JP2009150749A - Surface plasmon sensor - Google Patents
Surface plasmon sensor Download PDFInfo
- Publication number
- JP2009150749A JP2009150749A JP2007328328A JP2007328328A JP2009150749A JP 2009150749 A JP2009150749 A JP 2009150749A JP 2007328328 A JP2007328328 A JP 2007328328A JP 2007328328 A JP2007328328 A JP 2007328328A JP 2009150749 A JP2009150749 A JP 2009150749A
- Authority
- JP
- Japan
- Prior art keywords
- surface plasmon
- opening
- thin film
- metal thin
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
この発明は表面プラズモンの効果を利用したセンサに関する。 The present invention relates to a sensor using the effect of surface plasmons.
金属中においては自由電子が集団的に振動してプラズマ波と呼ばれる粗密波が生じる。そして、金属表面に生じるこの粗密波を量子化したものは表面プラズモンと呼ばれている。従来より、この表面プラズモンが光波によって励起される現象を利用して試料中の物質を定量分析する表面プラズモンセンサが種々提案されている。そして、それらの中で特に良く知られているものとして、Kretschmann配置と称される系を用いるものが挙げられる(例えば、特許文献1参照)。
上記の系を用いる表面プラズモンセンサは基本的にプリズムと、プリズムの一面に形成されて試料に接触せしめられる金属膜と、光ビームを発生させる光源と、光ビームをプリズムに通し、プリズムと金属膜との界面に対して種々の入射角が得られるように入射させる光学系と、プリズムと金属膜との界面で全反射した光ビームの強度を種々の入射角毎に検出可能な光検出手段とを備えてなるものである。
In the metal, free electrons collectively vibrate to generate a dense wave called a plasma wave. And the thing which quantized this density wave generated on the metal surface is called surface plasmon. Conventionally, various surface plasmon sensors that quantitatively analyze a substance in a sample using a phenomenon in which the surface plasmon is excited by a light wave have been proposed. Among them, one that uses a system called Kretschmann configuration is well known (for example, see Patent Document 1).
A surface plasmon sensor using the above system is basically a prism, a metal film formed on one surface of the prism and brought into contact with a sample, a light source for generating a light beam, a light beam passing through the prism, and the prism and the metal film. And an optical system that makes the incident light so that various incident angles can be obtained with respect to the interface with the optical detector, and a light detection means that can detect the intensity of the light beam totally reflected at the interface between the prism and the metal film at various incident angles. Is provided.
なお、上述のように種々の入射角を得るためには、光ビームの照射系を回転させる、いわゆるゴニオメータが用いられたり(例えば、特許文献2参照)、あるいは光ビームに種々の角度で入射する成分が含まれるように、比較的太いビームを上記プリズムと金属膜との界面で集束するように入射させる光学系が用いられる。前者の場合は光ビームの偏向に伴って反射角が変化する光ビームを、光ビームの偏向に同期移動する小さな光検出器によって検出したり、反射角の変化方向に沿って延びるエリアセンサによって検出することができる。一方、後者の場合は種々の反射角で反射した各光ビームを全て受光できる方向に延びるエリアセンサによって検出することができる。 In order to obtain various incident angles as described above, a so-called goniometer that rotates a light beam irradiation system is used (for example, see Patent Document 2), or the light beam is incident at various angles. An optical system is used in which a relatively thick beam is incident so as to be converged at the interface between the prism and the metal film so as to include a component. In the former case, a light beam whose reflection angle changes with the deflection of the light beam is detected by a small photodetector that moves in synchronization with the deflection of the light beam, or by an area sensor that extends along the direction of change of the reflection angle. can do. On the other hand, in the latter case, it can be detected by an area sensor extending in a direction in which each light beam reflected at various reflection angles can be received.
光ビームを金属膜に対して全反射角以上の入射角θで入射させると、反射面の金属膜中にエバネッセント波といわれる「にじみ波」が生じる。このエバネッセント波は金属膜に接している試料中に電界分布をもち、この金属膜と試料との界面に表面プラズモンが発生する。p偏光された光ビームが金属膜に対して入射されて生じたエバネッセント波の波数ベクトルが上述の表面プラズモンの波数ベクトルと等しく、波数整合が成立すると両者は共鳴状態となり、光のエネルギが表面プラズモンに移行してプラズモンが励起される。この時、光のエネルギの移行のために全反射した光の強度は著しく低下する。 When the light beam is incident on the metal film at an incident angle θ equal to or greater than the total reflection angle, a “bleeding wave” called an evanescent wave is generated in the metal film on the reflecting surface. The evanescent wave has an electric field distribution in the sample in contact with the metal film, and surface plasmons are generated at the interface between the metal film and the sample. When the wave vector of the evanescent wave generated by the incidence of the p-polarized light beam on the metal film is equal to the wave vector of the surface plasmon described above, when the wave number matching is established, both are in a resonance state and the energy of the light is changed to the surface plasmon. The plasmon is excited by moving to. At this time, the intensity of the totally reflected light is significantly reduced due to the transfer of light energy.
それ故、表面プラズモンセンサにおいては種々の入射角θで金属膜に入射させた光ビームについて、金属膜により全反射された光ビームの強度の測定を行うことにより、反射強度が著しく低下する現象が生じる時の入射角θsp(全反射解消角)が得られ、この全反射解消角θspと入射光の波数ベクトルK1から共鳴波数Kspが、
Ksp=K1sinθsp
の関係により導かれる。表面プラズモンの波数Kspが分かると、試料の誘電率が求められる。即ち、表面プラズモンの角周波数をω、真空中の光速をc、金属及び試料の誘電率をそれぞれεm,εsとすると、次式の関係がある。
Therefore, in the surface plasmon sensor, the light intensity incident on the metal film at various incident angles θ is measured by measuring the intensity of the light beam totally reflected by the metal film, so that the reflection intensity is remarkably reduced. An incident angle θ sp (total reflection elimination angle) at the time of occurrence is obtained, and the resonance wave number K sp is obtained from the total reflection elimination angle θ sp and the wave number vector K 1 of the incident light.
