JP2009148751A - Organic matter dehydration concentration apparatus and organic matter dehydration concentration method - Google Patents

Organic matter dehydration concentration apparatus and organic matter dehydration concentration method Download PDF

Info

Publication number
JP2009148751A
JP2009148751A JP2008304675A JP2008304675A JP2009148751A JP 2009148751 A JP2009148751 A JP 2009148751A JP 2008304675 A JP2008304675 A JP 2008304675A JP 2008304675 A JP2008304675 A JP 2008304675A JP 2009148751 A JP2009148751 A JP 2009148751A
Authority
JP
Japan
Prior art keywords
liquid
vapor
condensate
treated
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008304675A
Other languages
Japanese (ja)
Other versions
JP5248289B2 (en
Inventor
Kohei Ninomiya
康平 二宮
Yasunari Uchida
康徳 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KAGAKU KIKAI SEIZO
Japan Chemical Engineering and Machinery Co Ltd
Original Assignee
NIPPON KAGAKU KIKAI SEIZO
Japan Chemical Engineering and Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KAGAKU KIKAI SEIZO, Japan Chemical Engineering and Machinery Co Ltd filed Critical NIPPON KAGAKU KIKAI SEIZO
Priority to JP2008304675A priority Critical patent/JP5248289B2/en
Publication of JP2009148751A publication Critical patent/JP2009148751A/en
Application granted granted Critical
Publication of JP5248289B2 publication Critical patent/JP5248289B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic matter dehydration concentration apparatus and an organic matter dehydration concentration method which can prevent impurities from attaching and depositing at a separation membrane even when impurities are included in a liquid to be treated that is evaporated at an evaporator and which can also restrain the accumulation, deterioration and polymerization of impurities by which dehydration concentration performance can be favorably sustained. <P>SOLUTION: The organic matter dehydration concentration apparatus 1 is provided with the evaporator 2 which vaporizes the liquid to be treated that includes a water-soluble organic matter and water and generates the vapor of liquid to be treated and a membrane separation apparatus 4 which has a separation membrane 3 which selectively permeates steam. It is also provided with a vapor of a liquid to be treated condensation device 23 which generates a condensation liquid by condensing a part of the vapor of the liquid to be treated that is sent from the evaporator 2 to the membrane separation apparatus 4, bubble cap trays 15, 16 which stagnates the condensation liquid from the vapor of a liquid to be treated condensation device 23 so that the vapor of the liquid to be treated can go through and permeate and which are provided in the flow path of the vapor of the liquid to be treated inside of the evaporator 2, and favorably, and preferably, is provided with a flow amount control valve 10 for discharging the stagnating substance at the bottom part of the evaporator 2. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、蒸発器と分離膜とを用いて、水溶性有機物と水とを含む被処理液を脱水・濃縮する有機物脱水濃縮装置および有機物脱水濃縮方法に関するものである。   The present invention relates to an organic dehydration concentration apparatus and an organic dehydration concentration method for dehydrating and concentrating a liquid to be treated containing a water-soluble organic substance and water using an evaporator and a separation membrane.

従来、水溶性有機物と水とを含む被処理液を脱水・濃縮する装置として、蒸留装置が広く用いられている。しかし、水溶性有機物は、水と共沸混合物を作る物が多い。例えば、エタノール、プロパノール、酢酸エチル、メチルエチルケトンなどである。これらの共沸混合物の蒸留には、第三成分を添加した抽出蒸留が適用されるが、装置が増え、操作が複雑であり、分離に要するエネルギも増加するという欠点がある。このような欠点を解決し得るものとして、例えば特許文献1にて提案されているような分離膜を用いた脱水濃縮方法がある。   Conventionally, a distillation apparatus has been widely used as an apparatus for dehydrating and concentrating a liquid to be treated containing a water-soluble organic substance and water. However, many water-soluble organic substances form an azeotropic mixture with water. For example, ethanol, propanol, ethyl acetate, methyl ethyl ketone and the like. For the distillation of these azeotropes, extractive distillation with the addition of a third component is applied, but there are disadvantages that the number of apparatuses is increased, the operation is complicated, and the energy required for separation is also increased. As a solution to such a drawback, there is a dehydration concentration method using a separation membrane as proposed in Patent Document 1, for example.

特許第3764894号公報Japanese Patent No. 3764894

特許文献1に係る脱水濃縮方法の実現に供する有機物脱水濃縮装置においては、水溶性有機物と水とを含む被処理液を操作圧50〜150kPaの蒸留塔で蒸留し、該蒸留塔の塔頂部または濃縮段から取り出された留分を凝縮して得られる凝縮液を、蒸発器に供給・加熱して前記蒸留塔の操作圧力より高い圧力の蒸気とし、この高圧の蒸気を分離膜に供給し、水蒸気を選択的に透過させることによって脱水して高濃縮の水溶性有機物を取得している。   In the organic matter dehydrating and concentrating apparatus for realizing the dehydrating and concentrating method according to Patent Document 1, a liquid to be treated containing a water-soluble organic substance and water is distilled in a distillation column with an operating pressure of 50 to 150 kPa, and the top of the distillation column or The condensate obtained by condensing the fraction taken out from the concentration stage is supplied to the evaporator and heated to form a vapor having a pressure higher than the operating pressure of the distillation column, and this high-pressure vapor is supplied to the separation membrane. It is dehydrated by selectively permeating water vapor to obtain highly concentrated water-soluble organic matter.

ところで、水溶性有機物と水とを含む被処理液に不純物が混入した場合、蒸発器内に不純物が蓄積するとともに、被処理液蒸気に同伴して膜分離装置に達し分離膜に付着(吸着)して分離膜の分離性能を劣化させることがある。さらに不純物が反応して高分子化する場合、粘稠な液または固体となり、蒸発器の底部に溜まってしまう。蒸発器の底部に溜まった粘稠な液または固体は、蒸気泡と共に液面に向かって上昇し、液面での蒸気泡の破裂に伴い飛沫状不純物となる。この不純物は、蒸発器で発生された被処理液蒸気に同伴して蒸発器から送り出され、膜分離装置に達し分離膜に付着(吸着)して分離膜の分離性能を劣化させることがある。   By the way, when impurities are mixed in the liquid to be treated containing water-soluble organic substances and water, the impurities accumulate in the evaporator and reach the membrane separation device along with the liquid to be processed and adhere to the separation membrane (adsorption). As a result, the separation performance of the separation membrane may be deteriorated. Further, when the impurities react to polymerize, it becomes a viscous liquid or solid and accumulates at the bottom of the evaporator. The viscous liquid or solid accumulated in the bottom of the evaporator rises toward the liquid surface together with the vapor bubbles, and becomes splashy impurities as the vapor bubbles burst on the liquid surface. The impurities are accompanied by the liquid vapor generated in the evaporator and are sent out from the evaporator, reach the membrane separation device, and adhere (adsorb) to the separation membrane, which may deteriorate the separation performance of the separation membrane.

すなわち、前記従来の脱水濃縮装置では、蒸発器で蒸発される被処理液中に不純物が含まれている場合に、この不純物が被処理液蒸気に同伴して膜分離装置に達し、分離膜に不純物が付着・堆積して、分離膜の性能低下を招き、脱水濃縮性能が悪くなるという問題点がある。   That is, in the conventional dehydration and concentration apparatus, when impurities to be processed are evaporated in the evaporator, the impurities are accompanied by the liquid to be processed and reach the membrane separation apparatus, and are separated into the separation membrane. There is a problem in that impurities adhere and accumulate, which causes a decrease in the performance of the separation membrane, resulting in poor dehydration concentration performance.

本発明は、このような問題点を解消するためになされたもので、蒸発器で蒸発される被処理液中に不純物が含まれている場合でも、分離膜に不純物が付着・堆積するのを防止することができ、これによって脱水濃縮性能を良好に維持することのできる有機物脱水濃縮装置および有機物脱水濃縮方法を提供することを目的とするものである。   The present invention has been made to solve such problems, and even when impurities are contained in the liquid to be processed which is evaporated by the evaporator, the impurities are adhered and deposited on the separation film. It is an object of the present invention to provide an organic matter dewatering and concentration apparatus and an organic matter dewatering and concentration method that can be prevented and thereby maintain good dehydration and concentration performance.

前記目的を達成するために、第1発明による有機物脱水濃縮装置は、
水溶性有機物と水とを含む被処理液を蒸発させて被処理液蒸気を発生させる蒸発器と、水蒸気を選択的に透過させる分離膜を有してなる膜分離装置とを備え、前記蒸発器で発生された被処理液蒸気を前記膜分離装置に導入してその被処理液蒸気から水蒸気を分離する有機物脱水濃縮装置において、
前記蒸発器で蒸気化し前記膜分離装置に向けて送り出される被処理液蒸気の一部を凝縮して凝縮液を生成する被処理液蒸気凝縮手段と、
前記蒸発器の内部における被処理液蒸気の流れ経路途中に設けられ、前記被処理液蒸気凝縮手段からの凝縮液を滞留させる凝縮液滞留手段とを備え、
前記凝縮液滞留手段は、被処理液蒸気が当該凝縮液滞留手段に滞留されている凝縮液を潜り抜けて通過するように構成されていることを特徴とするものである。
In order to achieve the above object, an organic matter dehydration concentration apparatus according to the first invention comprises:
An evaporator for evaporating a liquid to be treated containing a water-soluble organic substance and water; and a membrane separation apparatus having a separation membrane for selectively allowing water vapor to pass through the evaporator. In the organic matter dehydrating and concentrating apparatus for introducing the liquid vapor to be processed generated in the process into the membrane separator and separating the water vapor from the liquid vapor to be processed,
A liquid vapor condensing means to be processed for condensing a part of the liquid vapor to be processed which is vaporized by the evaporator and sent to the membrane separation device;
Provided in the middle of the flow path of the liquid vapor to be treated in the evaporator, and a condensate retention means for retaining the condensate from the liquid vapor condensation means to be treated,
The condensate retention means is configured such that the liquid vapor to be treated passes through the condensate retained in the condensate retention means.

本発明において、蒸発器は、被処理液をスチームや熱媒などで加熱して蒸気を発生させるばかりでなく、被処理液蒸気凝縮手段および凝縮液滞留手段を備えたものであり、特に後工程の分離膜に対して有害な不純物を被処理液蒸気から除去する機能を備えている。
ここで、被処理液蒸気凝縮手段は、凝縮液滞留手段に滞留させる凝縮液を生成する役割を持ち、被処理液蒸気の一部のみを部分凝縮させて凝縮液滞留手段へ向けて送るように構成される。蒸発量に対する凝縮量の割合は、凝縮液滞留手段に滞留させる凝縮液が確保されればよく、好ましくは10質量%未満、より好ましくは5質量%未満、特に3質量%未満である。
In the present invention, the evaporator not only generates steam by heating the liquid to be treated with steam or a heating medium, but also includes a vapor condensing means for liquid to be treated and a condensate retaining means, and particularly a post-process. A function of removing impurities harmful to the separation membrane from the liquid vapor to be processed is provided.
Here, the to-be-processed vapor condensing means has a role of generating a condensate that is retained in the condensate retaining means, so that only a part of the to-be-treated liquid vapor is partially condensed and sent to the condensate retaining means. Composed. The ratio of the condensed amount to the evaporated amount is sufficient if the condensate to be retained in the condensate retaining means is secured, and is preferably less than 10% by mass, more preferably less than 5% by mass, and particularly less than 3% by mass.

