JP2009152474A - Compound semiconductor light emitting device, lighting device using the same, and method of manufacturing the same - Google Patents

Compound semiconductor light emitting device, lighting device using the same, and method of manufacturing the same Download PDF

Info

Publication number
JP2009152474A
JP2009152474A JP2007330583A JP2007330583A JP2009152474A JP 2009152474 A JP2009152474 A JP 2009152474A JP 2007330583 A JP2007330583 A JP 2007330583A JP 2007330583 A JP2007330583 A JP 2007330583A JP 2009152474 A JP2009152474 A JP 2009152474A
Authority
JP
Japan
Prior art keywords
columnar crystal
layer
light
compound semiconductor
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007330583A
Other languages
Japanese (ja)
Other versions
JP5097532B2 (en
Inventor
Nobuyuki Takakura
信之 高倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2007330583A priority Critical patent/JP5097532B2/en
Publication of JP2009152474A publication Critical patent/JP2009152474A/en
Application granted granted Critical
Publication of JP5097532B2 publication Critical patent/JP5097532B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable an electrode to be easily formed and improve light derivation efficiency in a compound semiconductor light emitting device yielded by arranging in dispersion a plurality of nanocolumns on a substrate. <P>SOLUTION: A GaN nanocolumn 4 is a laminate of an n-type GaN layer 13, a light-emitting layer 14, and a p-type GaN layer 16. In the GaN nanaocoulumn, an insulating film 3 is formed on side surfaces thereof by anode oxidation, and then a transparent electrode 6 is formed by vapor. Accordingly, for derivation of a p-type electrode, leakage and short circuit are reduced and a simple step only for vaporization enables formation thereof. This ensures very low cost and stable formation and achieves an electrode formation step desired for mass production step. Further, under proper control of the thickness of the transparent electrode 6, it serves as a microlens. Accordingly, total reflection loss at the transparent electrode 6 and atmosphere boundary is suppressed to improve light derivation efficiency. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、III−V族化合物半導体などの化合物半導体発光素子およびそれを用いる照明装置ならびに化合物半導体発光素子の製造方法に関し、特に半導体素子としては、基板上にナノコラムやナノロッドなどと称される柱径がナノメータサイズの柱状結晶構造体が形成されて成るものに関する。   The present invention relates to a compound semiconductor light emitting element such as a III-V group compound semiconductor, a lighting device using the same, and a method for manufacturing the compound semiconductor light emitting element. In particular, the semiconductor element includes a column called a nanocolumn or a nanorod on a substrate. The present invention relates to a structure in which a columnar crystal structure having a nanometer size is formed.

近年、窒化物半導体もしくは酸化物半導体で構成された発光層を有する化合物半導体発光素子が注目されている。この発光素子の構造は、一例として、サファイア基板を成長基板に用い、発光層の下部にシリコン(Si)がドーピングされたn−GaN層から成るn−クラッド層およびコンタクト層、発光層の上部にマグネシウム(Mg)がドーピングされたp−AlGa1−xNから成る電子ブロック層、電子ブロック層の上部にp−GaNのコンタクト層がそれぞれ形成されて構成されている。これらのいわゆるバルク結晶を用いる発光素子は、基板のサファイアと、窒化物や酸化物の半導体層との格子定数が大きく異なり、かつ基板上に薄膜として形成されるので、結晶内に非常に多くの貫通転位を含んでおり、発光素子の効率を増加させるのは困難であった。 In recent years, compound semiconductor light emitting devices having a light emitting layer made of a nitride semiconductor or an oxide semiconductor have attracted attention. As an example of the structure of this light emitting element, an n-cladding layer and a contact layer composed of an n + -GaN layer in which a sapphire substrate is used as a growth substrate and silicon (Si) is doped below the light emitting layer, an upper portion of the light emitting layer An electron block layer made of p-Al x Ga 1-x N doped with magnesium (Mg) and a p-GaN contact layer on the electron block layer are formed. In these light-emitting elements using so-called bulk crystals, the lattice constants of the sapphire substrate and the nitride or oxide semiconductor layer are greatly different and are formed as a thin film on the substrate. Since threading dislocations are included, it is difficult to increase the efficiency of the light emitting element.

そこで、このような問題を解決する手法の従来例として、特許文献1が知られている。この従来例では、サファイア基板上に、n型電極となるn型GaNバッファ層を形成した後、アレイ状に配列された多数の前記柱状結晶構造体(ナノコラム)を形成しており、そのGaNナノコラム間に、SOG(Spin-on-Glass)、SiOまたはエポキシ樹脂といった透明絶縁物層を埋め込み、p型電極となる透明電極および電極パッドが成膜されて発光素子が構成されている。特に青色GaNナノコラムは、n型GaNナノコラム、発光層となるInGaN量子井戸、p型GaNナノコラムから構成されている。 Therefore, Patent Document 1 is known as a conventional example of a technique for solving such a problem. In this conventional example, an n-type GaN buffer layer serving as an n-type electrode is formed on a sapphire substrate, and then a large number of the columnar crystal structures (nanocolumns) arranged in an array are formed. A light-emitting element is configured by embedding a transparent insulating layer such as SOG (Spin-on-Glass), SiO 2, or epoxy resin and forming a transparent electrode and an electrode pad to be a p-type electrode. In particular, the blue GaN nanocolumn is composed of an n-type GaN nanocolumn, an InGaN quantum well serving as a light emitting layer, and a p-type GaN nanocolumn.

このGaNナノコラムLEDでは、プレーナー型LEDと違い、GaNエピ層成長時に点在していた成長核がくっついてその後平面成長するというのではなく、成長核がくっつく前に縦方向に成長するので、貫通転位は原理上存在せず、貫通転位の周りに発生する点欠陥もプレーナー型と比較して圧倒的に少ないことが期待できるので、プレーナー型LEDに比べて極めて結晶品質の良いGaN単結晶が得られ、内部量子効率も飛躍的に向上することが期待できる。
特開2005−228936号公報
In this GaN nanocolumn LED, unlike the planar LED, the growth nuclei that were scattered during the growth of the GaN epilayer do not stick together and then grow in a plane, but grow in the vertical direction before the growth nuclei stick together. Dislocations do not exist in principle, and it is expected that the number of point defects generated around threading dislocations is far less than that of the planar type, so that a GaN single crystal with extremely good crystal quality can be obtained compared to the planar type LED. Therefore, the internal quantum efficiency can be expected to improve dramatically.
JP 2005-228936 A

しかしながら、上述のようなナノコラムLEDでは、貫通転位の課題は解決されているが、プレーナー型LEDに対する難点として、GaNナノコラム間の狭い隙間に、スピンコートなどによって透明絶縁物層を均一に埋込むことは困難であり、p型電極(透明電極)の形成が困難であるということがある。特にp型GaN層が非常に薄い為に、p型層と発光層、n型層とのリーク、ショート防止が困難である。   However, in the nanocolumn LED as described above, the problem of threading dislocation has been solved. However, as a difficulty with the planar type LED, a transparent insulating layer is uniformly embedded in a narrow gap between GaN nanocolumns by spin coating or the like. It is difficult to form a p-type electrode (transparent electrode). In particular, since the p-type GaN layer is very thin, it is difficult to prevent leakage and short circuit between the p-type layer, the light emitting layer, and the n-type layer.

また、ナノコラム先端から出射される光は、該ナノコラム内をガイドされて出射されるので、ナノコラム先端部界面から出射される光は、プレーナー型LEDにおける角度分布に比べて、基板垂直軸付近に集中した分布になるとはいえ、前記透明絶縁物層上に形成された比較的平坦な透明電極と大気との界面で全反射されてしまう可能性は高く、光取出し効率が低いという問題がある。   In addition, since the light emitted from the tip of the nanocolumn is guided and emitted within the nanocolumn, the light emitted from the interface of the nanocolumn tip is concentrated near the vertical axis of the substrate as compared with the angular distribution in the planar LED. However, there is a high possibility of total reflection at the interface between the relatively flat transparent electrode formed on the transparent insulating layer and the atmosphere, and the light extraction efficiency is low.

本発明の目的は、柱状結晶構造体におけるリークやショートを防止することができるとともに、光取り出し効率を向上することができる化合物半導体発光素子およびそれを用いる照明装置ならびに半導体発光素子の製造方法を提供することである。   An object of the present invention is to provide a compound semiconductor light emitting element capable of preventing leakage and short circuit in a columnar crystal structure and improving light extraction efficiency, an illumination device using the compound semiconductor light emitting element, and a method for manufacturing the semiconductor light emitting element It is to be.

本発明の化合物半導体発光素子は、基板上に、少なくともn型半導体層、発光層、p型半導体層を順次積層して形成される柱状結晶構造体が複数分散配置されて成る化合物半導体発光素子において、前記柱状結晶構造体の少なくとも前記n型半導体層および発光層の側面を覆う絶縁膜と、前記p型半導体層と電気的に接続される透明導電膜であって、表面が、前記各柱状結晶構造体上ではその中心軸が法線となる凸曲面を形成し、かつ各柱状結晶構造体間では凹曲面を形成するように、蒸着によって前記p型半導体層上で一体化して形成されるそのような透明導電膜とを備えて構成されることを特徴とする。   The compound semiconductor light-emitting device of the present invention is a compound semiconductor light-emitting device in which a plurality of columnar crystal structures formed by sequentially laminating at least an n-type semiconductor layer, a light-emitting layer, and a p-type semiconductor layer are dispersed on a substrate. An insulating film covering at least the side surfaces of the n-type semiconductor layer and the light-emitting layer of the columnar crystal structure, and a transparent conductive film electrically connected to the p-type semiconductor layer, the surface of each columnar crystal The structure formed integrally on the p-type semiconductor layer by vapor deposition so that a convex curved surface whose central axis is a normal line is formed on the structure and a concave curved surface is formed between the columnar crystal structures. It is characterized by comprising such a transparent conductive film.

また、本発明の化合物半導体発光素子の製造方法は、基板上に、少なくともn型半導体層、発光層、p型半導体層を順次積層して形成される柱状結晶構造体が複数分散配置されて成る化合物半導体発光素子の製造方法において、前記柱状結晶構造体の成長した基板を陽極酸化する工程と、前記陽極酸化によって表面に絶縁膜の形成された柱状結晶構造体の少なくとも先端部分が露出するようにドライエッチングする工程と、前記p型半導体層上で一体化して、表面が、前記各柱状結晶構造体上ではその中心軸が法線となる凸曲面を形成し、かつ各柱状結晶構造体間では凹曲面を形成するように、透明導電膜を蒸着する工程とを含むことを特徴とする。   The method for producing a compound semiconductor light-emitting device of the present invention comprises a plurality of columnar crystal structures formed by sequentially laminating at least an n-type semiconductor layer, a light-emitting layer, and a p-type semiconductor layer on a substrate. In the method for manufacturing a compound semiconductor light emitting device, a step of anodizing the substrate on which the columnar crystal structure is grown, and at least a tip portion of the columnar crystal structure having an insulating film formed on the surface by the anodization is exposed. Dry etching and integrated on the p-type semiconductor layer, the surface forms a convex curved surface whose central axis is normal on each columnar crystal structure, and between the columnar crystal structures And a step of depositing a transparent conductive film so as to form a concave curved surface.

上記の構成によれば、基板上に、ナノコラムやナノロッドなどと称されるナノスケールの柱状結晶構造体が複数形成されて成る化合物半導体発光素子およびその製造方法において、前記柱状結晶構造体の少なくとも前記n型半導体層および発光層の側面を覆うように、陽極酸化などによって絶縁膜を形成することで、p型半導体層とn型半導体層との絶縁を確保するとともに、発光層を保護した上で、前記p型半導体層上に、電気的に外部電源と接続される透明導電膜を、蒸着によって一体化して形成する。こうして、p型の電極取出しに対して、リークやショートを少なくすることができるとともに、単に蒸着するだけの簡単な工程で作成できることから、極めて低コストかつ安定的に作成することができ、量産工程に望ましい電極形成工程を実現することができる。また、前記陽極酸化によって絶縁膜を形成することで、スピンコートなどのように絶縁物を埋込む方法に比べて、確実に絶縁を行うことができ、前記蒸着に対する信頼性を向上することができる。   According to the above configuration, in a compound semiconductor light-emitting device in which a plurality of nanoscale columnar crystal structures called nanocolumns or nanorods are formed on a substrate, and a method for manufacturing the compound semiconductor light emitting device, at least the columnar crystal structures of the columnar crystal structures are provided. An insulating film is formed by anodic oxidation so as to cover the side surfaces of the n-type semiconductor layer and the light-emitting layer, thereby ensuring insulation between the p-type semiconductor layer and the n-type semiconductor layer and protecting the light-emitting layer. A transparent conductive film that is electrically connected to an external power source is integrally formed on the p-type semiconductor layer by vapor deposition. In this way, leakage and short-circuits can be reduced with respect to p-type electrode extraction, and since it can be created by a simple process of simply vapor deposition, it can be produced at a very low cost and stably. A desirable electrode forming step can be realized. In addition, by forming the insulating film by the anodic oxidation, it is possible to surely perform the insulation as compared with the method of embedding an insulator such as spin coating, and to improve the reliability of the vapor deposition. .

そして、その透明導電膜の厚さを、ITO,NiAu,ZnO等の該透明導電膜の材料や柱状結晶構造体の柱径やピッチなどに対応した厚さ、たとえば柱状結晶構造体の柱径程度に形成して、その表面が、前記各柱状結晶構造体上では中心軸が法線となる凸曲面を形成し、かつ各柱状結晶構造体間では凹曲面を形成するようにする。したがって、透明導電膜を用いることで、電極取出しに対する光吸収ロスを最小限に留め、光取り出し効率を向上することができる。また、該透明導電膜は、その表面が、各柱状結晶構造体ではドーム状でかつ各柱状結晶構造体間で連続して凹凸構造を形成することで、柱状結晶構造体の先端に搭載されたマイクロレンズのように機能し、該透明導電膜と大気界面とにおける全反射ロスを抑え、さらに光取り出し効率を向上することができる。   Then, the thickness of the transparent conductive film is set to a thickness corresponding to the material of the transparent conductive film such as ITO, NiAu, ZnO or the column diameter or pitch of the columnar crystal structure, for example, the column diameter of the columnar crystal structure. The surface of each columnar crystal structure is formed with a convex curved surface whose central axis is a normal line, and a concave curved surface is formed between the columnar crystal structures. Therefore, by using a transparent conductive film, light absorption loss with respect to electrode extraction can be minimized, and light extraction efficiency can be improved. The transparent conductive film is mounted on the tip of the columnar crystal structure by forming a concavo-convex structure on the surface of each columnar crystal structure in a dome shape and continuously between the columnar crystal structures. It functions like a microlens, suppresses total reflection loss between the transparent conductive film and the air interface, and further improves light extraction efficiency.

また、本発明の化合物半導体発光素子では、前記柱状結晶構造体の形成位置および柱径が、マスクによって予め定められることを特徴とする。   In the compound semiconductor light emitting device of the present invention, the formation position and the column diameter of the columnar crystal structure are predetermined by a mask.

上記の構成によれば、前記柱状結晶構造体のピッチが広くなる程、また柱径が細くなる程、前記凸曲面のRが小さくなって光取り出し効率が向上するので、前記ピッチおよび柱径をマスクによって制御することで、光取り出し効率を一層向上することができる。   According to the above configuration, the larger the pitch of the columnar crystal structure and the narrower the column diameter, the smaller the R of the convex curved surface and the light extraction efficiency is improved. The light extraction efficiency can be further improved by controlling with a mask.

さらにまた、本発明の化合物半導体発光素子では、前記透明導電膜は、p型半導体層とのフォワード電圧が電流値20mA時に3.5Vより低く、前記発光層から放射される光のピーク波長に対して透過率が50%以上であることを特徴とする。   Furthermore, in the compound semiconductor light-emitting device of the present invention, the transparent conductive film has a forward voltage with the p-type semiconductor layer lower than 3.5 V when the current value is 20 mA, and has a peak wavelength of light emitted from the light-emitting layer. The transmittance is 50% or more.

上記の構成によれば、電気的、光学的に、該化合物半導体発光素子の外部量子効率を向上することができる。   According to said structure, the external quantum efficiency of this compound semiconductor light-emitting device can be improved electrically and optically.

また、本発明の化合物半導体発光素子では、前記透明導電膜は、ZnO或いはITOから成ることを特徴とする。   In the compound semiconductor light emitting device of the present invention, the transparent conductive film is made of ZnO or ITO.

上記の構成によれば、ZnOはp型GaN層と良好な電気的接続ができ、柱状結晶構造体から発生する光の波長を青色とすると、透過率も高い。さらに屈折率が2.0と極めて高いので、GaNナノコラム(屈折率2.5)からの取出し角度も広く、外部量子効率向上に極めて適した材料である。   According to the above configuration, ZnO can be electrically connected to the p-type GaN layer, and the transmittance is high when the wavelength of light generated from the columnar crystal structure is blue. Furthermore, since the refractive index is as high as 2.0, the angle of extraction from the GaN nanocolumn (refractive index 2.5) is wide, and the material is extremely suitable for improving the external quantum efficiency.

一方、ITOも青色発光に対して透過率が高く、電気伝導性に優れる。ただし、pGaNとの直接接触では良好な電気的接続が得られにくいので、先にPt薄膜などを蒸着し、電気的接続を良好にしておく必要がある。前記Pt薄膜は、せいぜい数nmの厚みで良好な電気的接続が得られるので、このPt薄膜による光吸収ロスは光取出し効率を著しく損ねることはなく、全体として外部量子効率の向上を実現することができる。   On the other hand, ITO also has high transmittance with respect to blue light emission and excellent electrical conductivity. However, since it is difficult to obtain good electrical connection by direct contact with pGaN, it is necessary to first deposit a Pt thin film or the like to improve the electrical connection. Since the Pt thin film can provide a good electrical connection with a thickness of several nanometers at most, the light absorption loss due to the Pt thin film does not significantly impair the light extraction efficiency, and the overall external quantum efficiency can be improved. Can do.

さらにまた、本発明の照明装置は、前記の化合物半導体発光素子を用いることを特徴とする。   Furthermore, the lighting device of the present invention is characterized by using the compound semiconductor light emitting element.

上記の構成によれば、光取り出し効率を向上することができる照明装置を実現することができる。   According to said structure, the illuminating device which can improve light extraction efficiency is realizable.

本発明の化合物半導体発光素子およびその製造方法は、以上のように、以上のように、基板上に、ナノコラムやナノロッドなどと称されるナノスケールの柱状結晶構造体が複数形成されて成る化合物半導体発光素子およびその製造方法において、先ず前記柱状結晶構造体の少なくともn型半導体層および発光層の側面を覆うように、陽極酸化などによって絶縁膜を形成することで、p型半導体層とn型半導体層との絶縁を確保するとともに、発光層を保護した上で、前記p型半導体層上に、電気的に外部電源と接続される透明導電膜を、蒸着によって一体化して形成する。それゆえ、p型の電極取出しに対して、リークやショートを少なくすることができるとともに、単に蒸着するだけの簡単な工程で作成できることから、極めて低コストかつ安定的に作成することができ、量産工程に望ましい電極形成工程を実現することができる。   As described above, the compound semiconductor light-emitting device and the manufacturing method thereof according to the present invention are compound semiconductors in which a plurality of nanoscale columnar crystal structures called nanocolumns or nanorods are formed on a substrate as described above. In the light-emitting element and the method for manufacturing the same, first, an insulating film is formed by anodic oxidation or the like so as to cover at least the n-type semiconductor layer of the columnar crystal structure and the side surface of the light-emitting layer. A transparent conductive film that is electrically connected to an external power source is integrally formed by vapor deposition on the p-type semiconductor layer while ensuring insulation from the layers and protecting the light emitting layer. Therefore, leakage and short-circuiting can be reduced compared to p-type electrode extraction, and it can be created by a simple process of simply vapor deposition, so that it can be produced at extremely low cost and stably. An electrode forming step desirable for the step can be realized.

次に、前記透明導電膜の厚さを、その材料や柱状結晶構造体の柱径やピッチなどに対応した厚さ、たとえば柱状結晶構造体の柱径程度に形成して、その表面が、前記各柱状結晶構造体上では中心軸が法線となる凸曲面を形成し、かつ各柱状結晶構造体間では凹曲面を形成するようにする。それゆえ、前記透明導電膜は、柱状結晶構造体の先端に搭載されたマイクロレンズのように機能するので、該透明導電膜と大気界面とにおける全反射ロスを抑え、光取り出し効率を向上することができる。   Next, the transparent conductive film is formed to have a thickness corresponding to the material and the column diameter and pitch of the columnar crystal structure, for example, about the column diameter of the columnar crystal structure, A convex curved surface whose central axis is a normal line is formed on each columnar crystal structure, and a concave curved surface is formed between the columnar crystal structures. Therefore, the transparent conductive film functions like a microlens mounted at the tip of the columnar crystal structure, and therefore, the total reflection loss between the transparent conductive film and the air interface is suppressed, and the light extraction efficiency is improved. Can do.

さらにまた、本発明の照明装置は、以上のように、前記の化合物半導体発光素子を用いる。   Furthermore, the lighting device of the present invention uses the compound semiconductor light emitting element as described above.

それゆえ、光取り出し効率を向上することができる照明装置を実現することができる。   Therefore, an illumination device that can improve the light extraction efficiency can be realized.

以下に、本発明の実施の一形態について説明し、本実施の形態では、柱状結晶構造体にはGaNナノコラムの例を記載するが、ナノコラム結晶としてはGaNに限定されるものではなく、酸化物、酸窒化物、その他の材料についても当てはまることは言うまでもない。また、成長基板としてSiを用いているが、これに限定されるものではなく、サファイア、SiC、SiO、ZnO、AlN等を用いることができる。さらにまた、ナノコラム結晶の成長には、有機金属気相成長(MOCVD)を用いているが、分子線エピタキシー(MBE)やハイドライド気相成長(HVPE)法等を用いることもできる。 Hereinafter, an embodiment of the present invention will be described. In this embodiment, an example of a GaN nanocolumn is described as a columnar crystal structure, but the nanocolumn crystal is not limited to GaN, and is an oxide. Needless to say, this also applies to oxynitrides and other materials. Further, although Si is used as the growth substrate, it is not limited to this, and sapphire, SiC, SiO 2 , ZnO, AlN, or the like can be used. Furthermore, although metal-organic vapor phase epitaxy (MOCVD) is used for the growth of nanocolumn crystals, molecular beam epitaxy (MBE), hydride vapor phase epitaxy (HVPE), or the like can also be used.

図1は、本発明の実施の一形態に係る化合物半導体発光素子である発光ダイオード1の構造を模式的に示す断面図である。この発光ダイオード1は、Si基板2上に、その外周面に絶縁膜3を有する多数のGaNナノコラム4が植立され、前記Si基板2の裏面にはn型電極5が形成され、前記GaNナノコラム4上には透明電極6およびp型電極パッド7が形成されて構成されている。   FIG. 1 is a cross-sectional view schematically showing the structure of a light-emitting diode 1 which is a compound semiconductor light-emitting element according to an embodiment of the present invention. In the light emitting diode 1, a large number of GaN nanocolumns 4 having an insulating film 3 on the outer peripheral surface thereof are planted on a Si substrate 2, an n-type electrode 5 is formed on the back surface of the Si substrate 2, and the GaN nanocolumns are formed. A transparent electrode 6 and a p-type electrode pad 7 are formed on 4.

図2は、前記GaNナノコラム4の作成方法を説明するための図である。図2(a)で示すように、Siシリコン基板2上に、たとえば50nm厚のシリコン酸化膜11が熱酸化法によって形成され、図2(b)で示すように、通常のフォトリソグラフィ技術とエッチング技術とを用いて、将来GaNナノコラム4を形成する箇所に、たとえば直径100nmの開口部12が形成される。続いて、前記開口部12の形成されたシリコン酸化膜11をマスクとして、図2(c)で示すように、前記開口部12のSi基板2が露出した箇所に、GaNナノコラム4を成長させる。   FIG. 2 is a diagram for explaining a method of producing the GaN nanocolumn 4. As shown in FIG. 2A, a silicon oxide film 11 having a thickness of, for example, 50 nm is formed on the Si silicon substrate 2 by a thermal oxidation method. As shown in FIG. 2B, a normal photolithography technique and etching are performed. For example, an opening 12 having a diameter of 100 nm is formed at a location where a GaN nanocolumn 4 will be formed in the future. Subsequently, using the silicon oxide film 11 in which the opening 12 is formed as a mask, a GaN nanocolumn 4 is grown on the opening 12 where the Si substrate 2 is exposed, as shown in FIG.

前記Si基板2の表面は、面方位(100)または(111)の単結晶面であるので、MOCVD装置を用いて、GaNナノコラム4の核成長は容易に実現できる。たとえば、前記MOCVD装置の反応炉内の圧力を76Torrに保ち、基板温度を1150℃まで上げ、温度が安定した後、Ga原料としてトリメチルガリウム(TMGa)を、N原料としてアンモニア(NH)を、キャリアガスとして水素(H)を供給し、さらにドーパントとなるSiの原料である、テトラエチルシラン(TESi)を供給することで、n型伝導性を有するn型GaN層13を800nm形成する。前記n型伝導性を得るためのドーパントとしては、Si以外に、Ge等を用いることができる。 Since the surface of the Si substrate 2 is a single crystal plane with a plane orientation of (100) or (111), nucleation of the GaN nanocolumns 4 can be easily realized using an MOCVD apparatus. For example, the pressure in the reactor of the MOCVD apparatus is maintained at 76 Torr, the substrate temperature is raised to 1150 ° C., and after the temperature is stabilized, trimethylgallium (TMGa) is used as a Ga source, ammonia (NH 3 ) is used as an N source, By supplying hydrogen (H 2 ) as a carrier gas and further supplying tetraethylsilane (TESi), which is a raw material for Si as a dopant, an n-type GaN layer 13 having n-type conductivity is formed to 800 nm. In addition to Si, Ge or the like can be used as a dopant for obtaining the n-type conductivity.

次に、発光層14を形成することになるが、該発光層14から放射される波長465nmの光は、Si基板2に入射すると、吸収されてロスとなるので、前記n型GaN層13内には、AlGaN/GaNの積層膜から成るDBR(Distributeded Bragg Reflector)反射層15が形成される。この反射層15は、46.64nmのAlGaN層と、50.54nmのGaN層とが交互に51層積層されて構成され、反射率99.5%、ストップバンド幅14nmの導電性反射膜である。前記AlGaN層の積層時には、原料ガスにトリメチルアルミニウム(TMAl)が加えられる。Si基板2側(すなわちGaNナノコラム4の根元側)でこの反射層15が形成された後、しばらく(遊端側に)n型GaN層13を成長させた後、発光層14が形成される。   Next, the light emitting layer 14 is formed. Light having a wavelength of 465 nm emitted from the light emitting layer 14 is absorbed and lost when entering the Si substrate 2. A DBR (Distributed Bragg Reflector) reflecting layer 15 made of an AlGaN / GaN laminated film is formed. This reflective layer 15 is configured by alternately stacking 51 layers of 46.64 nm AlGaN layers and 50.54 nm GaN layers, and is a conductive reflective film having a reflectivity of 99.5% and a stop band width of 14 nm. . When the AlGaN layer is stacked, trimethylaluminum (TMAl) is added to the source gas. After the reflective layer 15 is formed on the Si substrate 2 side (that is, the base side of the GaN nanocolumn 4), the n-type GaN layer 13 is grown for a while (on the free end side), and then the light emitting layer 14 is formed.

前記発光層14は、反応炉内圧力が76Torrのまま、基板温度を750℃まで低下させて積層される。この発光層14は、井戸層(InGaN)および障壁層(GaN)から成る量子井戸構造となっており、好ましくは、複数の井戸を有する多重量子井戸構造(MQW)となっている。前記井戸層および障壁層におけるIn組成は、17%および0%であり、厚さはそれぞれ2nmおよび5nmであり、InGaN層の積層時には、原料ガスにトリメチルインジウム(TMIn)が加えられる。これによって、前記波長465nmの光が得られる。   The light emitting layer 14 is laminated by lowering the substrate temperature to 750 ° C. with the reactor pressure kept at 76 Torr. The light emitting layer 14 has a quantum well structure including a well layer (InGaN) and a barrier layer (GaN), and preferably has a multiple quantum well structure (MQW) having a plurality of wells. The In composition in the well layer and the barrier layer is 17% and 0%, and the thicknesses are 2 nm and 5 nm, respectively, and trimethylindium (TMIn) is added to the source gas when the InGaN layer is stacked. As a result, light having a wavelength of 465 nm can be obtained.

続いて、反応炉内圧力は76Torrのまま、基板温度を前記1150℃にまで上げ、p型GaN層16が積層される。p型伝導を得るためのドーパントとしては、Mgを用い、前記テトラエチルシラン(TESi)に代えて、前記Mgの原料として、ビスエチルシクロペンタジエニルマグネシウム(CpMg)を用い、200nmの厚さだけ成長させる。こうして、GaNナノコラム4は、略1μmの高さとなる。 Subsequently, the substrate temperature is raised to 1150 ° C. with the reactor pressure kept at 76 Torr, and the p-type GaN layer 16 is deposited. Mg is used as a dopant for obtaining p-type conduction, and bisethylcyclopentadienylmagnesium (Cp 2 Mg) is used as the Mg raw material instead of the tetraethylsilane (TESi), and the thickness is 200 nm. Only grow. Thus, the GaN nanocolumn 4 has a height of about 1 μm.

このようにしてGaNナノコラム4の形成されたSi基板2において、注目すべきは、本実施の形態では、図3(a)で示すように、そのGaNナノコラム4の成長したSi基板2全体が陽極酸化され、そのGaNナノコラム4の側壁に形成された酸化膜を保護用の前記絶縁膜3として使用することである。陽極酸化装置21は、図4に示したとおりで、ビーカ22に電解液として酢酸溶液23を満たし、その中にGaNナノコラム4の成長したSi基板2からなるサンプルを入れ、サンプルのSi基板2に外部から正電極24を接続し、これに対して前記酢酸溶液23中には外部から負電極25を接続しただ白金電極26を浸漬する。そして、前記外部電極24,25間に電圧を印加し、かつUVランプ27でサンプルを照射すると、GaNナノコラム4の表面は光電気化学反応によって陽極酸化されて酸化膜が成長し、前記図3(a)で示すような絶縁膜3となる。   In the Si substrate 2 on which the GaN nanocolumns 4 are thus formed, it should be noted that in the present embodiment, the entire Si substrate 2 on which the GaN nanocolumns 4 are grown is an anode as shown in FIG. The oxidation film formed on the side wall of the GaN nanocolumn 4 is used as the insulating film 3 for protection. The anodizing apparatus 21 is as shown in FIG. 4, and a beaker 22 is filled with an acetic acid solution 23 as an electrolyte, and a sample made of the Si substrate 2 on which the GaN nanocolumns 4 are grown is placed therein. A positive electrode 24 is connected from the outside, and a platinum electrode 26 is immersed in the acetic acid solution 23 with a negative electrode 25 connected from the outside. When a voltage is applied between the external electrodes 24 and 25 and the sample is irradiated with the UV lamp 27, the surface of the GaN nanocolumn 4 is anodized by a photoelectrochemical reaction, and an oxide film grows. The insulating film 3 is as shown in a).

また注目すべきは、この後、ドライエッチングを行うことで、p型GaN層16の先端部分の酸化膜3aを除去することである。したがって、前記絶縁膜3は、少なくとも前記n型GaN層13および発光層14の側面を覆う。   It should also be noted that the oxide film 3a at the tip of the p-type GaN layer 16 is removed by performing dry etching thereafter. Therefore, the insulating film 3 covers at least the side surfaces of the n-type GaN layer 13 and the light emitting layer 14.

こうしてp型GaN層16とn型GaN層13との絶縁を確保した後に、さらに注目すべきは、スパッタ装置によって、透明導電膜から成る前記透明電極6を蒸着することである。このとき、各GaNナノコラム4は、前述のように開口部12のパターニングによって、略100nm程度の間隔で孤立して存在しているために、柱径の100nm程度に積層することで、堆積した透明電極6は平面を形成せず、図3(b)で示すように、その表面が、各GaNナノコラム4上では中心軸4aが法線となる凸曲面を形成し、かつ各GaNナノコラム4間では凹曲面を形成する。最後に、前記図1で示すように、p型パッド電極7とn型電極5とを形成して、本発明の発光ダイオード1が完成する。   After securing the insulation between the p-type GaN layer 16 and the n-type GaN layer 13 in this way, it should be noted that the transparent electrode 6 made of a transparent conductive film is deposited by a sputtering apparatus. At this time, since each GaN nanocolumn 4 is isolated at an interval of about 100 nm by patterning of the opening 12 as described above, the transparent layer deposited by laminating to a column diameter of about 100 nm. The electrode 6 does not form a plane, and as shown in FIG. 3B, the surface forms a convex curved surface whose central axis 4 a is a normal line on each GaN nanocolumn 4, and between the GaN nanocolumns 4. A concave curved surface is formed. Finally, as shown in FIG. 1, the p-type pad electrode 7 and the n-type electrode 5 are formed to complete the light-emitting diode 1 of the present invention.

前記透明電極6は、p型GaN層16とのフォワード電圧Vfが電流値20mA時に3.5Vより低く、前記発光層14から放射される光のピーク波長に対して透過率が50%以上の材料に選ばれる。これによって、電気的、光学的に、該発光ダイオード1の外部量子効率を向上することができる。   The transparent electrode 6 is a material whose forward voltage Vf with the p-type GaN layer 16 is lower than 3.5 V when the current value is 20 mA and whose transmittance is 50% or more with respect to the peak wavelength of light emitted from the light emitting layer 14. Chosen. Thereby, the external quantum efficiency of the light emitting diode 1 can be improved electrically and optically.

具体的には、前記透明電極6は、ZnO或いはITOから形成される。前記ZnOは、p型GaN層16と良好な電気的接続ができ、GaNナノコラム4から発生する光の波長を青色とすると、透過率も高い。さらに屈折率が2.0と極めて高いので、GaNナノコラム4(屈折率2.5)からの取出し角度も広く、外部量子効率向上に極めて適した材料である。一方、ITOも青色発光に対して透過率が高く、電気伝導性に優れる。ただし、p型GaN層16との直接接触では良好な電気的接続が得られにくいので、先にPt薄膜などを蒸着し、電気的接続を良好にしておく必要がある。前記Pt薄膜は、せいぜい数nmの厚みで良好な電気的接続が得られるので、このPt薄膜による光吸収ロスは光取出し効率を著しく損ねることはなく、全体として外部量子効率の向上を実現することができる。   Specifically, the transparent electrode 6 is made of ZnO or ITO. ZnO can be electrically connected to the p-type GaN layer 16 and has a high transmittance when the wavelength of light generated from the GaN nanocolumn 4 is blue. Furthermore, since the refractive index is as high as 2.0, the angle of extraction from the GaN nanocolumn 4 (refractive index 2.5) is wide, and the material is extremely suitable for improving the external quantum efficiency. On the other hand, ITO also has high transmittance with respect to blue light emission and excellent electrical conductivity. However, since direct electrical contact with the p-type GaN layer 16 makes it difficult to obtain good electrical connection, it is necessary to first deposit a Pt thin film or the like to improve electrical connection. Since the Pt thin film can provide a good electrical connection with a thickness of several nanometers at most, the light absorption loss due to the Pt thin film does not significantly impair the light extraction efficiency, and the overall external quantum efficiency can be improved. Can do.

以上のように本発明の発光ダイオード1は、Si基板2上に、GaNナノコラム4が複数分散配置されて成る発光ダイオードにおいて、前記GaNナノコラム4の少なくともn型GaN層13および発光層14の側面を覆うように陽極酸化によって絶縁膜3を形成するので、p型GaN層13とn型GaN層16との絶縁を確保するとともに、発光層14を保護した上で、前記p型GaN層16上に透明電極6を蒸着によって形成することができる。したがって、p型の電極取出しに対して、リークやショートを少なくすることができるとともに、単に蒸着するだけの簡単な工程で作成できることから、極めて低コストかつ安定的に作成することができ、量産工程に望ましい電極形成工程を実現することができる。また、前記陽極酸化によって絶縁膜を形成することで、スピンコートなどのように絶縁物を埋込む方法に比べて、確実に絶縁を行うことができ、前記蒸着に対する信頼性を向上することができる。   As described above, the light-emitting diode 1 of the present invention is a light-emitting diode in which a plurality of GaN nanocolumns 4 are dispersedly disposed on a Si substrate 2, and the side surfaces of at least the n-type GaN layer 13 and the light-emitting layer 14 of the GaN nanocolumn 4 are arranged. Since the insulating film 3 is formed by anodic oxidation so as to cover, the insulation between the p-type GaN layer 13 and the n-type GaN layer 16 is ensured, and the light-emitting layer 14 is protected, and then the p-type GaN layer 16 is formed on the p-type GaN layer 16. The transparent electrode 6 can be formed by vapor deposition. Therefore, it is possible to reduce leaks and shorts with respect to p-type electrode extraction, and it can be created by a simple process of simply vapor deposition, so that it can be produced at a very low cost and in a stable manner. A desirable electrode forming step can be realized. In addition, by forming the insulating film by the anodic oxidation, it is possible to surely perform the insulation as compared with a method of embedding an insulator such as spin coating, and to improve the reliability of the vapor deposition. .