K sp = K 1 sinθ sp
Guided by the relationship. If the wave number K sp of the surface plasmon can be known, the dielectric constant of the sample can be determined. That is, when the angular frequency of the surface plasmon is ω, the speed of light in vacuum is c, and the dielectric constants of the metal and the sample are ε m and ε s , respectively, the following relationship is established.
Ksp(ω)=(ω/c)√(εm(ω)・εs/(εm(ω)+εs))
試料の誘電率εsが分かれば、所定の較正曲線等に基づいて試料中の特定物質の濃度が分かるので、結局、反射光強度が低下する全反射解消角θspを知ることにより、試料中の特定物質を定量分析することができる。
一方、近年、金属薄膜に波長より小さい大きさの開口を周期的に設けると、開口を透過する光の透過率が開口率以上になるという現象が発見された(例えば、特許文献3参照)。開口の周期と透過率がピークとなる波長には相関があり、表面プラズモンと入射光との相互作用の結果、透過率が増強されたと考えられている。特許文献3では金属薄膜に周期的な円形開口を配列させた構造やスリットアレイ構造が提案されている。また、単一の開口の周囲に周期的なリング状の溝を設けることにより、開口を通る透過光を増幅させる方法も提案されている(例えば、特許文献4参照)。さらに、このような表面プラズモン増強効果を利用するものとして、周期的なリング状の溝を誘電体膜に形成し、その表面に金属膜を形成すると共に金属膜に開口を設けた構造を有する表面プラズモンセンサが提案されている(例えば、特許文献5参照)。
If the dielectric constant ε s of the sample is known, the concentration of the specific substance in the sample can be known based on a predetermined calibration curve or the like, so that by knowing the total reflection elimination angle θ sp at which the reflected light intensity decreases, The specific substance can be quantitatively analyzed.
On the other hand, in recent years, it has been discovered that when an opening having a size smaller than a wavelength is periodically provided in a metal thin film, the transmittance of light transmitted through the opening becomes equal to or higher than the opening ratio (see, for example, Patent Document 3). There is a correlation between the aperture period and the wavelength at which the transmittance reaches a peak, and it is considered that the transmittance is enhanced as a result of the interaction between the surface plasmon and the incident light.
従来の金属薄膜を用いる表面プラズモンセンサで主流となっているKretschmann配置と称される系を用いる場合、測定の精度は試料の回転角精度や分解能に依存するため、精密(高感度)な測定を行おうとすればするほど、ゴニオメータや光ビームの平行度など光学系が大掛りになるという問題があった。
これに対し、特許文献5に記載されている表面プラズモンセンサは大掛りな光学系は不要であって、小型化を図れるものとなっている。しかしながら、この特許文献5に記載されている表面プラズモンセンサは目的物質(検体)の付着による光(近接場光)の強度変化を検出することにより目的物質の定量分析を行うものであって、表面プラズモン共鳴を生起する金属膜の周期的な凹凸パターンへの目的物質の効率的な付着が要求される。
When using a system called Kretschmann arrangement, which is the mainstream in conventional surface plasmon sensors using metal thin films, the measurement accuracy depends on the rotation angle accuracy and resolution of the sample, so precise (high sensitivity) measurement is required. There was a problem that the more it tried to do, the larger the optical system, such as the goniometer and the parallelism of the light beam.
On the other hand, the surface plasmon sensor described in Patent Document 5 does not require a large optical system and can be downsized. However, the surface plasmon sensor described in Patent Document 5 performs quantitative analysis of a target substance by detecting an intensity change of light (near-field light) due to adhesion of the target substance (specimen). Efficient adhesion of the target substance to the periodic uneven pattern of the metal film that causes plasmon resonance is required.
しかるに、特許文献5では周期的な凹凸パターンは同心円状の溝とされているため、このような同心円状の微小な溝に目的物質を含む流体(試料)を効果的に流すのは容易ではなく、つまり目的物質を効率良く付着させづらいものとなっており、その点で最適な構造とは言えないものとなっていた。
この発明の目的はこのような問題に鑑み、目的物質を効率的にとらえて付着させることができるようにし、さらに従来に比し、検出感度の向上を図ることができる表面プラズモンセンサを提供することにある。
However, in Patent Document 5, since the periodic uneven pattern is a concentric groove, it is not easy to effectively flow a fluid (sample) containing the target substance in such a concentric minute groove. In other words, it was difficult to attach the target substance efficiently, and in that respect, it was not an optimal structure.
In view of these problems, an object of the present invention is to provide a surface plasmon sensor that can efficiently capture and attach a target substance and can improve detection sensitivity as compared with the conventional one. It is in.
請求項1の発明によれば、複数の周期的な開口が形成された金属薄膜を誘電体基板上に備えてなる表面プラズモン素子に目的物質を付着させ、その表面プラズモン素子に光を照射して開口を透過する透過光の、目的物質の付着に応じた変化を検出する表面プラズモンセンサにおいて、誘電体基板の前記開口と対応する各位置に、開口と連繋する貫通孔がそれぞれ設けられ、それら開口とそれに連繋する貫通孔とによって目的物質を含んだ流体が流れる複数の流路が構成される。
請求項2の発明によれば、複数の周期的な開口が形成された金属薄膜を誘電体上に備えてなる表面プラズモン素子に目的物質を付着させ、その表面プラズモン素子に光を照射して開口を透過する透過光の、目的物質の付着に応じた変化を検出する表面プラズモンセンサにおいて、誘電体が流体透過性の膜によって構成され、その流体透過性の膜及び前記複数の開口を通って目的物質を含んだ流体が流れる構成とされる。
According to the first aspect of the present invention, a target substance is attached to a surface plasmon element comprising a metal thin film having a plurality of periodic openings formed on a dielectric substrate, and the surface plasmon element is irradiated with light. In a surface plasmon sensor that detects a change in transmitted light that passes through an opening in accordance with adhesion of a target substance, a through hole that is connected to the opening is provided at each position corresponding to the opening of the dielectric substrate. And a plurality of flow paths through which a fluid containing the target substance flows are formed by the through holes connected to it.