また、被処理液蒸気が凝縮液滞留手段に滞留されている凝縮液を潜り抜けて通過することによって、被処理液蒸気に同伴した不純物が除去される。したがって、「被処理液蒸気が凝縮液滞留手段に滞留されている凝縮液を潜り抜けて通過するように構成されている」とは、不純物を除去する機能を果たすことができるのに充分な接触面積で、被処理液蒸気と凝縮液とが気液接触することを意味しているが、好ましくは凝縮液滞留手段に滞留されている凝縮液によって形成された極めて微細な空孔を潜り抜けて通過すること、より好ましくは凝縮液滞留手段に滞留されている凝縮液の液層を被処理液蒸気が細かい気泡になって潜り抜けて通過することを意味している。   Further, the liquid vapor to be treated passes through the condensate retained in the condensate liquid retention means, so that impurities accompanying the liquid vapor to be treated are removed. Therefore, “the liquid to be treated is configured to pass through the condensate retained in the condensate retaining means” is sufficient contact to be able to perform the function of removing impurities. In terms of area, this means that the liquid vapor to be treated and the condensate come into gas-liquid contact, but preferably it penetrates through extremely fine holes formed by the condensate retained in the condensate retention means. It means that the liquid vapor to be treated passes through the liquid layer of the condensate liquid retained in the condensate liquid retention means, more finely bubbled through the condensate liquid layer.

本発明において、前記凝縮液滞留手段は、被処理液蒸気の流れ経路途中に設けられたトレイ部材に被処理液蒸気が通過する通気孔が設けられてなるバブルキャップトレイ或いはシーブトレイのいずれかであることが好ましい(第2発明)。   In the present invention, the condensate retention means is either a bubble cap tray or a sheave tray in which a vent member through which the liquid vapor to be processed passes is provided in a tray member provided in the middle of the flow path of the liquid vapor to be processed. It is preferable (second invention).

凝縮液滞留手段は、例えば蒸発器の内部の被処理液蒸気の流れ経路途中に(被処理液蒸気の流れ方向を分けるように仕切って)設けられたトレイ部材に、被処理液蒸気が通過する通気孔が設けられ、かつその通気孔を通過後の被処理液蒸気の流れを遮るようにキャップ部材が設けられてなるバブルキャップトレイであることが好ましい。このバブルキャップトレイには、滞留される凝縮液の液深が所定深さを超えたときに、そのバブルキャップトレイから凝縮液を溢流させる凝縮液溢流手段が設けられるのが好ましい。   For example, the condensate staying means passes the liquid vapor to be processed through a tray member provided in the middle of the flow path of the liquid vapor to be processed inside the evaporator (partitioned so as to divide the flow direction of the liquid vapor to be processed). It is preferable that the bubble cap tray is provided with a vent hole and a cap member provided so as to block the flow of the liquid vapor to be processed after passing through the vent hole. The bubble cap tray is preferably provided with a condensate overflow means for causing the condensate to overflow from the bubble cap tray when the depth of the condensate staying in excess of a predetermined depth.

また、凝縮液滞留手段は、例えば蒸発器の内部の被処理液蒸気の流れ経路途中に(被処理液蒸気の流れ方向を分けるように仕切って)設けられたシーブトレイ(円板に多数のキリ孔を設けたトレイ)が好ましい。ここでも、滞留される凝縮液の液深が所定深さを超えたときに、そのシーブトレイから凝縮液を溢流させる凝縮液溢流手段が設けられるのが好ましい。シーブトレイはバブルキャップトレイのように被処理蒸気の流れを遮る部材はないが滞留する液中を気泡が上昇し、気泡の上部液面が流れを遮っており、バブルキャッププトレイに準じるトレイである。   Further, the condensate retaining means is, for example, a sheave tray (partitioned so as to divide the flow direction of the liquid vapor to be processed) in the middle of the flow path of the liquid vapor to be processed inside the evaporator (a large number of holes in the disc). Are preferred. Also here, it is preferable to provide a condensate overflow means for allowing the condensate to overflow from the sheave tray when the liquid depth of the condensate staying exceeds a predetermined depth. There is no member that blocks the flow of the steam to be processed unlike the bubble cap tray, but the bubble rises in the liquid that stays and the upper liquid level of the bubble blocks the flow, and the sieve tray is a tray that conforms to the bubble cap tray. .

すなわち、被処理液蒸気に同伴した不純物は凝縮液滞留手段で除去されるが、凝縮液滞留手段には被処理液蒸気凝縮器からの凝縮液が供給され、且つ凝縮液溢流手段によって下段へ凝縮液が溢流されているから、凝縮液滞留手段の凝縮液は常に置換されており、不純物が濃縮されることはない。   That is, the impurities accompanying the liquid vapor to be treated are removed by the condensate liquid retention means, but the condensate liquid condensate is supplied to the condensate liquid retention means, and the condensate liquid overflow means is lowered to the lower stage. Since the condensate is overflowing, the condensate in the condensate retention means is always replaced, and impurities are not concentrated.

本発明において、前記凝縮液滞留手段は、例えば蒸発器の内部の被処理液蒸気の流れ経路途中に配置され、被処理液蒸気と凝縮液とを気液接触可能にする充填物(層)であり、この充填物(層)に対して前記凝縮液を分散させる凝縮液分散手段が設けられる態様であっても良い(第3発明)。   In the present invention, the condensate retention means is, for example, a packing (layer) that is disposed in the middle of the flow path of the liquid vapor to be processed inside the evaporator and allows the liquid vapor to be processed and the condensate to come into gas-liquid contact. There may be an embodiment in which a condensate dispersion means for dispersing the condensate is provided for the filler (layer) (third invention).

本発明においては、蒸発器の底部に被処理液の不純物が高濃度化して滞留するので、必要に応じて不純物を排出するための抜き出し口を蒸発器底部に設け、蒸発器底部に蓄積する不純物を含むボトム液を抜き出すことが好ましい。特に、被処理液中に含まれる不純物が反応して高分子化し易く、かつ分離膜へ飛散すると膜の閉塞を起こすような場合には、蒸発器は、水溶性有機物と水とを含む被処理液を、上部に少なくとも1段以上の滞留段が存在し、下部には滞留段が存在しない位置に供給するとともに、ボトム液の一部を抜き出すことができるように構成され、定量的にまたは一定期間ごとに抜き出せるようにすることが好ましい(第4発明)。   In the present invention, since impurities in the liquid to be processed are retained at a high concentration at the bottom of the evaporator, an extraction port for discharging the impurities is provided at the bottom of the evaporator as necessary, and the impurities accumulated in the bottom of the evaporator It is preferable to extract the bottom liquid containing. In particular, when the impurities contained in the liquid to be treated are likely to react and polymerize, and when they are scattered to the separation membrane, the membrane is clogged, the evaporator is treated with water-soluble organic matter and water. The liquid is supplied to a position where there is at least one stagnant stage in the upper part and no stagnant stage in the lower part, and a part of the bottom liquid can be withdrawn. It is preferable to be able to extract every period (fourth invention).

また、本発明においては、蒸発器内に複数段の凝縮液滞留段を設けても構わない。その際には、蒸発器は、複数段の凝縮液滞留手段を有し、水溶性有機物と水とを含む被処理液を、上部に少なくとも1段以上、下部にも少なくとも1段以上の滞留段が存在する段と段の間の位置に供給し、不純物が飛散して分離膜に付着・堆積しないようにするとともに、ボトム液の一部を抜き出すことができるように構成し、蒸発器底部のボトム液の排出時に同伴する水溶性有機物成分を少なくするのが好ましい(第5発明)。
なお、蒸発器内に複数段の凝縮液滞留段を設ける場合でも、5段以下、好ましくは3段以下、より好ましくは2段であることが好適である。多数の凝縮液滞留段を設けると蒸発器としての機能(蒸発機能)が効率的でなくなる。
In the present invention, a plurality of condensate residence stages may be provided in the evaporator. In that case, the evaporator has a plurality of stages of condensate retention means, and the liquid to be treated containing water-soluble organic matter and water is at least one stage in the upper part and at least one stage in the lower part. In order to prevent impurities from scattering and adhering / depositing on the separation membrane, a part of the bottom liquid can be extracted, and the bottom of the evaporator It is preferable to reduce the amount of water-soluble organic components entrained when the bottom liquid is discharged (fifth invention).
Even when a plurality of condensate residence stages are provided in the evaporator, it is suitable that the number of stages is 5 or less, preferably 3 or less, and more preferably 2 stages. If a large number of condensate stay stages are provided, the function as an evaporator (evaporation function) becomes inefficient.

本発明の有機物脱水濃縮装置は、水溶性有機物と水とを含む被処理液が、さらに分離膜に有害な不純物を含む処理液である場合に、特に有用である(第6発明)。   The organic matter dehydration concentration apparatus of the present invention is particularly useful when the liquid to be treated containing a water-soluble organic substance and water is a treatment liquid further containing impurities harmful to the separation membrane (the sixth invention).

次に、第7発明による有機物脱水濃縮方法は、
被処理液を蒸発させて被処理液蒸気を発生させる蒸発器と、水蒸気を選択的に透過させる分離膜を有してなる膜分離装置とを備え、前記蒸発器で発生された被処理液蒸気を前記膜分離装置に導入してその被処理液蒸気から水蒸気を分離する有機物脱水濃縮装置を用いた、水溶性有機物と水とそれ以外の不純物とを含む被処理液から有機物を脱水濃縮する有機物脱水濃縮方法において、
水溶性有機物と水とそれ以外の不純物とを含む被処理液を前記蒸発器に供給して被処理液蒸気を発生させる工程、
前記被処理液蒸気を被処理液蒸気凝縮手段で凝縮して、前記蒸発器の内部における被処理液蒸気の流れ経路途中に設けられた凝縮液滞留手段に前記被処理液蒸気凝縮手段からの凝縮液を滞留させる工程、
前記被処理液蒸気を、前記凝縮液滞留手段に滞留されている前記凝縮液を潜り抜けて通過させる工程および
前記蒸発器からの被処理液蒸気を前記膜分離装置へ供給して、前記被処理液蒸気から選択的に水蒸気を分離する工程
を含むことを特徴とするものである。
この有機物脱水濃縮方法は、被処理液の不純物が分離膜に有害な不純物である場合に、その有害な不純物による分離膜の脱水濃縮性能の劣化を好適に抑制することができる。
Next, the organic matter dehydration concentration method according to the seventh invention is:
An evaporator for evaporating the liquid to be processed to generate a liquid to be processed and a membrane separation device having a separation membrane that selectively permeates water vapor, and the liquid vapor to be processed generated by the evaporator Organic substance for dehydrating and concentrating organic substances from the liquid to be treated containing water-soluble organic substances, water and other impurities, using an organic substance dehydrating and concentrating apparatus for separating water vapor from the liquid vapor to be treated In the dehydration and concentration method,
Supplying a liquid to be processed containing a water-soluble organic substance, water and other impurities to the evaporator to generate a liquid to be processed;
The liquid vapor to be treated is condensed by the liquid vapor condensation means to be treated, and condensed from the liquid vapor condensation means to the condensate retention means provided in the middle of the flow path of the liquid vapor to be treated in the evaporator. A step of retaining the liquid,
A step of allowing the liquid to be treated to pass through the condensate retained in the condensate retaining means; and supplying the liquid vapor to be treated from the evaporator to the membrane separation device, The method includes a step of selectively separating water vapor from liquid vapor.
This organic matter dehydration and concentration method can suitably suppress degradation of the dehydration and concentration performance of the separation membrane due to the harmful impurities when the impurities in the liquid to be treated are harmful impurities to the separation membrane.

本発明において、前記被処理液に含まれる不純物は、分離膜に有害な不純物である(第8発明)。   In the present invention, the impurities contained in the liquid to be treated are harmful to the separation membrane (eighth invention).

本発明によれば、蒸発器で発生された被処理液蒸気が凝縮液滞留手段を通過する際に、その凝縮液滞留手段に滞留されている凝縮液によって、被処理液蒸気に同伴する不純物が捕捉されるので、分離膜に不純物が付着・堆積するのを防止することができ、脱水濃縮性能を良好に維持することができる。   According to the present invention, when the liquid vapor to be processed generated in the evaporator passes through the condensate liquid retention means, the impurities accompanying the liquid vapor to be processed are condensed by the condensate retained in the condensate liquid retention means. Since it is trapped, it is possible to prevent impurities from adhering and depositing on the separation membrane, and to maintain good dehydration concentration performance.

特に、凝縮液滞留手段としてバブルキャップトレイ或いはシーブトレイを採用することにより、被処理液蒸気がトレイの凝縮液を潜り抜けて通過する際に、気液接触面積を増やすことができるので、被処理液蒸気に同伴する不純物をより効果的に捕捉することができる。また、バブルキャップトレイに凝縮液溢流手段を設けることで、バブルキャップトレイに滞留される凝縮液の液深が一定に保たれるので、圧力損出を一定に維持することができるので好適である。   In particular, by adopting a bubble cap tray or a sieve tray as the condensate retention means, the vapor-liquid contact area can be increased when the liquid vapor to be processed passes through the condensate in the tray. Impurities accompanying the vapor can be captured more effectively. Further, by providing the condensate overflow means on the bubble cap tray, the liquid depth of the condensate retained in the bubble cap tray is kept constant, which is preferable because the pressure loss can be kept constant. is there.

一方、凝縮液滞留手段として充填物を採用することにより、圧力損出を低く抑えつつ被処理液蒸気に同伴する不純物含有飛沫を捕捉することができる。特に、充填物に対して凝縮液を分散させる凝縮液分散手段を設けることで、被処理液蒸気が充填物の凝縮液を潜り抜けて通過する際に、被処理液蒸気と凝縮液との気液接触面積を増やすことにより、被処理液蒸気に同伴する不純物をより効果的に捕捉することができる。   On the other hand, by using a filling material as the condensate retention means, it is possible to capture impurity-containing droplets accompanying the liquid to be treated while suppressing pressure loss. In particular, by providing a condensate dispersion means for dispersing the condensate with respect to the packing, when the liquid to be processed passes through the condensate of the packing through the gas, the gas between the liquid to be processed and the condensate is removed. By increasing the liquid contact area, impurities accompanying the liquid vapor to be processed can be captured more effectively.

また、蒸発器底部の液抜き出し口によって、必要に応じて定期的に底部に滞留したボトム液の一部を抜き出すことによって、不純物の高濃度化あるいは高分子化を抑制することができる。   Further, by extracting a part of the bottom liquid staying at the bottom periodically as required by the liquid outlet at the bottom of the evaporator, it is possible to suppress an increase in the concentration of impurities or increase in the polymer.

被処理液は上部に少なくとも1段以上の凝縮液滞留段が存在する位置に供給され、不純物が上部の凝縮液滞留段で捕集され、順次下部の段へ流れ落ち、蒸発器の底部から排出される。被処理液が下部にも1段以上の凝縮液滞留段が存在する位置に供給されると、蒸発器底部では不純物の濃縮が起こり同伴する不純物量が増加するのに対して、この凝縮液滞留段で不純物が希釈されて上段の凝縮液滞留段へ同伴される不純物量が増加することを抑制することができるので不純物除去を効果的に行うことができる。また、蒸発器底部に供給される場合に比べて、不純物の投入開始から、排出までの滞留時間分布を狭く出来、不純物が高分子化し易い場合には高分子化を抑えることができる。   The liquid to be treated is supplied to a position where at least one condensate staying stage exists at the upper part, and impurities are collected at the upper condensate staying stage, and then flow down to the lower stage and discharged from the bottom of the evaporator. The When the liquid to be treated is supplied to a position where one or more condensate residence stages exist in the lower part, the concentration of impurities is increased at the bottom of the evaporator, and the amount of the accompanying impurities increases. Impurities can be effectively removed because the impurities are diluted in the stage and the amount of impurities entrained in the upper condensate residence stage can be suppressed. In addition, compared to the case where the impurities are supplied to the bottom of the evaporator, the residence time distribution from the start of the introduction of the impurities to the discharge can be narrowed, and when the impurities are easily polymerized, the polymerization can be suppressed.

次に、本発明による有機物脱水濃縮装置および有機物脱水濃縮方法の具体的な実施の形態について、図面を参照しつつ説明する。   Next, specific embodiments of an organic matter dehydration concentration apparatus and an organic matter dehydration concentration method according to the present invention will be described with reference to the drawings.

〔第1の実施形態〕
図1には、本発明の第1の実施形態に係る有機物脱水濃縮装置の概略システム構成図が示されている。なお、以下に述べる有機物脱水濃縮装置において、脱水濃縮処理に供される被処理液は、ある目的で使用された後の水溶性有機物の回収品、或いはある工程からの水溶性有機物の回収品であり、水溶性有機物と水の他に不純物を含有するものである。
[First Embodiment]
FIG. 1 shows a schematic system configuration diagram of the organic matter dehydration concentration apparatus according to the first embodiment of the present invention. In addition, in the organic matter dehydrating and concentrating apparatus described below, the liquid to be treated for dehydrating and concentrating treatment is a recovered product of water-soluble organic matter after use for a certain purpose or a recovered product of water-soluble organic matter from a certain process. Yes, it contains impurities in addition to water-soluble organic substances and water.

図1に示される有機物脱水濃縮装置1は、被処理液を蒸発させて被処理液蒸気を発生させる蒸発器2と、水蒸気を選択的に透過させる分離膜3を有してなる膜分離装置4とを備え、蒸発器2で発生された被処理液蒸気を膜分離装置4に導入してその被処理液蒸気から水蒸気を分離するように構成されている。ここで、分離膜3を透過しなかった非透過蒸気は非透過蒸気凝縮器5で凝縮され、この非透過蒸気凝縮器5による凝縮作用によって得られた凝縮液は脱水濃縮液タンク6に貯留される。一方、分離膜3を透過した透過蒸気は透過蒸気凝縮器7で凝縮され、この透過蒸気凝縮器7による凝縮作用によって得られた凝縮液は透過液受器8に貯留される。なお、図1中符号「9」にて示されるのは、真空ポンプである。また、被処理液中の不純物が多い場合、あるいは不純物が高分子化し易い場合には、必要に応じて(通常は一定の間隔で定期的(断続的)に、或いは極めて少量を連続的に)、流量調節弁10を用いて蒸発器底部のボトム液の一部を抜き出すことができる。   An organic dehydration concentration apparatus 1 shown in FIG. 1 includes an evaporator 2 that evaporates a liquid to be processed to generate a liquid to be processed and a membrane separation apparatus 4 that includes a separation membrane 3 that selectively permeates water vapor. The liquid vapor to be processed generated in the evaporator 2 is introduced into the membrane separation device 4 to separate the water vapor from the liquid vapor to be processed. Here, the non-permeate vapor that has not passed through the separation membrane 3 is condensed by the non-permeate vapor condenser 5, and the condensate obtained by the condensation action by the non-permeate vapor condenser 5 is stored in the dehydrated concentrate tank 6. The On the other hand, the permeate vapor that has passed through the separation membrane 3 is condensed by the permeate vapor condenser 7, and the condensate obtained by the condensing action by the permeate vapor condenser 7 is stored in the permeate receiver 8. In addition, what is shown with the code | symbol "9" in FIG. 1 is a vacuum pump. In addition, when there are many impurities in the liquid to be treated, or when the impurities are easily polymerized, it is necessary (usually at regular intervals (intermittently) or continuously in a very small amount). A part of the bottom liquid at the bottom of the evaporator can be extracted using the flow control valve 10.

次に、蒸発器2のより具体的な構造について、図2の構造説明図を用いて以下に説明することとする。   Next, a more specific structure of the evaporator 2 will be described below with reference to the structure explanatory diagram of FIG.

蒸発器2は、上側蓋体11a、中間筒体11bおよび下側蓋体11cが一体接合されてなる蒸発器本体11と、この蒸発器本体11内に供給された被処理液をスチームまたは熱媒で間接加熱して蒸発させるためにその蒸発器本体11の下部外側面に装着されるジャケット式の加熱器12と、蒸発器本体11内で発生された被処理液蒸気を膜分離装置4に向けて送り出すために上側蓋体11aに接続される被処理液蒸気送出管13とを備えて構成されている。   The evaporator 2 includes an evaporator body 11 in which an upper lid body 11a, an intermediate cylinder body 11b, and a lower lid body 11c are integrally joined, and a liquid to be processed supplied into the evaporator body 11 by steam or a heat medium. A jacket type heater 12 mounted on the lower outer surface of the evaporator main body 11 for indirect heating and evaporation, and a liquid vapor generated in the evaporator main body 11 directed to the membrane separation device 4 In order to send out, the liquid vapor | steam delivery pipe | tube 13 to be processed connected to the upper side cover body 11a is provided.

蒸発器本体11における中間筒体11b内の上部空間には、上下方向に互いに所定間隔を存して上段側バブルキャップトレイ15および下段側バブルキャップトレイ16がそれぞれ配設されている。各バブルキャップトレイ15,16は、中間筒体11b内の上部空間を被処理液蒸気の流れ方向に分けるように仕切るトレイ部材17を備えている。このトレイ部材17は、その外周縁が全周に亘って中間筒体11bの内壁面に固着されている。このトレイ部材17には、被処理液蒸気を通過させるための所要の通気孔18が穿設されるとともに、各通気孔18を通過後の被処理液蒸気の流れを遮るようにキャップ部材19が付設されている。なお、各バブルキャップトレイ15,16が本発明における「凝縮液滞留手段」に相当する。   An upper stage bubble cap tray 15 and a lower stage bubble cap tray 16 are disposed in the upper space in the intermediate cylinder 11b of the evaporator main body 11 with a predetermined interval in the vertical direction. Each of the bubble cap trays 15 and 16 includes a tray member 17 that divides the upper space in the intermediate cylinder 11b so as to divide the upper space in the flow direction of the liquid vapor to be processed. The outer peripheral edge of the tray member 17 is fixed to the inner wall surface of the intermediate cylinder 11b over the entire circumference. The tray member 17 is provided with necessary vent holes 18 for allowing the liquid vapor to be processed to pass therethrough, and a cap member 19 is provided so as to block the flow of the liquid vapor to be processed after passing through each vent hole 18. It is attached. Each of the bubble cap trays 15 and 16 corresponds to the “condensate retention means” in the present invention.

上段側バブルキャップトレイ15におけるトレイ部材17において、中間筒体11bの中心線Oを基準としてその一方側(図2では左側)の部分には、上下に貫通するように所要長さの上段側溢流管21が嵌め込まれている。一方、下段側バブルキャップトレイ16におけるトレイ部材17において、中間筒体11bの中心線Oを基準としてその他方側(図2では右側)の部分には、上下に貫通するように所要長さの下段側溢流管22が嵌め込まれている。   In the tray member 17 in the upper bubble cap tray 15, the upper side overflow of a required length so as to penetrate vertically on the one side (left side in FIG. 2) portion with respect to the center line O of the intermediate cylinder 11 b. A flow tube 21 is fitted. On the other hand, in the tray member 17 in the lower bubble cap tray 16, the lower side of the required length so as to penetrate vertically on the other side (right side in FIG. 2) with respect to the center line O of the intermediate cylinder 11 b. A side overflow tube 22 is fitted.

被処理液蒸気送出管13の外側面には、その管内を流通する被処理液蒸気を冷却水で間接冷却して凝縮させるジャケット式の被処理液蒸気凝縮器(本発明の「被処理液蒸気凝縮手段」に相当する。)23が装着されている。こうして、蒸発器本体11から膜分離装置4に向けて送り出される被処理液蒸気の一部が凝縮されるようになっている。そして、この被処理液蒸気凝縮器23による凝縮作用によって生成された凝縮液は、被処理液蒸気送出管13から滴下され、あるいは被処理液蒸気送出管13から上側蓋体11aの内面壁を伝って流下され、上段側バブルキャップトレイ15に溜められる。   On the outer surface of the liquid vapor delivery pipe 13 to be processed, a jacket-type liquid vapor condenser (a liquid vapor to be processed of the present invention) that condenses the liquid vapor flowing through the pipe indirectly by cooling with cooling water. Corresponds to "condensing means"). In this way, a part of the liquid vapor to be processed sent out from the evaporator body 11 toward the membrane separation device 4 is condensed. And the condensate produced | generated by the condensing effect | action by this to-be-processed liquid vapor | steam condenser 23 is dripped from the to-be-processed liquid vapor | steam delivery pipe | tube 13, or goes along the inner wall of the upper side cover body 11a from the to-be-processed liquid vapor | steam delivery pipe | tube 13. And is stored in the upper bubble cap tray 15.

上段側バブルキャップトレイ15に溜められる凝縮液の液深が所定深さDを超えたとき、その凝縮液が上段側バブルキャップトレイ15から上段側溢流管21を通って溢流される。こうして、上段側バブルキャップトレイ15に溜められる凝縮液の液深がDで充分な深さで一定に保たれるようになっている。上段側バブルキャップトレイ15から上段側溢流管21を通って溢流された凝縮液は、下段側バブルキャップトレイ16に溜められる。下段側バブルキャップトレイ16に溜められる凝縮液の液深が所定深さDを超えたとき、その凝縮液が下段側バブルキャップトレイ16から下段側溢流管22を通って溢流される。こうして、下段側バブルキャップトレイ16に溜められる凝縮液の液深がDで充分な深さで一定に保たれるようになっている。 When the liquid depth of the upper stage bubble cap tray 15 to the reservoir is condensate exceeds a predetermined depth D 1, the condensate is overflowed from the upper side bubble cap tray 15 through the upper side downcomers 21. Thus, liquid depth of the condensate that is collected in the upper stage bubble cap tray 15 is adapted to be kept constant at a sufficient depth D 1. The condensate overflowed from the upper stage side bubble cap tray 15 through the upper stage side overflow pipe 21 is stored in the lower stage side bubble cap tray 16. When the liquid depth of the condensate that is collected in the lower stage bubble cap tray 16 has exceeded a predetermined depth D 2, the condensate is overflowed from the lower side bubble cap tray 16 through the lower side downcomers 22. Thus, liquid depth of the condensate that is collected in the lower stage bubble cap tray 16 is adapted to be kept constant at a sufficient depth D 2.

下段側バブルキャップトレイ16の下方には、その下段側バブルキャップトレイ16から下段側溢流管22を通って溢流される凝縮液を溜めるために、中間筒体11bの内面壁から中間筒体11bの中心線Oに向かって張り出すように中間筒体11bに一体的に設けられる所要容積の溢流液受器24が配されている。なお、この溢流液受器24から溢れ出た凝縮液は、蒸発器本体11内下部に溜められている被処理液と共に再び加熱器12によって加熱・蒸発される。   Below the lower bubble cap tray 16, in order to collect the condensate overflowing from the lower bubble cap tray 16 through the lower overflow tube 22, the intermediate cylinder 11 b extends from the inner wall of the intermediate cylinder 11 b. An overflow liquid receiver 24 having a required volume is provided integrally with the intermediate cylinder 11b so as to project toward the center line O. The condensate overflowing from the overflow liquid receiver 24 is heated and evaporated again by the heater 12 together with the liquid to be treated stored in the lower part of the evaporator body 11.

溢流液受器24に溜められる凝縮液の液深が最大深さDにあるとき、下段側溢流管22の下端部がその凝縮液中に浸るように、下段側溢流管22の下端位置が定められている。これにより、蒸発器本体11下部で発生された被処理液蒸気が、下段側バブルキャップトレイ16に溜められている凝縮液を潜り抜けることなく下段側溢流管22を通ってリークするのを防止するようにされている。したがって、蒸発器本体11下部で発生された被処理液蒸気は、下段側バブルキャップトレイ16におけるトレイ部材17の各通気孔18から、そのトレイ部材17と各キャップ部材19との間の隙間を通り、下段側バブルキャップトレイ16に溜められている凝縮液を潜り抜けて上段側バブルキャップトレイ15へと流れることになる。 When the liquid depth of the condensate that is collected in the overflow liquid receiver 24 is in the maximum depth D 3, as the lower end of the lower side downcomers 22 immersed in the condensate, of the lower side downcomers 22 A lower end position is defined. This prevents the liquid to be processed generated in the lower part of the evaporator main body 11 from leaking through the lower overflow pipe 22 without going through the condensate stored in the lower bubble cap tray 16. Have been to. Therefore, the liquid vapor to be processed generated in the lower part of the evaporator main body 11 passes through the gaps between the tray member 17 and the cap members 19 from the vent holes 18 of the tray member 17 in the lower bubble cap tray 16. Then, the condensate stored in the lower bubble cap tray 16 passes through and flows to the upper bubble cap tray 15.

下段側バブルキャップトレイ16に溜められる凝縮液の液深が所定深さDにあるとき、上段側溢流管21の下端部がその凝縮液中に浸るように、上段側溢流管21の下端位置が定められている。これにより、下段側バブルキャップトレイ16上の凝縮液を潜り抜けてきた被処理液蒸気が、上段側バブルキャップトレイ15に溜められている凝縮液を潜り抜けることなく上段側溢流管21を通ってリークするのを防止するようにされている。したがって、下段側バブルキャップトレイ16に溜められている凝縮液を潜り抜けてきた被処理液蒸気は、上段側バブルキャップトレイ15におけるトレイ部材17の各通気孔18から、そのトレイ部材17と各キャップ部材19との間の隙間を通り、上段側バブルキャップトレイ15に溜められている凝縮液を潜り抜けて被処理液蒸気送出管13へと流れることになる。 When the liquid depth of the lower-side bubble cap tray 16 to the reservoir is condensate is at a predetermined depth D 2, as the lower end of the upper side downcomers 21 immersed in the condensate, the upper side downcomers 21 A lower end position is defined. As a result, the liquid vapor to be treated that has passed through the condensate on the lower bubble cap tray 16 passes through the upper overflow pipe 21 without passing through the condensate stored in the upper bubble cap tray 15. To prevent leakage. Therefore, the liquid vapor to be processed that has passed through the condensate stored in the lower bubble cap tray 16 passes through the vent holes 18 of the tray member 17 in the upper bubble cap tray 15 and the tray member 17 and each cap. The condensate stored in the upper bubble cap tray 15 passes through the gap between the members 19 and flows into the liquid vapor delivery pipe 13 to be processed.

以上に述べたように構成される有機物脱水濃縮装置1においては、蒸発器本体11下部で発生された被処理液蒸気が、下段側バブルキャップトレイ16におけるトレイ部材17の各通気孔18から、そのトレイ部材17と各キャップ部材19との間の隙間を通り、下段側バブルキャップトレイ16に溜められている凝縮液を潜り抜けて上段側バブルキャップトレイへ15と流れ、さらに、上段側バブルキャップトレイ15におけるトレイ部材17の各通気孔18から、そのトレイ部材17と各キャップ部材19との間の隙間を通り、上段側バブルキャップトレイ15に溜められている凝縮液を潜り抜けて被処理液蒸気送出管13へと流れるようにされている。これにより、被処理液蒸気が下段側バブルキャップトレイ16上の凝縮液を潜り抜ける際に、その被処理液蒸気に同伴する不純物含有飛沫の大部分が下段側バブルキャップトレイ16上の凝縮液によって捕捉される。また、被処理液蒸気が上段側バブルキャップトレイ15上の凝縮液を潜り抜ける際に、その被処理液蒸気に同伴する残りの不純物含有飛沫が上段側バブルキャップトレイ15上の凝縮液によって捕捉される。なお、不純物含有飛沫の捕捉能力が高ければ、バブルキャップトレイは1段であってもよい。また、バブルキャップトレイを3段以上設ける態様もあり得る。   In the organic matter dehydrating and concentrating apparatus 1 configured as described above, the liquid to be processed generated in the lower part of the evaporator main body 11 passes through the vent holes 18 of the tray member 17 in the lower bubble cap tray 16. The condensate stored in the lower bubble cap tray 16 passes through the gap between the tray member 17 and each cap member 19 and flows into the upper bubble cap tray 15, and further flows into the upper bubble cap tray. 15 through each air hole 18 of the tray member 17 through the gap between the tray member 17 and each cap member 19, the condensate stored in the upper-stage bubble cap tray 15 passes through, and the liquid vapor to be processed It is made to flow to the delivery pipe 13. Accordingly, when the liquid vapor to be processed passes through the condensate on the lower bubble cap tray 16, most of the impurity-containing droplets accompanying the liquid vapor to be processed are caused by the condensate on the lower bubble cap tray 16. Be captured. Further, when the liquid vapor to be processed passes through the condensate on the upper bubble cap tray 15, remaining impurity-containing droplets accompanying the liquid vapor to be processed are captured by the condensate on the upper bubble cap tray 15. The Note that the bubble cap tray may be one stage as long as the trapping ability of the impurity-containing droplets is high. There may also be an embodiment in which three or more bubble cap trays are provided.

本実施形態の有機物脱水濃縮装置1によれば、以下(1)〜(3)の作用効果を得ることができる。
(1)各バブルキャップトレイ15,16に滞留されている凝縮液によって被処理液蒸気に同伴する不純物が捕捉されるので、分離膜3に不純物が付着・堆積するのを防止することができ、脱水濃縮性能を良好に維持することができる。
(2)被処理液蒸気が各バブルキャップトレイ15,16におけるトレイ部材17と各キャップ部材19との隙間を通って各バブルキャップトレイ15,16上の凝縮液を潜り抜けて通過する構造とされているので、被処理液蒸気が凝縮液を潜り抜けて通過する際に泡立たせて気液接触面積を更に増やすことができ、被処理液蒸気に同伴する不純物含有飛沫をより効果的に捕捉することができる。
(3)上段側バブルキャップトレイ15に上段側溢流管21が設けられることによって上段側バブルキャップトレイ15に滞留される凝縮液の液深が所定深さDで一定に保たれるとともに、下段側バブルキャップトレイ16に下段側溢流管22が設けられることによって下段側バブルキャップトレイ16に滞留される凝縮液の液深が所定深さDで一定に保たれるので、圧力損出を一定に抑えつつ所期の飛沫捕捉性能を安定的に維持することができる。
According to the organic dehydration concentration apparatus 1 of the present embodiment, the following effects (1) to (3) can be obtained.
(1) Impurities accompanying the liquid to be treated are trapped by the condensate retained in the bubble cap trays 15 and 16, so that the impurities can be prevented from adhering and depositing on the separation membrane 3. The dehydration concentration performance can be maintained well.
(2) The vapor to be treated passes through the gap between the tray member 17 and each cap member 19 in each bubble cap tray 15, 16 and passes through the condensate on each bubble cap tray 15, 16. Therefore, when the liquid vapor to be treated is bubbled through the condensate, it can be bubbled to further increase the gas-liquid contact area, and more effectively capture the impurity-containing droplets accompanying the liquid vapor to be treated. be able to.
(3) together with the liquid depth of the condensate to be retained on the upper side bubble cap tray 15 by the upper side downcomers 21 are provided on the upper side bubble cap tray 15 is kept constant at a predetermined depth D 1, By providing the lower side overflow cap 22 in the lower stage bubble cap tray 16, the depth of the condensate retained in the lower stage bubble cap tray 16 is kept constant at a predetermined depth D 2. The desired droplet trapping performance can be stably maintained while keeping the pressure constant.

なお、本実施形態においては、被処理液蒸気送出管13の外側面に被処理液蒸気凝縮器23を装着し、この被処理液蒸気凝縮器23による凝縮作用によって生成された凝縮液を被処理液蒸気送出管13から上段側バブルキャップトレイ15へと供給するようにされているが、蒸発器本体11から膜分離装置4に向けて送り出される被処理液蒸気の一部を凝縮する凝縮器を蒸発器2とは別に設置し、また凝縮液を上段側バブルキャップトレイ15へと供給するための凝縮液供給管を被処理液蒸気送出管13とは別に蒸発器本体11に設け、蒸発器2とは別に設置される凝縮器で生成された凝縮液をその凝縮液供給管を通して上段側バブルキャップトレイ15へと供給するようにしても良い。   In the present embodiment, the liquid vapor condenser 23 to be processed is mounted on the outer surface of the liquid vapor delivery pipe 13 to be processed, and the condensate generated by the condensation action by the liquid vapor condenser 23 to be processed is processed. A condenser that condenses a part of the liquid vapor to be treated sent from the evaporator main body 11 toward the membrane separation device 4 is supplied from the liquid vapor delivery pipe 13 to the upper bubble cap tray 15. Separately from the evaporator 2, a condensate supply pipe for supplying the condensate to the upper bubble cap tray 15 is provided in the evaporator main body 11 separately from the liquid vapor delivery pipe 13 to be processed. Alternatively, the condensate generated by a condenser installed separately may be supplied to the upper stage bubble cap tray 15 through the condensate supply pipe.

供給する被処理液中の不純物が多い場合、または不純物が高分子化し易い場合には、流量調整弁10から定量的に液を抜き出して、不純物の蓄積あるいは高分子化を抑えることができる。さらに、被処理液が下部にも1段以上の凝縮液滞留段が存在する位置に供給されると、蒸発器底部に供給される場合に比べて、不純物の投入開始から、排出までの滞留時間分布を狭く出来、不純物が高分子化し易い場合には高分子化を抑えることができる。   When there are many impurities in the liquid to be processed to be supplied, or when impurities are easily polymerized, the liquid can be quantitatively extracted from the flow control valve 10 to suppress accumulation of impurities or polymerization. Furthermore, when the liquid to be treated is supplied to a position where one or more condensate stay stages exist at the bottom, the residence time from the start of the introduction of impurities to the discharge is compared with the case where it is supplied to the bottom of the evaporator. When the distribution can be narrowed and the impurities are easily polymerized, the polymerization can be suppressed.

〔第2の実施形態〕
図3には、本発明の第2の実施形態に係る有機物脱水濃縮装置で適用される蒸発器の構造説明図が示されている。なお、本実施形態において、第1の実施形態と同一または同様のものについては図に同一符号を付すに留めてその詳細な説明を省略することとし、以下においては第1の実施形態と異なる点を中心に説明することとする(後述する第3の実施形態についても同様)。
[Second Embodiment]
FIG. 3 shows a structural explanatory diagram of an evaporator applied in the organic matter dehydration concentration apparatus according to the second embodiment of the present invention. In the present embodiment, the same or similar parts as those in the first embodiment will be denoted by the same reference numerals in the drawings, and detailed description thereof will be omitted. The following points are different from those in the first embodiment. (The same applies to the third embodiment described later).

本実施形態は、第1の実施形態における上段側バブルキャップトレイ15および下段側バブルキャップトレイ16のそれぞれに代えて上段側シーブトレイ15Aおよび下段側シーブトレイ16Aが適用された蒸発器2Aを用いた例に関するものである。ここで、各シーブトレイ15A,16Aは、蒸発器本体11内部を被処理液蒸気の流れ方向に分けるように仕切るトレイ部材17Aに、被処理液蒸気を通過させるための所要の通気孔18Aが単に設けられただけのものである。なお、各シーブトレイ15A,16Aが本発明における「凝縮液滞留手段」に相当する。また、本実施形態においては、第1の実施形態における上段側溢流管21および下段側溢流管22のそれぞれに代えて上段側溢流板21Aおよび下段側溢流板22Aが適用され、上段側溢流板21Aによって上段側シーブトレイ15Aに滞留される凝縮液の液深が所定深さDで一定に保たれるとともに、下段側溢流板22Aによって下段側シーブトレイ16Aに滞留される凝縮液の液深が所定深さDで一定に保たれるようにされている。
本実施形態によっても、基本的に第1の実施形態と同様の作用効果を得ることができる。
This embodiment relates to an example using an evaporator 2A to which an upper sheave tray 15A and a lower sheave tray 16A are applied in place of the upper bubble cap tray 15 and the lower bubble cap tray 16 in the first embodiment. Is. Here, each of the sheave trays 15A and 16A is simply provided with a required air hole 18A for allowing the liquid vapor to be processed to pass through the tray member 17A that divides the inside of the evaporator main body 11 in the flow direction of the liquid vapor to be processed. It is only what has been done. Each sheave tray 15A, 16A corresponds to the “condensate retention means” in the present invention. Further, in this embodiment, instead of the upper-stage overflow pipe 21 and the lower-stage overflow pipe 22 in the first embodiment, the upper-stage overflow plate 21A and the lower-stage overflow plate 22A are applied, and the upper stage with liquid depth of the condensate to be retained on the upper side sieve tray 15A by the side overflow plate 21A is kept constant at a predetermined depth D 1, condensate is accumulated in the lower stage sieve tray 16A by the lower side overflow plate 22A liquid depth of is to be kept constant at a predetermined depth D 2.
Also according to the present embodiment, basically the same effects as those of the first embodiment can be obtained.

ところで、第1の実施形態および第2の実施形態においては、トレイ部材17;17Aに溢流管21,22または溢流板21A,22Aが設けられる態様例を示したが、これら溢流管21,22または溢流板21A,22Aが設けられない態様もあり得る。この場合、蒸発器本体11の発生蒸気量と、被処理液蒸気凝縮器23から供給される凝縮液量と、トレイ部材17;17Aに穿設される通気孔18;18Aの開孔面積とからトレイ部材上の凝縮液の液深が決まる。   In the first and second embodiments, the overflow members 21 and 22 or the overflow plates 21A and 22A are provided on the tray member 17; 17A. , 22 or overflow plates 21A, 22A may not be provided. In this case, from the amount of vapor generated in the evaporator body 11, the amount of condensate supplied from the liquid vapor condenser to be treated 23, and the opening area of the vent hole 18; 18A formed in the tray member 17; 17A. The liquid depth of the condensate on the tray member is determined.

〔第3の実施形態〕
図4には、本発明の第3の実施形態に係る有機物脱水濃縮装置で適用される蒸発器の構造説明図が示されている。
[Third Embodiment]
FIG. 4 is an explanatory view of the structure of an evaporator applied in the organic matter dehydration concentration apparatus according to the third embodiment of the present invention.

本実施形態は、第1の実施形態における各バブルキャップトレイ15,16に代えて、蒸発器本体11内部に被処理液蒸気と凝縮液とを気液接触可能になるように充填される充填物(層)25が配置された蒸発器2Bを用いた例に関するものである。ここで、充填物25としては、金属板や金網などの充填物素材を規則的に多数配列してなる規則充填物、またはラシヒリングやポールリングなどに代表されるような不規則充填物のいずれを採用しても良い。
また、本実施形態においては、充填物25の上方で被処理液蒸気送出管13の直下位置に、被処理液蒸気送出管13から滴下される凝縮液を充填物25に対して分散させる分散板26が設けられている。この分散板26は、例えばパンチングメタルのような多数の孔を有する板状部材で構成される。なお、分散板26が本発明における「凝縮液分散手段」に相当する。
In this embodiment, instead of the respective bubble cap trays 15 and 16 in the first embodiment, the filling material is filled in the evaporator main body 11 so that the liquid vapor to be treated and the condensate can come into gas-liquid contact. This relates to an example using the evaporator 2B in which the (layer) 25 is arranged. Here, as the filler 25, either a regular filler in which a large number of filler materials such as metal plates or wire meshes are regularly arranged, or an irregular filler such as a Raschig ring or a pole ring is used. It may be adopted.
Further, in the present embodiment, a dispersion plate that disperses the condensate dropped from the liquid vapor delivery pipe 13 to be processed in a position directly below the liquid vapor delivery pipe 13 to be processed and over the filling 25. 26 is provided. The dispersion plate 26 is formed of a plate-like member having a large number of holes such as punching metal. The dispersion plate 26 corresponds to “condensate dispersion means” in the present invention.

本実施形態によっても、基本的に第1の実施形態と同様の作用効果を得ることができる。さらに、凝縮液滞留手段として充填物25が採用されているので、圧力損出を低く抑えつつ被処理液蒸気に同伴する不純物含有飛沫を捕捉することができる。また、この充填物25に対して凝縮液を分散させる分散板26が設けられているので、充填物25中において被処理液蒸気と凝縮液との気液接触がより良好に行われ、被処理液蒸気に同伴する不純物をより効果的に捕捉することができる。   Also according to the present embodiment, basically the same effects as those of the first embodiment can be obtained. Furthermore, since the filling material 25 is employed as the condensate retention means, it is possible to capture the impurity-containing droplets accompanying the liquid to be treated while keeping the pressure loss low. Further, since the dispersion plate 26 for dispersing the condensate with respect to the filling 25 is provided, the gas-liquid contact between the liquid to be treated and the condensate is performed in the filling 25 more favorably, Impurities accompanying the liquid vapor can be captured more effectively.

なお、被処理液中の不純物が蒸発器加熱壁面の温度では化学変化するが、その温度より10〜30℃低い温度では化学変化しない場合には、被処理液を蒸発器上部に設置された凝縮液滞留部分の最上段に供給してもよい。図4に示すように充填物25を使用する場合には分散板26を設けるが、被処理液をこの分散板26へ供給してもよい。分散板26の板面上に適切な個数の噴霧ノズルを取り付けて噴霧される被処理液と蒸気との接触を向上させても良い。   In addition, when impurities in the liquid to be processed chemically change at the temperature of the evaporator heating wall surface, but do not change chemically at a temperature lower by 10 to 30 ° C. than that temperature, the liquid to be processed is condensed on the upper part of the evaporator. You may supply to the uppermost stage of a liquid retention part. As shown in FIG. 4, when the filler 25 is used, a dispersion plate 26 is provided, but the liquid to be treated may be supplied to the dispersion plate 26. An appropriate number of spray nozzles may be attached on the surface of the dispersion plate 26 to improve the contact between the liquid to be sprayed and the vapor.

以上、本発明の有機物脱水濃縮装置について、複数の実施形態に基づいて説明したが、本発明は上記実施形態に記載した構成に限定されるものではなく、各実施形態に記載した構成を適宜組み合わせる等、その趣旨を逸脱しない範囲において適宜その構成を変更することができるものである。   As mentioned above, although the organic substance dehydration concentration apparatus of this invention was demonstrated based on several embodiment, this invention is not limited to the structure described in the said embodiment, The structure described in each embodiment is combined suitably. The configuration can be changed as appropriate without departing from the spirit of the invention.

本発明の有機物脱水濃縮方法は、本発明の有機物脱水濃縮装置を好適に用いるようにした有機物の脱水濃縮方法に関するものである。代表として、第1の実施形態に係る有機物脱水濃縮装置1を好適に用いるようにした有機物の脱水濃縮方法について以下に説明することとする。
すなわち、本発明の有機物脱水濃縮方法は、
被処理液を蒸発させて被処理液蒸気を発生させる蒸発器2と、水蒸気を選択的に透過させる分離膜3を有してなる膜分離装置4とを備え、蒸発器2で発生された被処理液蒸気を膜分離装置4に導入してその被処理液蒸気から水蒸気を分離する有機物脱水濃縮装置1を用いた、水溶性有機物と水とそれ以外の不純物とを含む被処理液から有機物を脱水濃縮する有機物脱水濃縮方法において、
水溶性有機物と水とそれ以外の不純物とを含む被処理液を蒸発器2に供給して被処理液蒸気を発生させる工程、
被処理液蒸気を被処理液蒸気凝縮手段23で凝縮して、蒸発器2の内部における被処理液蒸気の流れ経路途中に設けられた凝縮液滞留手段15,16に被処理液蒸気凝縮手段23からの凝縮液を滞留させる工程、
被処理液蒸気を、凝縮液滞留手段15,16に滞留されている凝縮液を潜り抜けて通過させる工程および
蒸発器2からの被処理液蒸気を膜分離装置4へ供給して、被処理液蒸気から選択的に水蒸気を分離する工程
を含むことを特徴とするものである。
The organic matter dehydrating and concentrating method of the present invention relates to an organic matter dehydrating and concentrating method that is suitably used with the organic matter dehydrating and concentrating device of the present invention. As a representative example, a method for dehydrating and concentrating organic matter that is preferably used with the organic matter dehydrating and concentrating device 1 according to the first embodiment will be described below.
That is, the organic matter dehydration concentration method of the present invention comprises:
An evaporator 2 for evaporating the liquid to be treated to generate a liquid to be treated and a membrane separation device 4 having a separation membrane 3 that selectively permeates water vapor are provided. An organic substance is removed from a liquid to be treated containing a water-soluble organic substance, water, and other impurities using the organic substance dehydrating and concentrating apparatus 1 for introducing the liquid vapor into the membrane separation device 4 and separating the water vapor from the liquid vapor to be treated. In the organic matter dehydration concentration method for dehydration concentration,
Supplying a liquid to be processed containing a water-soluble organic substance, water and other impurities to the evaporator 2 to generate a liquid to be processed;
The liquid vapor to be treated is condensed by the liquid vapor condensing means 23 to be treated, and the liquid vapor condensing means 23 to be treated is added to the condensate retention means 15 and 16 provided in the flow path of the liquid vapor to be treated inside the evaporator 2. A step of retaining the condensate from
The process liquid vapor passes through the condensate retained in the condensate retention means 15, 16 and the process liquid vapor from the evaporator 2 is supplied to the membrane separation device 4, and the liquid to be processed The method includes a step of selectively separating water vapor from the steam.

蒸発器2は、被処理液を蒸発させて被処理液蒸気を発生させるようにスチームや熱媒などを用いて加熱する。このような操作は、通常の蒸発器で行われる操作であり、特に限定されないが操作圧50〜700kPaG、好ましくは50〜400kPaG、より好ましくは50〜200kPaGで好適に行うことができる。被処理液蒸気凝縮手段23は、被処理液蒸気の一部のみを部分凝縮させるものであって、蒸発器2から膜分離装置4へ送付される被処理液蒸気の経路途中に好適に備えられるが、蒸発器2内部の被処理液蒸気の流れ経路途中に備えても構わない。通常冷却水によって好適に凝縮を行うことができる。凝縮液は全量が蒸発器2の凝縮液滞留手段15,16へ送られることが好ましい。また、蒸発量に対する凝縮量の割合が、好ましくは10質量%未満、より好ましくは5質量%未満、特に3質量%未満となるように、冷却水の温度や量を制御できるように構成されていることが好適である。   The evaporator 2 is heated using steam, a heating medium, or the like so as to evaporate the liquid to be processed and generate a liquid to be processed. Such an operation is an operation performed in a normal evaporator, and is not particularly limited, but can be suitably performed at an operating pressure of 50 to 700 kPaG, preferably 50 to 400 kPaG, more preferably 50 to 200 kPaG. The to-be-processed vapor condensing means 23 partially condenses only a part of the to-be-processed liquid vapor, and is suitably provided in the course of the to-be-processed liquid vapor sent from the evaporator 2 to the membrane separation device 4. However, you may prepare in the middle of the flow path | route of the to-be-processed liquid vapor | steam in the evaporator 2. FIG. Condensation can be suitably performed with normal cooling water. The total amount of the condensate is preferably sent to the condensate retention means 15, 16 of the evaporator 2. In addition, the temperature and amount of the cooling water can be controlled so that the ratio of the condensation amount to the evaporation amount is preferably less than 10% by mass, more preferably less than 5% by mass, and particularly less than 3% by mass. It is preferable that

分離膜3は、被処理液蒸気から水蒸気を選択的に透過させることができれば、特に限定されない。ポリイミド、ポリエーテルイミド、ポリカーボネート、ポリスルフォン、高分子量ポリビニルアルコールなどのポリマーからなるものでも、ゼオライト、ジルコニア等の無機物からなるものでも構わない。そして、膜分離装置4の形態も、例えば非対称ポリイミド中空糸膜からなる中空糸分離膜モジュール、多孔質からなる管状の支持体にゼオライトを成膜した管状分離膜エレメントを具備するシェルアンドチューブ型モジュールなどの従来公知のものなどを好適に用いることができる。これらの例としては、限定するものではないが、ポリイミド中空糸膜を用いた特開2000−262838号公報、特開2001−62257号公報など、ゼオライト膜を用いた特開2003−93844号公報、特開2006−263574号公報、特開2007−203210号公報などに記載されたものを好適に挙げることができる。   The separation membrane 3 is not particularly limited as long as it can selectively permeate water vapor from the liquid vapor to be treated. It may be made of a polymer such as polyimide, polyetherimide, polycarbonate, polysulfone or high molecular weight polyvinyl alcohol, or may be made of an inorganic material such as zeolite or zirconia. And the form of the membrane separation apparatus 4 is also a shell and tube type module including a hollow fiber separation membrane module made of, for example, an asymmetric polyimide hollow fiber membrane, and a tubular separation membrane element in which a zeolite is formed on a porous tubular support. A conventionally well-known thing etc. can be used suitably. Examples of these include, but are not limited to, Japanese Patent Application Laid-Open No. 2003-93844 using a zeolite membrane, such as Japanese Patent Application Laid-Open No. 2000-262838 and Japanese Patent Application Laid-Open No. 2001-62257 using a polyimide hollow fiber membrane. Those described in JP-A-2006-263574, JP-A-2007-203210 and the like can be preferably exemplified.

分離膜3の透過性能としては、使用時において、好ましくは水蒸気透過速度(P'H2O)が0.5×10−3cm(STP)/cm・sec・cmHg以上、より好ましくは1.0×10−3cm(STP)/cm・sec・cmHg以上であって、水蒸気と水溶性有機物蒸気との透過速度の比が好ましくは50以上、より好ましくは100以上のものが好適である。 The permeation performance of the separation membrane 3 is preferably such that the water vapor transmission rate (P ′ H 2 O 2 ) is 0.5 × 10 −3 cm 3 (STP) / cm 2 · sec · cm Hg or more, more preferably 1. 0 × 10 −3 cm 3 (STP) / cm 2 · sec · cmHg or more, and the ratio of the permeation rate between water vapor and water-soluble organic vapor is preferably 50 or more, more preferably 100 or more. is there.

蒸発器2から排出した被処理液蒸気は、5〜20℃程度過熱した後で、膜分離装置4へ供給されるのが好適である。膜分離装置4の操作条件は、採用した膜分離装置で通常行われる公知の条件をそのまま用いることができる。例えば、ポリイミド中空糸膜を用いた場合には、特開2000−262838号公報、特開2001−62257号公報など、ゼオライト膜を用いた場合には、特開2003−93844号公報、特開2006−263574号公報、特開2007−203210号公報などに記載された具体的な装置や方法を好適に採用することができる。   The liquid to be treated discharged from the evaporator 2 is preferably supplied to the membrane separation device 4 after being heated to about 5 to 20 ° C. As the operating conditions of the membrane separation apparatus 4, known conditions that are usually performed in the employed membrane separation apparatus can be used as they are. For example, when a polyimide hollow fiber membrane is used, Japanese Patent Application Laid-Open Nos. 2000-262838 and 2001-62257, and when a zeolite membrane is used, Japanese Patent Application Laid-Open Nos. 2003-93844 and 2006 are disclosed. Specific apparatuses and methods described in JP-A No. 263574 and JP-A No. 2007-203210 can be suitably employed.

本発明において、被処理液は、水溶性有機物と水とそれ以外の不純物とを含むものである。例えば半導体の製造工程ではアルコール類のような水溶性有機物によって部品洗浄を行うことがあるが、その際に使用された後の水溶性有機物には、水溶性有機物と水とそれ以外の不純物を含む。この水溶性有機物を精製して再使用するためには、含有された不純物を除きながら水溶性有機物を脱水濃縮する必要がある。
また、例えば発酵アルコール水溶液を精製脱水して高純度アルコールを得る際にも、発酵アルコール水溶液には、もろみ塔や蒸留塔で処理した後も、発酵原料や発酵条件に基づいてセルロースなどの不溶成分、原料に由来する金属イオンや塩類、アルデヒド類などの発酵によって副生した化学物質が混入しているので、含有する不純物を除きながらアルコール類を脱水濃縮する必要がある。
さらに、化学プロセスでは、水溶性有機物と水とそれ以外の不純物とを含む被処理液がしばしば発生するので、このような場合にも、含有された不純物を除きながら水溶性有機物を脱水濃縮する必要がある。
本発明の脱水濃縮方法は、このような処理液を好適に脱水濃縮できる。
In the present invention, the liquid to be treated contains a water-soluble organic substance, water, and other impurities. For example, parts may be washed with water-soluble organic substances such as alcohols in the semiconductor manufacturing process, but the water-soluble organic substances after use include water-soluble organic substances, water, and other impurities. . In order to purify and reuse this water-soluble organic material, it is necessary to dehydrate and concentrate the water-soluble organic material while removing impurities contained therein.
In addition, for example, when purifying and dehydrating a fermented alcohol aqueous solution to obtain a high-purity alcohol, the fermented alcohol aqueous solution contains insoluble components such as cellulose based on the fermentation raw materials and fermentation conditions even after being treated in the mash tower or distillation tower. Since chemical substances by-produced by fermentation such as metal ions, salts and aldehydes derived from raw materials are mixed, it is necessary to dehydrate and concentrate alcohols while removing impurities contained therein.
Furthermore, in chemical processes, liquids that contain water-soluble organic substances, water, and other impurities are often generated. In such cases, it is necessary to dehydrate and concentrate the water-soluble organic substances while removing the contained impurities. There is.
The dehydration concentration method of the present invention can suitably dehydrate and concentrate such a treatment liquid.

水溶性有機物としては、特に限定されないが、沸点が50〜250℃好ましくは60〜220℃の水溶性の有機化合物であって、例えばメタノール、エタノール、プロパノール、ブタノールなどのアルコール類、アセトン、メチルエチルケトン、メチルブチルケトン、エチルエチルケトンなどのケトン類、ジエチルエーテル、ジプロピルエーテルなどのエーテル類、酢酸エチル、酢酸ブチル、ギ酸ブチルなどのエステル類、ヘキサンなどの炭化水素類、シクロヘキサンなど脂環系炭化水素類などを挙げることができる。   The water-soluble organic substance is not particularly limited, but is a water-soluble organic compound having a boiling point of 50 to 250 ° C., preferably 60 to 220 ° C., for example, alcohols such as methanol, ethanol, propanol, and butanol, acetone, methyl ethyl ketone, Ketones such as methyl butyl ketone and ethyl ethyl ketone, ethers such as diethyl ether and dipropyl ether, esters such as ethyl acetate, butyl acetate and butyl formate, hydrocarbons such as hexane, and alicyclic hydrocarbons such as cyclohexane And the like.

本発明において、目的とする水溶性有機物と水以外の全てのものが不純物であるが、分離膜に有害な不純物としては、ピリジンなどのピリジン類、フェノールなどのフェノール類、アセトアルデヒドなどのアルデヒド類、カルシウムイオン、ナトリウムイオン、鉄イオンなどの金属イオンや、塩化ナトリウムや塩化マグネシウムなどの塩類などのイオン性化合物、有機又は無機の酸化合物、有機又は無機のアルカリ化合物、特開平9−103633号公報に記載されているハロゲン化合物、アンモニア、オゾン、シラン、六フッ化タングステンなど、さらに、例えばアルデヒド類のような化合物が高分子化した高分子物質や、原料に由来する例えばセルロースなどの無機或いは有機の不溶性或いは不揮発性の不純物がある。これらが分離膜3に付着・堆積すると、分離膜3の性能低下を招き、脱水濃縮性能が悪くなるという問題を生じる。   In the present invention, everything other than the target water-soluble organic substance and water is an impurity, but as impurities harmful to the separation membrane, pyridines such as pyridine, phenols such as phenol, aldehydes such as acetaldehyde, Metal ions such as calcium ion, sodium ion and iron ion, ionic compounds such as salts such as sodium chloride and magnesium chloride, organic or inorganic acid compounds, organic or inorganic alkali compounds, JP-A-9-103633 Halogen compounds, ammonia, ozone, silane, tungsten hexafluoride, etc., as well as high molecular weight materials such as aldehydes, and inorganic or organic substances such as cellulose derived from raw materials There are insoluble or non-volatile impurities. If these adhere and deposit on the separation membrane 3, the performance of the separation membrane 3 is reduced, and the dehydration concentration performance is deteriorated.

本発明の水溶性有機物の脱水濃縮方法は、水溶性有機物と水とそれ以外の不純物とを含む被処理液から水溶性有機物を好適に脱水濃縮できるが、不純物が前述のような分離膜3に有害なものである場合には、分離膜3の性能低下を抑制することができるので特に好適である。   In the method for dehydrating and concentrating water-soluble organic matter of the present invention, water-soluble organic matter can be suitably dehydrated and concentrated from a liquid to be treated containing water-soluble organic matter, water and other impurities. When it is harmful, it is particularly preferable because it can suppress a decrease in performance of the separation membrane 3.

本発明の第1の実施形態に係る有機物脱水濃縮装置の概略システム構成図Schematic system configuration diagram of the organic matter dehydration concentration apparatus according to the first embodiment of the present invention 第1の実施形態に係る有機物脱水濃縮装置で適用される蒸発器の構造説明図Structure explanatory drawing of the evaporator applied with the organic substance dehydration concentration apparatus which concerns on 1st Embodiment 第2の実施形態に係る有機物脱水濃縮装置で適用される蒸発器の構造説明図Structure explanatory drawing of the evaporator applied with the organic substance dehydration concentration apparatus which concerns on 2nd Embodiment 第3の実施形態に係る有機物脱水濃縮装置で適用される蒸発器の構造説明図Structure explanatory drawing of the evaporator applied with the organic substance dehydration concentration apparatus which concerns on 3rd Embodiment

符号の説明Explanation of symbols

1 有機物脱水濃縮装置
2,2A,2B 蒸発器
3 分離膜
4 膜分離装置
10 流量調整弁
15 上段側バブルキャップトレイ(凝縮液滞留手段)
15A 上段側シーブトレイ(凝縮液滞留手段)
16 下段側バブルキャップトレイ(凝縮液滞留手段)
16A 下段側シーブトレイ(凝縮液滞留手段)
17,17A トレイ部材
18,18A 通気孔
19 キャップ部材
21 上段側溢流管(凝縮液溢流手段)
21A 上段側溢流板(凝縮液溢流手段)
22 下段側溢流管(凝縮液溢流手段)
22A 下段側溢流板(凝縮液溢流手段)
23 被処理液蒸気凝縮器(被処理液蒸気凝縮手段)
25 充填物(凝縮液滞留手段)
26 分散板(凝縮液分散手段)
DESCRIPTION OF SYMBOLS 1 Organic substance dehydration concentration apparatus 2,2A, 2B Evaporator 3 Separation membrane 4 Membrane separation apparatus 10 Flow control valve 15 Upper stage bubble cap tray (condensate retention means)
15A Upper sheave tray (condensate retention means)
16 Lower bubble cap tray (condensate retention means)
16A Lower sheave tray (condensate retention means)
17, 17A Tray member 18, 18A Ventilation hole 19 Cap member 21 Upper stage overflow pipe (condensate overflow means)
21A Upper stage overflow plate (condensate overflow means)
22 Lower overflow pipe (condensate overflow means)
22A Lower overflow plate (condensate overflow means)
23 Processed liquid vapor condenser (Processed liquid vapor condensing means)
25 Packing (condensate retention means)
26 Dispersion plate (condensate dispersion means)

Claims (8)

水溶性有機物と水とを含む被処理液を蒸発させて被処理液蒸気を発生させる蒸発器と、水蒸気を選択的に透過させる分離膜を有してなる膜分離装置とを備え、前記蒸発器で発生された被処理液蒸気を前記膜分離装置に導入してその被処理液蒸気から水蒸気を分離する有機物脱水濃縮装置において、
前記蒸発器で蒸気化し前記膜分離装置に向けて送り出される被処理液蒸気の一部を凝縮して凝縮液を生成する被処理液蒸気凝縮手段と、
前記蒸発器の内部における被処理液蒸気の流れ経路途中に設けられ、前記被処理液蒸気凝縮手段からの凝縮液を滞留させる凝縮液滞留手段とを備え、
前記凝縮液滞留手段は、被処理液蒸気が当該凝縮液滞留手段に滞留されている凝縮液を潜り抜けて通過するように構成されていることを特徴とする有機物脱水濃縮装置。
An evaporator for evaporating a liquid to be treated containing a water-soluble organic substance and water; and a membrane separation apparatus having a separation membrane for selectively allowing water vapor to pass through the evaporator. In the organic matter dehydrating and concentrating apparatus for introducing the liquid vapor to be processed generated in the process into the membrane separator and separating the water vapor from the liquid vapor to be processed,
A liquid vapor condensing means to be processed for condensing a part of the liquid vapor to be processed which is vaporized by the evaporator and sent to the membrane separation device;
Provided in the middle of the flow path of the liquid vapor to be treated in the evaporator, and a condensate retention means for retaining the condensate from the liquid vapor condensation means to be treated,
The condensate retention means is configured so that the liquid to be treated passes through the condensate retained in the condensate retention means.
前記凝縮液滞留手段は、被処理液蒸気の流れ経路途中に設けられたトレイ部材に被処理液蒸気が通過する通気孔が設けられてなるバブルキャップトレイ或いはシーブトレイのいずれかである請求項1に記載の有機物脱水濃縮装置。   The condensate retention means is either a bubble cap tray or a sheave tray in which a vent member through which a liquid vapor to be processed passes is provided in a tray member provided in the middle of a flow path of the liquid vapor to be processed. The organic substance dehydration concentration apparatus as described. 前記凝縮液滞留手段は、被処理液蒸気の流れ経路途中に配置され、被処理液蒸気と凝縮液とを気液接触可能にする充填物であり、
この充填物に対して前記凝縮液を分散させる凝縮液分散手段が設けられている請求項1に記載の有機物脱水濃縮装置。
The condensate retention means is a packing that is disposed in the middle of the flow path of the liquid vapor to be processed, and allows the liquid vapor and the condensate to come into gas-liquid contact,
The organic matter dehydrating and concentrating apparatus according to claim 1, further comprising a condensate dispersion means for dispersing the condensate with respect to the filling.
前記蒸発器は、水溶性有機物と水とを含む被処理液を、上部に少なくとも1段以上の滞留段が存在し、下部には滞留段が存在しない位置に供給するとともに、ボトム液の一部を抜き出すことができるように構成されている請求項1に記載の有機物脱水濃縮装置。   The evaporator supplies a liquid to be treated containing a water-soluble organic substance and water to a position where at least one or more residence stages exist in the upper part and no residence stage exists in the lower part, and a part of the bottom liquid The organic matter dewatering and concentrating apparatus according to claim 1, wherein the organic substance dehydrating and concentrating apparatus is configured to be able to extract water. 前記蒸発器は、複数段の凝縮液滞留手段を有し、水溶性有機物と水とを含む被処理液を、上部に少なくとも1段以上、下部にも少なくとも1段以上の滞留段が存在する段と段の間の位置に供給するとともに、ボトム液の一部を抜き出すことができるように構成されている請求項1に記載の有機物脱水濃縮装置。   The evaporator has a plurality of stages of condensate retention means, and a stage in which at least one stage of the liquid to be treated containing water-soluble organic matter and water is present in the upper part and at least one stage in the lower part is present. The organic matter dehydration and concentration apparatus according to claim 1, wherein the organic matter dehydration and concentration apparatus is configured so that a part of the bottom liquid can be extracted while being supplied to a position between the two stages. さらに分離膜に有害な不純物を含む被処理液から、前記水溶性有機物を脱水濃縮するために用いられる請求項1に記載の有機物脱水濃縮装置。   Furthermore, the organic substance dehydration concentration apparatus of Claim 1 used in order to spin-dry | dehydrate and concentrate the said water-soluble organic substance from the to-be-processed liquid containing a harmful | toxic impurity in a separation membrane. 被処理液を蒸発させて被処理液蒸気を発生させる蒸発器と、水蒸気を選択的に透過させる分離膜を有してなる膜分離装置とを備え、前記蒸発器で発生された被処理液蒸気を前記膜分離装置に導入してその被処理液蒸気から水蒸気を分離する有機物脱水濃縮装置を用いた、水溶性有機物と水とそれ以外の不純物とを含む被処理液から有機物を脱水濃縮する有機物脱水濃縮方法において、
水溶性有機物と水とそれ以外の不純物とを含む被処理液を前記蒸発器に供給して被処理液蒸気を発生させる工程、
前記被処理液蒸気を被処理液蒸気凝縮手段で凝縮して、前記蒸発器の内部における被処理液蒸気の流れ経路途中に設けられた凝縮液滞留手段に前記被処理液蒸気凝縮手段からの凝縮液を滞留させる工程、
前記被処理液蒸気を、前記凝縮液滞留手段に滞留されている前記凝縮液を潜り抜けて通過させる工程および
前記蒸発器からの被処理液蒸気を前記膜分離装置へ供給して、前記被処理液蒸気から選択的に水蒸気を分離する工程
を含むことを特徴とする有機物脱水濃縮方法。
An evaporator for evaporating the liquid to be processed to generate a liquid to be processed and a membrane separation device having a separation membrane that selectively permeates water vapor, and the liquid vapor to be processed generated by the evaporator Organic substance for dehydrating and concentrating organic substances from the liquid to be treated containing water-soluble organic substances, water and other impurities, using an organic substance dehydrating and concentrating apparatus for separating water vapor from the liquid vapor to be treated In the dehydration and concentration method,
Supplying a liquid to be processed containing a water-soluble organic substance, water and other impurities to the evaporator to generate a liquid to be processed;
The liquid vapor to be treated is condensed by the liquid vapor condensation means to be treated, and condensed from the liquid vapor condensation means to the condensate retention means provided in the middle of the flow path of the liquid vapor to be treated in the evaporator. A step of retaining the liquid,
A step of allowing the liquid to be treated to pass through the condensate retained in the condensate retaining means; and supplying the liquid vapor to be treated from the evaporator to the membrane separation device, An organic dehydration concentration method comprising a step of selectively separating water vapor from liquid vapor.
前記被処理液に含まれる不純物は、分離膜に有害な不純物である請求項7に記載の有機物脱水濃縮方法。   The method of claim 7, wherein the impurities contained in the liquid to be treated are harmful to the separation membrane.
JP2008304675A 2007-11-28 2008-11-28 Organic matter dehydration concentration apparatus and organic matter dehydration concentration method Active JP5248289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008304675A JP5248289B2 (en) 2007-11-28 2008-11-28 Organic matter dehydration concentration apparatus and organic matter dehydration concentration method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007306979 2007-11-28
JP2007306979 2007-11-28
JP2008304675A JP5248289B2 (en) 2007-11-28 2008-11-28 Organic matter dehydration concentration apparatus and organic matter dehydration concentration method

Publications (2)

Publication Number Publication Date
JP2009148751A true JP2009148751A (en) 2009-07-09
JP5248289B2 JP5248289B2 (en) 2013-07-31

Family

ID=40918569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008304675A Active JP5248289B2 (en) 2007-11-28 2008-11-28 Organic matter dehydration concentration apparatus and organic matter dehydration concentration method

Country Status (1)

Country Link
JP (1) JP5248289B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2949348A1 (en) * 2009-09-03 2011-03-04 Rhodia Operations PROCESS FOR CONTINUOUS SEPARATION OF ORGANIC PRODUCTS OF INTEREST OF A FERMENTATION
KR101165814B1 (en) 2011-12-23 2012-07-16 주식회사 에이치엔 Wastewater distribution device
CN106955578A (en) * 2017-05-24 2017-07-18 襄阳泽东化工集团有限公司 A kind of ammonia type flue gas desulfurizing circulation fluid optimizes bascule
JP2022553612A (en) * 2019-08-30 2022-12-26 77ビジョン・ウェイ・リミテッド Apparatus and method for distributing mineralized water

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005205337A (en) * 2004-01-23 2005-08-04 Taikisha Ltd Wastewater treatment equipment
JP3764894B2 (en) * 2003-02-21 2006-04-12 株式会社物産ナノテク研究所 Method for concentrating water-soluble organic substances

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3764894B2 (en) * 2003-02-21 2006-04-12 株式会社物産ナノテク研究所 Method for concentrating water-soluble organic substances
JP2005205337A (en) * 2004-01-23 2005-08-04 Taikisha Ltd Wastewater treatment equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2949348A1 (en) * 2009-09-03 2011-03-04 Rhodia Operations PROCESS FOR CONTINUOUS SEPARATION OF ORGANIC PRODUCTS OF INTEREST OF A FERMENTATION
WO2011026933A1 (en) * 2009-09-03 2011-03-10 Rhodia Operations Method for continuously separating organic materials of interest from fermentation
KR101165814B1 (en) 2011-12-23 2012-07-16 주식회사 에이치엔 Wastewater distribution device
CN106955578A (en) * 2017-05-24 2017-07-18 襄阳泽东化工集团有限公司 A kind of ammonia type flue gas desulfurizing circulation fluid optimizes bascule
CN106955578B (en) * 2017-05-24 2023-04-11 襄阳泽东化工集团股份有限公司 Ammonia flue gas desulfurization circulating liquid optimization balancing device
JP2022553612A (en) * 2019-08-30 2022-12-26 77ビジョン・ウェイ・リミテッド Apparatus and method for distributing mineralized water

Also Published As

Publication number Publication date
JP5248289B2 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
US8053610B2 (en) Method for purifying fermentation alcohol
US8129573B2 (en) Method for purifying fermentation alcohol
US4953694A (en) Distilling apparatus
WO2009123223A1 (en) Purification treatment method for fermented alcohol
CA2716624C (en) Method and apparatus for dewatering a mixture of ethanol and water
JP5248289B2 (en) Organic matter dehydration concentration apparatus and organic matter dehydration concentration method
JP2012500114A (en) Separation method of liquid mixture
JP2007275690A (en) Method for separating and recovering organic liquid from organic liquid aqueous solution
JP6196807B2 (en) Water-soluble organic substance concentration method and water-soluble organic substance concentration apparatus
CA2747029A1 (en) Spinning impingement multiphase contacting device
NL2017839B1 (en) Distillation apparatus and use thereof
JP2020075864A (en) Method for producing alcohol
JP5187861B2 (en) VOC removal liquid regeneration / recovery device and regeneration / recovery method
KR101686278B1 (en) Purification device for alkanol
JP2011056431A (en) Module for pervaporation membrane separation
RU2532518C2 (en) Method of separation and concentration of organic substances from liquid mixtures and device for its realisation
US9861908B2 (en) Process for continuous recovering (meth)acrylic acid and apparatus for the process
JP6209352B2 (en) Method for reducing oxides in purified alcohol and apparatus for purifying alcohol
JP3865217B2 (en) Evaporator
US20140073718A1 (en) Multiple membranes for removing voc&#39;s from liquids
KR20150091931A (en) Separation Membrame for Membrane Distillation
JP2016041417A (en) Waste liquid treatment method and waste liquid treatment apparatus
WO2016025716A1 (en) Osmotically driven membrane processes and systems and methods for draw solute recovery
JP2008073590A (en) Solvent-recovery system and solvent recovery method
US20170144893A1 (en) Desalination method by heat and condensation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130410

R150 Certificate of patent or registration of utility model

Ref document number: 5248289

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250