基準値を超える場合に、すなわち、前記供給水不純度測定装置20a1によって測定された測定値が供給水の基準値以上である若しくは基準値を超える場合、前記濃縮水不純度測定装置20b1によって測定された測定値が濃縮水の基準値以上である若しくは基準値を超える場合、及び前記浄化水不純度測定装置20c1によって測定された測定値が浄化水の基準値以上である若しくは基準値を超える場合の少なくとも何れか一の場合に、浄化水バルブ11及び濃縮水バルブ12の少なくとも何れか一方のバルブにより流量を調節するバルブ機構により前記逆浸透膜ユニットにおける透過率が通常運転時(即ち、基準値未満又は基準値以下の時)よりも低くなるように制御されている。
Moreover, in 1st Embodiment, the feed water impurity measuring apparatus 20a1 which measures the purity of the feed water which is waste water, the feed water impurity measuring apparatus 20b1 which measures the purity of concentrated water, the purity of purified water The purity measuring apparatus 20 is provided with at least one of the supply water impurity measuring apparatus 20c1 for measuring the water content.
Furthermore, when the measured value measured by the impurity measuring device of the impurity measuring device 20 is equal to or greater than the reference value or exceeds the reference value, that is, the measured value measured by the feed water impurity measuring device 20a1 is When the reference value is equal to or higher than the reference value of the feed water, or when the measured value measured by the concentrated water impurity measuring device 20b1 is equal to or higher than the reference value of the concentrated water or exceeds the reference value, At least one of the purified water valve 11 and the concentrated water valve 12 when the measured value measured by the purity measuring device 20c1 is equal to or greater than the reference value of the purified water or exceeds the reference value. The permeability of the reverse osmosis membrane unit during normal operation (ie, less than the reference value or less than the reference value) by the valve mechanism that adjusts the flow rate by It is controlled to be lower than the time).

不純度測定装置20としては、電気伝導度、イオン濃度、塩濃度、総溶解性物質濃度(TDS)、pH又はORPを測定する装置等を挙げることができる。
好ましくは、逆浸透膜の処理性能の管理指標として電気伝導度は一般的であること、測定装置の維持管理の簡便性、測定の容易性等の観点から電気伝導度を測定する電気伝導度測定装置を挙げることができる。
Examples of the impurity measuring apparatus 20 include an apparatus for measuring electrical conductivity, ion concentration, salt concentration, total soluble substance concentration (TDS), pH, or ORP.
Preferably, the electrical conductivity is generally used as a management index for the treatment performance of the reverse osmosis membrane, the electrical conductivity is measured from the viewpoint of the ease of maintenance and management of the measuring device, the ease of measurement, etc. A device can be mentioned.

浄化水バルブ11及び濃縮水バルブ12の少なくとも何れか一方のバルブにより流量を調節するバルブ機構により前記逆浸透膜ユニットにおける透過率を通常運転時より低くするか否かの境界値である第1の基準値は、所定以上の純度の浄化水Bを得るという観点、若しくは、逆浸透膜に付着するスケールを抑制するという観点から決定されている。
例えば、不純度の指標として電気伝導度を採用した場合に於いては、供給水の80%以上を浄化水として回収する場合には、濃縮水における電気伝導度の基準値は5,000μS/cm以下の範囲で設定されていることが好ましく、浄化水における電気伝導度の基準値は1,000μS/cm以下の範囲で設定されていることが好ましい。また、例えば水道水レベルの浄化水を得る場合には、浄化水における電気伝導度の基準値は100μS/cm以下の範囲で設定されていることが好ましい。
斯かる範囲であれば、十分に純度の高い浄化水Bを得ることができるとともに、逆浸透膜にスケールが付着する量も低減される。
A first boundary value indicating whether or not the transmittance in the reverse osmosis membrane unit should be lower than that during normal operation by a valve mechanism that adjusts the flow rate by at least one of the purified water valve 11 and the concentrated water valve 12. The reference value is determined from the viewpoint of obtaining purified water B having a predetermined purity or higher, or from the viewpoint of suppressing the scale attached to the reverse osmosis membrane.
For example, when electric conductivity is adopted as an impurity index, when 80% or more of the supplied water is recovered as purified water, the standard value of electric conductivity in the concentrated water is 5,000 μS / cm. It is preferably set in the following range, and the reference value of the electrical conductivity in the purified water is preferably set in a range of 1,000 μS / cm or less. For example, when obtaining purified water of tap water level, the reference value of the electrical conductivity in the purified water is preferably set in a range of 100 μS / cm or less.
Within such a range, purified water B with sufficiently high purity can be obtained, and the amount of scale attached to the reverse osmosis membrane is also reduced.

使用されうる廃水Aとしては、特に限定されるものではないが、鉄鋼、食品、電力、電子、医薬、自動車等の工場廃水、生活廃水、ゴミ浸出水等を挙げることができる。   The waste water A that can be used is not particularly limited, and examples thereof include steel, food, electric power, electronics, medicine, factory waste water such as automobiles, domestic waste water, and waste leachate.

第1実施形態の浄化水回収装置は、上記の如く構成されてなるが、次に、斯かる浄化水回収装置を用いた第1実施形態の浄化水Bの回収方法について説明する。   The purified water recovery apparatus of the first embodiment is configured as described above. Next, a method for recovering purified water B of the first embodiment using such a purified water recovery apparatus will be described.

第1実施形態に於いては、通常運転時では、廃水Aを供給水として逆浸透膜ユニット1に供給し、該逆浸透膜ユニット1で浄化水Bを濃縮水Cとに分離して、浄化水Bを浄化水移送経路2を介して浄化水貯留槽に移送し、濃縮水Cを系外若しくは濃縮水貯留槽に移送する。   In the first embodiment, during normal operation, waste water A is supplied to the reverse osmosis membrane unit 1 as supply water, and the reverse osmosis membrane unit 1 separates purified water B into concentrated water C for purification. The water B is transferred to the purified water storage tank via the purified water transfer path 2, and the concentrated water C is transferred outside the system or to the concentrated water storage tank.

このような通常運転時に於いては、供給水不純度測定装置20a1により逆浸透膜ユニット1に供給される供給水(廃水A)の不純度、濃縮水不純度測定装置20b1により逆浸透膜ユニット1から排出された濃縮水の不純度、及び浄化水不純度測定装置20c1により逆浸透膜ユニット1から排出された浄化水の不純度の少なくとも何れか一の不純度を定期的に若しくは継続的に測定しておく。   In such a normal operation, the reverse osmosis membrane unit 1 is supplied by the purity of the feed water (waste water A) supplied to the reverse osmosis membrane unit 1 by the supply water impurity measurement device 20a1 and the concentrated water impurity measurement device 20b1. The purity of the concentrated water discharged from the water and the purity of the purified water discharged from the reverse osmosis membrane unit 1 by the purified water impurity measuring device 20c1 are measured periodically or continuously. Keep it.

そして、測定値が第1の基準値以上である又は第1の基準値を超える場合には、浄化水バルブ11及び濃縮水バルブ12の少なくとも何れか一方のバルブにより流量を調節するバルブ機構によって、逆浸透膜ユニット1における透過率を通常運転時よりも低くなるように制御する。   When the measured value is equal to or higher than the first reference value or exceeds the first reference value, a valve mechanism that adjusts the flow rate with at least one of the purified water valve 11 and the concentrated water valve 12, Control is performed so that the transmittance of the reverse osmosis membrane unit 1 is lower than that during normal operation.

第2実施形態
次に、第2実施形態の浄化水回収装置について説明する。
尚、第1実施形態と重複する説明は省略し、各部の名称及び図番は第1実施形態のものを適宜援用し、第2実施形態で特に説明のないものは、第1実施形態で説明したものと同じ内容とする。
図2は、第2実施形態の浄化水回収装置を示す概略図である。
図2に示すように、第2実施形態の浄化水回収装置は、それぞれ水の流れ方向に対して縦列に連結された複数個の逆浸透膜ユニット1を備え、最上流側の逆浸透膜ユニット1は供給水として廃水Aが供給され、他の逆浸透膜ユニット1は供給水として一つ前段の逆浸透膜ユニット1から排出された濃縮水Cが供給されるように配列され、各逆浸透膜ユニット1から排出される浄化水Bが回収されるように構成されている。
尚、図2の装置に於いては、供給水として廃水Aが供給され、該廃水Aを浄化水Bと濃縮水Cとに分離して排出する第1逆浸透膜ユニット1aと、第1逆浸透膜ユニット1aから排出された濃縮水Cが供給水として供給される第2逆浸透膜ユニット1bとを備え、双方の浄化水Bが回収され且つ第2逆浸透膜ユニット1bから排出された濃縮水Cが系外に若しくは濃縮水貯留槽(図示せず)に移送されるようになっている。
Second Embodiment Next, a purified water recovery apparatus according to a second embodiment will be described.
In addition, the description which overlaps with 1st Embodiment is abbreviate | omitted, and the name and figure number of each part refer to the thing of 1st Embodiment suitably, and the thing which is not especially demonstrated in 2nd Embodiment is demonstrated in 1st Embodiment. The same content as
FIG. 2 is a schematic view showing a purified water recovery apparatus according to the second embodiment.
As shown in FIG. 2, the purified water recovery apparatus of the second embodiment includes a plurality of reverse osmosis membrane units 1 connected in tandem with respect to the direction of water flow, and the reverse osmosis membrane unit on the most upstream side. 1 is arranged so that waste water A is supplied as supply water, and the other reverse osmosis membrane units 1 are supplied with concentrated water C discharged from the preceding reverse osmosis membrane unit 1 as supply water. The purified water B discharged from the membrane unit 1 is configured to be collected.
In the apparatus of FIG. 2, the first reverse osmosis membrane unit 1a for supplying waste water A as supply water, separating the waste water A into purified water B and concentrated water C, and discharging the waste water A is provided. And a second reverse osmosis membrane unit 1b to which the concentrated water C discharged from the osmosis membrane unit 1a is supplied as supply water. Both the purified water B is recovered and the concentration discharged from the second reverse osmosis membrane unit 1b. The water C is transferred out of the system or to a concentrated water storage tank (not shown).

第2実施形態の浄化水回収装置は、浄化水B又は濃縮水Cを移送する複数の経路4、5、6、7が形成されている。
該複数の経路4、5、6、7としては、各逆浸透膜ユニット1から排出された浄化水Bを移送する各浄化水移送経路4、6及び濃縮水Cを移送する各濃縮水移送経路5、7を備えている。
更に、第2実施形態の浄化水回収装置は、必要に応じて、任意の少なくとも何れか一の逆浸透膜ユニット1に供給される供給水(通常、前段の濃縮水C)を浄化水B又は廃水Aで希釈するための浄化水移送希釈経路8と該供給水を逆浸透膜ユニット1に供給せずに逆浸透膜ユニット1から排出された濃縮水Cを移送するための濃縮水移送経路7に迂回させる迂回経路9とを備えている。
例えば、図2の装置に於いては、前記第1逆浸透膜ユニット1aから浄化水貯留槽(図示せず)へ浄化水Bを送る第1浄化水移送経路4と、第1逆浸透膜ユニット1aから濃縮水Cを第2逆浸透膜ユニット1bへ送る第1濃縮水移送経路5と、第2逆浸透膜ユニット1bから浄化水貯留槽(図示せず)へ浄化水Bを送る第2浄化水移送経路6と、第2逆浸透膜ユニット1bから濃縮水Cを系外若しくは濃縮水貯留槽(図示せず)へ送る第2濃縮水移送経路7と、第1逆浸透膜ユニット1aから排出された濃縮水Cを浄化水Bで希釈すべく第1浄化水移送経路4及び第1濃縮水移送経路5を連通させる浄化水移送希釈経路8と、第1逆浸透膜ユニット1aから排出された濃縮水Cを第2逆浸透膜ユニット1bに供給せずに第2濃縮水移送経路7に迂回させるべく第1濃縮水移送経路5及び第2濃縮水移送経路7を連通させる迂回経路9とを備えている。
In the purified water recovery apparatus of the second embodiment, a plurality of paths 4, 5, 6, 7 for transferring purified water B or concentrated water C are formed.
The plurality of paths 4, 5, 6, and 7 include the purified water transfer paths 4 and 6 that transfer the purified water B discharged from each reverse osmosis membrane unit 1 and the concentrated water transfer paths that transfer the concentrated water C. 5 and 7 are provided.
Furthermore, the purified water recovery apparatus according to the second embodiment uses the purified water B or the supply water (usually the concentrated water C in the previous stage) supplied to any at least one reverse osmosis membrane unit 1 as necessary. Purified water transfer dilution path 8 for diluting with waste water A and concentrated water transfer path 7 for transferring concentrated water C discharged from reverse osmosis membrane unit 1 without supplying the supplied water to reverse osmosis membrane unit 1 And a detour route 9 for detouring.
For example, in the apparatus of FIG. 2, a first purified water transfer path 4 for sending purified water B from the first reverse osmosis membrane unit 1a to a purified water storage tank (not shown), and a first reverse osmosis membrane unit. 1st concentrated water transfer path 5 which sends concentrated water C from 1a to 2nd reverse osmosis membrane unit 1b, and 2nd purification which sends purified water B from 2nd reverse osmosis membrane unit 1b to a purified water storage tank (not shown) Discharge from the water transfer path 6, the second concentrated water transfer path 7 for sending the concentrated water C from the second reverse osmosis membrane unit 1b to the outside of the system or a concentrated water storage tank (not shown), and the first reverse osmosis membrane unit 1a. The purified water transfer dilution path 8 that connects the first purified water transfer path 4 and the first concentrated water transfer path 5 and the first reverse osmosis membrane unit 1a are discharged from the first reverse osmosis membrane unit 1a. The second concentrated water transfer path 7 without supplying the concentrated water C to the second reverse osmosis membrane unit 1b. And a bypass path 9 for communicating the first concentrated water transfer path 5 and the second concentrated water transfer path 7 in order to bypass.

また、第2実施形態の浄化水回収装置は、少なくとも何れか一の逆浸透膜ユニット1から排出される浄化水Bの流量を調節する浄化水バルブ11及び該一の逆浸透膜ユニット1から排出される濃縮水Cの流量を調節する濃縮水バルブ12を含むバルブ機構を備えている。
具体的には、浄化水移送経路及び浄化水移送希釈経路にそれぞれ介装された浄化水バルブ11と、濃縮水移送経路及び迂回経路にそれぞれ介装された濃縮水バルブ12とを含むバルブ機構を備えており、各バルブの開閉操作によって流量、流路が決定されるようになっている。
尚、図2の装置は、第1浄化水移送経路4、第2浄化水移送経路6、第1濃縮水移送経路5、第2濃縮水移送経路7、浄化水移送希釈経路8、及び迂回経路9にそれぞれ介装された、第1浄化水バルブ11a、第2浄化水バルブ11b、第1濃縮水バルブ12a、第2濃縮水バルブ12b、浄化水移送希釈経路バルブ用たる第3浄化水バルブ11c、及び迂回経路用バルブたる第3濃縮水バルブ12cを備えたバルブ機構を備えており、各開閉バルブの開閉操作によって流路や流量が決定されるようになっている。
Moreover, the purified water recovery apparatus of 2nd Embodiment is discharged | emitted from the purified water valve | bulb 11 which adjusts the flow volume of the purified water B discharged | emitted from at least any one reverse osmosis membrane unit 1, and this one reverse osmosis membrane unit 1. A valve mechanism including a concentrated water valve 12 for adjusting the flow rate of the concentrated water C is provided.
Specifically, a valve mechanism including a purified water valve 11 interposed in each of the purified water transfer path and the purified water transfer dilution path, and a concentrated water valve 12 interposed in each of the concentrated water transfer path and the detour path. The flow rate and flow path are determined by opening and closing each valve.
2 includes a first purified water transfer path 4, a second purified water transfer path 6, a first concentrated water transfer path 5, a second concentrated water transfer path 7, a purified water transfer dilution path 8, and a detour path. 9, a first purified water valve 11a, a second purified water valve 11b, a first concentrated water valve 12a, a second concentrated water valve 12b, and a third purified water valve 11c serving as a purified water transfer dilution path valve. In addition, a valve mechanism including a third concentrated water valve 12c serving as a bypass path valve is provided, and a flow path and a flow rate are determined by opening and closing operations of the respective opening and closing valves.

また、第2実施形態に於いては、任意の少なくとも何れか一の逆浸透膜ユニット1において、供給される供給水(通常、前段の濃縮水C)の不純度を測定する供給水不純度測定装置20a2、排出された濃縮水Cの不純度を測定する濃縮水不純度測定装置20b2、排出された浄化水Bの不純度を測定する浄化水不純度測定装置20c2の少なくとも何れか一の不純度測定装置20を備えている。
更に、該不純度測定装置20の不純度測定装置によって測定された測定値が基準値以上である若しくは基準値を超える場合に、すなわち、前記供給水不純度測定装置20a2によって測定された測定値が供給水の基準値以上である若しくは基準値を超える場合、前記濃縮水不純度測定装置20b2によって測定された測定値が濃縮水の基準値以上である若しくは基準値を超える場合、及び前記浄化水不純度測定装置20c2によって測定された測定値が浄化水の基準値以上である若しくは基準値を超える場合の少なくとも何れか一の場合に、浄化水バルブ11及び濃縮水バルブ12の少なくとも何れか一方のバルブにより流量を調節するバルブ機構により前記逆浸透膜ユニット1における透過率が通常運転時(即ち、基準値未満又は基準値以下の時)よりも低くなるように制御されている。
尚、図2に於いては、第2逆浸透膜ユニット1bに供給される供給水の不純度を測定する供給水不純度測定装置20a2、第2逆浸透膜ユニット1bから排出された濃縮水の不純度を測定する濃縮水不純度測定装置20b2、及び第2逆浸透膜ユニット1bから排出された浄化水の不純度を測定する浄化水不純度測定装置20c2を備えた構成が図示されている。
In the second embodiment, the feed water impurity measurement is performed to measure the purity of the supplied feed water (usually the concentrated water C in the previous stage) in any one of the reverse osmosis membrane units 1. The purity of at least one of the apparatus 20a2, the concentrated water impurity measuring apparatus 20b2 that measures the purity of the discharged concentrated water C, and the purified water impurity measuring apparatus 20c2 that measures the purity of the discharged purified water B A measuring device 20 is provided.
Furthermore, when the measured value measured by the impurity measuring device of the impurity measuring device 20 is greater than or equal to the reference value, that is, the measured value measured by the feed water impurity measuring device 20a2 is When it is greater than or equal to the reference value of the feed water, or when the measured value measured by the concentrated water impurity measuring device 20b2 is equal to or greater than the reference value of the concentrated water or exceeds the reference value, At least one of the purified water valve 11 and the concentrated water valve 12 when the measured value measured by the purity measuring device 20c2 is equal to or greater than the reference value of the purified water or exceeds the reference value. By the valve mechanism that adjusts the flow rate, the permeability in the reverse osmosis membrane unit 1 during normal operation (that is, less than the reference value or less than the reference value). It is controlled to be lower than when).
In FIG. 2, the feed water impurity measuring device 20a2 for measuring the purity of the feed water supplied to the second reverse osmosis membrane unit 1b and the concentrated water discharged from the second reverse osmosis membrane unit 1b. A configuration including a concentrated water impurity measuring device 20b2 for measuring the purity and a purified water impurity measuring device 20c2 for measuring the purity of the purified water discharged from the second reverse osmosis membrane unit 1b is illustrated.

更に、図2に於いては、該不純度測定装置20の不純度測定装置によって測定された測定値が別途定められた第2の基準値(バルブ機構を制御する基準値とは異なる基準値)以上である若しくは第2の基準値を超える場合に、前記浄化水移送希釈経路8による希釈、前記迂回経路9による迂回が実施されるように構成されている。   Further, in FIG. 2, the measurement value measured by the impurity measurement device of the impurity measurement device 20 is a second reference value that is separately determined (a reference value different from the reference value for controlling the valve mechanism). When it is the above or exceeds the second reference value, dilution by the purified water transfer dilution path 8 and bypass by the bypass path 9 are performed.

第2実施形態の浄化水回収装置は、上記の如く構成されてなるが、次に、斯かる浄化水回収装置を用いた第2実施形態の浄化水Bの回収方法について説明する。   The purified water recovery apparatus according to the second embodiment is configured as described above. Next, a method for recovering purified water B according to the second embodiment using the purified water recovery apparatus will be described.

第2実施形態に於いては、通常運転時では、廃水Aを供給水として最上流側の逆浸透膜ユニット1に供給し、該逆浸透膜ユニット1で浄化水Bを濃縮水Cとに分離して、浄化水Bを浄化水移送経路4を介して浄化水貯留槽に移送し、濃縮水Cを順次次段の逆浸透膜ユニット1に供給水として供給し、順次下流側の逆浸透膜ユニット1から排出された浄化水Bを浄化水移送経路6を介して浄化水貯留槽に移送して回収する。
そして、最下流側の逆浸透膜ユニット1から排出された濃縮水Cを系外若しくは濃縮水貯留槽に移送する。
尚、図2の装置を用いる場合に於いては、廃水Aを第1逆浸透膜ユニット1aに供給し、該第1逆浸透膜ユニット1aから排出された浄化水Bを浄化水貯留槽に移送し濃縮水Cを第2逆浸透膜ユニット1bに供給し、該第2逆浸透膜ユニット1bから排出された浄化水Bを浄化水貯留槽に移送し、濃縮水Cを系外若しくは濃縮水貯留槽に移送する。
In the second embodiment, during normal operation, wastewater A is supplied as supply water to the reverse osmosis membrane unit 1 on the most upstream side, and the purified water B is separated into concentrated water C by the reverse osmosis membrane unit 1. Then, the purified water B is transferred to the purified water storage tank through the purified water transfer path 4, and the concentrated water C is sequentially supplied to the reverse osmosis membrane unit 1 in the next stage as the supply water, and the downstream reverse osmosis membrane is sequentially supplied. The purified water B discharged from the unit 1 is transferred to the purified water storage tank via the purified water transfer path 6 and collected.
Then, the concentrated water C discharged from the reverse osmosis membrane unit 1 on the most downstream side is transferred to the outside of the system or the concentrated water storage tank.
In the case of using the apparatus of FIG. 2, the waste water A is supplied to the first reverse osmosis membrane unit 1a, and the purified water B discharged from the first reverse osmosis membrane unit 1a is transferred to the purified water storage tank. Then, the concentrated water C is supplied to the second reverse osmosis membrane unit 1b, the purified water B discharged from the second reverse osmosis membrane unit 1b is transferred to the purified water storage tank, and the concentrated water C is stored outside the system or concentrated water. Transfer to tank.

このような通常運転時に於いては、供給水不純度測定装置20a2により少なくとも何れか一の逆浸透膜ユニット1に供給される供給水(図2では第1逆浸透膜ユニット1aから排出された濃縮水C)の不純度、濃縮水不純度測定装置20b2により少なくとも何れか一の逆浸透膜ユニット1から排出された濃縮水(図2では第2逆浸透膜ユニット1bから排出された濃縮水C)の不純度、及び浄化水不純度測定装置20c2により少なくとも何れか一の逆浸透膜ユニット1から排出された浄化水(図2では第2逆浸透膜ユニット1bから排出された浄化水B)の不純度の少なくとも何れか一の不純度を定期的に若しくは継続的に測定しておく。   During such normal operation, the supply water supplied to at least one of the reverse osmosis membrane units 1 by the supply water impurity measurement device 20a2 (the concentrated water discharged from the first reverse osmosis membrane unit 1a in FIG. 2). Concentrated water discharged from at least one of the reverse osmosis membrane units 1 by the device 20b2 for the purity of water C) and the concentrated water impurity (concentrated water C discharged from the second reverse osmosis membrane unit 1b in FIG. 2) Of purified water discharged from at least one of the reverse osmosis membrane units 1 (purified water B discharged from the second reverse osmosis membrane unit 1b in FIG. 2) by the purified water impurity measuring device 20c2. The purity of at least one of the purity is measured regularly or continuously.

そして、測定値が第1の基準値以上である又は第1の基準値を超える場合には、浄化水バルブ11及び濃縮水バルブ12の少なくとも何れか一方のバルブにより流量を調節するバルブ機構によって、逆浸透膜ユニットにおける透過率を制限する。
例えば、図2に示す装置を用いた場合に於いては、第1浄化水バルブ11a、第1濃縮水バルブ12a、第2浄化水バルブ11b、第2濃縮水バルブ12b、第3浄化水バルブ11c、及び第3濃縮水バルブ12cの少なくとも何れか一のバルブにより流量を調節するバルブ機構によって、第1逆浸透膜ユニット1a、第2逆浸透膜ユニット1bにおける透過率を通常運転時よりも低くなるように制御する。
更に、必要に応じて、測定値が別途定められた第2の基準値以上である又は第2の基準値を超える場合には、浄化水移送希釈経路8による希釈、若しくは、迂回経路9による迂回を実施する。
斯かる操作をすることにより、逆浸透膜ユニット1内に於ける過度の濃縮を抑制して、膜へのスケール付着を抑制することもできる。
When the measured value is equal to or higher than the first reference value or exceeds the first reference value, a valve mechanism that adjusts the flow rate with at least one of the purified water valve 11 and the concentrated water valve 12, Limit the permeability in the reverse osmosis membrane unit.
For example, when the apparatus shown in FIG. 2 is used, the first purified water valve 11a, the first concentrated water valve 12a, the second purified water valve 11b, the second concentrated water valve 12b, and the third purified water valve 11c. And the valve mechanism that adjusts the flow rate by at least one of the third concentrated water valves 12c, the permeability in the first reverse osmosis membrane unit 1a and the second reverse osmosis membrane unit 1b is lower than that in normal operation. To control.
Further, if the measured value is equal to or greater than the second reference value separately determined or exceeds the second reference value, if necessary, dilution by the purified water transfer dilution path 8 or bypass by the bypass path 9 is performed. To implement.
By performing such an operation, excessive concentration in the reverse osmosis membrane unit 1 can be suppressed, and scale adhesion to the membrane can also be suppressed.

第3実施形態
次に、第3実施形態の浄化水回収装置及び浄化水Bの回収方法を説明する。
尚、第1、第2実施形態と重複する説明は省略し、各部の名称及び図番は第1、第2実施形態のものを適宜援用し、第3実施形態で特に説明のないものは、第1、第2実施形態で説明したものと同じ内容とする。
図3は、第3実施形態の浄化水回収装置を示す概略図である。
図3に示すように、第3実施形態の浄化水回収装置は、供給水を逆浸透膜濾過により透過水と非透過水たる濃縮水Cとに分離する逆浸透膜ユニット1を備えて構成されている。
Third Embodiment Next, a purified water recovery device and a method of recovering purified water B according to a third embodiment will be described.
In addition, the description which overlaps with 1st, 2nd embodiment is abbreviate | omitted, The name and figure number of each part refer to the thing of 1st, 2nd embodiment suitably, and what is not especially demonstrated in 3rd Embodiment, The contents are the same as those described in the first and second embodiments.
FIG. 3 is a schematic view showing the purified water recovery apparatus of the third embodiment.
As shown in FIG. 3, the purified water recovery apparatus according to the third embodiment includes a reverse osmosis membrane unit 1 that separates supplied water into permeated water and concentrated water C that is non-permeated water by reverse osmosis membrane filtration. ing.

詳しくは、それぞれ水の流れ方向に対して縦列に連結された複数個の逆浸透膜ユニット1を備え、最上流側の逆浸透膜ユニット1は供給水として廃水Aが供給され、他の逆浸透膜ユニット1は供給水として一つ前段の逆浸透膜ユニット1から排出された透過水が供給されるように配列され、少なくとも何れか一の逆浸透膜ユニット1から排出される透過水が回収されるように構成されている。
尚、図3の装置に於いては、供給水として廃水Aが供給され、該廃水Aを透過水と濃縮水Cとに分離して排出する第1逆浸透膜ユニット1aと、第1逆浸透膜ユニット1aから排出された透過水が供給水として供給される第2逆浸透膜ユニット1bとを備え、第2逆浸透膜ユニット1bから排出された透過水たる浄化水Bが回収され且つ第1逆浸透膜ユニット1a及び第2逆浸透膜ユニット1bから排出された濃縮水Cが系外に若しくは濃縮水貯留槽(図示せず)に移送されるようになっている。
More specifically, each has a plurality of reverse osmosis membrane units 1 connected in tandem with respect to the water flow direction. The reverse osmosis membrane unit 1 on the uppermost stream side is supplied with waste water A as the supply water, and the other reverse osmosis. The membrane unit 1 is arranged so that the permeated water discharged from the preceding reverse osmosis membrane unit 1 is supplied as supply water, and the permeated water discharged from at least one of the reverse osmosis membrane units 1 is recovered. It is comprised so that.
In the apparatus of FIG. 3, the first reverse osmosis membrane unit 1a for supplying waste water A as supply water, separating the waste water A into permeated water and concentrated water C, and discharging the waste water A, and the first reverse osmosis. A second reverse osmosis membrane unit 1b to which the permeated water discharged from the membrane unit 1a is supplied as supply water, and the purified water B as the permeated water discharged from the second reverse osmosis membrane unit 1b is recovered and the first The concentrated water C discharged from the reverse osmosis membrane unit 1a and the second reverse osmosis membrane unit 1b is transferred out of the system or to a concentrated water storage tank (not shown).

第3実施形態の浄化水回収装置は、複数の配管が備えられてなり、各逆浸透膜ユニット1から排出された透過水を、次段の逆浸透膜ユニット1に、又は浄化水として浄化水貯留槽に、移送する透過水移送経路30を備えている。
更に、第3実施形態の浄化水回収装置は、必要に応じて、任意の少なくとも何れか一の逆浸透膜ユニット1からの透過水を移送して該透過水より上流側の供給水を希釈する透過水移送希釈経路32と、任意の少なくとも何れか一の逆浸透膜ユニット1からの濃縮水Cを移送して該濃縮水Cより上流側の供給水を希釈する濃縮水移送希釈経路34とを備えている。
例えば、図3の装置に於いては、第1逆浸透膜ユニット1aから排出された透過水を第2逆浸透膜ユニット1bに移送する第1透過水移送経路30aと、第1逆浸透膜ユニット1aから排出された透過水を浄化水として浄化水貯留槽(図示せず)に移送する第2透過水移送経路30bと、第2逆浸透膜ユニット1bから排出された透過水を浄化水として浄化水貯留槽(図示せず)に移送する第3透過水移送経路30cと、第2逆浸透膜ユニット1bからの透過水を移送して第1逆浸透膜ユニット1aの供給水を希釈する透過水移送希釈経路32と、第2逆浸透膜ユニット1bからの濃縮水Cを移送して第1逆浸透膜ユニット1aの供給水を希釈する濃縮水移送希釈経路34とを備えている。
The purified water recovery apparatus of the third embodiment is provided with a plurality of pipes, and the permeated water discharged from each reverse osmosis membrane unit 1 is supplied to the reverse osmosis membrane unit 1 in the next stage or purified water as purified water. The storage tank is provided with a permeate transfer path 30 to be transferred.
Further, the purified water recovery apparatus of the third embodiment transfers the permeated water from at least any one of the reverse osmosis membrane units 1 to dilute the supply water upstream from the permeated water as necessary. A permeated water transfer dilution path 32 and a concentrated water transfer dilution path 34 for transferring the concentrated water C from any one of the reverse osmosis membrane units 1 and diluting the supply water upstream of the concentrated water C. I have.
For example, in the apparatus of FIG. 3, a first permeate transfer path 30a for transferring permeate discharged from the first reverse osmosis membrane unit 1a to the second reverse osmosis membrane unit 1b, and a first reverse osmosis membrane unit. The permeated water discharged from 1a is purified as purified water, and the second permeated water transfer path 30b is transferred to a purified water storage tank (not shown), and the permeated water discharged from the second reverse osmosis membrane unit 1b is purified as purified water. Permeated water for transferring the permeated water from the third reverse osmosis membrane unit 1b and diluting the water supplied to the first reverse osmosis membrane unit 1a by transferring the third permeated water transfer path 30c to the water storage tank (not shown). A transfer dilution path 32 and a concentrated water transfer dilution path 34 for transferring the concentrated water C from the second reverse osmosis membrane unit 1b to dilute the supply water of the first reverse osmosis membrane unit 1a are provided.

また、第3実施形態の浄化水回収装置は、濃縮水移送経路5、7及び濃縮水移送希釈経路34にそれぞれ介装された濃縮水バルブ12と、透過水移送経路30及び透過水移送希釈経路32にそれぞれ介装された透過水バルブ31とを含むバルブ機構を備えており、各バルブの開閉操作によって流路や流量が決定されるようになっている。
具体的には、図3の装置は、第1濃縮水移送経路5、第2濃縮水移送経路7、第1透過水移送経路30a、第2透過水移送経路30b、第3透過水移送経路30c、透過水移送希釈経路32、濃縮水移送希釈経路34に、それぞれ介装された第1濃縮水バルブ12d、第2濃縮水バルブ12b、第1透過水バルブ31a、第2透過水バルブ31b、第3透過水バルブ31c、透過水移送希釈経路バルブたる第4透過水バルブ31d、濃縮水移送希釈経路バルブたる第3濃縮水バルブ12eを含むバルブ機構を備え、各バルブの開閉操作によって流路や流量が決定されるようになっている。
Moreover, the purified water collection | recovery apparatus of 3rd Embodiment is the concentrated water valve | bulb 12 interposed by the concentrated water transfer paths 5 and 7, and the concentrated water transfer dilution path 34, the permeated water transfer path 30, and the permeated water transfer dilution path, respectively. A valve mechanism including a permeate valve 31 interposed in each of the valves 32 is provided, and a flow path and a flow rate are determined by opening and closing each valve.
Specifically, the apparatus of FIG. 3 includes a first concentrated water transfer path 5, a second concentrated water transfer path 7, a first permeate transfer path 30a, a second permeate transfer path 30b, and a third permeate transfer path 30c. The first concentrated water valve 12d, the second concentrated water valve 12b, the first permeated water valve 31a, the second permeated water valve 31b, the second permeated water valve 31b, and the second permeated water valve 31b, respectively. A valve mechanism including a third permeate valve 31c, a fourth permeate valve 31d that is a permeate transfer dilution path valve, and a third concentrate water valve 12e that is a concentrate transfer dilute path valve. Is to be decided.

また、第3実施形態に於いては、任意の少なくとも何れか一の逆浸透膜ユニット1において、供給される供給水(通常、前段の透過水)の不純度を測定する供給水不純度測定装置20a3、排出された濃縮水Cの不純度を測定する濃縮水不純度測定装置20b3、排出された透過水の不純度を測定する透過水不純度測定装置20c3の少なくとも何れか一の不純度測定装置20を備えている。
更に、該不純度測定装置20の不純度測定装置によって測定された測定値が基準値以上である若しくは基準値を超える場合に、すなわち、前記供給水不純度測定装置20a3によって測定された測定値が供給水の基準値以上である若しくは基準値を超える場合、前記濃縮水不純度測定装置20b3によって測定された測定値が濃縮水の基準値以上である若しくは基準値を超える場合、及び前記透過水不純度測定装置20c3によって測定された測定値が透過水の基準値以上である若しくは基準値を超える場合の少なくとも何れか一の場合に、透過水バルブ31及び濃縮水バルブ12の少なくとも何れか一方のバルブにより流量を調節するバルブ機構により前記逆浸透膜ユニットにおける透過率が通常運転時よりも低くなるように制御されている。
尚、図3に於いては、第2逆浸透膜ユニット1bに供給される供給水の不純度を測定する供給水不純度測定装置20a3、第2逆浸透膜ユニット1bから排出された濃縮水の不純度を測定する濃縮水不純度測定装置20b3、及び第2逆浸透膜ユニット1bから排出された透過水の不純度を測定する透過水不純度測定装置20c3を備えた構成が図示されている。
Further, in the third embodiment, a feed water impurity measuring apparatus that measures the purity of the feed water (usually the previous permeate) supplied in any at least one reverse osmosis membrane unit 1. 20a3, at least one impurity measuring device 20b3 for measuring the purity of the discharged concentrated water C, and 20p3 for measuring the purity of the discharged permeated water. 20 is provided.
Furthermore, when the measured value measured by the impurity measuring device of the impurity measuring device 20 is equal to or greater than the reference value or exceeds the reference value, that is, the measured value measured by the feed water impurity measuring device 20a3 is When the measured value measured by the concentrated water impurity measuring device 20b3 is equal to or larger than the reference value of the concentrated water or exceeds the reference value, and At least one of the permeated water valve 31 and the concentrated water valve 12 when the measured value measured by the purity measuring device 20c3 is equal to or more than the reference value of the permeated water or exceeds the reference value. Is controlled so that the permeability in the reverse osmosis membrane unit is lower than that in normal operation by a valve mechanism that adjusts the flow rate. .
In FIG. 3, the feed water impurity measuring device 20a3 for measuring the purity of the feed water supplied to the second reverse osmosis membrane unit 1b and the concentrated water discharged from the second reverse osmosis membrane unit 1b. The structure provided with the concentrated water impurity measuring apparatus 20b3 which measures an impurity, and the permeated water impurity measuring apparatus 20c3 which measures the impurity of the permeated water discharged | emitted from the 2nd reverse osmosis membrane unit 1b is shown in figure.

更に、図3に於いては、該不純度測定装置20の不純度測定装置によって測定された測定値が別途定められた第2の基準値以上である若しくは第2の基準値を超える場合に、前記透過水移送希釈経路32、前記濃縮水移送希釈経路34による希釈が実施されるように構成されている。   Furthermore, in FIG. 3, when the measured value measured by the impurity measuring device of the impurity measuring device 20 is equal to or more than a second reference value determined separately or exceeds the second reference value, Dilution by the permeate transfer dilution path 32 and the concentrated water transfer dilution path 34 is performed.

透過水バルブ31及び濃縮水バルブ12の少なくとも何れか一方のバルブにより流量を調節するバルブ機構により前記逆浸透膜ユニットにおける透過率を制限するか否かの境界値である第1の基準値は、所定以上の純度の浄化水Bを得るという観点、若しくは、逆浸透膜に付着するスケールを抑制するという観点から決定されている。   The first reference value, which is a boundary value as to whether or not to limit the transmittance in the reverse osmosis membrane unit by a valve mechanism that adjusts the flow rate by at least one of the permeate water valve 31 and the concentrated water valve 12, It is determined from the viewpoint of obtaining purified water B having a purity higher than a predetermined level, or from the viewpoint of suppressing scale adhering to the reverse osmosis membrane.

第3実施形態の浄化水回収装置は、上記の如く構成されてなるが、次に、斯かる浄化水回収装置を用いた第3実施形態の浄化水Bの回収方法について説明する。   The purified water recovery apparatus of the third embodiment is configured as described above. Next, a method of recovering purified water B of the third embodiment using such a purified water recovery apparatus will be described.

第3実施形態に於いては、通常運転時では、廃水Aを供給水として最上流側の逆浸透膜ユニット1に供給し、該逆浸透膜ユニット1で透過水を濃縮水Cとに分離して、濃縮水を濃縮水移送経路5、7を介して系外若しくは濃縮水貯留槽に移送し、透過水を透過水移送経路30を介して順次次段の逆浸透膜ユニット1に供給水として供給し、順次下流側の逆浸透膜ユニット1から排出された透過水を浄化水Bとして透過水移送経路30を介して浄化水貯留槽に移送して回収する。
尚、図3の装置を用いる場合に於いては、廃水Aを第1逆浸透膜ユニット1aに供給し、該第1逆浸透膜ユニット1aから排出された透過水を第2逆浸透膜ユニット1bに供給し、該第2逆浸透膜ユニット1bから排出された透過水を浄化水Bとして浄化水貯留槽に移送する。また、該第1逆浸透膜ユニット1aから排出された濃縮水C及び該第2逆浸透膜ユニット1bから排出された濃縮水Cを系外若しくは濃縮水貯留槽に移送する。
In the third embodiment, during normal operation, wastewater A is supplied as supply water to the reverse osmosis membrane unit 1 on the most upstream side, and the reverse osmosis membrane unit 1 separates the permeate into concentrated water C. Then, the concentrated water is transferred to the outside of the system or the concentrated water storage tank through the concentrated water transfer paths 5 and 7, and the permeated water is sequentially supplied to the reverse osmosis membrane unit 1 in the next stage via the permeated water transfer path 30. Then, the permeated water discharged from the reverse osmosis membrane unit 1 on the downstream side is sequentially transferred to the purified water storage tank through the permeated water transfer path 30 as the purified water B and collected.
In the case of using the apparatus of FIG. 3, waste water A is supplied to the first reverse osmosis membrane unit 1a, and the permeated water discharged from the first reverse osmosis membrane unit 1a is supplied to the second reverse osmosis membrane unit 1b. The permeated water discharged from the second reverse osmosis membrane unit 1b is transferred to the purified water storage tank as purified water B. Moreover, the concentrated water C discharged | emitted from this 1st reverse osmosis membrane unit 1a and the concentrated water C discharged | emitted from this 2nd reverse osmosis membrane unit 1b are transferred to a system outside or a concentrated water storage tank.

このような通常運転時に於いては、供給水不純度測定装置20a3により少なくとも何れか一の逆浸透膜ユニット1に供給される供給水(図3では第1逆浸透膜ユニット1aから排出された透過水)の不純度、濃縮水不純度測定装置20b3により少なくとも何れか一の逆浸透膜ユニット1から排出された濃縮水(図3では第2逆浸透膜ユニット1bから排出された濃縮水C)の不純度、及び透過水不純度測定装置20c3により少なくとも何れか一の逆浸透膜ユニット1から排出された透過水(図3では第2逆浸透膜ユニット1bから排出された透過水)の不純度の少なくとも何れか一の不純度を定期的に若しくは継続的に測定しておく。   During such normal operation, the feed water supplied to at least one reverse osmosis membrane unit 1 by the feed water impurity measuring device 20a3 (the permeate discharged from the first reverse osmosis membrane unit 1a in FIG. 3). Concentrated water discharged from at least one of the reverse osmosis membrane units 1 by the water purity / concentrated water impurity measuring device 20b3 (the concentrated water C discharged from the second reverse osmosis membrane unit 1b in FIG. 3) Impurity and impureness of the permeated water discharged from at least one reverse osmosis membrane unit 1 (permeated water discharged from the second reverse osmosis membrane unit 1b in FIG. 3) by at least one of the reverse osmosis membrane units 1 by the permeated water impurity measuring device 20c3. At least one impurity is measured regularly or continuously.

そして、測定値が第1の基準値以上である又は第1の基準値を超える場合には、透過水バルブ31及び濃縮水バルブ12の少なくとも何れか一方のバルブにより流量を調節するバルブ機構によって、前記逆浸透膜ユニットにおける透過率を制限する。
例えば、図3に示す装置を用いた場合に於いては、第1透過水バルブ31a、第1濃縮水バルブ12d、第2透過水バルブ31b、第2濃縮水バルブ12b、第3透過水バルブ31c、第3濃縮水バルブ12e、第4透過水バルブ31dの少なくとも何れか一のバルブにより流量を調節するバルブ機構によって、第1逆浸透膜ユニット1a、第2逆浸透膜ユニット1bにおける透過率を制御する。
更に、必要に応じて、測定値が第2の基準値以上である又は第2の基準値を超える場合には、例えば、図3に示す装置を用いた場合に於いては、透過水移送希釈経路32及び濃縮水移送希釈経路34の少なくとも何れか一方による希釈を実施する。
When the measured value is equal to or greater than the first reference value or exceeds the first reference value, a valve mechanism that adjusts the flow rate by at least one of the permeate valve 31 and the concentrated water valve 12, The transmittance in the reverse osmosis membrane unit is limited.
For example, when the apparatus shown in FIG. 3 is used, the first permeated water valve 31a, the first concentrated water valve 12d, the second permeated water valve 31b, the second concentrated water valve 12b, and the third permeated water valve 31c. The permeability in the first reverse osmosis membrane unit 1a and the second reverse osmosis membrane unit 1b is controlled by a valve mechanism that adjusts the flow rate by at least one of the third concentrated water valve 12e and the fourth permeated water valve 31d. To do.
Furthermore, if necessary, if the measured value is greater than or equal to the second reference value or exceeds the second reference value, for example when using the apparatus shown in FIG. Dilution is performed by at least one of the path 32 and the concentrated water transfer dilution path 34.

他実施形態
第1、第2、第3実施形態の浄化水回収装置及び浄化水Bの回収方法は、上記の通りであるが、本発明は第1、第2、第3実施形態に限定されず、適宜設計変更可能である。
例えば、第1、第2実施形態の浄化水回収装置は、浄化水バルブ11と濃縮水バルブ12との両方を備えて構成され、第3実施形態の浄化水回収装置は、透過水バルブ31と濃縮水バルブ12との両方を備えて構成されたが、本発明に於いては、何れか一方を備えるものであってもよい。
Other Embodiments The purified water recovery apparatus and the purified water B recovery method of the first, second, and third embodiments are as described above, but the present invention is limited to the first, second, and third embodiments. The design can be changed as appropriate.
For example, the purified water recovery apparatus of the first and second embodiments is configured to include both the purified water valve 11 and the concentrated water valve 12, and the purified water recovery apparatus of the third embodiment includes a permeated water valve 31 and In the present invention, either one of the concentrated water valve 12 and the concentrated water valve 12 may be provided.

一実施形態の浄化水回収装置及び浄化水の回収方法を示す概略図。Schematic which shows the purified water collection | recovery apparatus of one Embodiment, and the collection method of purified water. 他の実施形態の浄化水回収装置及び浄化水の回収方法を示す概略図。Schematic which shows the purified water collection | recovery apparatus of other embodiment and the collection method of purified water. 他の実施形態の浄化水回収装置及び浄化水の回収方法を示す概略図。Schematic which shows the purified water collection | recovery apparatus of other embodiment and the collection method of purified water.

符号の説明Explanation of symbols

1・・・逆浸透膜ユニット、 11・・・浄化水バルブ、 12・・・濃縮水バルブ、 20・・・不純度測定装置、 31・・・透過水バルブ
A・・・廃水、 B・・・浄化水、 C・・・濃縮水
DESCRIPTION OF SYMBOLS 1 ... Reverse osmosis membrane unit, 11 ... Purified water valve, 12 ... Concentrated water valve, 20 ... Impurity measuring device, 31 ... Permeated water valve A ... Waste water, B ...・ Purified water, C ... Concentrated water

Claims (6)

供給水を逆浸透膜濾過により透過水たる浄化水と非透過水たる濃縮水とに分離する逆浸透膜ユニットを備え、前記供給水として廃水が供給され、前記逆浸透膜ユニットから排出された浄化水を回収するように構成された浄化水回収装置であって、
前記供給水、前記濃縮水又は前記浄化水の不純度を測定する不純度測定装置の少なくとも一つと、前記浄化水の流量を調節する浄化水バルブ及び前記濃縮水の流量を調節する濃縮水バルブの少なくとも何れか一方を含むバルブ機構とを備え、前記不純度測定装置によって測定された測定値に基づいて、前記バルブ機構により前記逆浸透膜ユニットにおける透過率が制御されていることを特徴とする浄化水回収装置。
A reverse osmosis membrane unit that separates supply water into purified water that is permeated water and concentrated water that is non-permeated water by reverse osmosis membrane filtration, and wastewater is supplied as the supplied water and purified from the reverse osmosis membrane unit A purified water recovery device configured to recover water,
At least one impurity measuring device for measuring the purity of the supply water, the concentrated water or the purified water, a purified water valve for adjusting the flow rate of the purified water, and a concentrated water valve for adjusting the flow rate of the concentrated water. And a valve mechanism including at least one of them, and the transmittance in the reverse osmosis membrane unit is controlled by the valve mechanism based on the measured value measured by the impurity measuring device. Water recovery device.
供給水を逆浸透膜濾過により透過水たる浄化水と非透過水たる濃縮水とに分離する逆浸透膜ユニットを流れ方向に複数段備え、最上流側の逆浸透膜ユニットは供給水として廃水が供給され、他の逆浸透膜ユニットは供給水として前段の逆浸透膜ユニットから排出された濃縮水が供給されるように配列され、各逆浸透膜ユニットから排出された浄化水が回収されるように構成された浄化水回収装置であって、
少なくとも何れか一の逆浸透膜ユニットについて供給される供給水、排出された濃縮水、排出された浄化水の不純度を測定する不純度測定装置の少なくとも一つと、該一の逆浸透膜ユニットから排出される浄化水の流量を調節する浄化水バルブ及び該一の逆浸透膜ユニットから排出される濃縮水の流量を調節する濃縮水バルブの少なくとも何れか一方を含むバルブ機構とを備え、前記不純度測定装置によって測定された測定値に基づいて、前記バルブ機構により前記逆浸透膜ユニットにおける透過率が制御されていることを特徴とする浄化水回収装置。
A reverse osmosis membrane unit that separates the feed water into purified water that is permeated by reverse osmosis membrane filtration and concentrated water that is non-permeated water is provided in multiple stages in the flow direction. The other reverse osmosis membrane units are arranged so that the concentrated water discharged from the preceding reverse osmosis membrane unit is supplied as supply water, and the purified water discharged from each reverse osmosis membrane unit is recovered. A purified water recovery device configured as follows:
At least one of the purity measuring device for measuring the purity of the supplied water, the drained concentrated water, and the drained purified water supplied for at least one of the reverse osmosis membrane units, and the one reverse osmosis membrane unit A valve mechanism including at least one of a purified water valve for adjusting the flow rate of the purified water discharged and a concentrated water valve for adjusting the flow rate of the concentrated water discharged from the one reverse osmosis membrane unit, A purified water recovery apparatus, wherein a permeability of the reverse osmosis membrane unit is controlled by the valve mechanism based on a measured value measured by a purity measuring apparatus.
供給水を逆浸透膜濾過により透過水と非透過水たる濃縮水とに分離する逆浸透膜ユニットを流れ方向に複数段備え、最上流側の逆浸透膜ユニットは供給水として廃水が供給され、他の逆浸透膜ユニットは供給水として前段の逆浸透膜ユニットから排出された透過水が供給されるように配列され、少なくとも何れかの逆浸透膜ユニットからの透過水が浄化水として回収されるように構成された浄化水回収装置であって、
少なくとも何れか一の逆浸透膜ユニットについて供給される供給水、排出された濃縮水、排出された透過水の不純度を測定する不純度測定装置の少なくとも一つと、該一の逆浸透膜ユニットから排出される透過水の流量を調節する透過水バルブ及び該一の逆浸透膜ユニットから排出される濃縮水の流量を調節する濃縮水バルブの少なくとも何れか一方を含むバルブ機構とを備え、前記不純度測定装置によって測定された測定値に基づいて、前記バルブ機構により前記一の逆浸透膜ユニットにおける透過率が制御されていることを特徴とする浄化水回収装置。
A reverse osmosis membrane unit that separates feed water into permeate and non-permeate concentrated water by reverse osmosis membrane filtration has multiple stages in the flow direction, and the reverse osmosis membrane unit on the most upstream side is supplied with waste water as feed water, The other reverse osmosis membrane units are arranged so that the permeated water discharged from the preceding reverse osmosis membrane unit is supplied as supply water, and the permeated water from at least one of the reverse osmosis membrane units is recovered as purified water. A purified water recovery device configured as follows:
At least one of a purity measuring device for measuring the purity of supplied water, discharged concentrated water, discharged permeated water for at least one of the reverse osmosis membrane units, and from the one reverse osmosis membrane unit A valve mechanism including at least one of a permeate valve for adjusting the flow rate of discharged permeated water and a concentrated water valve for adjusting the flow rate of concentrated water discharged from the one reverse osmosis membrane unit. A purified water recovery apparatus, wherein a permeability of the one reverse osmosis membrane unit is controlled by the valve mechanism based on a measured value measured by a purity measuring apparatus.
前記不純度測定装置によって測定された測定値が基準値以上である若しくは基準値を超える場合に、前記バルブ機構により前記一の逆浸透膜ユニットにおける透過率が通常運転時よりも低くなるように制御されている請求項1乃至3の何れかに記載の浄化水回収装置。   When the measured value measured by the impurity measuring apparatus is greater than or equal to a reference value or exceeds the reference value, the valve mechanism controls the transmittance of the one reverse osmosis membrane unit to be lower than that during normal operation. The purified water recovery apparatus according to any one of claims 1 to 3. 前記不純度測定装置は、電気伝導度、イオン濃度、塩濃度、総溶解性物質濃度、pH及びORPの何れかを測定する装置である請求項1乃至4の何れかに記載の浄化水回収装置。   The purified water recovery apparatus according to any one of claims 1 to 4, wherein the impurity measurement apparatus is an apparatus for measuring any one of electrical conductivity, ion concentration, salt concentration, total soluble substance concentration, pH, and ORP. . 請求項1乃至5の何れかに記載の浄化水回収装置を用いて、廃水から浄化水を精製し回収することを特徴とする浄化水の回収方法。   6. A purified water recovery method comprising purifying purified water from waste water using the purified water recovery apparatus according to claim 1.
JP2007333795A 2007-10-29 2007-12-26 Purified water recovering apparatus and method for recovering purified water Pending JP2009154070A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2007333795A JP2009154070A (en) 2007-12-26 2007-12-26 Purified water recovering apparatus and method for recovering purified water
CN2012101869180A CN102745775A (en) 2007-10-29 2008-10-23 Water treatment method, water treatment apparatus, method for recovering purified water, and purified water recovering apparatus
KR1020107005808A KR20100075839A (en) 2007-10-29 2008-10-23 Water treatment method, water treatment apparatus, method for recovering purified water, and purified water recovering apparatus
BRPI0817155A BRPI0817155A2 (en) 2007-10-29 2008-10-23 "method and apparatus for water treatment, apparatus and method for water reuse"
PCT/JP2008/069206 WO2009057501A1 (en) 2007-10-29 2008-10-23 Water treatment method, water treatment apparatus, method for recovering purified water, and purified water recovering apparatus
CN200880107777.0A CN101801857B (en) 2007-10-29 2008-10-23 Water treatment method, water treatment apparatus, method for recovering purified water, and purified water recovering apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007333795A JP2009154070A (en) 2007-12-26 2007-12-26 Purified water recovering apparatus and method for recovering purified water

Publications (1)

Publication Number Publication Date
JP2009154070A true JP2009154070A (en) 2009-07-16

Family

ID=40958671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007333795A Pending JP2009154070A (en) 2007-10-29 2007-12-26 Purified water recovering apparatus and method for recovering purified water

Country Status (1)

Country Link
JP (1) JP2009154070A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012183473A (en) * 2011-03-04 2012-09-27 Miura Co Ltd Water treatment apparatus
JP2013066819A (en) * 2011-09-20 2013-04-18 Miura Co Ltd Reverse osmosis membrane separation device
JP2013252502A (en) * 2012-06-08 2013-12-19 Toray Ind Inc Device for desalination of salt water and water producing method
JP2014020962A (en) * 2012-07-19 2014-02-03 Hitachi-Ge Nuclear Energy Ltd Radioactive wastewater treatment method and treatment device for the same
JP2015134358A (en) * 2015-05-01 2015-07-27 三浦工業株式会社 Reverse osmosis membrane separation apparatus
JP2015157288A (en) * 2015-05-01 2015-09-03 三浦工業株式会社 reverse osmosis membrane separation device
JP2015164731A (en) * 2015-05-01 2015-09-17 三浦工業株式会社 reverse osmosis membrane separation device
US9145310B2 (en) 2010-05-17 2015-09-29 Kabushiki Kaisha Toshiba Seawater desalination apparatus
JP2015221440A (en) * 2015-08-03 2015-12-10 株式会社日立製作所 Reverse osmosis processing apparatus
CN105782551A (en) * 2016-05-19 2016-07-20 北京碧水源净水科技有限公司 Water-saving adjusting valve and water purifier with water-saving adjusting valve
JP2016215205A (en) * 2016-08-22 2016-12-22 株式会社日立製作所 Reverse osmosis treatment device
JP2021016823A (en) * 2019-07-19 2021-02-15 オルガノ株式会社 Water treatment method and water treatment apparatus
WO2021131156A1 (en) * 2019-12-25 2021-07-01 オルガノ株式会社 Water treatment system and water treatment method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6353499A (en) * 1986-08-22 1988-03-07 科学技術庁原子力局長 Method of processing radioactive waste liquor
JPH08309350A (en) * 1995-05-17 1996-11-26 Hitachi Plant Eng & Constr Co Ltd Water treatment method using reverse osmosis membrane

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6353499A (en) * 1986-08-22 1988-03-07 科学技術庁原子力局長 Method of processing radioactive waste liquor
JPH08309350A (en) * 1995-05-17 1996-11-26 Hitachi Plant Eng & Constr Co Ltd Water treatment method using reverse osmosis membrane

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9145310B2 (en) 2010-05-17 2015-09-29 Kabushiki Kaisha Toshiba Seawater desalination apparatus
JP2012183473A (en) * 2011-03-04 2012-09-27 Miura Co Ltd Water treatment apparatus
US9370746B2 (en) 2011-09-20 2016-06-21 Miura Co., Ltd. Reverse osmosis membrane separation device
JP2013066819A (en) * 2011-09-20 2013-04-18 Miura Co Ltd Reverse osmosis membrane separation device
JP2013252502A (en) * 2012-06-08 2013-12-19 Toray Ind Inc Device for desalination of salt water and water producing method
JP2014020962A (en) * 2012-07-19 2014-02-03 Hitachi-Ge Nuclear Energy Ltd Radioactive wastewater treatment method and treatment device for the same
JP2015134358A (en) * 2015-05-01 2015-07-27 三浦工業株式会社 Reverse osmosis membrane separation apparatus
JP2015157288A (en) * 2015-05-01 2015-09-03 三浦工業株式会社 reverse osmosis membrane separation device
JP2015164731A (en) * 2015-05-01 2015-09-17 三浦工業株式会社 reverse osmosis membrane separation device
JP2015221440A (en) * 2015-08-03 2015-12-10 株式会社日立製作所 Reverse osmosis processing apparatus
CN105782551A (en) * 2016-05-19 2016-07-20 北京碧水源净水科技有限公司 Water-saving adjusting valve and water purifier with water-saving adjusting valve
JP2016215205A (en) * 2016-08-22 2016-12-22 株式会社日立製作所 Reverse osmosis treatment device
JP2021016823A (en) * 2019-07-19 2021-02-15 オルガノ株式会社 Water treatment method and water treatment apparatus
JP7319119B2 (en) 2019-07-19 2023-08-01 オルガノ株式会社 Water treatment method and water treatment equipment
WO2021131156A1 (en) * 2019-12-25 2021-07-01 オルガノ株式会社 Water treatment system and water treatment method
JP2021102191A (en) * 2019-12-25 2021-07-15 オルガノ株式会社 Water treatment system and water treatment method
CN114206785A (en) * 2019-12-25 2022-03-18 奥加诺株式会社 Water treatment system and water treatment method
CN114206785B (en) * 2019-12-25 2023-08-08 奥加诺株式会社 Water treatment system and water treatment method

Similar Documents

Publication Publication Date Title
JP2009154070A (en) Purified water recovering apparatus and method for recovering purified water
JP5075597B2 (en) Purified water recovery device and purified water recovery method
Lehman et al. Application of ceramic membranes with pre-ozonation for treatment of secondary wastewater effluent
WO2018150980A1 (en) Reverse osmosis treatment device and reverse osmosis treatment method
CN102272053B (en) Water desalination plant and system for the production of pure water and salt
AU2011268443B2 (en) Seawater desalination plant and production of high purity salt
AU2012319064B2 (en) Seawater desalination process and apparatus
JP5222526B2 (en) Water treatment method and water treatment apparatus
EP2760796B1 (en) Electrochemical desalination for oil recovery
US10214433B2 (en) Brine treatment scaling control system and method
JP6189205B2 (en) Concentrator scale detection device and method, water regeneration treatment system
KR20140115934A (en) High efficiency water purification system
US20160040522A1 (en) Production of injection water by coupling direct-osmosis methods with other methods of filtration
EA019880B1 (en) Method and apparatus for desalination
JP2008100219A (en) Desalination method and desalination apparatus
KR20160140761A (en) Osmotic separation systems and methods
JP6395844B2 (en) Adhesion monitoring device for water treatment device, water treatment device and operation method thereof, and cleaning method for water treatment device
JP2009285522A (en) Reverse osmosis membrane device
WO2016035175A1 (en) Water treatment device and operating method for water treatment device
WO2013031545A1 (en) Desalination system and desalination method
KR20200044244A (en) Fo / ro based multi-source water purification method and system
KR101796633B1 (en) Apparatus for treating water and method for treating water using the same
WO2016151673A1 (en) Water treatment device, and method of operating water treatment device
Hassan et al. Utilizing Hybrid RO-OARO Systems as New Methods for Desalination Process
JP2018108549A (en) Exhaust gas treatment apparatus and exhaust gas treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100825

A131 Notification of reasons for refusal

Effective date: 20130201

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130531