According to the invention of
請求項3の発明では請求項1又は2の発明において、金属薄膜の膜厚をL、前記開口の周期をPとした時のL’=L/Pと、金属薄膜の膜面の単位面積Aに含まれる前記開口の面積をSとした時のS’=S/Aとの比L’/S’が、L’/S’>1.6を満たすものとされる。
請求項4の発明では請求項3の発明において、前記開口が開口幅dのスリットとされ、L’/S’が膜厚Lと開口幅dとの比L/dと等しいものとされる。
請求項5の発明では請求項1乃至4のいずれかの発明において、金属薄膜の上面及び前記開口の側壁面に分子認識層が設けられる。
In the invention of
According to a fourth aspect of the present invention, in the third aspect of the present invention, the opening is a slit having an opening width d, and L ′ / S ′ is equal to a ratio L / d between the film thickness L and the opening width d.
According to a fifth aspect of the present invention, in any one of the first to fourth aspects, a molecular recognition layer is provided on the upper surface of the metal thin film and the side wall surface of the opening.
この発明によれば、目的物質を含んだ流体が金属薄膜に形成された表面プラズモン増強効果を発揮する周期的な開口を通過することができる構造となっているため、開口の側壁面に目的物質を効率的に付着させることができ、よって高感度な表面プラズモンセンサを実現することができる。 According to the present invention, the fluid containing the target substance has a structure that can pass through the periodic opening that exhibits the surface plasmon enhancement effect formed in the metal thin film. Can be efficiently attached, and thus a highly sensitive surface plasmon sensor can be realized.
まず、最初に、図1に示したように誘電体基板10上に金属薄膜20を形成し、金属薄膜20に光の波長以下の大きさの周期的な開口21を設けた場合の透過スペクトルをシミュレーションにより調べた結果について説明する。開口21はこの例ではスリットとし、即ちこの例では周期的な開口構造としてスリットアレイが金属薄膜20に形成されたものとなっている。シミュレーションには2次元のFDTD(Finite Difference Time Domain)法計算を用いた。なお、図1中、31は入射光を示し、32は透過光を示す。
すでに述べたように、金属薄膜に光の波長以下の大きさの周期的な開口を設けた場合、その周期と入射光の波長との間に強い相関があることが指摘されている。そこで、表面に物質が付着した場合の開口周期構造と入射波長との相互作用を明確にするため、シミュレーションでは金属の光学定数は波長によらず、一定(屈折率n=0.05,消衰係数k=5.0)として計算を行った。
First, as shown in FIG. 1, a metal
As already described, it has been pointed out that when a periodic opening having a size equal to or smaller than the wavelength of light is provided in a metal thin film, there is a strong correlation between the period and the wavelength of incident light. Therefore, in order to clarify the interaction between the aperture periodic structure and the incident wavelength when a substance adheres to the surface, the optical constant of the metal is constant regardless of the wavelength (refractive index n = 0.05, extinction) in the simulation. The calculation was performed with a coefficient k = 5.0).
開口(スリット)21の周期(配列周期)を1.0μmとし、開口21の開口幅を0.5μm、金属薄膜20の膜厚を0.3μmとした場合の透過スペクトルを図2に示す。波長よりも小さい開口の透過率は開口幅をd、波長をλとすると、(d/λ)4に比例して小さくなることが知られている。この法則に従えば、例えばλ=1.0μmにおける透過率は10−2のオーダとなるが、計算結果によれば、透過率は約0.5と非常に大きい。これは前述の特許文献3で指摘されている表面プラズモンの効果であると考えられる。
金属薄膜中に開口がある場合には均一な金属薄膜を用いる従来の表面プラズモンセンサと異なり、金属薄膜上面(表面)と開口内側の側壁面と開口に位置する誘電体基板の上面(表面)が外部に露出している。どの部分に物質が付着した場合に高い感度が得られるのかを明らかにするため、金属薄膜上面のみに物質が付着した場合と、金属薄膜上面及び開口の側壁面に物質が付着した場合の透過スペクトルの変化を比較した。開口21の周期、開口幅及び金属薄膜20の膜厚は上記図2の条件と同一とした。結果をそれぞれ図3Aと図3Bに示す。また、図3A、図3Bの一部波長域を拡大したものをそれぞれ図4A、図4Bに示す。なお、これら図3A,B及び図4A,Bには物質の付着厚さが0nm(付着なし)、20nm,100nmの場合を示している。
FIG. 2 shows a transmission spectrum when the period (arrangement period) of the openings (slits) 21 is 1.0 μm, the opening width of the
Unlike conventional surface plasmon sensors that use a uniform metal thin film when the metal thin film has openings, the metal thin film upper surface (front surface), the side wall surface inside the opening, and the upper surface (surface) of the dielectric substrate located in the opening Exposed outside. In order to clarify which part is attached with high sensitivity, the transmission spectrum when the substance is attached only to the upper surface of the metal thin film and when the substance is attached to the upper surface of the metal thin film and the side wall of the opening. Comparison of changes. The period of the
開口21の側壁面に物質の付着がある場合の方が透過スペクトルの変化が、特に0.9μm以上の長波長側で大きくなっており、開口21の側壁面に物質を付着させるようにすることが高感度化において必要であることがわかった。
なお、上記計算はスリットアレイ構造で行ったが、円形開口などの周期的な配列構造であっても、表面プラズモンによる透過率の増大効果が観測されることから、周期的な開口構造として円形開口アレイが金属薄膜20に形成された表面プラズモン素子を用いるものであってもよく、この場合においても開口の側壁面への物質の付着が検出感度の向上に不可欠であると考えられる。
When the substance is attached to the side wall surface of the
Although the above calculation was performed with a slit array structure, even with a periodic array structure such as a circular opening, the effect of increasing the transmittance due to surface plasmons is observed. The array may use a surface plasmon element formed on the metal