また、前記透明電極6を用いることで、電極取出しに対する光吸収ロスを最小限に留め、光取り出し効率を向上することができる。さらにその厚さを、該透明電極6の材料(ITO)やGaNナノコラム4の径などに対応した厚さ、たとえば前記のように100nmの柱径程度に形成することで、その表面が、前記各GaNナノコラム4上では中心軸4aが法線となる凸曲面(ドーム状)を形成し、かつ各GaNナノコラム4間では凹曲面を形成し、該透明電極6全体では凹凸構造となるので、該透明電極6はGaNナノコラム4の先端に搭載されたマイクロレンズのように機能し、該透明電極6と大気界面とにおける全反射ロスを抑え、さらに光取り出し効率を向上することができる。   Further, by using the transparent electrode 6, it is possible to minimize light absorption loss with respect to electrode extraction and improve light extraction efficiency. Further, by forming the thickness to a thickness corresponding to the material of the transparent electrode 6 (ITO), the diameter of the GaN nanocolumn 4, etc., for example, about 100 nm as described above, the surface is On the GaN nanocolumn 4, a convex curved surface (dome shape) having a central axis 4a as a normal line is formed, and a concave curved surface is formed between the GaN nanocolumns 4 so that the entire transparent electrode 6 has a concavo-convex structure. The electrode 6 functions like a microlens mounted on the tip of the GaN nanocolumn 4, suppresses the total reflection loss between the transparent electrode 6 and the air interface, and further improves the light extraction efficiency.

ここで、前記透明電極6が薄くなりすぎると、各GaNナノコラム4でのドームが低く(凸曲面面のRが大きく)なり、光取り出し効率が悪化するとともに、該透明電極6の面方向の導電性が悪くなり、厚くなりすぎると、前記凹凸から平坦に近付き、光取り出し効率が悪化するので、上記のように表面が、各GaNナノコラム4ではその中心軸4aが法線となる凸曲面を形成し、かつ各GaNナノコラム4間では凹曲面を形成する厚さ、たとえば前記柱径程度の厚さに形成することで、導電性を確保しつつ、光取り出し効率を向上することができる。   Here, if the transparent electrode 6 becomes too thin, the dome in each GaN nanocolumn 4 becomes low (R of the convex curved surface increases), the light extraction efficiency deteriorates, and the conductivity in the surface direction of the transparent electrode 6 decreases. When the thickness becomes too thick, the unevenness approaches the flatness and the light extraction efficiency deteriorates. As described above, each GaN nanocolumn 4 forms a convex curved surface whose central axis 4a is a normal line. In addition, by forming the concave curved surface between the GaN nanocolumns 4 so as to have a thickness approximately equal to the column diameter, for example, the light extraction efficiency can be improved while ensuring conductivity.

また、前記GaNナノコラム4のピッチが広くなる程、また柱径が細くなる程、前記凸曲面のRが小さくなって光取り出し効率が向上するので、前記ピッチおよび柱径をシリコン酸化膜11によるマスクによって制御することで、光取り出し効率を一層向上することができる。   Further, as the pitch of the GaN nanocolumns 4 is increased and the column diameter is reduced, R of the convex curved surface is reduced and the light extraction efficiency is improved. Therefore, the pitch and the column diameter are masked by the silicon oxide film 11. The light extraction efficiency can be further improved by controlling by.

このような発光ダイオード1を照明装置に用いることで、光取り出し効率を向上することができる照明装置を実現することができる。   By using such a light emitting diode 1 for a lighting device, a lighting device capable of improving the light extraction efficiency can be realized.

ここで、非特許文献1(A.Kikuchi,M.Kawai,M.Tada and K.Kishino:Jpn.J.Appl.Phys.43(2004)L1524)には、p型電極をシャンパングラス状に拡径させて、隣接ナノコラム間で結合してゆくように成長させることで、前記透明電極のリークやショートを防止しているが、この先行技術でも、p型電極表面は略平坦であり、従来技術で述べたような光取出し効率の課題は残る。   Here, in Non-Patent Document 1 (A. Kikuchi, M. Kawai, M. Tada and K. Kishino: Jpn. J. Appl. Phys. 43 (2004) L1524), a p-type electrode is expanded in a champagne glass shape. The transparent electrode is prevented from leaking or short-circuiting by increasing the diameter and growing so as to bond between adjacent nanocolumns. However, even in this prior art, the p-type electrode surface is substantially flat, The problem of light extraction efficiency remains as described in.

本発明の実施の一形態に係る化合物半導体発光素子である発光ダイオードの構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the light emitting diode which is a compound semiconductor light emitting element concerning one Embodiment of this invention. GaNナノコラムの作成方法を説明するための図である。It is a figure for demonstrating the preparation method of a GaN nanocolumn. 前記発光ダイオードの作成方法を模式的に示す断面図である。It is sectional drawing which shows the preparation method of the said light emitting diode typically. 陽極酸化装置の構造を模式的に示す図である。It is a figure which shows the structure of an anodizing apparatus typically.

符号の説明Explanation of symbols

1 発光ダイオード
2 Si基板
3 絶縁膜
4 GaNナノコラム
5 n型電極
6 透明電極
7 p型電極パッド
11 シリコン酸化膜
12 開口部
13 n型GaN層
14 発光層
15 反射層
16 p型GaN層
21 陽極酸化装置
22 ビーカ
23 酢酸溶液
25 負電極
26 白金電極
27 UVランプ
DESCRIPTION OF SYMBOLS 1 Light emitting diode 2 Si substrate 3 Insulating film 4 GaN nanocolumn 5 N-type electrode 6 Transparent electrode 7 P-type electrode pad 11 Silicon oxide film 12 Opening part 13 N-type GaN layer 14 Light emitting layer 15 Reflective layer 16 P-type GaN layer 21 Anodization Apparatus 22 Beaker 23 Acetic acid solution 25 Negative electrode 26 Platinum electrode 27 UV lamp

Claims (6)

基板上に、少なくともn型半導体層、発光層、p型半導体層を順次積層して形成される柱状結晶構造体が複数分散配置されて成る化合物半導体発光素子において、
前記柱状結晶構造体の少なくとも前記n型半導体層および発光層の側面を覆う絶縁膜と、
前記p型半導体層と電気的に接続される透明導電膜であって、表面が、前記各柱状結晶構造体上ではその中心軸が法線となる凸曲面を形成し、かつ各柱状結晶構造体間では凹曲面を形成するように、蒸着によって前記p型半導体層上で一体化して形成されるそのような透明導電膜とを備えて構成されることを特徴とする化合物半導体発光素子。
In a compound semiconductor light-emitting device in which a plurality of columnar crystal structures formed by sequentially laminating at least an n-type semiconductor layer, a light-emitting layer, and a p-type semiconductor layer are disposed on a substrate,
An insulating film covering at least side surfaces of the n-type semiconductor layer and the light emitting layer of the columnar crystal structure;
A transparent conductive film electrically connected to the p-type semiconductor layer, the surface of which forms a convex curved surface whose central axis is a normal line on each columnar crystal structure, and each columnar crystal structure A compound semiconductor light emitting device comprising such a transparent conductive film integrally formed on the p-type semiconductor layer by vapor deposition so as to form a concave curved surface therebetween.
前記柱状結晶構造体の形成位置および柱径が、マスクによって予め定められることを特徴とする請求項1記載の化合物半導体発光素子。   2. The compound semiconductor light emitting device according to claim 1, wherein the formation position and the column diameter of the columnar crystal structure are predetermined by a mask. 前記透明導電膜は、p型半導体層とのフォワード電圧が電流値20mA時に3.5Vより低く、前記発光層から放射される光のピーク波長に対して透過率が50%以上であることを特徴とする請求項1または2記載の化合物半導体発光素子。   The transparent conductive film has a forward voltage with a p-type semiconductor layer lower than 3.5 V at a current value of 20 mA, and has a transmittance of 50% or more with respect to a peak wavelength of light emitted from the light emitting layer. The compound semiconductor light emitting device according to claim 1 or 2. 前記透明導電膜は、ZnO或いはITOから成ることを特徴とする請求項1〜3のいずれか1項に記載の化合物半導体発光素子。   The compound semiconductor light-emitting element according to claim 1, wherein the transparent conductive film is made of ZnO or ITO. 前記請求項1〜4のいずれか1項に記載の化合物半導体発光素子を用いることを特徴とする照明装置。   An illumination device using the compound semiconductor light-emitting element according to claim 1. 基板上に、少なくともn型半導体層、発光層、p型半導体層を順次積層して形成される柱状結晶構造体が複数分散配置されて成る化合物半導体発光素子の製造方法において、
前記柱状結晶構造体の成長した基板を陽極酸化する工程と、
前記陽極酸化によって表面に絶縁膜の形成された柱状結晶構造体の少なくとも先端部分が露出するようにドライエッチングする工程と、
前記p型半導体層上で一体化して、表面が、前記各柱状結晶構造体上ではその中心軸が法線となる凸曲面を形成し、かつ各柱状結晶構造体間では凹曲面を形成するように、透明導電膜を蒸着する工程とを含むことを特徴とする化合物半導体発光素子の製造方法。
In a method for manufacturing a compound semiconductor light-emitting element in which a plurality of columnar crystal structures formed by sequentially laminating at least an n-type semiconductor layer, a light-emitting layer, and a p-type semiconductor layer are dispersedly disposed on a substrate,
Anodizing the substrate on which the columnar crystal structure is grown;
Dry etching so that at least a tip portion of the columnar crystal structure having an insulating film formed on the surface by the anodization is exposed;
The surface is integrated on the p-type semiconductor layer so that the surface forms a convex curved surface whose central axis is a normal line on each columnar crystal structure, and a concave curved surface is formed between the columnar crystal structures. And a step of vapor-depositing a transparent conductive film.
JP2007330583A 2007-12-21 2007-12-21 Method for manufacturing compound semiconductor light emitting device Expired - Fee Related JP5097532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007330583A JP5097532B2 (en) 2007-12-21 2007-12-21 Method for manufacturing compound semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007330583A JP5097532B2 (en) 2007-12-21 2007-12-21 Method for manufacturing compound semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2009152474A true JP2009152474A (en) 2009-07-09
JP5097532B2 JP5097532B2 (en) 2012-12-12

Family

ID=40921252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007330583A Expired - Fee Related JP5097532B2 (en) 2007-12-21 2007-12-21 Method for manufacturing compound semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP5097532B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012191208A (en) * 2011-03-08 2012-10-04 Opto Tech Corp Light-emitting diode having wide view angle and method for manufacturing the same
WO2013049008A3 (en) * 2011-09-26 2013-05-23 Glo Ab Nanowire sized opto-electronic structure and method for manufacturing the same
JP2013534050A (en) * 2010-06-18 2013-08-29 グロ アーベー Nanowire LED structure and method of fabricating the same
EP2357682A3 (en) * 2010-02-17 2014-09-17 LG Innotek Co., Ltd. Light emitting device, light emitting device package, and lighting system
US8847265B2 (en) 2012-06-25 2014-09-30 Samsung Electronics Co., Ltd. Light-emitting device having dielectric reflector and method of manufacturing the same
JP2014526806A (en) * 2011-09-26 2014-10-06 グロ アーベー Combined nanowire structure with interstitial voids and method of manufacturing the same
JP2015507850A (en) * 2012-01-20 2015-03-12 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Light emitting diode chip
US9099573B2 (en) 2013-10-31 2015-08-04 Samsung Electronics Co., Ltd. Nano-structure semiconductor light emitting device
KR20150091707A (en) * 2014-02-03 2015-08-12 삼성전자주식회사 Emiconductor light emitting device
KR20160019005A (en) * 2014-08-08 2016-02-18 삼성전자주식회사 Nano-sturucture semiconductor light emitting device
JP2016531442A (en) * 2013-08-22 2016-10-06 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ LIGHT EMITTING DIODE INCLUDING LAYER WITH ACTIVITY AREA
JP2018056377A (en) * 2016-09-29 2018-04-05 富士通株式会社 Electronic device and manufacturing method thereof
JP2019054127A (en) * 2017-09-15 2019-04-04 セイコーエプソン株式会社 Light-emitting device, method for manufacturing the same, and projector
CN110212406A (en) * 2018-02-28 2019-09-06 精工爱普生株式会社 Light emitting device and its manufacturing method and projector
WO2020036271A1 (en) * 2018-08-16 2020-02-20 삼성디스플레이 주식회사 Light emitting device, manufacturing method thereof, and display device including light emitting device
JP2020515078A (en) * 2017-03-20 2020-05-21 コミッサリア ア レネルジー アトミーク エ オ エナジーズ アルタナティブス Nanowire structures and methods of making such structures
WO2020240140A1 (en) * 2019-05-28 2020-12-03 Aledia Optoelectronic device comprising two wire-shaped light-emitting diodes each having a layer that limits the leakage currents
JP2021007136A (en) * 2019-06-28 2021-01-21 セイコーエプソン株式会社 Light-emitting device and projector
US11901695B2 (en) 2019-12-23 2024-02-13 Seiko Epson Corporation Light emitting device and projector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625407A (en) * 1992-02-25 1994-02-01 Eastman Kodak Co Production of aromatic polyamide from co. aromatic diamine, and di(trifluoromethanesulfonate)
JP2006187857A (en) * 2004-12-20 2006-07-20 Palo Alto Research Center Inc System and method for forming vertically arrayed nanorod and making electric contact on the array of the same
JP2006332650A (en) * 2005-05-24 2006-12-07 Lg Electronics Inc Rod-type light emitting element and manufacturing method thereof
JP2007027298A (en) * 2005-07-14 2007-02-01 Matsushita Electric Works Ltd Semiconductor light emitting device and lighting device using the same, and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625407A (en) * 1992-02-25 1994-02-01 Eastman Kodak Co Production of aromatic polyamide from co. aromatic diamine, and di(trifluoromethanesulfonate)
JP2006187857A (en) * 2004-12-20 2006-07-20 Palo Alto Research Center Inc System and method for forming vertically arrayed nanorod and making electric contact on the array of the same
JP2006332650A (en) * 2005-05-24 2006-12-07 Lg Electronics Inc Rod-type light emitting element and manufacturing method thereof
JP2007027298A (en) * 2005-07-14 2007-02-01 Matsushita Electric Works Ltd Semiconductor light emitting device and lighting device using the same, and method of manufacturing the same

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2357682A3 (en) * 2010-02-17 2014-09-17 LG Innotek Co., Ltd. Light emitting device, light emitting device package, and lighting system
US9117990B2 (en) 2010-06-18 2015-08-25 Glo Ab Nanowire LED structure and method for manufacturing the same
JP2013534050A (en) * 2010-06-18 2013-08-29 グロ アーベー Nanowire LED structure and method of fabricating the same
US9312442B2 (en) 2010-06-18 2016-04-12 Glo Ab Nanowire structure and method for manufacturing the same
JP2012191208A (en) * 2011-03-08 2012-10-04 Opto Tech Corp Light-emitting diode having wide view angle and method for manufacturing the same
JP2014526806A (en) * 2011-09-26 2014-10-06 グロ アーベー Combined nanowire structure with interstitial voids and method of manufacturing the same
US8937295B2 (en) 2011-09-26 2015-01-20 Glo Ab Nanowire sized opto-electronic structure and method for manufacturing the same
WO2013049008A3 (en) * 2011-09-26 2013-05-23 Glo Ab Nanowire sized opto-electronic structure and method for manufacturing the same
US9419183B2 (en) 2011-09-26 2016-08-16 Glo Ab Nanowire sized opto-electronic structure and method for manufacturing the same
JP2015507850A (en) * 2012-01-20 2015-03-12 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Light emitting diode chip
US9257596B2 (en) 2012-01-20 2016-02-09 Osram Opto Semiconductors Gmbh Light-emitting diode chip
US8847265B2 (en) 2012-06-25 2014-09-30 Samsung Electronics Co., Ltd. Light-emitting device having dielectric reflector and method of manufacturing the same
US9087971B2 (en) 2012-06-25 2015-07-21 Samsung Electronics Co., Ltd. Light-emitting device having dielectric reflector and method of manufacturing the same
US10153393B2 (en) 2013-08-22 2018-12-11 Commissariat à l'énergie atomique et aux énergies alternatives Light emitting diode of which an active area comprises layers of inn
JP2016531442A (en) * 2013-08-22 2016-10-06 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ LIGHT EMITTING DIODE INCLUDING LAYER WITH ACTIVITY AREA
US9099573B2 (en) 2013-10-31 2015-08-04 Samsung Electronics Co., Ltd. Nano-structure semiconductor light emitting device
US9257605B2 (en) 2013-10-31 2016-02-09 Samsung Electronics Co., Ltd. Nano-structure semiconductor light emitting device
KR102075986B1 (en) 2014-02-03 2020-02-11 삼성전자주식회사 Emiconductor light emitting device
KR20150091707A (en) * 2014-02-03 2015-08-12 삼성전자주식회사 Emiconductor light emitting device
KR20160019005A (en) * 2014-08-08 2016-02-18 삼성전자주식회사 Nano-sturucture semiconductor light emitting device
KR102252991B1 (en) * 2014-08-08 2021-05-20 삼성전자주식회사 Nano-sturucture semiconductor light emitting device
JP2018056377A (en) * 2016-09-29 2018-04-05 富士通株式会社 Electronic device and manufacturing method thereof
JP2020515078A (en) * 2017-03-20 2020-05-21 コミッサリア ア レネルジー アトミーク エ オ エナジーズ アルタナティブス Nanowire structures and methods of making such structures
JP7370863B2 (en) 2017-03-20 2023-10-30 コミッサリア ア レネルジー アトミーク エ オ エナジーズ アルタナティブス Nanowire structures and methods of manufacturing such structures
JP2019054127A (en) * 2017-09-15 2019-04-04 セイコーエプソン株式会社 Light-emitting device, method for manufacturing the same, and projector
CN110212406B (en) * 2018-02-28 2023-07-18 精工爱普生株式会社 Light emitting device, method of manufacturing the same, and projector
CN110212406A (en) * 2018-02-28 2019-09-06 精工爱普生株式会社 Light emitting device and its manufacturing method and projector
WO2020036271A1 (en) * 2018-08-16 2020-02-20 삼성디스플레이 주식회사 Light emitting device, manufacturing method thereof, and display device including light emitting device
US11810905B2 (en) 2018-08-16 2023-11-07 Samsung Display Co., Ltd. Light emitting element, manufacturing method thereof, and display device including the light emitting element
CN112567538A (en) * 2018-08-16 2021-03-26 三星显示有限公司 Light emitting element, method for manufacturing the same, and display device including the same
WO2020240140A1 (en) * 2019-05-28 2020-12-03 Aledia Optoelectronic device comprising two wire-shaped light-emitting diodes each having a layer that limits the leakage currents
FR3096834A1 (en) * 2019-05-28 2020-12-04 Aledia OPTOELECTRONIC DEVICE INCLUDING AN ELECTROLUMINESCENT DIODE HAVING A LEAKAGE CURRENT LIMITING LAYER
US12002841B2 (en) 2019-05-28 2024-06-04 Aledia Optoelectronic device comprising two wire-shaped light-emitting diodes each having a layer that limits the leakage currents
US11569636B2 (en) 2019-06-28 2023-01-31 Seiko Epson Corporation Light emitting device and projector
JP7136020B2 (en) 2019-06-28 2022-09-13 セイコーエプソン株式会社 Light-emitting device and projector
JP2021007136A (en) * 2019-06-28 2021-01-21 セイコーエプソン株式会社 Light-emitting device and projector
US11901695B2 (en) 2019-12-23 2024-02-13 Seiko Epson Corporation Light emitting device and projector

Also Published As

Publication number Publication date
JP5097532B2 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
JP5097532B2 (en) Method for manufacturing compound semiconductor light emitting device
US9478702B2 (en) Semiconductor light emitting device
KR101898679B1 (en) Nano-structured light emitting devices
US9385266B2 (en) Method of manufacturing a nanostructure light emitting device by planarizing a surface of the device
JP6025933B2 (en) Manufacturing method of light emitting diode
US9553235B2 (en) Semiconductor light emitting device and manufacturing method thereof
US20110108800A1 (en) Silicon based solid state lighting
US20080308835A1 (en) Silicon based solid state lighting
JP4591276B2 (en) Manufacturing method of semiconductor light emitting device
JP5112761B2 (en) COMPOUND SEMICONDUCTOR ELEMENT, LIGHTING DEVICE USING SAME, AND METHOD FOR PRODUCING COMPOUND SEMICONDUCTOR ELEMENT
KR102094471B1 (en) Method for growing nitride semiconductor layer and Nitride semiconductor formed therefrom
US9269865B2 (en) Nanostructure semiconductor light emitting device
JP2014036231A (en) Semiconductor element manufacturing method
JP4995053B2 (en) Semiconductor light emitting element, lighting device using the same, and method for manufacturing semiconductor light emitting element
JP4982176B2 (en) COMPOUND SEMICONDUCTOR ELEMENT, LIGHTING DEVICE USING SAME, AND METHOD FOR PRODUCING COMPOUND SEMICONDUCTOR ELEMENT
JP2006339426A (en) Light-emitting diode and its fabrication method
JP2008066590A (en) Compound semiconductor light emitting device, illumination apparatus employing the same and manufacturing method of compound semiconductor device
CN105679904B (en) Optical pumping luminescent device and preparation method of monolithic integrated optical pumping luminescent device
WO2012040978A1 (en) Light emitting device and manufacturing method thereof
JP2008066591A (en) Compound semiconductor light emitting device, illumination apparatus employing the same and manufacturing method of compound semiconductor device
JP5165668B2 (en) Semiconductor light emitting device and manufacturing method thereof
KR101563157B1 (en) Light emitting device comprising micro-rod and manufacturing method of the same
JP2009049195A (en) Semiconductor light emitting element and light emitting device
KR20150051819A (en) Method for fabricating nitride semiconductor device
KR20210023423A (en) Light emitting device and method of fabricating the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101022

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120924

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees