JP5222526B2 - Water treatment method and water treatment apparatus - Google Patents

Water treatment method and water treatment apparatus Download PDF

Info

Publication number
JP5222526B2
JP5222526B2 JP2007280154A JP2007280154A JP5222526B2 JP 5222526 B2 JP5222526 B2 JP 5222526B2 JP 2007280154 A JP2007280154 A JP 2007280154A JP 2007280154 A JP2007280154 A JP 2007280154A JP 5222526 B2 JP5222526 B2 JP 5222526B2
Authority
JP
Japan
Prior art keywords
water
amount
raw water
raw
salt concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007280154A
Other languages
Japanese (ja)
Other versions
JP2009106832A (en
Inventor
克義 谷田
進 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco Solutions Co Ltd filed Critical Kobelco Eco Solutions Co Ltd
Priority to JP2007280154A priority Critical patent/JP5222526B2/en
Priority to CN2012101869180A priority patent/CN102745775A/en
Priority to KR1020107005808A priority patent/KR20100075839A/en
Priority to BRPI0817155A priority patent/BRPI0817155A2/en
Priority to PCT/JP2008/069206 priority patent/WO2009057501A1/en
Priority to CN200880107777.0A priority patent/CN101801857B/en
Publication of JP2009106832A publication Critical patent/JP2009106832A/en
Application granted granted Critical
Publication of JP5222526B2 publication Critical patent/JP5222526B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、塩類を含有する原水を逆浸透膜により膜分離させる水処理方法ならびに水処理装置に関する。   The present invention relates to a water treatment method and a water treatment apparatus in which raw water containing salts is separated by a reverse osmosis membrane.

従来、離島や少雨地域など淡水を得ることが困難な地域において、海水などを原水として淡水を製造し、得られた淡水を飲み水や農業用水として利用することが実施されている。
この海水の淡水化といったような水処理においては、海水にアニオンやカチオンなどの状態で含まれている種々の塩類を除去する必要があることから、従来、逆浸透膜による膜分離が実施されている。
Conventionally, in areas where it is difficult to obtain fresh water such as remote islands and low rain areas, it has been practiced to produce fresh water using seawater as raw water and use the obtained fresh water as drinking water or agricultural water.
In water treatment such as desalination of seawater, it is necessary to remove various salts contained in seawater in the state of anions, cations, etc., and thus membrane separation using a reverse osmosis membrane has been conventionally performed. Yes.

通常、この逆浸透膜による膜分離においては、逆浸透膜により隔てられた空間の一方側に塩類を含有する原水を流入させて該原水よりも塩類の濃度が低い淡水化された処理水を前記逆浸透膜を通じて他方側に透過させることにより、原水よりも塩類の濃度が高い濃縮水を一方側から流出させるとともに前記他方側から処理水を連続的に流出させる処理プロセスが実施されている。   Usually, in this membrane separation using a reverse osmosis membrane, raw water containing salts is introduced into one side of the space separated by the reverse osmosis membrane, and the desalinated treated water having a lower salt concentration than the raw water is used as the above-mentioned. A permeation process is performed in which concentrated water having a higher salt concentration than raw water is allowed to flow out from one side and treated water is continuously flowed out from the other side by passing through the reverse osmosis membrane to the other side.

例えば、下記特許文献1には、逆浸透膜により隔てられた供給水室と透過水室とを有する膜分離モジュールを用いて海水を淡水化させることが記載されている。
より詳しくは、下記特許文献1には、膜分離モジュールの前記供給水室に原水を連続的に流入させることにより、塩類の濃度(以下、「塩濃度」ともいう)が低い淡水化された処理水を逆浸透膜を通じて透過水室側に透過させて該透過水室から淡水を連続的に流出させるとともに供給水室から塩濃度が高められた濃縮水を連続的に流出させることが記載されている。
For example, Patent Document 1 described below describes desalination of seawater using a membrane separation module having a supply water chamber and a permeate chamber separated by a reverse osmosis membrane.
More specifically, the following Patent Document 1 discloses a desalinated treatment in which the concentration of salts (hereinafter also referred to as “salt concentration”) is low by continuously flowing raw water into the supply water chamber of the membrane separation module. It is described that water is permeated through the reverse osmosis membrane to the permeate water chamber side so that fresh water is continuously flowed out from the permeate water chamber and concentrated water with increased salt concentration is continuously flowed out from the supply water chamber. Yes.

また、このような海水の淡水化以外にも、例えば、金属精錬工場などにおける洗浄排水などに含まれる金属塩を除去して同工場内における工業用水として再利用するような場合においても逆浸透膜による水処理が実施されたりしている。   In addition to desalination of seawater, for example, reverse osmosis membranes are also used in cases where metal salts contained in washing wastewater, etc. in metal refining factories are removed and reused as industrial water in the factories. Water treatment by is carried out.

このような海水の淡水化や、工場排水の再利用などにおいては、通常、一定レベルの水質を有する水を安定した量で生成することが求められている。   In such desalination of seawater and reuse of industrial wastewater, it is usually required to produce a stable amount of water having a certain level of water quality.

このような水質レベルの安定化や安定した水量の確保の要望に対し、水量の安定化については、逆浸透膜を透過する処理水の量を逆浸透膜を介して隣接する空間(例えば、供給水室と透過水室)の圧力差などによって変化させることが容易であることから比較的容易に実施可能である。
一方で、水質、すなわち、処理水に含有される塩類の量は、逆浸透膜を通過する塩類の量によって変化し、この逆浸透膜を通過する塩類の量は、通常、逆浸透膜を介して隣接する濃縮水に含まれる塩類の量と逆浸透膜の性能によって変化する。
In response to such demands for stabilizing the water quality level and ensuring a stable amount of water, the amount of treated water that permeates the reverse osmosis membrane is set to the adjacent space (for example, supply) through the reverse osmosis membrane. Since it can be easily changed by the pressure difference between the water chamber and the permeated water chamber), it can be implemented relatively easily.
On the other hand, the quality of water, that is, the amount of salts contained in the treated water varies depending on the amount of salts that pass through the reverse osmosis membrane, and the amount of salts that pass through the reverse osmosis membrane usually passes through the reverse osmosis membrane. Depending on the amount of salt contained in the adjacent concentrated water and the performance of the reverse osmosis membrane.

したがって、例えば、常時一定の塩濃度を有する原水を用いて水処理を実施すれば一定レベルの水質を有する水を安定的に供給することが比較的容易となるものの、例えば、金属精錬工場の洗浄排水は工場の稼動状況や製造されている製品の種類などによって塩濃度が大きく変動し、海水の淡水化などにおいても潮流や天候の関係によって塩濃度は変化する。
したがって、このような常時一定の塩濃度を有する原水を得ることは、実質上困難で、従来、水質レベルの安定化は困難となっている。
Therefore, for example, if water treatment is performed using raw water having a constant salt concentration at all times, it is relatively easy to stably supply water having a certain level of water quality. The salt concentration of wastewater varies greatly depending on the operating conditions of the factory and the type of product being manufactured, and the salt concentration also changes depending on the tidal current and the weather even during seawater desalination.
Therefore, it is practically difficult to obtain such raw water having a constant salt concentration, and it has been difficult to stabilize the water quality level.

また、このような問題に対しては、従来、殆ど検討されておらず解決策も得られていない。
すなわち、従来の水処理方法ならびに水処理装置では、一定レベルの水質を有する水を安定的に得ることが困難であるという問題を有している。
Also, for such a problem, conventionally, little has been studied and no solution has been obtained.
That is, the conventional water treatment method and water treatment apparatus have a problem that it is difficult to stably obtain water having a certain level of water quality.

特開平9−299944号公報JP-A-9-299944

本発明の課題は、一定レベルの水質を有する水を安定的に得る水処理方法ならびに水処理装置を提供することにある。   An object of the present invention is to provide a water treatment method and a water treatment apparatus that stably obtain water having a certain level of water quality.

本発明は、前記課題を解決すべく、逆浸透膜が用いられている膜分離モジュールに塩類を含有する原水を流入させて、前記原水よりも塩類の濃度が低い処理水と、前記原水よりも塩類の濃度が高い濃縮水とに前記逆浸透膜で分離し、しかも、前記原水を膜分離モジュールに連続的に流入させることにより、前記濃縮水を膜分離モジュールから連続的に流出させるとともに、前記処理水を膜分離モジュールから連続的に流出させる水処理方法であって、前記処理水の膜分離モジュールからの流出量を一定に制御するとともに、前記処理水の塩類の濃度を所定値以下に制御し得るように前記逆浸透膜を透過する塩類の量を前記原水の電気伝導度により求め、該電気伝導度から求められる前記逆浸透膜を透過する塩類の量が増大する場合に前記膜分離モジュールへの原水の流入量を増大させて前記透過する塩類の量の増大を抑制させることを特徴とする水処理方法を提供する。
In order to solve the above problems, the present invention allows raw water containing salts to flow into a membrane separation module in which a reverse osmosis membrane is used, treated water having a lower salt concentration than the raw water, and more than the raw water. Separated into concentrated water having a high salt concentration by the reverse osmosis membrane, and by continuously flowing the raw water into the membrane separation module, the concentrated water is continuously discharged from the membrane separation module, and A water treatment method for continuously treating treated water from a membrane separation module, wherein the amount of treated water discharged from the membrane separation module is controlled to be constant, and the salt concentration of the treated water is controlled to a predetermined value or less. determine the amount of salt that passes through the reverse osmosis membrane so as to an electric conductivity of the raw water, the membrane fraction when the amount of salts that passes through the reverse osmosis membrane obtained from the electric conductivity is increased It provides a water treatment method by increasing the inflow of raw water to the module, characterized in that to suppress the increase in the amount of salts that the transmission.

また、本発明は、前記課題を解決すべく、逆浸透膜が用いられている膜分離モジュールを備え、該膜分離モジュールに塩類を含有する原水が流入されて、前記原水よりも塩類の濃度が低い処理水と、前記原水よりも塩類の濃度が高い濃縮水とに前記逆浸透膜で分離され、しかも、前記原水が膜分離モジュールに連続的に流入されることにより、前記濃縮水が膜分離モジュールから連続的に流出されるとともに、前記処理水が膜分離モジュールから連続的に流出される水処理装置であって、前記処理水の膜分離モジュールからの流出量を一定に制御する制御機構と、前記逆浸透膜を透過する塩類の量に応じて前記原水の流入量を変化させることにより前記処理水の塩類の濃度を所定値以下に制御する制御機構とを備え、該処理水の塩類の濃度を所定値以下に制御する制御機構は、逆浸透膜を透過する塩類の量を求めるために前記原水の電気伝導度を測定する電気伝導度計を備え、該電気伝導度計によって前記逆浸透膜を透過する塩類の量が増大することが求められた場合に前記膜分離モジュールへの原水の流入量を増大させて前記透過する塩類の量の増大を抑制させるように構成されていることを特徴とする水処理装置を提供する。 The present invention also includes a membrane separation module in which a reverse osmosis membrane is used to solve the above problems, and raw water containing salts is flowed into the membrane separation module, so that the concentration of salts is higher than that of the raw water. It is separated by the reverse osmosis membrane into low treated water and concentrated water having a higher salt concentration than the raw water, and the raw water is continuously flowed into the membrane separation module, whereby the concentrated water is separated into membranes. A water treatment apparatus in which the treated water is continuously discharged from the module and the treated water is continuously discharged from the membrane separation module, and a control mechanism for controlling a flow amount of the treated water from the membrane separation module to be constant A control mechanism for controlling the salt concentration of the treated water to a predetermined value or less by changing the inflow amount of the raw water according to the amount of the salt that permeates the reverse osmosis membrane , Concentration The control mechanism that controls the constant value or less includes an electrical conductivity meter that measures the electrical conductivity of the raw water in order to determine the amount of salts that permeate the reverse osmosis membrane, and the electrical conductivity meter transmits the reverse osmosis membrane. When the amount of salts to be increased is required to increase, the amount of raw water flowing into the membrane separation module is increased to suppress an increase in the amount of the permeating salts. A water treatment device is provided.

本発明によれば、逆浸透膜が用いられている膜分離モジュールに前記原水を流入させて、前記原水よりも塩類の濃度が低い処理水と、前記原水よりも塩類の濃度が高い濃縮水とに前記逆浸透膜で膜分離する水処理方法ならびに水処理装置において前記処理水の流出量を一定に制御することから、安定した水量が確保されることとなる。   According to the present invention, the raw water is allowed to flow into a membrane separation module in which a reverse osmosis membrane is used, treated water having a lower salt concentration than the raw water, and concentrated water having a higher salt concentration than the raw water, In addition, since the outflow amount of the treated water is controlled to be constant in the water treatment method and the water treatment apparatus for performing membrane separation with the reverse osmosis membrane, a stable amount of water is ensured.

しかも、処理水の流出量を一定に制御することから、膜分離モジュールに流入される水の量の内、逆浸透膜を透過して除去される処理水の量が一定となる。
すなわち、例えば、膜分離モジュールに単位時間当たりに流入する水量を変化させることで濃縮水の濃縮度合いを制御することができる。
したがって、例えば、逆浸透膜を透過する塩類の量に応じて原水の流入量を変化させることにより濃縮水の塩濃度を調整して逆浸透膜を透過する塩類の量を調整することができる。
すなわち、本発明によれば、原水の流入量を変化させることにより前記処理水の塩類の濃度が所定値以下に制御され、安定した水質が確保されることとなる。
しかも、濃縮水の塩濃度が調整されることにより、逆浸透膜の汚染速度の抑制も図りうる。
Moreover, since the outflow amount of the treated water is controlled to be constant, the amount of treated water that passes through the reverse osmosis membrane and is removed among the amount of water that flows into the membrane separation module is constant.
That is, for example, the concentration degree of concentrated water can be controlled by changing the amount of water flowing into the membrane separation module per unit time.
Therefore, for example, the amount of salt permeating the reverse osmosis membrane can be adjusted by adjusting the salt concentration of the concentrated water by changing the inflow amount of the raw water according to the amount of the salt permeating the reverse osmosis membrane.
That is, according to the present invention, the salt concentration of the treated water is controlled to a predetermined value or less by changing the inflow amount of the raw water, and a stable water quality is ensured.
Moreover, the contamination rate of the reverse osmosis membrane can be suppressed by adjusting the salt concentration of the concentrated water.

このことから、本発明によれば、水処理方法ならびに水処理装置において一定レベルの水質を有する水を安定した量で得ることができる。   Thus, according to the present invention, water having a certain level of water quality can be obtained in a stable amount in the water treatment method and the water treatment apparatus.

以下に、本発明の好ましい実施の形態について金属精錬工場からの洗浄排水(以下「排水」ともいう)を原水として、この排水を、含有されている塩類が工業用水として再利用可能な状態にまで低減された処理水と、原水よりも塩濃度が高められた濃縮水とに分離する水処理を例に説明する。   In the following, preferred embodiments of the present invention will be described with reference to washing wastewater from a metal smelting plant (hereinafter also referred to as “drainage”) as raw water, and the wastewater is in a state where the contained salts can be reused as industrial water. An example of water treatment that separates into reduced treated water and concentrated water having a higher salt concentration than the raw water will be described.

まず、水処理装置について説明する。
図1は、本実施形態における水処理装置の構成を示す概略ブロックである。
図1中の1は、膜分離モジュールを表しており、11は、該膜分離モジュール1の外殻を形成し内部に原水ならびに処理水を貯留する収容空間が形成された筐体であり、12は、前記筐体11の内部に収容されている逆浸透膜であり、該逆浸透膜12により前記筐体11の内部の空間が二分されている。
First, the water treatment apparatus will be described.
FIG. 1 is a schematic block diagram showing the configuration of the water treatment apparatus in the present embodiment.
1 in FIG. 1 represents a membrane separation module, and 11 is a housing in which an outer shell of the membrane separation module 1 is formed and an accommodation space for storing raw water and treated water is formed therein. Is a reverse osmosis membrane housed inside the housing 11, and the space inside the housing 11 is divided into two by the reverse osmosis membrane 12.

該逆浸透膜12としては、酢酸セルロース、芳香族ポリアミド、ポリビニールアルコールなどの素材により形成された直径数mmの中空糸状に形成されたいわゆる中空糸膜などと呼ばれるタイプのものや、該中空糸膜よりも径の太い数cm程度の太さを有するいわゆるチューブラー膜と呼ばれるタイプのもの、さらには、使用時に内部にメッシュなどの支持材が配された状態でロール状に巻回されて用いられる封筒状のいわゆるスパイラル膜と呼ばれるものなど従来公知のものを採用することができる。   Examples of the reverse osmosis membrane 12 include a so-called hollow fiber membrane formed of a material such as cellulose acetate, aromatic polyamide, polyvinyl alcohol or the like and formed into a hollow fiber shape having a diameter of several millimeters. A so-called tubular membrane having a diameter of several centimeters larger than that of the membrane, and also used by being wound into a roll with a support material such as a mesh disposed inside when used. Conventionally known ones such as an envelope-shaped so-called spiral membrane can be employed.

図1中の13は、前記逆浸透膜12によって二分された膜分離モジュール1の内部空間の内の一方の空間である供給水室であり、14は、二分された空間の内の他方の空間である透過水室である。
また、前記筐体11の前記供給水室13側には、原水を流入させるための原水流入口と濃縮水を流出させるための濃縮水流出口とが開口されており、前記透過水室14側には、逆浸透膜12を通過して塩濃度が低減された処理水を排出させるための処理水排出口が開口されている。
Reference numeral 13 in FIG. 1 is a feed water chamber which is one of the internal spaces of the membrane separation module 1 divided into two by the reverse osmosis membrane 12, and 14 is the other of the two divided spaces. This is a permeate chamber.
Further, a raw water inlet for allowing raw water to flow in and a concentrated water outlet for allowing concentrated water to flow out are opened on the supply water chamber 13 side of the casing 11, and on the permeate water chamber 14 side. Is opened with a treated water discharge port for discharging treated water having a reduced salt concentration through the reverse osmosis membrane 12.

図1中の2は、前記膜分離モジュール1に原水(排水)を流入させるべく設けられた原水搬送機構であり、21は、原水の流通流路となる原水配管部である。
該原水配管部21は、その一端側が原水の供給ポイント(図示せず)に接続されており、この供給ポイントから原水を前記供給水室13に流入させるべく他端部が前記膜分離モジュール1の筐体11に形成された原水流入口に接続されている。
また、22は、原水を搬送するための搬送ポンプ(以下「原水搬送ポンプ」ともいう)であり、該原水搬送ポンプ22は、前記原水供給ポイントから前記膜分離モジュール1に向けて原水を流通させ得るように前記原水配管部21の途中箇所に設けられている。
Reference numeral 2 in FIG. 1 is a raw water transport mechanism provided to allow raw water (drainage) to flow into the membrane separation module 1, and 21 is a raw water piping section that serves as a flow path for raw water.
One end side of the raw water pipe section 21 is connected to a raw water supply point (not shown), and the other end of the raw water piping section 21 is connected to the supply water chamber 13 from the supply point. It is connected to the raw water inlet formed in the housing 11.
Reference numeral 22 denotes a transport pump for transporting raw water (hereinafter also referred to as “raw water transport pump”). The raw water transport pump 22 distributes the raw water from the raw water supply point toward the membrane separation module 1. It is provided in the middle part of the raw water piping part 21 so as to obtain.

図1中の3は、前記膜分離モジュール1で塩類が除去された処理水を該処理水のユースポイント(図示せず)に供給すべく設けられた処理水搬送機構であり、31は処理水の流通流路となる処理水配管部である。
該処理水配管部31は、前記透過水室14から処理水を排出させるべく、その一端側が前記膜分離モジュール1の筐体11に形成された透過水排出口に接続されて水処理装置に備えられている。
また、32は、処理水の排出量を一定量に制御するために前記処理水配管部31に設けられた処理水定量化機構であり、該処理水定量化機構32としては、例えば、定流量弁などが用いられたもの採用することができ、該定流量弁としては、例えば、弁の入口側にオリフィスを備え、流量の変動によってオリフィス前後に発生する差圧によって主弁の開度を調整して流量を一定に保持するタイプのものなどを採用することができる。
また、33は、この処理水配管部31内を流通する処理水の塩濃度を測定するための塩濃度測定機構であり、本実施形態の塩濃度測定機構33は、得られた測定結果を信号として発信し得るように形成されている。
該塩濃度測定機構33としては、塩濃度を測定するための電気伝導度計やイオン計などを備えたものを例示することができる。
なお、電気伝導度は、塩濃度との相関関係を有し測定も容易である点において、前記塩濃度測定機構33としては、電気伝導度を測定する機構を有するものが好適である。
しかも、電気伝導度計は、安価でメンテナンスも容易であることから、電気伝導度計を備えた塩濃度測定機構33は、水処理装置の装置コスト、メンテナンスコストの低減に有効である。
In FIG. 1, 3 is a treated water transport mechanism provided to supply treated water from which salts have been removed by the membrane separation module 1 to a use point (not shown) of the treated water, and 31 is treated water. It is the treated water piping part used as the distribution flow path.
The treated water piping part 31 is connected to a permeated water discharge port formed in the casing 11 of the membrane separation module 1 so as to discharge treated water from the permeated water chamber 14 and is provided in a water treatment device. It has been.
Reference numeral 32 denotes a treated water quantification mechanism provided in the treated water piping section 31 in order to control the discharge amount of treated water to a constant amount. The treated water quantification mechanism 32 includes, for example, a constant flow rate. For example, the constant flow valve is equipped with an orifice on the inlet side of the valve, and the opening of the main valve is adjusted by the differential pressure generated before and after the orifice due to fluctuations in the flow rate. Thus, a type that keeps the flow rate constant can be adopted.
Reference numeral 33 denotes a salt concentration measuring mechanism for measuring the salt concentration of the treated water flowing through the treated water piping section 31, and the salt concentration measuring mechanism 33 of the present embodiment signals the obtained measurement result as a signal. It is formed so that it can be transmitted as.
Examples of the salt concentration measuring mechanism 33 include those equipped with an electric conductivity meter, an ion meter, or the like for measuring the salt concentration.
In addition, since the electrical conductivity has a correlation with the salt concentration and can be easily measured, the salt concentration measuring mechanism 33 preferably has a mechanism for measuring the electrical conductivity.
Moreover, since the electric conductivity meter is inexpensive and easy to maintain, the salt concentration measuring mechanism 33 provided with the electric conductivity meter is effective in reducing the apparatus cost and maintenance cost of the water treatment device.

図1中の4は、前記膜分離モジュール1から塩濃度が濃縮された濃縮水を系外に排出させるべく設けられた濃縮水搬送機構であり、41は、濃縮水の流通流路となる濃縮水配管部である。
該濃縮水配管部41は、前記供給水室13から濃縮水を排出させるべく、その一端側が前記膜分離モジュール1の筐体11に形成された濃縮水排出口に接続されて水処理装置に備えられている。
また、42は、膜分離モジュール1から流出される濃縮水の量を調整すべく設けられた濃縮水量調整機構であり、該濃縮水量調整機構42には、前記塩濃度測定機構33から発信された信号に基づいて、膜分離モジュール1から流出される濃縮水量を変化させるべくバタフライ弁など開度調整可能な開度調整弁が用いられている。
In FIG. 1, 4 is a concentrated water transport mechanism provided to discharge concentrated water having a concentrated salt concentration out of the membrane separation module 1, and 41 is a concentrated water flow path for concentrated water. It is a water piping part.
The concentrated water pipe section 41 is connected to a concentrated water discharge port formed in the casing 11 of the membrane separation module 1 so that the concentrated water is discharged from the supply water chamber 13 and is provided in the water treatment apparatus. It has been.
Reference numeral 42 denotes a concentrated water amount adjusting mechanism provided to adjust the amount of concentrated water flowing out from the membrane separation module 1. The concentrated water amount adjusting mechanism 42 is transmitted from the salt concentration measuring mechanism 33. An opening degree adjusting valve such as a butterfly valve is used to change the amount of concentrated water flowing out from the membrane separation module 1 based on the signal.

図1中の5は、前記塩濃度測定機構33から発信された信号を、例えば、開度調整弁の開度を変更する制御信号として前記濃縮水量調整機構42に伝達するための信号伝達機構を表している。   Reference numeral 5 in FIG. 1 designates a signal transmission mechanism for transmitting a signal transmitted from the salt concentration measuring mechanism 33 to the concentrated water amount adjusting mechanism 42 as a control signal for changing the opening of the opening adjusting valve, for example. Represents.

上記のように本実施形態の水処理装置には、処理水の流出量を一定に制御する制御機構として、処理水定量化機構32が設けられていることから、濃縮水の流量を制御する濃縮水量調整機構42は、膜分離モジュール1への原水の流入量を制御する制御機構として機能することとなる。
また、この原水の流入量を制御する濃縮水量調整機構42は、塩濃度測定機構33と該塩濃度測定機構33の測定値に基づく信号を濃縮水量調整機構42に伝達する信号伝達機構5とによって、逆浸透膜12を透過する塩類の量に応じて原水の流入量を制御し得るように水処理装置に備えられている。
この逆浸透膜12を透過する塩類の量に応じて原水の膜分離モジュール1への流入量を制御する制御方法については後段において詳述する。
As described above, the water treatment apparatus of the present embodiment is provided with the treated water quantification mechanism 32 as a control mechanism for controlling the outflow amount of treated water to be constant. The water amount adjusting mechanism 42 functions as a control mechanism that controls the amount of raw water flowing into the membrane separation module 1.
Further, the concentrated water amount adjusting mechanism 42 that controls the inflow amount of the raw water includes a salt concentration measuring mechanism 33 and a signal transmission mechanism 5 that transmits a signal based on the measured value of the salt concentration measuring mechanism 33 to the concentrated water amount adjusting mechanism 42. The water treatment apparatus is provided so that the inflow amount of the raw water can be controlled in accordance with the amount of salts that permeate the reverse osmosis membrane 12.
A control method for controlling the amount of raw water flowing into the membrane separation module 1 according to the amount of salts permeating the reverse osmosis membrane 12 will be described in detail later.

なお、ここでは詳述しないが、従来公知の水処理装置に用いられている各種の装置類を本発明の効果を損ねない範囲において上記水処理装置に採用する事も可能である。   Although not described in detail here, various devices used in conventionally known water treatment devices can be employed in the water treatment device as long as the effects of the present invention are not impaired.

次いで、このような水処理装置を用いて排水を工業用水として再利用すべく実施する水処理方法について説明する。
上記排水としては、例えば、電気伝導度が数千μS/cmから一万数千μS/cmレベルとなる程度に塩類を含有するものを例示することができ、該排水を、電気伝導度が1000μS/cm以下の、例えば、数百μS/cmの軟水状態とすることで、一般的な工業用水として再利用可能とすることができる。
なお、本実施形態の水処理においては、処理水の電気伝導度の上限値を、例えば、200μS/cm〜300μS/cmのいずれかの値に設定して処理を実施させることができる。
このように、排水を原水として再利用可能な工業用水(処理水)として再生させる水処理方法は、以下のようにして実施する。
Next, a water treatment method that is performed to reuse wastewater as industrial water using such a water treatment apparatus will be described.
Examples of the waste water include those containing salts to such an extent that the electrical conductivity is from several thousand μS / cm to several thousand μS / cm, and the electrical conductivity is 1000 μS. / Cm or less, for example, by making it into a soft water state of several hundred μS / cm, it can be made reusable as general industrial water.
In the water treatment of this embodiment, the upper limit value of the electrical conductivity of the treated water can be set to, for example, any value of 200 μS / cm to 300 μS / cm, and the treatment can be performed.
As described above, a water treatment method for regenerating wastewater as industrial water (treated water) that can be reused as raw water is performed as follows.

まず、前記原水搬送機構2の原水搬送ポンプ22を一定回転数で運転させて原水の供給ポイントから原水(排水)を吸引し原水配管部21を通じて膜分離モジュール1の供給水室13に排水を流入させる。   First, the raw water transport pump 22 of the raw water transport mechanism 2 is operated at a constant rotational speed, and raw water (drainage) is sucked from the raw water supply point, and the wastewater flows into the feed water chamber 13 of the membrane separation module 1 through the raw water piping section 21. Let

このとき膜分離モジュール1の筐体11の内部においては、原水が逆浸透膜12に接することにより、該原水中の主として水分が逆浸透膜12を透過して透過水室に流入するとともに供給水室13においては、当初の原水中から水分が除去された状態となって塩濃度が上昇した濃縮水が形成される。   At this time, in the inside of the housing 11 of the membrane separation module 1, the raw water comes into contact with the reverse osmosis membrane 12, so that mainly water in the raw water permeates the reverse osmosis membrane 12 and flows into the permeated water chamber and supply water. In the chamber 13, concentrated water having a salt concentration increased is formed in a state where moisture has been removed from the original raw water.

そして、引き続き原水搬送機構2により原水を連続的に供給水室13に流入させることで供給水室13を原水よりも塩濃度が高い濃縮水で充満させるとともに、透過水室14を原水よりも塩濃度が低い処理水で充満させる。
さらに原水搬送機構2により原水を連続的に供給水室13に流入させることで透過水室14の処理水を処理水排出口から排出させて処理水搬送機構3によりユースポイントまで搬送する。
このとき、例えば、定流量弁などを用いた処理水定量化機構32により膜分離モジュール1の透過水室14から流出する処理水の流量が一定流量となるように制御を実施する。
Subsequently, the raw water is continuously flowed into the supply water chamber 13 by the raw water transport mechanism 2 so that the supply water chamber 13 is filled with concentrated water having a salt concentration higher than that of the raw water, and the permeate water chamber 14 is more salted than the raw water. Fill with low concentration treated water.
Further, the raw water is continuously flowed into the supply water chamber 13 by the raw water transport mechanism 2 so that the treated water in the permeated water chamber 14 is discharged from the treated water discharge port and is transported to the use point by the treated water transport mechanism 3.
At this time, for example, the control is performed so that the flow rate of the treated water flowing out from the permeate chamber 14 of the membrane separation module 1 becomes a constant flow rate by the treated water quantification mechanism 32 using a constant flow valve or the like.

一方、原水搬送機構2で原水を供給水室13に流入させることで供給水室13内の濃縮水を濃縮水排出口から押し出して濃縮水搬送機構4により系外に排出する。
このときバタフライ弁などが用いられた濃縮水量調整機構42により、例えば、バタフライ弁の開度を調製して系外に排出される濃縮水の流量を、これまで流入されていた原水の量から前記処理水の流出量を差し引いた量よりも少ない量に設定する。
On the other hand, the raw water is caused to flow into the supply water chamber 13 by the raw water transport mechanism 2 to push out the concentrated water in the supply water chamber 13 from the concentrated water discharge port and to discharge out of the system by the concentrated water transport mechanism 4.
At this time, the concentrated water amount adjusting mechanism 42 using a butterfly valve or the like adjusts the flow rate of the concentrated water discharged outside the system by adjusting the opening degree of the butterfly valve, for example, from the amount of raw water that has been introduced so far. Set the amount smaller than the amount obtained by subtracting the outflow of treated water.

処理水の流量と、濃縮水の流量との合計量をこれまでの原水流入量よりも少なく設定することで、供給水室13の水圧が上昇し、原水搬送ポンプ22の負荷がわずかに上昇する。
この供給水室13の内部の水圧の上昇にともなって原水搬送ポンプ22の負荷が増大し、原水が供給水室13に流入する量が減少するとともにバタフライ弁を通過する濃縮水の流量がわずかに減少する。
その後、処理水の流量と濃縮水の流量との合計量と原水の流入量とが同じになるようバランスされる。
なお、処理水は、定流量弁などで一定流量に制御されていることから供給水室13の水圧が上昇しても、該水圧の上昇に拮抗するように透過水室14内の水圧が上昇して流量の変動は生じない。
By setting the total amount of the flow rate of the treated water and the flow rate of the concentrated water to be smaller than the raw water inflow rate so far, the water pressure in the supply water chamber 13 is increased, and the load on the raw water transport pump 22 is slightly increased. .
As the water pressure inside the supply water chamber 13 increases, the load of the raw water transport pump 22 increases, the amount of raw water flowing into the supply water chamber 13 decreases, and the flow rate of concentrated water passing through the butterfly valve is slightly reduced. Decrease.
Thereafter, the total amount of the treated water flow rate and the concentrated water flow rate is balanced with the inflow amount of the raw water.
Since the treated water is controlled at a constant flow rate by a constant flow valve or the like, even if the water pressure in the supply water chamber 13 increases, the water pressure in the permeate water chamber 14 increases so as to antagonize the increase in the water pressure. Therefore, the flow rate does not change.

このとき、電気伝導度計などにより処理水の水質を測定しつつ水処理を実施し、例えば、原水の塩濃度が上昇するなどして処理水の塩濃度の上昇が観測された場合には、前記バタフライ弁の開度を上昇させるべく制御信号を発信させる。   At this time, water treatment is carried out while measuring the quality of the treated water with an electric conductivity meter, etc., for example, when an increase in the salt concentration of the treated water is observed due to an increase in the salt concentration of the raw water, A control signal is transmitted to increase the opening of the butterfly valve.

このことにより濃縮水の流量を増大させることで供給水室13内の水圧が低下し原水搬送ポンプ22の負荷が低下して原水の流入量も増大されることとなる。
そして、原水の流入量を増大させることにより、供給水室13の塩濃度を低下させて処理水の塩濃度を所定値以下に制御する。
As a result, by increasing the flow rate of the concentrated water, the water pressure in the supply water chamber 13 decreases, the load of the raw water transport pump 22 decreases, and the inflow amount of the raw water increases.
And the salt concentration of the supply water chamber 13 is reduced by increasing the inflow amount of raw | natural water, and the salt concentration of treated water is controlled below to a predetermined value.

この原水の流入量を変化させることにより処理水の塩類の濃度を所定値以下に制御する方法について、より詳しく説明する。   A method for controlling the concentration of the treated water salt to a predetermined value or less by changing the amount of the raw water inflow will be described in more detail.

逆浸透膜を一定時間に通過する水分の量は、通常、逆浸透膜の種類が一定であれば、その面積と、逆浸透膜を介して隣接する空間における水圧の差(以下「差圧」ともいう)と水温によって定まる。
一方で、逆浸透膜を一定時間に通過する塩類の量は、通常、濃縮水に含まれる塩類の量と逆浸透膜の性能によって変化する。
The amount of water that passes through the reverse osmosis membrane in a certain time is usually the difference between the area and the water pressure in the adjacent space through the reverse osmosis membrane (hereinafter referred to as “differential pressure”) if the type of reverse osmosis membrane is constant. It is also determined by the water temperature.
On the other hand, the amount of salts that pass through the reverse osmosis membrane in a certain time usually varies depending on the amount of salts contained in the concentrated water and the performance of the reverse osmosis membrane.

本実施形態においては、処理水の流出量が一定に制御されていることから、供給水室13に流入される原水の塩濃度が上昇しても逆浸透膜を一定時間に通過する水分の量は一定である。
したがって原水の流入量に変化がない場合には、一定量の原水から一定量の処理水だけが除去されて一定に濃縮された濃縮水が供給水室13に形成されることとなる。
また、逆浸透膜を通過する塩類の量は、原水に含有されている塩類の量に比べてわずかであり、原水に含有されている塩類の大部分が濃縮水とともに膜分離モジュール1から流出される。
そして流入される原水の塩濃度が上昇した場合に、膜分離モジュール1に流入させる原水の量を塩濃度が上昇する前と同量とすると、供給水室13の塩濃度も上昇することとなり、供給水室13側から逆浸透膜12を通過して透過水室14側に移動する塩類の量が増大することとなる。
In this embodiment, since the outflow amount of the treated water is controlled to be constant, the amount of water that passes through the reverse osmosis membrane in a certain time even if the salt concentration of the raw water flowing into the supply water chamber 13 increases. Is constant.
Therefore, when there is no change in the inflow amount of the raw water, only a fixed amount of treated water is removed from the constant amount of raw water, and a concentrated water that is constantly concentrated is formed in the supply water chamber 13.
Further, the amount of salts passing through the reverse osmosis membrane is small compared to the amount of salts contained in the raw water, and most of the salts contained in the raw water are discharged from the membrane separation module 1 together with the concentrated water. The
And when the salt concentration of the raw | natural water which flows in rises, if the amount of raw | natural water which flows in into the membrane separation module 1 is made into the same amount as before salt concentration rises, the salt concentration of the supply water chamber 13 will also rise, The amount of salts that move from the feed water chamber 13 side to the permeate water chamber 14 side through the reverse osmosis membrane 12 will increase.

しかし、本実施形態の水処理方法においては、原水の塩濃度が上昇して透過水室14側に移動する塩類の量が増大する場合には、原水の流入量(濃縮水流出量)を増大させることから透過水室14側に移動する塩類の量の増大を抑制させることができる。
仮に、原水の単位時間当たりの流入量をV0、処理水の単位時間当たりの流出量をVTとし、濃縮水の単位時間当たりの流出量をVCとすると、この濃縮水の単位時間当たりの流出量VCは、下記式(1)で与えられる。
However, in the water treatment method of the present embodiment, when the salt concentration of the raw water increases and the amount of salts moving to the permeate water chamber 14 increases, the inflow amount of the raw water (concentrated water outflow amount) is increased. Therefore, an increase in the amount of salts moving to the permeate water chamber 14 side can be suppressed.
If the flow rate per unit of raw time V 0, the flow per unit of treated water time and V T, if the outflow amount per unit of concentrated water time and V C, per unit of concentrated water time The outflow amount V C is given by the following formula (1).

Figure 0005222526
Figure 0005222526

そして、このV0の量の原水中に含有される塩類の量をC0、VTの量の処理中に含有される塩類の量をCTとし、VCの量の処理水中に含有される塩類の量をCCとすると、原水に含有される塩類の量に比べて処理水に含有される塩類の量は極めて微量(C0>>CT)であることから、VCの量の濃縮水中に含有される塩類の量CCは、下記式(2)で与えられる。 The amount of salts contained in the raw water having the amount of V 0 is C 0 , the amount of salts contained in the treatment of the amount of V T is C T, and contained in the treated water of the amount of V C. the amount of salt When C C that, since the amount of salts contained in the treated water as compared to the amount of salt to be contained is very small (C 0 >> C T) in the raw water, the amount of V C The amount C C of salts contained in the concentrated water is given by the following formula (2).

Figure 0005222526
Figure 0005222526

したがって、濃縮水の塩濃度をDCとすると、該塩濃度は、下記式(3)で与えられることとなる。 Therefore, when the salt concentration of the concentrated water and D C, salt concentration, and thus given by the following formula (3).

Figure 0005222526
ここで、本実施形態の水処理方法においては処理水の量(VT)が一定とされている。
したがって、原水の塩濃度が上昇し、原水中に含有される塩類の量(C0)が増大したとしても、原水の流入量(V0)を増大させることで濃縮水の塩濃度(DC)の上昇を抑制させることができ供給水室13側の塩濃度が上昇することを抑制させることができる。
このことにより、逆浸透膜12を透過して透過水室14に移動する塩類の量が増大することを抑制させることができる。
Figure 0005222526
Here, in the water treatment method of the present embodiment, the amount of treated water (V T ) is constant.
Therefore, even if the salt concentration of the raw water increases and the amount of salts (C 0 ) contained in the raw water increases, the salt concentration (D C of concentrated water is increased by increasing the inflow amount (V 0 ) of the raw water. ) Can be suppressed, and the salt concentration on the supply water chamber 13 side can be suppressed from increasing.
This can suppress an increase in the amount of salts that permeate the reverse osmosis membrane 12 and move to the permeate chamber 14.

なお、供給水室13側に流入させる原水の流入量を変化させた後に逆浸透膜12を透過して透過水室14に移動する塩類の量は、必ずしも、原水の塩濃度が上昇する前と同等の値に調整する必要はなく、要すれば、濃縮水の塩濃度を原水の塩濃度上昇前よりも低下させて、逆浸透膜12を透過して透過水室14に移動する塩類の量を原水の塩濃度が上昇する前の状態よりも低減させることもできる。   The amount of salts that permeate the reverse osmosis membrane 12 and move to the permeated water chamber 14 after changing the inflow amount of the raw water that flows into the supply water chamber 13 side is not necessarily before the salt concentration of the raw water increases. It is not necessary to adjust to the same value, and if necessary, the amount of salt that moves through the reverse osmosis membrane 12 to the permeate chamber 14 by lowering the salt concentration of the concentrated water from before the increase in the salt concentration of the raw water. Can be reduced as compared with the state before the salt concentration of the raw water is increased.

また、処理水の塩濃度が工業用水に使用可能な範囲の上限値に対してはるかに小さな値となっており、多少の塩濃度の上昇を許容できる状態にある場合には、逆浸透膜12を透過して透過水室14に移動する塩類の量を原水の塩濃度上昇前に比べて増大させる原水流入量とすることも可能である。   In addition, when the salt concentration of the treated water is much smaller than the upper limit of the range that can be used for industrial water, and a slight increase in salt concentration is allowed, the reverse osmosis membrane 12 is used. It is also possible to make the raw water inflow amount that increases the amount of salts that permeate and move to the permeated water chamber 14 as compared to before the salt concentration rises in the raw water.

以上説明したように、本実施形態の水処理方法においては、水処理装置に逆浸透膜12を透過する塩類の量に応じて供給水室13側に流入させる原水の流入量を変化させる制御機構が備えられていることにより、該制御機構で前記処理水の塩類の濃度を所定値以下に制御させて水処理を実施させることができる。   As described above, in the water treatment method of the present embodiment, the control mechanism that changes the inflow amount of raw water that flows into the feed water chamber 13 according to the amount of salts that permeate the reverse osmosis membrane 12 into the water treatment apparatus. Is provided, the control mechanism can control the salt concentration of the treated water to be equal to or lower than a predetermined value to perform water treatment.

なお、上記制御においては、原水の塩濃度が上昇した際に濃縮水の流量を規制する開度調整弁の開度が向上されて供給水室13の水圧が低下することとなるがこの水圧低下にともなって透過水室14内の水圧も低下し、処理水の流出量に見合う差圧を有する状態でバランスし、処理水量は一定に維持されることとなる。   In the above control, when the salt concentration of the raw water increases, the opening of the opening adjustment valve that regulates the flow rate of the concentrated water is improved and the water pressure in the supply water chamber 13 is reduced. Along with this, the water pressure in the permeate water chamber 14 also decreases, balances in a state having a differential pressure commensurate with the outflow amount of the treated water, and the treated water amount is maintained constant.

また、ここでは詳述しないが逆浸透膜は、一般に、温度が上昇すると塩類を透過させやすい。
したがって、原水の塩濃度に変化がない場合でも原水の温度の変化によって処理水の水質が影響される場合がある。
このような場合も、上記と同様にして処理水の流出量を一定に制御するとともに供給水室13に流入させる原水の流入量を変化させることにより処理水の塩類の濃度を所定値以下に制御させることができる。
Further, although not described in detail here, the reverse osmosis membrane generally tends to permeate salts when the temperature rises.
Therefore, even when there is no change in the salt concentration of the raw water, the quality of the treated water may be affected by the change in the temperature of the raw water.
Even in such a case, similarly to the above, the outflow amount of the treated water is controlled to be constant, and the concentration of the salt of the treated water is controlled to a predetermined value or less by changing the inflow amount of the raw water flowing into the supply water chamber 13. Can be made.

また、上記においては、原水の塩濃度が上昇した際において処理水の塩濃度を所定の値以下にさせる制御を説明したが、例えば、この所定値を上限値とする一方で、別途、下限値を設けて、処理水を所定の塩濃度の範囲に制御させることも可能である。
すなわち、例えば、逆浸透膜12を透過する塩類の量に応じて供給水室13側に流入させる原水の流入量を変化させる制御機構に処理水の塩濃度の上限値を設定するとともに下限値を設定し、処理水の塩濃度が上限値を超えることが予測される場合に原水の流入量を増大させ、下限値未満となることが予想される場合に原水の流入量を低減させる制御を実施させる事も可能である。
In the above description, the control of reducing the salt concentration of the treated water to a predetermined value or less when the salt concentration of the raw water is increased is described. For example, while the predetermined value is set as the upper limit value, the lower limit value is separately set. It is also possible to control the treated water within a predetermined salt concentration range.
That is, for example, the upper limit value of the salt concentration of the treated water is set in the control mechanism that changes the inflow amount of the raw water that flows into the supply water chamber 13 according to the amount of salts that permeate the reverse osmosis membrane 12, and the lower limit value is set. Set and control to increase the inflow of raw water when the salt concentration of treated water is predicted to exceed the upper limit, and to reduce the inflow of raw water when it is expected to be less than the lower limit It is also possible to make it.

また、ここでは詳述しないが、従来公知の水処理方法における各種の制御や設備運転方法を本発明においても採用可能である。   Further, although not described in detail here, various controls and facility operation methods in a conventionally known water treatment method can also be adopted in the present invention.

例えば、図2乃至図10の概略ブロック図のような設備によって水処理方法を実施させることも可能である。
図1に示す水処理装置においては、原水搬送ポンプ22を一定回転数で運転させて、塩濃度測定機構33の測定結果に基づいて濃縮水量調整機構42による濃縮水の流出量の制御を実施して供給水室13に流入させる原水の量を変化させ、処理水の塩濃度を所定値以下に制御すべく、塩濃度測定機構33からの信号が濃縮水量調整機構42に伝達されるように信号伝達機構5が設けられている。
For example, the water treatment method can be carried out by equipment as shown in the schematic block diagrams of FIGS.
In the water treatment apparatus shown in FIG. 1, the raw water transport pump 22 is operated at a constant rotation speed, and the concentrated water outflow amount is controlled by the concentrated water amount adjusting mechanism 42 based on the measurement result of the salt concentration measuring mechanism 33. The signal from the salt concentration measuring mechanism 33 is transmitted to the concentrated water amount adjusting mechanism 42 in order to change the amount of raw water flowing into the supply water chamber 13 and control the salt concentration of the treated water below a predetermined value. A transmission mechanism 5 is provided.

一方で、この図2の水処理装置では、濃縮水搬送機構4に濃縮水量調整機構が設けられておらず、塩濃度測定機構33の測定結果に基づいて原水搬送ポンプ22の回転数を変化させて供給水室13に流入させる原水の量を変化させるべく原水搬送ポンプ22の回転数を変化させるためのインバータ51が設けられており、信号伝達機構5が該インバータ51に接続されている。
この図2の水処理装置を用いた水処理方法も図1に示す水処理装置の場合と同様に実施せることができる。
On the other hand, in the water treatment apparatus of FIG. 2, the concentrated water transport mechanism 4 is not provided with a concentrated water amount adjusting mechanism, and the number of rotations of the raw water transport pump 22 is changed based on the measurement result of the salt concentration measuring mechanism 33. In order to change the amount of raw water flowing into the supply water chamber 13, an inverter 51 is provided for changing the rotational speed of the raw water transport pump 22, and the signal transmission mechanism 5 is connected to the inverter 51.
The water treatment method using the water treatment apparatus of FIG. 2 can be carried out similarly to the case of the water treatment apparatus shown in FIG.

例えば、処理水の塩濃度の上昇が観測された際には、インバータ51により原水搬送ポンプ22を高回転で運転させ、供給水室13に流入させる原水の量(前記式(3)における「V0」)を増大させることにより逆浸透膜12を透過して透過水室14側に移動する塩類の量が増大することを抑制させることができる。
また、要すれば、逆浸透膜12を透過して透過水室14側に移動する塩類の量を、処理水の塩濃度の上昇が観測される以前の量に比べて増減させ得る点も同様である。
この図2の水処理装置を用いることにより、図1に例示の水処理装置に比べて、膜分離モジュール1の内部の水圧の変動を抑制しつつ原水の流入水量を変化させることができ、逆浸透膜12の破損といったトラブルを抑制させつつ水処理を実施させ得る。
For example, when an increase in the salt concentration of the treated water is observed, the amount of raw water flowing into the feed water chamber 13 by operating the raw water transport pump 22 at a high speed by the inverter 51 (“V in the above equation (3)”) By increasing “ 0 ”), it is possible to suppress an increase in the amount of salts that permeate the reverse osmosis membrane 12 and move to the permeate water chamber 14 side.
Also, if necessary, the amount of salts that pass through the reverse osmosis membrane 12 and move to the permeate chamber 14 side can be increased or decreased compared to the amount before the increase in the salt concentration of the treated water is observed. It is.
By using the water treatment device of FIG. 2, it is possible to change the inflow amount of raw water while suppressing fluctuations in the water pressure inside the membrane separation module 1, compared to the water treatment device illustrated in FIG. Water treatment can be carried out while suppressing troubles such as breakage of the osmotic membrane 12.

これら図1、図2に示す水処理装置は、塩濃度測定機構33が処理水配管部31内を流通する処理水の塩濃度を測定すべく備えられているが、次に説明する図3、図4に図示された水処理装置は、この塩濃度測定機構33が原水配管部21を流通する原水の塩濃度を測定すべく備えられている点において異なっている。
すなわち、原水側の塩濃度が上がる場合には、通常、供給水室13での塩濃度が上昇して、供給水室13から透過水室14へ透過する処理水の塩濃度が上昇することになるため濃縮水量調整機構42による供給水室13への原水流入量の制御(図3の場合)あるいは、インバータ51での原水搬送ポンプ22の回転数制御による供給水室13への原水流入量の制御(図4の場合)を実施する。
この図3、図4の水処理装置を用いることにより、処理水の塩濃度の増大を未然に把握することができ、処理水の水質をより確実に維持させうる。
The water treatment apparatus shown in FIGS. 1 and 2 is provided with a salt concentration measuring mechanism 33 for measuring the salt concentration of treated water flowing through the treated water piping section 31, but will be described with reference to FIG. The water treatment apparatus shown in FIG. 4 is different in that the salt concentration measuring mechanism 33 is provided to measure the salt concentration of raw water flowing through the raw water piping section 21.
That is, when the salt concentration on the raw water side increases, the salt concentration in the supply water chamber 13 usually increases, and the salt concentration of the treated water that permeates from the supply water chamber 13 to the permeate water chamber 14 increases. Therefore, control of the raw water inflow amount to the supply water chamber 13 by the concentrated water amount adjusting mechanism 42 (in the case of FIG. 3) or the raw water inflow amount to the supply water chamber 13 by controlling the number of revolutions of the raw water transport pump 22 in the inverter 51. Control (in the case of FIG. 4) is performed.
By using the water treatment apparatus of FIGS. 3 and 4, it is possible to grasp the increase in the salt concentration of the treated water and to maintain the quality of the treated water more reliably.

また、図5、図6に示す水処理装置は、供給水室13から流出された濃縮水の一部を原水搬送ポンプ22よりも上流側(原水供給ポイント側)の原水配管部21に還流させる濃縮水還流機構6を備えており、該濃縮水還流機構6を構成する還流配管部61が原水配管部21と濃縮水配管部41とを連結する状態で備えられている点以外は、図2、図4に示す水処理装置とそれぞれ同様である。
また、この還流配管部61には、還流させる濃縮水の量を一定に制御するための還流水定量化機構63が設けられている。
なお、この還流水定量化機構63としては、処理水定量化機構32に用いた定流量弁などを採用し得る。
Moreover, the water treatment apparatus shown in FIGS. 5 and 6 recirculates a part of the concentrated water flowing out from the supply water chamber 13 to the raw water piping section 21 upstream (raw water supply point side) from the raw water transport pump 22. 2 except that a concentrated water recirculation mechanism 6 is provided and a recirculation piping section 61 constituting the concentrated water recirculation mechanism 6 is provided in a state where the raw water piping section 21 and the concentrated water piping section 41 are connected. These are the same as the water treatment apparatus shown in FIG.
In addition, the reflux pipe unit 61 is provided with a reflux water quantification mechanism 63 for controlling the amount of concentrated water to be refluxed at a constant level.
In addition, as this reflux water quantification mechanism 63, the constant flow valve etc. which were used for the treated water quantification mechanism 32 can be employ | adopted.

この図5、図6に示す水処理装置は、濃縮水の一部が原水と混合された混合水が原水配管部21を通じて膜分離モジュール1に流入されることから、原水搬送ポンプ22の運転状況が同等であれば、図2、図4に示す水処理装置に比べて還流された濃縮水の分だけ供給ポイントから採取される原水の量が低減される。
また、系外に排出される濃縮水の量は減少されることとなる。
In the water treatment apparatus shown in FIGS. 5 and 6, since the mixed water in which a part of the concentrated water is mixed with the raw water flows into the membrane separation module 1 through the raw water piping section 21, the operating condition of the raw water transport pump 22 Are equivalent, the amount of raw water collected from the supply point is reduced by the amount of concentrated water that has been refluxed compared to the water treatment apparatus shown in FIGS.
Moreover, the amount of concentrated water discharged out of the system will be reduced.

したがって、原水の量を十分確保することが困難である場合、原水の量の変動が激しく図2、図4に示す水処理装置などでは安定した運転状態が確保し難い場合などに好適な態様であると言える。
すなわち、図5、図6に示す水処理装置で水処理を実施することにより設備の運転状態を安定化させ得るという効果を奏する。
また、濃縮水に対して、何らかの後処理を実施しなければならないような場合においては、その手間を削減させうるという効果を奏する。
図5、図6に示す水処理装置で膜分離モジュール1に流入される濃縮水と原水との混合水は、原水よりも塩濃度が高くなることから、濃縮水または原水の塩濃度が比較的低濃度である場合などに特に適した水処理方法であるといえる。
Therefore, when it is difficult to ensure a sufficient amount of raw water, the amount of raw water varies so much that the water treatment apparatus shown in FIGS. 2 and 4 is difficult to ensure a stable operation state. It can be said that there is.
That is, there is an effect that the operation state of the facility can be stabilized by performing water treatment with the water treatment apparatus shown in FIGS.
Further, in the case where some kind of post-treatment must be performed on the concentrated water, there is an effect that the labor can be reduced.
Since the mixed water of the concentrated water and the raw water flowing into the membrane separation module 1 in the water treatment apparatus shown in FIGS. 5 and 6 has a higher salt concentration than the raw water, the concentrated water or the raw water has a relatively high salt concentration. It can be said that this is a water treatment method particularly suitable when the concentration is low.

さらに、図6に示す水処理装置で水処理を実施する場合に、処理水の塩濃度が上昇することを未然に把握することができ、処理水の水質をより確実に維持させうる点においては図3に示す水処理装置で水処理を実施する場合と同じである。   Furthermore, when water treatment is performed with the water treatment apparatus shown in FIG. 6, it is possible to grasp in advance that the salt concentration of the treated water increases, and in that the quality of the treated water can be more reliably maintained. This is the same as the case where the water treatment is performed with the water treatment apparatus shown in FIG.

図7、図8に示す水処理装置は、原水配管部21と濃縮水配管部41とを連結する還流配管部61が備えられており、該還流配管部61が原水搬送ポンプ22よりも上流側(原水供給ポイント側)において原水配管部21に接続され、膜分離モジュール1の供給水室13から流出された濃縮水の一部を原水搬送ポンプ22よりも上流側(原水供給ポイント側)の原水配管部21に還流させる濃縮水還流機構6を備えている点において、図1、図3に示す水処理装置と異なっている。   The water treatment apparatus shown in FIGS. 7 and 8 is provided with a reflux pipe section 61 that connects the raw water pipe section 21 and the concentrated water pipe section 41, and the reflux pipe section 61 is upstream of the raw water transport pump 22. A portion of the concentrated water that is connected to the raw water pipe section 21 (on the raw water supply point side) and flows out from the supply water chamber 13 of the membrane separation module 1 is upstream of the raw water transport pump 22 (raw water supply point side). It differs from the water treatment apparatus shown in FIGS. 1 and 3 in that a concentrated water recirculation mechanism 6 that recirculates the pipe portion 21 is provided.

また、図7、図8に示す水処理装置においては、還流配管部61との接続箇所よりも上流側(還流配管部61との接続箇所と膜分離モジュール1との間)において濃縮水配管部41に供給水室13からの濃縮水の流出量を調整する濃縮水量調整機構42が備えられており、しかも、該濃縮水量調整機構42に供給水室13からの濃縮水の流出量を一定量に制御する定流量弁が用いられている点において図1、図3に示す水処理装置と異なっている。   In the water treatment apparatus shown in FIGS. 7 and 8, the concentrated water piping section is upstream of the connection position with the reflux piping section 61 (between the connection section with the reflux piping section 61 and the membrane separation module 1). 41 is provided with a concentrated water amount adjusting mechanism 42 for adjusting the amount of concentrated water flowing out from the supply water chamber 13, and the amount of concentrated water flowing out from the water supply chamber 13 is fixed to the concentrated water amount adjusting mechanism 42. 1 and 3 is different from the water treatment apparatus shown in FIGS.

さらには、還流配管部61との接続箇所よりも下流側において濃縮水配管部41に系外に排出する濃縮水の量を調整する排出量調整機構62が備えられており、しかも、塩濃度測定機構33で測定された処理水の塩濃度(図7の場合)、あるいは原水と還流された濃縮水との混合水の塩濃度(図8の場合)の結果に基づいて排出量調整機構62による濃縮水の系外排出量を制御し得るように信号伝達機構5が配されている点において図1、図3に示す水処理装置と異なっている。   Furthermore, a discharge amount adjusting mechanism 62 for adjusting the amount of concentrated water to be discharged out of the system is provided in the concentrated water piping portion 41 on the downstream side of the connection point with the reflux piping portion 61, and salt concentration measurement is performed. Based on the result of the salt concentration of the treated water measured by the mechanism 33 (in the case of FIG. 7) or the salt concentration of the mixed water of the raw water and the refluxed concentrated water (in the case of FIG. 8), the discharge amount adjusting mechanism 62 It differs from the water treatment apparatus shown in FIGS. 1 and 3 in that a signal transmission mechanism 5 is arranged so as to control the amount of concentrated water discharged from the system.

この図7、図8に示す水処理装置を用いた水処理においては、透過水室14からの処理水の流出量ならびに供給水室13からの濃縮水の流出量がいずれも一定量となるように処理水定量化機構32と濃縮水量調整機構42とが設けられていることから、膜分離モジュール1に流入させる混合水の量は一定である。
この図7、図8に示す水処理装置は、濃縮水還流機構6を備えている点において図5、図6に示した水処理装置と共通しているが、系外に排出される濃縮水の量が処理水の塩濃度、あるいは混合水の塩濃度に基づいて制御される点において図5、図6に示した水処理装置と異なっている。
In the water treatment using the water treatment apparatus shown in FIGS. 7 and 8, the outflow amount of the treated water from the permeate water chamber 14 and the outflow amount of the concentrated water from the supply water chamber 13 are both constant. In addition, since the treated water quantification mechanism 32 and the concentrated water amount adjustment mechanism 42 are provided, the amount of mixed water flowing into the membrane separation module 1 is constant.
The water treatment apparatus shown in FIGS. 7 and 8 is common to the water treatment apparatus shown in FIGS. 5 and 6 in that the concentrated water reflux mechanism 6 is provided, but the concentrated water discharged out of the system. This is different from the water treatment apparatus shown in FIGS. 5 and 6 in that the amount of water is controlled based on the salt concentration of the treated water or the salt concentration of the mixed water.

系外に排出される濃縮水の量が処理水の塩濃度、あるいは混合水の塩濃度に基づいて制御されることから、例えば、逆浸透膜12を透過する塩類の量が増大したことを塩濃度測定機構33が感知した場合には、排出量調整機構62により系外への濃縮水排出量を増大させて還流配管部61により還流される濃縮水量を減少させて混合水に占める原水の割合を増大させることができる。
すなわち、供給水室13に流入させる原水の流入量を増大させて、塩濃度を低下させた状態で混合水を供給水室13に流入させることで供給水室13の内部の塩濃度を低下させて処理水の塩濃度を所定値以下に制御させることができる。
Since the amount of concentrated water discharged out of the system is controlled based on the salt concentration of the treated water or the salt concentration of the mixed water, for example, the amount of salts that permeate the reverse osmosis membrane 12 is increased. When the concentration measuring mechanism 33 senses, the ratio of the raw water to the mixed water by increasing the discharged amount of concentrated water to the outside by the discharge amount adjusting mechanism 62 and decreasing the amount of concentrated water recirculated by the reflux pipe unit 61 Can be increased.
That is, the amount of raw water flowing into the feed water chamber 13 is increased, and the mixed water is allowed to flow into the feed water chamber 13 in a state where the salt concentration is lowered, thereby reducing the salt concentration inside the feed water chamber 13. Thus, the salt concentration of the treated water can be controlled to a predetermined value or less.

これら図7、図8に示す水処理装置を用いた水処理に、設備の運転状態を安定化させる効果を期待し得る点、ならびに、濃縮水の後処理の手間の削減を期待し得る点においては、図5、図6に示す水処理装置を用いる場合と同様である。   In the point which can expect the effect which stabilizes the driving | running state of an installation in the water treatment using these water treatment apparatuses shown in these FIG. 7, FIG. 8, and the point which can anticipate the effort reduction of concentrated water Is the same as the case of using the water treatment apparatus shown in FIGS.

また、図8に示す水処理装置で水処理を実施する場合に、処理水の塩濃度が所定の値以上になってしまうことを未然に把握することができ、処理水の水質をより確実に維持させうる点においては図3に示す水処理装置で水処理を実施する場合と同じである。   In addition, when the water treatment is performed with the water treatment apparatus shown in FIG. 8, it is possible to grasp in advance that the salt concentration of the treated water becomes a predetermined value or more, and the quality of the treated water is more reliably determined. In the point which can be maintained, it is the same as the case where a water treatment is implemented with the water treatment apparatus shown in FIG.

図9、図10に示す水処理装置は、還流配管部61により濃縮水配管部41と原水配管部21とが接続されている点、還流配管部61との接続箇所よりも下流側において濃縮水配管部41に系外に排出する濃縮水の量を調整する排出量調整機構62が備えられており、しかも、塩濃度測定機構33で測定された処理水の塩濃度、あるいは原水と還流された濃縮水との混合水の塩濃度の結果に基づいて排出量調整機構62による濃縮水の系外排出量を制御し得るように信号伝達機構5が配されている点において図7、図8に示す水処理装置と同様に構成されている。   The water treatment apparatus shown in FIG. 9 and FIG. 10 has concentrated water on the downstream side of the connection point between the concentrated water piping unit 41 and the raw water piping unit 61 at the point where the concentrated water piping unit 41 and the raw water piping unit 21 are connected. The piping part 41 is provided with a discharge amount adjusting mechanism 62 for adjusting the amount of concentrated water discharged out of the system, and the salt concentration measured by the salt concentration measuring mechanism 33 or returned to the raw water. 7 and 8 in that the signal transmission mechanism 5 is arranged so that the discharge amount adjusting mechanism 62 can control the discharge amount of the concentrated water outside the system based on the salt concentration result of the mixed water with the concentrate. It is comprised similarly to the water treatment apparatus shown.

また、還流配管部61との接続箇所よりも上流側に濃縮水の流出量を一定量に制御する定流量弁が用いられた濃縮水量調整機構42が備えられている点においても、図7、図8と同様に構成されている。
一方で、図7、図8などに示された水処理装置においては、いずれも、処理水配管部31に設けられた処理水定量化機構32として定流量弁などの例を挙げているが、この図9、図10に示す水処理装置は、処理水定量化機構32として処理水配管部31に設けられた流量計32aと、該流量計32aの計測値に基づいて原水搬送ポンプ22の回転数を変化させるインバータ32bと、これらの制御ライン32c(以下「処理水定量化制御ライン32c」ともいう)が備えられている点において図7、図8に記載の水処理装置と異なっている。
Further, in the point that the concentrated water amount adjusting mechanism 42 using the constant flow valve for controlling the flow rate of the concentrated water to a constant amount is provided upstream from the connection point with the reflux pipe unit 61, FIG. The configuration is the same as in FIG.
On the other hand, in the water treatment apparatus shown in FIG. 7, FIG. 8, etc., all have given examples of a constant flow valve etc. as the treated water quantification mechanism 32 provided in the treated water piping part 31, The water treatment apparatus shown in FIGS. 9 and 10 includes a flow meter 32a provided in the treated water piping section 31 as the treated water quantification mechanism 32, and the rotation of the raw water transport pump 22 based on the measured value of the flow meter 32a. It differs from the water treatment apparatus shown in FIGS. 7 and 8 in that an inverter 32b for changing the number and these control lines 32c (hereinafter also referred to as “treated water quantification control line 32c”) are provided.

すなわち、この図9、図10に示す水処理装置は、供給水室13の内部の水圧を制御し得るように構成されており、例えば、逆浸透膜に付着物が生じたり、あるいは、膜分離モジュールに導入される水の温度が変化したりして逆浸透膜の水の透過性能が変動した場合に当該変動に応じて供給水室13の内部の濃縮水の水圧を変動させて一定量の処理水が得られるように構成されている。   That is, the water treatment apparatus shown in FIGS. 9 and 10 is configured to be able to control the water pressure inside the supply water chamber 13, and for example, deposits are generated on the reverse osmosis membrane or membrane separation is performed. When the water permeation performance of the reverse osmosis membrane fluctuates due to a change in the temperature of the water introduced into the module, the water pressure of the concentrated water inside the supply water chamber 13 is fluctuated according to the fluctuation, and a certain amount It is comprised so that treated water may be obtained.

このようなことから、図9、図10に示す水処理装置を用いた水処理方法は、逆浸透膜に付着物を発生させるような成分の含有量や水温といった水質に変動が大きい排水を処理するのに適した水処理方法であるといえる。   For this reason, the water treatment method using the water treatment apparatus shown in FIGS. 9 and 10 treats wastewater having a large variation in water quality such as the content of components and water temperature that generate deposits on the reverse osmosis membrane. It can be said that this is a suitable water treatment method.

なお、このような図1乃至図10を参照しつつ説明した事例のみならず、従来公知の水処理方法における各種の制御や設備運転方法を採用可能である。
また、上記には、金属精錬工場における洗浄排水を原水とした水処理を例に説明したが、例えば、海水の淡水化などの水処理も本発明の意図する範囲であり、本発明の水処理方法ならびに水処理装置によれば海水の淡水化などにおいても一定レベルの水質を有する水を安定的に得ることができるという効果を奏させ得る。
In addition to the examples described with reference to FIGS. 1 to 10, various types of control and facility operation methods in a conventionally known water treatment method can be employed.
In addition, the water treatment using the cleaning wastewater in the metal smelting factory as an example has been described above. However, for example, water treatment such as seawater desalination is also within the intended scope of the present invention, and the water treatment of the present invention. According to the method and the water treatment apparatus, it is possible to obtain an effect that water having a certain level of water quality can be stably obtained even in desalination of seawater.

一実施形態に用いる水処理装置を示す概略ブロック図。The schematic block diagram which shows the water treatment apparatus used for one Embodiment. 他実施形態に用いる水処理装置を示す概略ブロック図。The schematic block diagram which shows the water treatment apparatus used for other embodiment. 他実施形態に用いる水処理装置を示す概略ブロック図。The schematic block diagram which shows the water treatment apparatus used for other embodiment. 他実施形態に用いる水処理装置を示す概略ブロック図。The schematic block diagram which shows the water treatment apparatus used for other embodiment. 他実施形態に用いる水処理装置を示す概略ブロック図。The schematic block diagram which shows the water treatment apparatus used for other embodiment. 他実施形態に用いる水処理装置を示す概略ブロック図。The schematic block diagram which shows the water treatment apparatus used for other embodiment. 他実施形態に用いる水処理装置を示す概略ブロック図。The schematic block diagram which shows the water treatment apparatus used for other embodiment. 他実施形態に用いる水処理装置を示す概略ブロック図。The schematic block diagram which shows the water treatment apparatus used for other embodiment. 他実施形態に用いる水処理装置を示す概略ブロック図。The schematic block diagram which shows the water treatment apparatus used for other embodiment. 他実施形態に用いる水処理装置を示す概略ブロック図。The schematic block diagram which shows the water treatment apparatus used for other embodiment.

符号の説明Explanation of symbols

1 膜分離モジュール
2 原水搬送機構
3 処理水搬送機構
4 濃縮水搬送機構
5 信号伝達機構
6 濃縮水還流機構
11 筐体
12 逆浸透膜
13 供給水室
14 透過水室
21 原水配管部
22 原水搬送ポンプ
31 処理水配管部
32 処理水定量化機構
32a 流量計
32b インバータ
32c 制御ライン(処理水定量化制御ライン)
33 塩濃度測定機構
41 濃縮水配管部
42 濃縮水量調整機構
51 インバータ
61 還流配管部
62 排出量調整機構
63 還流水定量化機構
DESCRIPTION OF SYMBOLS 1 Membrane separation module 2 Raw water transport mechanism 3 Treated water transport mechanism 4 Concentrated water transport mechanism 5 Signal transmission mechanism 6 Concentrated water recirculation mechanism 11 Housing 12 Reverse osmosis membrane 13 Supply water chamber 14 Permeate water chamber 21 Raw water piping section 22 Raw water transport pump 31 treated water piping section 32 treated water quantification mechanism 32a flow meter 32b inverter 32c control line (treated water quantification control line)
33 Salt concentration measuring mechanism 41 Concentrated water piping section 42 Concentrated water amount adjusting mechanism 51 Inverter 61 Reflux piping section 62 Discharge amount adjusting mechanism 63 Reflux water quantifying mechanism

Claims (2)

逆浸透膜が用いられている膜分離モジュールに塩類を含有する原水を流入させて、前記原水よりも塩類の濃度が低い処理水と、前記原水よりも塩類の濃度が高い濃縮水とに前記逆浸透膜で分離し、しかも、前記原水を膜分離モジュールに連続的に流入させることにより、前記濃縮水を膜分離モジュールから連続的に流出させるとともに、前記処理水を膜分離モジュールから連続的に流出させる水処理方法であって、
前記処理水の膜分離モジュールからの流出量を一定に制御するとともに、前記処理水の塩類の濃度を所定値以下に制御し得るように前記逆浸透膜を透過する塩類の量を前記原水の電気伝導度により求め、該電気伝導度から求められる前記逆浸透膜を透過する塩類の量が増大する場合に前記原水の流入量を増大させて前記透過する塩類の量の増大を抑制させることを特徴とする水処理方法。
By introducing raw water containing salts into a membrane separation module in which a reverse osmosis membrane is used, the reverse is applied to treated water having a lower salt concentration than the raw water and concentrated water having a higher salt concentration than the raw water. By separating the raw water continuously into the membrane separation module, the concentrated water is continuously discharged from the membrane separation module, and the treated water is continuously discharged from the membrane separation module. A water treatment method,
The amount of salts that permeate the reverse osmosis membrane is set to an electric amount of the raw water so that the outflow amount from the membrane separation module of the treated water is controlled to be constant and the salt concentration of the treated water can be controlled to a predetermined value or less. determined by conductivity, characterized in that to suppress the increase in the amount of salts that the transmittance by increasing the flow rate of the raw water when the amount of salts that passes through the reverse osmosis membrane obtained from the electric conductivity is increased Water treatment method.
逆浸透膜が用いられている膜分離モジュールを備え、該膜分離モジュールに塩類を含有する原水が流入されて、前記原水よりも塩類の濃度が低い処理水と、前記原水よりも塩類の濃度が高い濃縮水とに前記逆浸透膜で分離され、しかも、前記原水が膜分離モジュールに連続的に流入されることにより、前記濃縮水が膜分離モジュールから連続的に流出されるとともに、前記処理水が膜分離モジュールから連続的に流出される水処理装置であって、
前記処理水の膜分離モジュールからの流出量を一定に制御する制御機構と、前記逆浸透膜を透過する塩類の量に応じて前記原水の流入量を変化させることにより前記処理水の塩類の濃度を所定値以下に制御する制御機構とを備え、該処理水の塩類の濃度を所定値以下に制御する制御機構は、逆浸透膜を透過する塩類の量を求めるために前記原水の電気伝導度を測定する電気伝導度計を備え、該電気伝導度計によって前記逆浸透膜を透過する塩類の量が増大することが求められた場合に前記原水の流入量を増大させて前記透過する塩類の量の増大を抑制させるように構成されていることを特徴とする水処理装置。
A membrane separation module using a reverse osmosis membrane is provided, and raw water containing salts is flowed into the membrane separation module, and the treated water has a lower salt concentration than the raw water, and the salt concentration is lower than the raw water. The concentrated water is separated into high concentrated water by the reverse osmosis membrane, and the raw water is continuously flowed into the membrane separation module, whereby the concentrated water is continuously discharged from the membrane separation module, and the treated water Is a water treatment device continuously discharged from the membrane separation module,
A control mechanism for controlling the amount of outflow from the membrane separation module of the treated water constant, and the concentration of the treated water salt by changing the amount of the raw water inflow according to the amount of the salt permeating the reverse osmosis membrane A control mechanism for controlling the concentration of the salt of the treated water to a predetermined value or less, and the control mechanism for controlling the concentration of the salt of the treated water to be equal to or less than the predetermined value, An electrical conductivity meter for measuring the amount of salt that permeates the reverse osmosis membrane by the electrical conductivity meter to increase the inflow of the raw water and It is comprised so that the increase in quantity may be suppressed, The water treatment apparatus characterized by the above-mentioned .
JP2007280154A 2007-10-29 2007-10-29 Water treatment method and water treatment apparatus Active JP5222526B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2007280154A JP5222526B2 (en) 2007-10-29 2007-10-29 Water treatment method and water treatment apparatus
CN2012101869180A CN102745775A (en) 2007-10-29 2008-10-23 Water treatment method, water treatment apparatus, method for recovering purified water, and purified water recovering apparatus
KR1020107005808A KR20100075839A (en) 2007-10-29 2008-10-23 Water treatment method, water treatment apparatus, method for recovering purified water, and purified water recovering apparatus
BRPI0817155A BRPI0817155A2 (en) 2007-10-29 2008-10-23 "method and apparatus for water treatment, apparatus and method for water reuse"
PCT/JP2008/069206 WO2009057501A1 (en) 2007-10-29 2008-10-23 Water treatment method, water treatment apparatus, method for recovering purified water, and purified water recovering apparatus
CN200880107777.0A CN101801857B (en) 2007-10-29 2008-10-23 Water treatment method, water treatment apparatus, method for recovering purified water, and purified water recovering apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007280154A JP5222526B2 (en) 2007-10-29 2007-10-29 Water treatment method and water treatment apparatus

Publications (2)

Publication Number Publication Date
JP2009106832A JP2009106832A (en) 2009-05-21
JP5222526B2 true JP5222526B2 (en) 2013-06-26

Family

ID=40775969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007280154A Active JP5222526B2 (en) 2007-10-29 2007-10-29 Water treatment method and water treatment apparatus

Country Status (1)

Country Link
JP (1) JP5222526B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4518435B1 (en) * 2009-02-13 2010-08-04 株式会社神鋼環境ソリューション Seawater desalination method and seawater desalination apparatus
JP4481345B1 (en) * 2008-11-28 2010-06-16 株式会社神鋼環境ソリューション Seawater desalination method and seawater desalination apparatus
CN102583803B (en) 2008-11-28 2013-10-16 株式会社神钢环境舒立净 Method and apparatus for generating fresh water, and method and apparatus for desalinating sea water
JP4499835B1 (en) * 2009-02-14 2010-07-07 株式会社神鋼環境ソリューション Fresh water generating apparatus and fresh water generating method
JP4499834B1 (en) * 2009-02-14 2010-07-07 株式会社神鋼環境ソリューション Fresh water generating apparatus and fresh water generating method
JP5933926B2 (en) * 2011-02-21 2016-06-15 株式会社日立製作所 Seawater desalination system and seawater desalination method
JP5743773B2 (en) * 2011-07-25 2015-07-01 株式会社クボタ Membrane treatment apparatus and membrane module operating method
JP6026105B2 (en) * 2011-12-22 2016-11-16 東洋紡エンジニアリング株式会社 Purified water production equipment
US9856154B2 (en) * 2012-03-27 2018-01-02 Toray Industries, Inc. Fresh water generation method
JP6161384B2 (en) * 2013-04-25 2017-07-12 オルガノ株式会社 Membrane filtration device
JP6565076B2 (en) * 2015-02-26 2019-08-28 三菱日立パワーシステムズ株式会社 Salinity measurement method
JP6381007B2 (en) * 2017-04-10 2018-08-29 オルガノ株式会社 Membrane filtration device
JP7303861B2 (en) * 2017-07-21 2023-07-05 オルガノ株式会社 Membrane filtration device
JP7045814B2 (en) * 2017-07-21 2022-04-01 オルガノ株式会社 Membrane filtration device
JP7085329B2 (en) * 2017-10-04 2022-06-16 水ing株式会社 Wastewater concentration method and wastewater concentrator
JP7017365B2 (en) * 2017-10-25 2022-02-08 オルガノ株式会社 Membrane filtration device
JP6703512B2 (en) * 2017-11-14 2020-06-03 株式会社銀シャリ亭 Cooking method
CN109336309A (en) * 2018-11-30 2019-02-15 佛山市云米电器科技有限公司 A kind of household water purifier and domestic water purifying machine that water quality is controllable
CN113023828A (en) * 2019-12-24 2021-06-25 秦皇岛荣德环境工程有限公司 Concentrated water zero-discharge auxiliary device of reverse osmosis water purifier

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0664187B2 (en) * 1986-08-22 1994-08-22 科学技術庁原子力局長 Treatment method of radioactive waste liquid
JPH08309350A (en) * 1995-05-17 1996-11-26 Hitachi Plant Eng & Constr Co Ltd Water treatment method using reverse osmosis membrane
JPH11333267A (en) * 1998-05-27 1999-12-07 Osaka Gas Co Ltd Liquid filtration device and fuel cell generator using the device
JP2003300072A (en) * 2002-04-09 2003-10-21 Ngk Insulators Ltd Method for treating waste water of polishing
FR2852310B1 (en) * 2003-03-13 2005-06-03 Millipore Corp METHOD AND SYSTEM FOR PURIFYING WATER, AND MODULE FOR SUCH A SYSTEM
JP2005296945A (en) * 2004-03-19 2005-10-27 Miura Co Ltd Water quality improving system
JP2006305499A (en) * 2005-04-28 2006-11-09 Miura Co Ltd Operating method of membrane filtration system
JP4544020B2 (en) * 2005-04-28 2010-09-15 三浦工業株式会社 Operation method of membrane filtration system
JP5003993B2 (en) * 2005-12-21 2012-08-22 三浦工業株式会社 Membrane filtration system
JP3957081B1 (en) * 2007-01-16 2007-08-08 株式会社神鋼環境ソリューション Water treatment system for drinking water production and operation method thereof

Also Published As

Publication number Publication date
JP2009106832A (en) 2009-05-21

Similar Documents

Publication Publication Date Title
JP5222526B2 (en) Water treatment method and water treatment apparatus
JP4831480B2 (en) Membrane filtration system
KR20100075839A (en) Water treatment method, water treatment apparatus, method for recovering purified water, and purified water recovering apparatus
JP6891121B2 (en) Water purification system and method
US9409110B2 (en) Method of maintaining water quality in a process stream
JP6269241B2 (en) Forward osmosis processing system
US20160102003A1 (en) Advanced control system for wastewater treatment plants with membrane bioreactors
JP2010120015A (en) Method of membrane filtration
US9126853B2 (en) Fresh water generator
JP5067299B2 (en) Membrane filtration system and method of operating membrane filtration system
JP6161384B2 (en) Membrane filtration device
JP2008307487A (en) Desalting device
JP2008221195A (en) Operation method of pure water production system
WO2020152100A1 (en) Fouling type detection
JP2009285522A (en) Reverse osmosis membrane device
JPH06277665A (en) Producing apparatus for high purity water
JP6381007B2 (en) Membrane filtration device
JP4544020B2 (en) Operation method of membrane filtration system
WO2016035175A1 (en) Water treatment device and operating method for water treatment device
JP2010201335A (en) Water treatment system and water treatment method
KR101522254B1 (en) Two stage membrane filtration system having flexible recovery ratio and operation method thereof
JP3894034B2 (en) Concentration method of sludge
CN115297950B (en) Washing failure determination method for water generator and washing failure determination program
US20140144840A1 (en) Sequencing batch type or batch type water-filtering apparatus and method of operating the same
JP2008136974A (en) Water treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130311

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5222526

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250