ところで、開口幅が波長以下の微小な開口においては、開口の深さ(=金属薄膜の膜厚)と開口幅との比(開口のアスペクト比)が大きくなると、溶液中やガス中に浸すだけでは開口の内部に溶液やガスが浸入しにくくなる。この発明では図5に示したように、誘電体基板10の、金属薄膜20の開口21と対応する各位置に、開口21と連繋する貫通孔11をそれぞれ設け、それら開口21とそれに連繋する貫通孔11とによって目的物質を含んだ流体が流れる複数の流路を構成する。これにより、開口21に流体を流れやすくすることができ、開口21の側壁面に目的物質が付着しやすくする。つまり、貫通孔11と連繋された開口21をフィルタのように用いることで、流体中の目的物質を効率的にとらえて付着させることができる。なお、図5中、12は誘電体基板10に形成されたダイアフラムを示し、この例ではこのダイアフラム12に貫通孔11が形成されている。また、図5中、41は目的物質を含んだ流体(液体)を示し、矢印42は流体41の流れを示す。
By the way, in a minute opening whose opening width is equal to or smaller than the wavelength, if the ratio of the opening depth (= thickness of the metal thin film) to the opening width (opening aspect ratio) becomes large, it is simply immersed in a solution or gas. Then, it becomes difficult for a solution or gas to enter the opening. In the present invention, as shown in FIG. 5, through
一方、図6はこの発明による他の構成を示したものであり、この例では金属薄膜20が形成される(金属薄膜20を保持する)誘電体が流体透過性の膜の一形態である気体透過性の膜50とされ、この気体透過性の膜50及び金属薄膜20の開口21を通って目的物質を含んだ気体が流れる構成とされる。
この例では目的物質を含んだ気体を開口21に流すと、気体は透過する一方、目的物質は開口21の内部に留まるため、開口21の側壁面に付着する確率が高まり、気体中の目的物質を効率良く付着させることができる。なお、図6中、51は気体透過性の膜50に形成されたダイアフラムを示し、金属薄膜20はこのダイアフラム51上に形成されている。また、図6中、60は基板を示し、矢印43は目的物質(固体)を含んだ気体の流れを示す。矢印44は気体透過性の膜50を透過した気体の流れを示す。
On the other hand, FIG. 6 shows another configuration according to the present invention. In this example, a gas in which the metal
In this example, when a gas containing the target substance is passed through the
なお、ここに示す例における上記気体透過性の膜50を液体透過性の膜に置換し、目的物質を含んだ液体を透過させる実施形態も同様に可能である。
以下、具体的実施例について説明する。
[実施例1]
誘電体基板としてシリコン基板を用い、このシリコン基板上に開口サイズ1.8mm角のダイアフラムを形成した。ダイアフラムの形成は誘導結合プラズマ反応性イオンエッチング装置を用い、シリコンを厚さ1μm残してエッチングすることによって形成した。
An embodiment in which the gas
Specific examples will be described below.
[Example 1]
A silicon substrate was used as the dielectric substrate, and a 1.8 mm square aperture diaphragm was formed on the silicon substrate. The diaphragm was formed by using an inductively coupled plasma reactive ion etching apparatus and etching the silicon leaving a thickness of 1 μm.
シリコン基板のエッチング面と反対側の面上に、接着層として薄いクロム膜を成膜後、金の薄膜をスパッタ法により成膜して金属薄膜を形成した。膜厚は1μmとした。収束イオンビームエッチング装置を用いてシリコン基板のダイアフラムが形成されている位置において、開口幅が0.5μmのスリットを周期1.0μmで金属薄膜に形成し、引き続き、その下の厚さ1μmのダイアフラムにスリットと連繋する貫通孔を形成した。これにより、図5に示したような構造体(表面プラズモン素子)が得られる。
この素子を4mm角の大きさとして切り出し、図7に示したように流路の中にフィルタのようにして設置した。図7中、70はケースを示し、71は流入口、72は流出口を示す。流路にはダイオキシンを微量に含む液体を圧力差を設けて矢印で示したように流した。
A thin chromium film was formed as an adhesive layer on the surface opposite to the etched surface of the silicon substrate, and then a gold thin film was formed by sputtering to form a metal thin film. The film thickness was 1 μm. At the position where the diaphragm of the silicon substrate is formed using the focused ion beam etching apparatus, a slit having an opening width of 0.5 μm is formed in the metal thin film with a period of 1.0 μm, and subsequently the diaphragm having a thickness of 1 μm is formed below the slit. A through hole connected to the slit was formed. Thereby, the structure (surface plasmon element) as shown in FIG. 5 is obtained.
This element was cut out to a size of 4 mm square, and placed like a filter in the flow path as shown in FIG. In FIG. 7, 70 indicates a case, 71 indicates an inlet, and 72 indicates an outlet. A liquid containing a small amount of dioxin was allowed to flow through the channel as shown by the arrows with a pressure difference.
10分間流した後、上記4mm角の素子を取り出し、自記分光光度計で赤外域の透過スペクトルを測定したところ、液体を流す前の透過スペクトルと比較して、透過スペクトル形状が変化していた。
[実施例2]
シリコン基板上に実施例1と同じ素子を複数個作製した。
その表面に分子インプリンティング法を用いてダイオキシン分子と分子結合を形成可能なポリマー膜を形成した。分子インプリンティング法とはポリマーに対して認識させたい分子(標的分子)の形をインプリント(刻印)し、その結果生じた穴を用いて分子認識を行う技術である。まず、標的分子A(この場合、ダイオキシン)と、この分子と特異的に結合する部位及び重合可能な官能基を有する分子Bとを架橋剤と共に重合させ、その後、標的分子Aをポリマー内から遊離除去することによって、標的分子Aに対して相補的な結合部位をインプリントポリマー内に構築する。即ち、架橋剤由来のポリマーのマトリックス中に分子B由来の官能基が、標的分子Aの形に従い、標的分子Aの特徴的な官能基を認識するように配置される。この局在化した官能基周辺が標的分子Aに対して特異的に結合する部位(特異的結合部位)となり、特定の分子を認識して分子結合をする。この分子認識膜(分子認識層)の材料としてはピロールを用い、スプレーコーティングの方法を用いて金属薄膜の上面及び開口の側壁面に均一にポリマー膜を形成した。
After flowing for 10 minutes, the 4 mm square element was taken out and the transmission spectrum in the infrared region was measured with a self-recording spectrophotometer. As a result, the transmission spectrum shape was changed as compared with the transmission spectrum before flowing the liquid.
[Example 2]
A plurality of the same elements as in Example 1 were produced on a silicon substrate.
A polymer film capable of forming molecular bonds with dioxin molecules was formed on the surface using molecular imprinting. The molecular imprinting method is a technique for imprinting (engraving) the shape of a molecule (target molecule) to be recognized by a polymer, and performing molecular recognition using the resulting hole. First, target molecule A (in this case, dioxin) and a molecule B having a polymerizable group and a site that specifically binds to this molecule are polymerized together with a crosslinking agent, and then target molecule A is released from within the polymer. By removing, a binding site complementary to the target molecule A is built in the imprint polymer. That is, the functional group derived from the molecule B is arranged in the matrix of the polymer derived from the crosslinking agent so as to recognize the characteristic functional group of the target molecule A according to the shape of the target molecule A. The area around the localized functional group becomes a site that specifically binds to the target molecule A (specific binding site), recognizes a specific molecule, and binds to the molecule. As a material of this molecular recognition film (molecular recognition layer), pyrrole was used, and a polymer film was uniformly formed on the upper surface of the metal thin film and the side wall surface of the opening by a spray coating method.
この素子を2個切り出し、実施例1と同様、図7に示したように流路の中に設置して、それぞれダイオキシンを微量に含む液体及びトリハロメタンを微量に含む液体を流し、透過スペクトルの時間的変化を自記分光光度計で観測した。その結果、ダイオキシンを微量に含む液体では時間と共に透過スペクトルが変化する様子が観測されたが、トリハロメタンを含む液体の場合には透過スペクトルに変化が見られなかった。
[実施例3]
シリコン基板上に気体透過性の膜としてポリイミド膜を蒸着重合法により厚さ10μm形成した。ポリイミド膜面上に接着層として薄いクロム膜を成膜後、金の薄膜をスパッタ法により成膜して金属薄膜を形成した。膜厚は1μmとした。収束イオンビームエッチング装置を用いて金属薄膜に開口幅が0.5μmのスリットを周期1.0μmで形成した。その後、ポリイミド膜形成面と反対側のシリコン基板面にマスキングを行い、イオンミリング装置を用いてシリコン基板を部分的に除去し、さらにポリイミド膜を0.5μmの厚さを残すようにエッチングすることによって開口サイズ10〜100μm角のポリイミドダイアフラムを形成した。これにより、図6に示したような構造体(表面プラズモン素子)が得られる。
Two of these elements were cut out and installed in the flow path as shown in FIG. 7 in the same manner as in Example 1, and a liquid containing a small amount of dioxin and a liquid containing a small amount of trihalomethane were allowed to flow, respectively. Changes were observed with a self-recording spectrophotometer. As a result, it was observed that the transmission spectrum changed with time in the liquid containing a small amount of dioxin, but no change was observed in the transmission spectrum in the liquid containing trihalomethane.
[Example 3]
A polyimide film having a thickness of 10 μm was formed on the silicon substrate as a gas permeable film by vapor deposition polymerization. After forming a thin chromium film as an adhesive layer on the polyimide film surface, a gold thin film was formed by sputtering to form a metal thin film. The film thickness was 1 μm. Using a focused ion beam etching apparatus, slits with an opening width of 0.5 μm were formed in a metal thin film with a period of 1.0 μm. Then, mask the silicon substrate surface opposite to the polyimide film formation surface, partially remove the silicon substrate using an ion milling device, and further etch the polyimide film to leave a thickness of 0.5 μm. A polyimide diaphragm having an opening size of 10 to 100 μm square was formed. Thereby, a structure (surface plasmon element) as shown in FIG. 6 is obtained.
この素子を切り出し、実施例1と同様、図7のように流路の中に設置した。流路にはキャリアガスとして窒素ガスを用い、エタノールを微量に混合して圧力差を設けて流した。
10分間流した後、素子を取り出し、自記分光光度計で赤外域の透過スペクトルを測定したところ、ガスを流す前の透過スペクトルと比較して、透過スペクトル形状が変化していた。
[比較例]
シリコン基板にダイアフラム及び貫通孔が形成されていない点を除いて、実施例1と同様の方法を用いて4mm角の大きさの素子を作製した。
This element was cut out and installed in the flow path as shown in FIG. Nitrogen gas was used as a carrier gas in the flow path, and a small amount of ethanol was mixed to flow with a pressure difference.
After flowing for 10 minutes, the device was taken out and the transmission spectrum in the infrared region was measured with a self-recording spectrophotometer. As a result, the transmission spectrum shape was changed as compared with the transmission spectrum before flowing the gas.
[Comparative example]
A 4 mm square element was fabricated using the same method as in Example 1 except that the diaphragm and the through hole were not formed on the silicon substrate.
この素子を図7のように流路の中に設置し、ダイオキシンを微量に含む液体を圧力差を設けて流した。なお、この場合、ケース70と素子との間には液体が流れる所要の隙間を設けるものとする。
実施例1と同様の透過スペクトル形状の変化を得るためには、液体を流す時間として40分が必要であった。
以上説明したように、この発明によれば透過型の光学系での表面プラズモンセンサを実現することができ、目的物質を含んだ流体が開口を通過できる構造とすることにより、より効率的に、言い換えればより短時間で開口の内側の側壁面に目的物質を付着させることができ、その点で高感度な表面プラズモンセンサを得ることができる。なお、実施例2のように分子認識層を形成することにより、特定の分子の量を検出することができる。
This element was installed in the flow path as shown in FIG. 7, and a liquid containing a small amount of dioxin was allowed to flow with a pressure difference. In this case, a required gap through which liquid flows is provided between the
In order to obtain the same change in the transmission spectrum shape as in Example 1, 40 minutes were required as the time for flowing the liquid.
As described above, according to the present invention, it is possible to realize a surface plasmon sensor in a transmission type optical system, and a structure that allows a fluid containing a target substance to pass through an opening. In other words, the target substance can be attached to the inner side wall surface of the opening in a shorter time, and in this respect, a highly sensitive surface plasmon sensor can be obtained. In addition, the amount of a specific molecule can be detected by forming a molecule recognition layer as in Example 2.
次に、金属薄膜の膜厚と開口幅との関係について説明する。
図8Aは前述の図1に示した構造において、開口(スリット)21の周期Pを1.0μm、開口幅dを0.5μmとし、金属薄膜20の膜厚Lをそれぞれ0.1μm,0.3μm,0.6μm,0.9μm,1.2μmとした場合の透過スペクトルを示したものである。図8Aより、膜厚Lが大きくなると、言い換えれば膜厚Lと開口幅dとの比L/dが大きくなると、波長が1μm以上の領域で急激に透過光強度が小さくなっていることが明らかになった。即ち、L/d(アスペクト比)が0.2の場合(膜厚Lが0.1μmの場合)では、1.04μmの波長で透過光強度がピークを示した後も、より長波長領域でいくつかのピークを示すが、L/dが2.4の場合(膜厚Lが1.2μmの場合)では1.04μmのピーク以降は波長の増大と共に急激に透過光強度が減小している。
Next, the relationship between the thickness of the metal thin film and the opening width will be described.
8A shows the structure shown in FIG. 1 described above, in which the period P of the opening (slit) 21 is 1.0 μm, the opening width d is 0.5 μm, and the film thickness L of the metal
波長1.04μmのピークの急峻さと、膜厚Lと開口幅dとの比L/dとの関係を明らかにするため、L/dに対して波長が1.4μmの場合の透過光強度と1.04μmの場合の透過光強度の比の関係を図8Bに示したようにプロットした。L/dが1.6以上の領域で透過光強度比が急激に大きくなっていることがわかる。
この膜厚Lと開口幅dとの比L/dが1.6以上の領域で透過光強度比が急激に大きくなるメカニズムとしては、表面プラズモンが関与する最表面層の厚さに比べて膜厚Lが大きくなってくると、金属のバルクとしての性質が関与するようになり、波長が長い領域では表面プラズモンの効果による透過率増大効果が発揮されにくくなるためではないかと推測している。
In order to clarify the relationship between the sharpness of the peak at a wavelength of 1.04 μm and the ratio L / d between the film thickness L and the opening width d, the transmitted light intensity when the wavelength is 1.4 μm with respect to L / d The relationship of the ratio of transmitted light intensity in the case of 1.04 μm was plotted as shown in FIG. 8B. It can be seen that the transmitted light intensity ratio rapidly increases in the region where L / d is 1.6 or more.
As a mechanism in which the ratio of transmitted light intensity suddenly increases in a region where the ratio L / d between the film thickness L and the opening width d is 1.6 or more, the film is larger than the thickness of the outermost surface layer in which surface plasmons are involved. As the thickness L increases, the properties of the metal as a bulk come to be involved, and it is assumed that the transmittance increasing effect due to the effect of the surface plasmon is less likely to be exhibited in a long wavelength region.
図9は金属薄膜20の膜厚Lが1.2μmの場合に、金属薄膜20の上面及び開口21の側壁面に物質が付着した場合の透過スペクトルの変化を調べた結果を示したものであり、付着厚さが増大するに従って透過率が急峻に変化する領域(波長1.04〜1.2μm)の波長カーブがシフトすることがわかった。従って、この領域での特定の波長、例えば波長1.1μmで透過光強度をモニタするようにすれば、目的物質の付着と共に透過率が増大していく様子をモニタすることができる。
以上より、図5や図6に示したこの発明における構成において、金属薄膜20の膜厚Lと開口(スリット)21の開口幅dとの比L/dは、
L/d>1.6 …(1)
を満たすように設定するのが好ましいと言える。
FIG. 9 shows the result of examining the change in the transmission spectrum when a substance adheres to the upper surface of the metal
From the above, in the configuration of the present invention shown in FIGS. 5 and 6, the ratio L / d between the film thickness L of the metal
L / d> 1.6 (1)
It can be said that it is preferable to set so as to satisfy.
なお、(1)式は開口21がスリット(細長い矩形の開口)の場合の条件を示したものであるが、開口は前述したようにスリットに限らず、円形開口としてもよく、このような場合には(1)式に替え、下記のような条件を満たすように設定するのが好ましい。
即ち、金属薄膜の膜厚をL、開口の周期をPとした時のL’=L/Pと、金属薄膜の膜面の単位面積Aに含まれる開口の面積をSとした時のS’=S/Aとの比L’/S’が、
L’/S’>1.6 …(2)
を満たすようにする。
The expression (1) shows the condition when the
That is, L ′ = L / P when the thickness of the metal thin film is L and the period of the opening is P, and S ′ when the area of the opening included in the unit area A of the film surface of the metal thin film is S. = S / A ratio L ′ / S ′ is
L ′ / S ′> 1.6 (2)
To satisfy.
この(2)式におけるL’/S’は開口のアスペクト比の拡大された一般的概念であり、開口が周期的なスリット(開口幅d)であれば、
L’/S’=(L/P)/(d/P)=L/d
となり、L’/S’は(1)式におけるL/dと等しくなる。
L ′ / S ′ in the equation (2) is a general concept in which the aspect ratio of the opening is enlarged. If the opening is a periodic slit (opening width d),
L ′ / S ′ = (L / P) / (d / P) = L / d
L ′ / S ′ becomes equal to L / d in the equation (1).
Claims (5)
前記誘電体基板の前記開口と対応する各位置に、開口と連繋する貫通孔がそれぞれ設けられ、それら開口とそれに連繋する貫通孔とによって前記目的物質を含んだ流体が流れる複数の流路が構成されていることを特徴とする表面プラズモンセンサ。 A target substance is attached to a surface plasmon element comprising a metal thin film having a plurality of periodic openings formed on a dielectric substrate, and the object of transmitted light that is transmitted through the opening by irradiating the surface plasmon element with light. In the surface plasmon sensor that detects changes according to the adhesion of substances,
Through-holes connected to the openings are provided at positions corresponding to the openings of the dielectric substrate, and a plurality of flow paths through which the fluid containing the target substance flows are configured by the openings and the through-holes connected to the openings. Surface plasmon sensor characterized by being made.
前記誘電体が流体透過性の膜によって構成され、その流体透過性の膜及び前記複数の開口を通って前記目的物質を含んだ流体が流れる構成とされていることを特徴とする表面プラズモンセンサ。 A target substance is attached to a surface plasmon element comprising a metal thin film having a plurality of periodic openings formed on a dielectric, and the surface plasmon element is irradiated with light and transmitted through the opening. In the surface plasmon sensor that detects changes according to the adhesion of
A surface plasmon sensor, wherein the dielectric is constituted by a fluid-permeable membrane, and a fluid containing the target substance flows through the fluid-permeable membrane and the plurality of openings.
前記金属薄膜の膜厚をL、前記開口の周期をPとした時のL’=L/Pと、前記金属薄膜の膜面の単位面積Aに含まれる前記開口の面積をSとした時のS’=S/Aとの比L’/S’が、
L’/S’>1.6
を満たすことを特徴とする表面プラズモンセンサ。 The surface plasmon sensor according to claim 1 or 2,
L ′ = L / P where L is the thickness of the metal thin film and P is the period of the opening, and S is the area of the opening included in the unit area A of the film surface of the metal thin film. The ratio L ′ / S ′ with S ′ = S / A is
L '/ S'> 1.6
A surface plasmon sensor characterized by satisfying
前記開口が開口幅dのスリットとされ、
前記L’/S’が前記膜厚Lと前記開口幅dとの比L/dと等しいことを特徴とする表面プラズモンセンサ。 The surface plasmon sensor according to claim 3,
The opening is a slit having an opening width d;
The surface plasmon sensor, wherein L ′ / S ′ is equal to a ratio L / d between the film thickness L and the opening width d.
前記金属薄膜の上面及び前記開口の側壁面に分子認識層が設けられていることを特徴とする表面プラズモンセンサ。 The surface plasmon sensor according to any one of claims 1 to 4,
A surface plasmon sensor, wherein a molecular recognition layer is provided on an upper surface of the metal thin film and a side wall surface of the opening.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007328328A JP4659018B2 (en) | 2007-12-20 | 2007-12-20 | Surface plasmon sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007328328A JP4659018B2 (en) | 2007-12-20 | 2007-12-20 | Surface plasmon sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009150749A true JP2009150749A (en) | 2009-07-09 |
JP4659018B2 JP4659018B2 (en) | 2011-03-30 |
Family
ID=40920032
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007328328A Expired - Fee Related JP4659018B2 (en) | 2007-12-20 | 2007-12-20 | Surface plasmon sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4659018B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011027899A1 (en) * | 2009-09-03 | 2011-03-10 | 日本航空電子工業株式会社 | Surface plasmon resonance element for hydrogen detection, surface plasmon resonance-type optical hydrogen detector, and method for optically detecting hydrogen by using surface plasmon resonance |
WO2011050165A2 (en) * | 2009-10-21 | 2011-04-28 | Stc.Unm | Plasmonic detectors |
WO2015025756A1 (en) * | 2013-08-23 | 2015-02-26 | 株式会社右近工舎 | Substrate for surface-enhanced raman scattering spectroscopy, and device using same |
JPWO2014017430A1 (en) * | 2012-07-25 | 2016-07-11 | 株式会社村田製作所 | Measuring method of measured object |
JP2018194550A (en) * | 2017-05-12 | 2018-12-06 | 公立大学法人大阪府立大学 | Detection kit for substance to be detected, detection system provided therewith and method for manufacturing detection kit for substance to be detected |
CN111398217A (en) * | 2019-06-05 | 2020-07-10 | 江西师范大学 | High-quality plasmon optical sensor and preparation method thereof |
CN114778447A (en) * | 2022-04-12 | 2022-07-22 | 北京大学 | Double-valley calibration plasmon refractive index sensor and implementation method thereof |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0572135A (en) * | 1991-09-17 | 1993-03-23 | Res Dev Corp Of Japan | Biosensor system |
JP3008931B2 (en) * | 1997-07-08 | 2000-02-14 | 日本電気株式会社 | High light transmission aperture array |
JP2000221094A (en) * | 1999-01-29 | 2000-08-11 | Eaton Corp | Pressure sensor housing |
JP2004288571A (en) * | 2003-03-25 | 2004-10-14 | Toshiba Battery Co Ltd | Water-based metal-air cell and electronic apparatus using the same |
JP2005016963A (en) * | 2003-06-23 | 2005-01-20 | Canon Inc | Chemical sensor, and chemical sensor device |
JP2005283556A (en) * | 2004-03-05 | 2005-10-13 | Canon Inc | Target substance recognition element, detection method and device |
JP2007003969A (en) * | 2005-06-27 | 2007-01-11 | Japan Aviation Electronics Industry Ltd | Optical element |
JP2007232640A (en) * | 2006-03-02 | 2007-09-13 | Moritex Corp | Local plasmon resonance sensor, and measuring instrument using the same |
JP2009042497A (en) * | 2007-08-09 | 2009-02-26 | Japan Aviation Electronics Industry Ltd | Surface plasmon element |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57165234A (en) * | 1981-04-03 | 1982-10-12 | Yoshino Kogyosho Co Ltd | Breaking mechanism for synthetic resin product |
-
2007
- 2007-12-20 JP JP2007328328A patent/JP4659018B2/en not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0572135A (en) * | 1991-09-17 | 1993-03-23 | Res Dev Corp Of Japan | Biosensor system |
JP3008931B2 (en) * | 1997-07-08 | 2000-02-14 | 日本電気株式会社 | High light transmission aperture array |
JP2000221094A (en) * | 1999-01-29 | 2000-08-11 | Eaton Corp | Pressure sensor housing |
JP2004288571A (en) * | 2003-03-25 | 2004-10-14 | Toshiba Battery Co Ltd | Water-based metal-air cell and electronic apparatus using the same |
JP2005016963A (en) * | 2003-06-23 | 2005-01-20 | Canon Inc | Chemical sensor, and chemical sensor device |
JP2005283556A (en) * | 2004-03-05 | 2005-10-13 | Canon Inc | Target substance recognition element, detection method and device |
JP2007003969A (en) * | 2005-06-27 | 2007-01-11 | Japan Aviation Electronics Industry Ltd | Optical element |
JP2007232640A (en) * | 2006-03-02 | 2007-09-13 | Moritex Corp | Local plasmon resonance sensor, and measuring instrument using the same |
JP2009042497A (en) * | 2007-08-09 | 2009-02-26 | Japan Aviation Electronics Industry Ltd | Surface plasmon element |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011027899A1 (en) * | 2009-09-03 | 2011-03-10 | 日本航空電子工業株式会社 | Surface plasmon resonance element for hydrogen detection, surface plasmon resonance-type optical hydrogen detector, and method for optically detecting hydrogen by using surface plasmon resonance |
JP2011053151A (en) * | 2009-09-03 | 2011-03-17 | Japan Aviation Electronics Industry Ltd | Surface plasmon resonance element for detecting hydrogen, surface plasmon resonance type optical hydrogen detector, and method for detecting hydrogen optically by using surface plasmon resonance |
US8675200B2 (en) | 2009-09-03 | 2014-03-18 | Japan Aviation Electronics Industry Limited | Hydrogen detecting surface plasmon resonator, surface plasmon resonance optical hydrogen detector and method for optically detecting hydrogen using surface plasmon resonance |
WO2011050165A2 (en) * | 2009-10-21 | 2011-04-28 | Stc.Unm | Plasmonic detectors |
WO2011050165A3 (en) * | 2009-10-21 | 2011-08-18 | Stc.Unm | Plasmonic detectors |
US8835851B2 (en) | 2009-10-21 | 2014-09-16 | Stc.Unm | Plasmonic detectors |
JPWO2014017430A1 (en) * | 2012-07-25 | 2016-07-11 | 株式会社村田製作所 | Measuring method of measured object |
GB2532356A (en) * | 2013-08-23 | 2016-05-18 | Ukon Craft Science | Substrate for surface-enhanced raman scattering spectroscopy, and device using same |
WO2015025756A1 (en) * | 2013-08-23 | 2015-02-26 | 株式会社右近工舎 | Substrate for surface-enhanced raman scattering spectroscopy, and device using same |
JPWO2015025756A1 (en) * | 2013-08-23 | 2017-03-02 | 株式会社右近工舎 | Surface-enhanced Raman scattering spectroscopic substrate and apparatus using the same |
US10359366B2 (en) | 2013-08-23 | 2019-07-23 | Ukon Craft Science Ltd. | Substrate for surface enhanced Raman scattering spectroscopy and devices using same |
GB2532356B (en) * | 2013-08-23 | 2020-04-15 | Ukon Craft Science Ltd | Substrate for surface-enhanced raman scattering spectroscopy, and device using same |
JP2018194550A (en) * | 2017-05-12 | 2018-12-06 | 公立大学法人大阪府立大学 | Detection kit for substance to be detected, detection system provided therewith and method for manufacturing detection kit for substance to be detected |
JP7072847B2 (en) | 2017-05-12 | 2022-05-23 | 公立大学法人大阪 | A detection kit for a substance to be detected, a detection system provided with the kit, and a method for manufacturing a detection kit for the substance to be detected. |
CN111398217A (en) * | 2019-06-05 | 2020-07-10 | 江西师范大学 | High-quality plasmon optical sensor and preparation method thereof |
CN111398217B (en) * | 2019-06-05 | 2022-08-19 | 江西师范大学 | High-quality plasmon optical sensor and preparation method thereof |
CN114778447A (en) * | 2022-04-12 | 2022-07-22 | 北京大学 | Double-valley calibration plasmon refractive index sensor and implementation method thereof |
CN114778447B (en) * | 2022-04-12 | 2024-05-17 | 北京大学 | Dual-valley calibration plasmon refractive index sensor and implementation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP4659018B2 (en) | 2011-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4659018B2 (en) | Surface plasmon sensor | |
US9726788B2 (en) | Method for fabricating nanoantenna array, nanoantenna array chip and structure for lithography | |
JP3897703B2 (en) | Sensor device and inspection method using the same | |
JP4974870B2 (en) | Optical element, sensor device and sensing method | |
US8808645B2 (en) | Molecular filters | |
JP5288772B2 (en) | Chemical sensor element, sensing device, and sensing method | |
KR100977292B1 (en) | Spr gas sensing device manufacturing method using molecularly imprinted polymer | |
US8599486B2 (en) | Three dimensional sub-wavelength structure with surface plasmon energy matching properties | |
US20120184047A1 (en) | Nanoplasmonic device | |
JP2005016963A (en) | Chemical sensor, and chemical sensor device | |
JP4649468B2 (en) | Surface plasmon sensor | |
US8958999B1 (en) | Differential detection for surface plasmon resonance sensor and method | |
CN102288583A (en) | Transmission-type metal grating coupling SPR (Surface Plasmon Resonance) detection chip and detection instrument | |
SE1200214A1 (en) | Apparatus and method for quantifying the binding and disassociation kinetics of molecular interactions | |
Ahmed et al. | Large-scale functionalized metasurface-based SARS-CoV-2 detection and quantification | |
Raghuwanshi et al. | Highly dispersion tailored property of novel class of multimode surface plasmon resonance biosensor assisted by teflon and metamaterial layers | |
Xiao et al. | Topographically engineered large scale nanostructures for plasmonic biosensing | |
CN102798615A (en) | Periodic nanostructure-based biosensor and preparation method thereof | |
Ruffato et al. | Innovative exploitation of grating-coupled surface plasmon resonance for sensing | |
WO2015146036A1 (en) | Enhanced raman spectroscopy device | |
CN113466170A (en) | Multi-target detector based on multi-type resonance terahertz super-surface | |
JP5016958B2 (en) | Optical element manufacturing method | |
Dong et al. | Improved polarization contrast method for surface plasmon resonance imaging sensors by inert background gold film extinction | |
WO2014168237A1 (en) | Structure replication method, localized surface plasmon resonance sensor chip manufacturing method including this replication method, structure, localized surface plasmon resonance sensor chip, and localized surface plasmon resonance sensor | |
CN115561177A (en) | Design and preparation method of optical super-structured surface and circular dichroism spectrum test system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100824 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100928 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101125 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101214 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101224 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140107 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4659018 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140107 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |