JP2009147500A - Radio receiver - Google Patents

Radio receiver Download PDF

Info

Publication number
JP2009147500A
JP2009147500A JP2007320611A JP2007320611A JP2009147500A JP 2009147500 A JP2009147500 A JP 2009147500A JP 2007320611 A JP2007320611 A JP 2007320611A JP 2007320611 A JP2007320611 A JP 2007320611A JP 2009147500 A JP2009147500 A JP 2009147500A
Authority
JP
Japan
Prior art keywords
electric field
circuit
signal
weak electric
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007320611A
Other languages
Japanese (ja)
Inventor
Keiji Kobayashi
啓二 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
System Solutions Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Semiconductor Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2007320611A priority Critical patent/JP2009147500A/en
Publication of JP2009147500A publication Critical patent/JP2009147500A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To suppress a high-cut function of a radio receiver in an electric field area in which high-band noise is comparatively small while powerfully removing the high-band noise in a weak electric field. <P>SOLUTION: A received electric field intensity discrimination circuit 84 discriminates which area includes received electric field intensity, an area more than an intermediate electric field, a first weak electric field area adjacent to the intermediate electric field area, or a second weak electric field area lower than the first electric field area on the basis of a received electric field intensity signal output from an S meter circuit to control a mixing ratio of an output from a bypass circuit 114 and an output from an RC filter 112 in a mixer 110 in an HCC filter circuit 94. In an area of lower electric field intensity, much output of the RC filter 112 is mixed to remove a high frequency component more powerfully from a detected modulation signal. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、受信信号が弱電界である場合における高周波数のノイズを除去するハイカット回路を有するラジオ受信機に関する。   The present invention relates to a radio receiver having a high-cut circuit that removes high-frequency noise when a received signal is a weak electric field.

FMラジオ受信機等のラジオ受信機にて、受信電界強度が弱電界の場合には、検波により得られる復調信号に含まれるノイズの高周波成分が中電界以上に比べて増大し、再生音声が耳障りな音質となる。例えば、FMラジオ受信機では、FM信号をリミッタアンプにより矩形波とした上で検波する方法が用いられるが、弱電界の信号は矩形波に変換されず、これに起因してパルスノイズが生じ、これが弱電界ノイズとなり得る。   In a radio receiver such as an FM radio receiver, when the received electric field strength is a weak electric field, the high frequency component of noise included in the demodulated signal obtained by detection increases compared to the medium electric field or higher, and the reproduced sound is harsh. Sound quality. For example, an FM radio receiver uses a method of detecting an FM signal after making it a rectangular wave with a limiter amplifier, but a weak electric field signal is not converted into a rectangular wave, resulting in pulse noise, This can be weak electric field noise.

この弱電界ノイズを除去するために、ハイカットコントロール(High Cut Control:HCC)が行われる。HCC機能を実現するために、復調信号から弱電界ノイズを除去可能な低域通過フィルタ(LPF:Low Pass Filter)機能を有するHCCフィルタ回路と、弱電界時に選択的に当該HCCフィルタ回路を機能させる受信電界強度判別回路とが設けられる。   In order to remove the weak electric field noise, high cut control (HCC) is performed. In order to realize the HCC function, an HCC filter circuit having a low pass filter (LPF) function capable of removing weak electric field noise from a demodulated signal, and selectively causing the HCC filter circuit to function in a weak electric field And a reception electric field strength determination circuit.

図5は従来のHCC機能を実現する、HCCフィルタ回路2及び受信電界強度判別回路4の回路図である。HCCフィルタ回路2には入力信号SH−INとして復調信号が入力される。HCCフィルタ回路2は、混合器6と、LPFを構成するRCフィルタ8と、RCフィルタ8をバイパスして、SH−INを直接、混合器6に入力するバイパス回路10と、を含んで構成される。混合器6は、バイパス回路10からのSH−INと、RCフィルタ8を経由したSH−INとをそれぞれ入力され、受信電界強度判別回路4からの信号SHCCに応じて、それらの混合比率を変化させて出力信号SH−OUTを生成する。受信電界強度判別回路4はコンパレータ12を有し、Sメータ回路(図示せず)からの受信電界強度信号SM−DCと基準電圧Vref1とを比較し、弱電界状態か中電界以上かを判別する。SM−DC≧Vref1、すなわち中電界以上の場合、受信電界強度判別回路4は、バイパス回路10からのSH−INがSH−OUTとなるように混合器6を制御する。一方、SM−DC<Vref1、すなわち弱電界状態の場合、受信電界強度判別回路4は、RCフィルタ8の出力がSH−OUTとなるように混合器6を制御する。RCフィルタ8は、弱電界状態にて例えば、10kHz程度の高周波数域成分を好適に除去可能に設計される。
特開2004−040169号公報
FIG. 5 is a circuit diagram of the HCC filter circuit 2 and the received electric field strength discriminating circuit 4 for realizing the conventional HCC function. The demodulated signal is input to the HCC filter circuit 2 as the input signal SH-IN . The HCC filter circuit 2 includes a mixer 6, an RC filter 8 that constitutes an LPF, and a bypass circuit 10 that bypasses the RC filter 8 and inputs SH-IN directly to the mixer 6. Is done. Mixer 6, and S H-IN from the bypass circuit 10 is inputted and S H-IN passed through an RC filter 8, respectively, in response to the signal S HCC from the reception field strength judgment circuit 4, mixtures thereof The output signal SH-OUT is generated by changing the ratio. The received electric field strength discriminating circuit 4 has a comparator 12 and compares the received electric field strength signal S M-DC from the S meter circuit (not shown) with the reference voltage V ref1 to determine whether the weak electric field state is higher than the middle electric field. Determine. When S M-DC ≧ V ref1 , that is, when the electric field is equal to or higher than the medium electric field, the reception electric field strength determination circuit 4 controls the mixer 6 so that SH -IN from the bypass circuit 10 becomes SH-OUT . On the other hand, when S M-DC <V ref1 , that is, in the weak electric field state, the reception electric field strength determination circuit 4 controls the mixer 6 so that the output of the RC filter 8 becomes SH-OUT . The RC filter 8 is designed such that a high frequency band component of about 10 kHz can be suitably removed in a weak electric field state.
JP 2004-040169 A

上述のHCCフィルタ回路2は、弱電界状態にて選択的にLPFとして機能する。しかし、当該LPFの特性は、SM−DC<Vref1なる受信電界強度の範囲では一定となる。そのため、例えば、弱電界領域のうち中電界領域に近い部分では、高周波数成分の除去を控えめにし、一方、弱電界ノイズが増加する、より受信電界強度が弱い領域では高周波数成分の除去を強力に行いたいという要求を満足することが容易ではないという問題があった。すなわち、中電界領域に近い部分にて高周波数成分の除去が控えめとなるようにRCフィルタ8の特性を設定すると、弱電界ノイズを十分に除去できず、逆に弱電界ノイズを十分に除去しようとすると、中電界領域に近い部分での再生音声の高域特性が、中電界以上での特性に比べて大きく低下するという問題があった。 The above-described HCC filter circuit 2 selectively functions as an LPF in a weak electric field state. However, the characteristics of the LPF are constant in the range of the received electric field strength that satisfies S M-DC <V ref1 . For this reason, for example, the removal of high frequency components in the weak electric field region close to the middle electric field region is conservative, while the removal of high frequency components is strong in regions where weak electric field noise increases and the received electric field strength is weaker. There was a problem that it was not easy to satisfy the demand to do. That is, if the characteristics of the RC filter 8 are set so that the removal of high frequency components is conservative in a portion close to the middle electric field region, the weak electric field noise cannot be sufficiently removed, and conversely, the weak electric field noise should be sufficiently removed. Then, there is a problem that the high frequency characteristics of the reproduced sound in the portion close to the middle electric field region are greatly deteriorated compared with the characteristics at the middle electric field or higher.

本発明は上記問題点を解決するためになされたものであり、中電界以上及び弱電界状態の全体に亘って、好適なHCC機能が実現されるラジオ受信機を提供することを目的とする。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a radio receiver in which a suitable HCC function is realized over a medium electric field or more and a weak electric field state.

本発明に係るラジオ受信機は、受信信号を復調し、復調信号を生成する復調回路と、前記受信信号に基づいて、受信電界強度に応じた電界強度信号を生成する強度信号生成回路と、前記電界強度信号に基づいて、前記受信電界強度が所定の第1閾値以上である中電界以上の領域、前記第1閾値未満かつ所定の第2閾値以上である第1弱電界領域、及び前記第2閾値未満である第2弱電界領域のいずれにあるかを判別する受信電界強度判別回路と、前記第1弱電界領域及び前記第2弱電界領域にて動作し、前記復調信号に含まれる高周波数域のノイズ成分を減衰させるハイカット回路と、を有し、前記ハイカット回路が、前記受信電界強度判別回路による判別結果に応じて減衰特性を変化させ、所定の目的高周波数域での減衰度を前記第1弱電界領域よりも前記第2弱電界領域にて大きく設定するものである。   A radio receiver according to the present invention includes a demodulating circuit that demodulates a received signal and generates a demodulated signal, an intensity signal generating circuit that generates an electric field strength signal corresponding to the received electric field strength based on the received signal, Based on the electric field strength signal, the received electric field strength is a region above the middle electric field that is greater than or equal to a predetermined first threshold, a first weak electric field region that is less than the first threshold and greater than or equal to the predetermined second threshold, and the second A received electric field strength discriminating circuit for discriminating which one of the second weak electric field regions is less than the threshold, and a high frequency which operates in the first weak electric field region and the second weak electric field region and is included in the demodulated signal A high-cut circuit for attenuating a noise component in a region, and the high-cut circuit changes an attenuation characteristic according to a determination result by the reception electric field strength determination circuit, and sets the attenuation in a predetermined target high-frequency region. First weak electric It is for larger at the second weak electric field area than.

本発明によれば、弱電界状態にて高周波数成分の減衰特性が複数段階に切り換えられる。これにより、中電界領域に近い第1弱電界領域では、高周波数成分の除去を控えめとし、一方、第1弱電界領域よりさらに受信電界強度が低く弱電界ノイズが増加し得る第2弱電界領域では、高周波数成分の除去を強め、弱電界ノイズを好適に除去することができ、中電界以上及び弱電界状態の全体に亘って、好適なHCC機能が実現される。   According to the present invention, the attenuation characteristics of high frequency components can be switched to a plurality of stages in a weak electric field state. Thereby, in the first weak electric field region close to the middle electric field region, the removal of the high frequency component is conservative, while the second weak electric field region in which the received electric field intensity is lower than that of the first weak electric field region and the weak electric field noise can be increased. In this case, it is possible to enhance the removal of high-frequency components and to suitably remove weak electric field noise, and a suitable HCC function can be realized over the intermediate electric field and the entire weak electric field state.

以下、本発明の実施の形態(以下実施形態という)について、図面に基づいて説明する。   Hereinafter, embodiments of the present invention (hereinafter referred to as embodiments) will be described with reference to the drawings.

図1は、実施形態に係るFMラジオ受信機50の概略のブロック構成図である。FMラジオ受信機50の主要部は、集積回路(IC)化を図りつつ共通の回路基板上に形成され、基本的に一体のモジュールとして構成される。当該モジュールは例えば、自動車の車載オーディオ機器にその一部として組み込まれる。   FIG. 1 is a schematic block diagram of an FM radio receiver 50 according to the embodiment. The main part of the FM radio receiver 50 is formed on a common circuit board while being integrated into an integrated circuit (IC), and is basically configured as an integral module. For example, the module is incorporated as a part in an in-vehicle audio device of an automobile.

FMラジオ受信機50は、アンテナ52、RFアンプ54、第1局部発振回路56、第1混合回路58、BPF60,64、アンプ62、第2局部発振回路66、第2混合回路68、IFBPF70、リミッタアンプ72、検波回路74、ステレオ復調部76、Sメータ回路82、及び受信電界強度判別回路84を含んで構成される。   The FM radio receiver 50 includes an antenna 52, an RF amplifier 54, a first local oscillation circuit 56, a first mixing circuit 58, BPFs 60 and 64, an amplifier 62, a second local oscillation circuit 66, a second mixing circuit 68, an IFBPF 70, a limiter. An amplifier 72, a detection circuit 74, a stereo demodulator 76, an S meter circuit 82, and a received electric field strength determination circuit 84 are configured.

アンテナ52で受信されたRF信号SRFはRFアンプ54で増幅された後、第1混合回路58に入力される。第1混合回路58は、入力されたRF信号SRFを、第1局部発振回路56から入力される第1局部発振信号SLO1と混合して、第1中間信号SIF1を生成する。SLO1の周波数fLO1は、SRFに含まれる周波数fの目的受信局の信号が第1混合回路58によるSIF1への周波数変換にて所定の第1中間周波数fIF1に変換されるように調整される。第1中間周波数fIF1は、例えば、10.7MHzに設定される。 The RF signal S RF received by the antenna 52 is amplified by the RF amplifier 54 and then input to the first mixing circuit 58. The first mixing circuit 58 mixes the input RF signal S RF with the first local oscillation signal S LO1 input from the first local oscillation circuit 56 to generate a first intermediate signal S IF1 . Frequency of S LO1 f LO1 is such that the signal of interest received station of the frequency f R included in the S RF is converted to a first intermediate frequency f IF1 predetermined by the frequency conversion to S IF1 by the first mixing circuit 58 Adjusted to The first intermediate frequency f IF1 is set to, for example, 10.7 MHz.

IF1は、BPF60、アンプ62及びBPF64を経て、第2混合回路68に入力される。第2混合回路68は、入力された第1中間信号SIF1を、第2局部発振回路66から入力される第2局部発振信号SLO2と混合して、第2中間周波数fIF2の第2中間信号SIF2を生成する。SLO2の周波数fLO2は、(fIF1−fIF2)に設定され、SIF1に含まれる周波数fIF1の目的受信信号は第2混合回路68において周波数fIF2に変換される。第2中間周波数fIF2は、例えば、450kHzに設定される。 S IF1 is input to the second mixing circuit 68 through the BPF 60, the amplifier 62 and the BPF 64. The second mixing circuit 68 mixes the input first intermediate signal S IF1 with the second local oscillation signal S LO2 input from the second local oscillation circuit 66, and the second intermediate frequency f IF2 has a second intermediate frequency f IF2 . A signal SIF2 is generated. The frequency f LO2 of S LO2 is set to (f IF1 −f IF2 ), and the target reception signal of the frequency f IF1 included in S IF1 is converted into the frequency f IF2 in the second mixing circuit 68. The second intermediate frequency f IF2 is set to 450 kHz, for example.

IF2は、IFBPF70及びリミッタアンプ72を経て、検波回路74に入力される。検波回路74はFM検波回路であり、例えば、クオドラチュア検波回路で構成される。検波回路74は、リミッタアンプ72から入力されたSIF2をFM検波して、コンポジット信号である検波信号SDETを抽出する。 S IF2 is input to the detection circuit 74 via the IFBPF 70 and the limiter amplifier 72. The detection circuit 74 is an FM detection circuit, and is composed of, for example, a quadrature detection circuit. The detection circuit 74 performs FM detection on S IF2 input from the limiter amplifier 72 and extracts a detection signal SDET that is a composite signal.

この検波信号SDETは、ステレオ復調部76に入力される。ステレオ復調部76は、ステレオ放送時には、(L+R)信号SL+R、(L−R)信号SL−Rが重畳されたコンポジット信号から、L信号SとR信号Sとを分離し出力することができる。ステレオ復調部76は、メイン復調回路90、サブ復調回路92、HCCフィルタ回路94、マトリクス回路96含んで構成される,メイン復調回路90は、SDETから(L+R)信号SL+Rを抽出し、サブ復調回路92はSDETから(L−R)信号SL−Rを抽出する。(L+R)信号SL+RはHCCフィルタ回路94を経由してマトリクス回路96に入力される。マトリクス回路96は、HCCフィルタ回路94からSL+Rを入力され、サブ復調回路92からSL−Rを入力され、それら2つの信号からマトリクス処理によりL信号SとR信号Sとを分離する。これらS及びSはスピーカ等からなる出力回路(図示せず)へ出力される。 This detection signal SDET is input to the stereo demodulator 76. Stereo demodulation unit 76, at the time of a stereo broadcast, (L + R) signal S L + R, the (L-R) signal S L-R is a composite signal which is superimposed, and outputs to separate the L signal S L and R signals S R be able to. Stereo demodulation unit 76, a main demodulator circuit 90, the sub-demodulation circuit 92, HCC filter circuit 94, configured to include a matrix circuit 96, a main demodulator circuit 90 extracts from the S DET the (L + R) signal S L + R, the sub demodulation circuit 92 extracts from the S DET the (L-R) signal S L-R. The (L + R) signal S L + R is input to the matrix circuit 96 via the HCC filter circuit 94. Matrix circuit 96 is inputted to S L + R from HCC filter circuit 94 is input to S L-R from the sub-demodulation circuit 92 separates the L signal S L and R signal S R from the two signals by matrix processing . These S L and S R are output to an output circuit comprising a speaker or the like (not shown).

Sメータ回路82は、SIF1に基づいて、受信電界強度信号SM−DCを生成する。受信電界強度判別回路84は、Sメータ回路82から入力されるSM−DCを予め設定された2つの閾値電圧Vref1,Vref2と比較して、HCCフィルタ回路94に対する制御信号を生成する。 The S meter circuit 82 generates a received electric field strength signal S M-DC based on S IF1 . The received electric field strength determination circuit 84 compares the S M-DC input from the S meter circuit 82 with two threshold voltages V ref1 and V ref2 set in advance, and generates a control signal for the HCC filter circuit 94.

図2は、HCCフィルタ回路94及び受信電界強度判別回路84の概略の構成を示す回路図である。HCCフィルタ回路94には入力信号SH−INとして、メイン復調回路90からSL+Rが入力される。HCCフィルタ回路94は、混合器110と、LPFを構成するRCフィルタ112と、RCフィルタ112をバイパスしてSH−INを基本的に元の周波数特性で混合器110に入力するバイパス回路114とを含んで構成され、信号SH−OUTを出力する。ちなみに、バイパス回路114に直列に挿入される抵抗は、混合器110の入力トランジスタのベースバイアス電圧を適切な値に維持する役割を有する。 FIG. 2 is a circuit diagram showing a schematic configuration of the HCC filter circuit 94 and the received electric field strength discriminating circuit 84. S L + R is input from the main demodulation circuit 90 to the HCC filter circuit 94 as the input signal SH-IN . The HCC filter circuit 94 includes a mixer 110, an RC filter 112 that constitutes an LPF, a bypass circuit 114 that bypasses the RC filter 112 and inputs SH-IN to the mixer 110 basically with the original frequency characteristics, And outputs a signal SH-OUT . Incidentally, the resistor inserted in series with the bypass circuit 114 serves to maintain the base bias voltage of the input transistor of the mixer 110 at an appropriate value.

受信電界強度判別回路84は、コンパレータ130,132、及び加算回路134を有する。コンパレータ130,132はそれぞれ、図1に示すSメータ回路82からの受信電界強度信号SM−DCと、それぞれ基準電源により生成される閾値電圧Vref1,Vref2とを比較し、比較結果に応じた電圧信号SHCC1,SHCC2を出力する。ここで、Vref1は第1弱電界領域の上限値を定める閾値電圧であり、一方、Vref2は第1弱電界領域の下限値及び第2弱電界領域の上限値を定める閾値電圧であり、Vref1>Vref2に設定される。コンパレータ130の出力SHCC1及びコンパレータ132の出力SHCC2は、加算回路134に入力される。加算回路134は、SHCC1,SHCC2の合計値に応じた電圧信号SHCCを生成し、HCCフィルタ回路94へ制御信号として出力する。具体的には、加算回路134の出力SHCCは、HCCフィルタ回路94の混合器110に供給され、当該混合器110のバイパス回路114からの入力信号とRCフィルタ112からの入力信号との混合比を制御する。 The reception electric field strength determination circuit 84 includes comparators 130 and 132 and an addition circuit 134. The comparators 130 and 132 respectively compare the received electric field strength signal S M-DC from the S meter circuit 82 shown in FIG. 1 with the threshold voltages V ref1 and V ref2 generated by the reference power supply, respectively, and according to the comparison result. Voltage signals S HCC1 and S HCC2 are output. Here, V ref1 is a threshold voltage that determines the upper limit value of the first weak electric field region, while V ref2 is a threshold voltage that determines the lower limit value of the first weak electric field region and the upper limit value of the second weak electric field region, V ref1 > V ref2 is set. Output S HCC2 output S HCC1 and comparator 132 of the comparator 130 is input to the adder circuit 134. The adder circuit 134 generates a voltage signal S HCC corresponding to the total value of S HCC1 and S HCC2 and outputs it to the HCC filter circuit 94 as a control signal. Specifically, the output S HCC of the adder circuit 134 is supplied to the mixer 110 of the HCC filter circuit 94, and the mixing ratio between the input signal from the bypass circuit 114 of the mixer 110 and the input signal from the RC filter 112. To control.

次に、HCCフィルタ回路94及び受信電界強度判別回路84により行われるHCCの動作について説明する。受信電界強度判別回路84は、Sメータ回路82からのSM−DCに基づいて、現在の受信電界強度が、中電界以上の領域、第1弱電界領域、及び第2弱電界領域のいずれに属するかを判別する。中電界以上の場合、すなわちSM−DC≧Vref1の場合、コンパレータ130,132は共に所定の高電圧(Hレベル)を出力し、これに応じて加算回路134は出力信号SHCCとして電圧Vを出力する。Vref1>SM−DC≧Vref2である第1弱電界領域の場合、コンパレータ130はHレベルより低い所定の低電圧(Lレベル)を出力する一方、コンパレータ132はHレベルを出力し、これに応じて加算回路134は出力信号SHCCとして電圧Vを出力する。Vref2>SM−DCである第2弱電界領域の場合、コンパレータ130,132は共にLレベルを出力し、これに応じて加算回路134は出力信号SHCCとして電圧Vを出力する。ここで、V,V,Vは例えば、V>V>Vという関係を有する電圧である。このように受信電界強度の属する領域に応じて、コンパレータ130,132の出力信号の組み合わせが相違し、この出力信号に基づき、加算回路134の出力信号SHCCの電圧も段階的に変化する。混合器110はSHCCに応じて混合比を変化させ、これによりHCCフィルタ回路94は各領域別に異なるフィルタ特性となるように制御される。 Next, the operation of HCC performed by the HCC filter circuit 94 and the received electric field strength determination circuit 84 will be described. Based on the SM-DC from the S meter circuit 82, the received electric field strength discriminating circuit 84 determines whether the current received electric field strength is any of the region above the middle electric field, the first weak electric field region, and the second weak electric field region. Determine if it belongs. When the electric field is equal to or higher than the medium electric field, that is, when S M−DC ≧ V ref1 , the comparators 130 and 132 both output a predetermined high voltage (H level), and the adder circuit 134 outputs the voltage V H as the output signal S HCC accordingly. 1 is output. In the case of the first weak electric field region where V ref1 > S M-DC ≧ V ref2 , the comparator 130 outputs a predetermined low voltage (L level) lower than the H level, while the comparator 132 outputs the H level. addition circuit 134 outputs a voltage V 2 as the output signal S HCC according to. In the case of the second weak electric field region where V ref2 > S M-DC , both the comparators 130 and 132 output the L level, and in response thereto, the adder circuit 134 outputs the voltage V 3 as the output signal S HCC . Here, V 1 , V 2 , and V 3 are voltages having a relationship of V 1 > V 2 > V 3 , for example. Thus, the combination of the output signals of the comparators 130 and 132 differs depending on the region to which the received electric field strength belongs, and the voltage of the output signal SHCC of the adder circuit 134 also changes stepwise based on this output signal. The mixer 110 changes the mixing ratio in accordance with the S HCC , whereby the HCC filter circuit 94 is controlled to have different filter characteristics for each region.

具体的には、混合器110は、その出力信号SH−MIDにおける2つの入力信号の混合比に関して、SHCCが高いほどバイパス回路114からの成分比率を高め、一方、SHCCが低くなるほど、RCフィルタ112からの成分比率を高めるように構成される。 Specifically, the mixer 110 increases the component ratio from the bypass circuit 114 as S HCC is higher with respect to the mixing ratio of the two input signals in the output signal S H-MID , while the S HCC is lower as The component ratio from the RC filter 112 is increased.

この構成により、中電界以上では、HCCフィルタ回路94は、その入力信号SH−INに対して、RCフィルタ112の高周波数成分の除去作用を受けていないSH−OUTを出力する。すなわち、HCCフィルタ回路94から出力されるSL+Rは基本的に、HCCフィルタ回路94による高周波数成分の除去を受けていない信号となる。 With this configuration, the HCC filter circuit 94 outputs SH-OUT that has not been subjected to the removal of the high-frequency component of the RC filter 112 with respect to the input signal SH-IN above the medium electric field. That is, S L + R output from the HCC filter circuit 94 is basically a signal that has not been subjected to high frequency component removal by the HCC filter circuit 94.

一方、第1弱電界領域では、RCフィルタ112による高周波数成分除去作用を受けたSL+Rが生成され、また、第2弱電界領域では、さらにRCフィルタ112による高周波数成分除去作用を強く受けたSL+Rが生成される。 On the other hand, in the first weak electric field region, S L + R subjected to the high frequency component removal action by the RC filter 112 is generated, and in the second weak electric field region, the high frequency component removal action by the RC filter 112 is further strongly received. S L + R is generated.

図3は、FMラジオ受信機50の入出力特性を説明する模式的なグラフである。横軸は、アンテナ52への入力レベルVINをデシベルスケールで表しており、一方、縦軸は、出力レベルVOUTをデシベルスケールで表している。特性150は例えば、1kHzの周波数成分に対する出力音声信号特性曲線を表し、また、特性152は例えば、10kHzの周波数成分に対する出力音声信号特性曲線であり、HCCの特性を表す。特性154は出力ノイズ特性曲線を表す。さらに、同図には、Sメータ回路82から出力されるSM−DCの電圧レベルと受信電界強度との関係を表す特性156も示されている。なお、当該特性156は、左側の縦軸に示すデシベルスケールではなく、右側の縦軸に示すリニアスケール(任意単位)で表している。SM−DCに対する閾値Vref1,Vref2それぞれに対応する入力レベルVINは、横軸に示す点ξ,ξである。本実施形態のHCCの回路構成により、第1弱電界領域に対応するξ>VIN≧ξでは、高周波数成分の除去は控えめに行われるのに対して、第2弱電界領域に対応するξ>VINでは、1kHz成分(特性150)と比較して10kHz成分(特性152)が大きく低減されることが示すように、強力に高周波数成分の除去が行われる。ちなみに、第2弱電界領域での特性152に近接して示す点線は、第1弱電界領域での混合比を維持したと仮定した場合の特性を比較のために表している。 FIG. 3 is a schematic graph illustrating input / output characteristics of the FM radio receiver 50. The horizontal axis represents the input level VIN to the antenna 52 in decibel scale, while the vertical axis represents the output level VOUT in decibel scale. For example, the characteristic 150 represents an output audio signal characteristic curve with respect to a frequency component of 1 kHz, and the characteristic 152 is an output audio signal characteristic curve with respect to a frequency component of 10 kHz, for example, and represents an HCC characteristic. A characteristic 154 represents an output noise characteristic curve. Furthermore, the figure also shows a characteristic 156 representing the relationship between the voltage level of the SM-DC output from the S meter circuit 82 and the received electric field strength. Note that the characteristic 156 is represented not by the decibel scale shown by the left vertical axis but by the linear scale (arbitrary unit) shown by the right vertical axis. The input levels VIN corresponding to the threshold values V ref1 and V ref2 for the S M-DC are points ξ 1 and ξ 2 shown on the horizontal axis. According to the circuit configuration of the HCC of the present embodiment, when ξ 1 > V IN ≧ ξ 2 corresponding to the first weak electric field region, high frequency components are removed conservatively, while corresponding to the second weak electric field region. When ξ 2 > V IN , the high-frequency component is strongly removed, as shown by the fact that the 10 kHz component (characteristic 152) is greatly reduced compared to the 1 kHz component (characteristic 150). Incidentally, the dotted line shown close to the characteristic 152 in the second weak electric field region represents the characteristic when it is assumed that the mixing ratio in the first weak electric field region is maintained for comparison.

この第1弱電界領域よりも強力に高周波数成分の除去を行う第2弱電界領域を、弱電界でのパルスノイズの除去目的範囲に合わせて設定することで、当該ノイズを好適に除去できる一方、中電界以上の領域に近い第1弱電界領域では、不要に再生音声の高域が抑圧されることを防止できる。第1弱電界領域でのHCCに対する第2弱電界領域でのHCCの相対的な強度は、上述の制御電圧V,Vにより調節することができる。 By setting the second weak electric field region that removes high frequency components more strongly than the first weak electric field region in accordance with the target range for removing pulse noise in the weak electric field, the noise can be suitably removed. In the first weak electric field region close to the medium electric field or higher region, it is possible to prevent the high frequency range of the reproduced sound from being suppressed unnecessarily. The relative strength of HCC in the second weak electric field region with respect to HCC in the first weak electric field region can be adjusted by the control voltages V 2 and V 3 described above.

なお、ここではHCCフィルタ回路94を1段のフィルタ回路で構成したが、図4に示すように、HCCフィルタ回路94を同様のフィルタ回路100,102を直列に2段接続する構成とすることもできる。フィルタ回路100は、混合器110と、RCフィルタ112と、バイパス回路114とを含んで構成され、信号SH−MIDを出力する。一方、フィルタ回路102もフィルタ回路100と基本的な構成は共通であり、混合器120と、RCフィルタ122と、バイパス回路124とを含んで構成される。混合器110はコンパレータ130の出力SHCC1により混合比を制御され、混合器120はコンパレータ132の出力SHCC2により混合比を制御される。混合器110は、その出力信号SH−MIDにおける2つの入力信号の混合比に関して、コンパレータ130の出力信号SHCC1がHレベルのとき、SH−MIDが基本的にバイパス回路114からの成分で占められ、一方、SHCC1がLレベルのとき、SH−MIDが基本的にRCフィルタ112からの成分で占められるように構成される。同様に、混合器120は、その出力信号SH−OUTにおける2つの入力信号の混合比に関して、コンパレータ132の出力信号SHCC2がHレベルのとき、SH−OUTが基本的にバイパス回路124からの成分で占められ、一方、SHCC2がLレベルのとき、SH−OUTが基本的にRCフィルタ122からの成分で占められるように構成される。 Here, the HCC filter circuit 94 is constituted by a single-stage filter circuit. However, as shown in FIG. 4, the HCC filter circuit 94 may be constituted by connecting similar filter circuits 100 and 102 in two stages in series. it can. The filter circuit 100 includes a mixer 110, an RC filter 112, and a bypass circuit 114, and outputs a signal SH-MID . On the other hand, the basic configuration of the filter circuit 102 is the same as that of the filter circuit 100, and includes a mixer 120, an RC filter 122, and a bypass circuit 124. The mixing ratio of the mixer 110 is controlled by the output S HCC1 of the comparator 130, and the mixing ratio of the mixer 120 is controlled by the output S HCC2 of the comparator 132. Regarding the mixing ratio of the two input signals in the output signal SH -MID , the mixer 110 basically has the SH -MID as a component from the bypass circuit 114 when the output signal SHCC1 of the comparator 130 is at the H level. On the other hand, when SHCC1 is at the L level, the SH -MID is basically configured to be occupied by the component from the RC filter 112. Similarly, with respect to the mixing ratio of two input signals in the output signal SH -OUT , the mixer 120 basically outputs SH -OUT from the bypass circuit 124 when the output signal SHHC2 of the comparator 132 is at the H level. On the other hand, when SHCC2 is at the L level, SH -OUT is basically occupied by the component from the RC filter 122.

この構成により、中電界以上では、HCCフィルタ回路94は、その入力信号SH−INに対して、RCフィルタ112,122のいずれの高周波数成分の除去作用をも受けていないSH−OUTを出力する。 With this configuration, at a medium electric field or higher, the HCC filter circuit 94 receives the SH -OUT that has not been subjected to the removal of any high-frequency components of the RC filters 112 and 122 with respect to the input signal SH -IN . Output.

一方、第1弱電界領域では、HCCフィルタ回路94は、その入力信号SH−INに対して、RCフィルタ112,122のうちRCフィルタ112のみを作用させたSH−OUTを出力する。 On the other hand, in the first weak electric field region, the HCC filter circuit 94 outputs SH -OUT obtained by applying only the RC filter 112 of the RC filters 112 and 122 to the input signal SH -IN .

さらに、第2弱電界領域では、HCCフィルタ回路94は、その入力信号SH−INに対して、RCフィルタ112,122の両方を作用させたSH−OUTを出力する。従って、SH−OUTは基本的に、RCフィルタ112,122の周波数特性の積に応じた高周波数成分除去を施された信号となる。つまり、HCCフィルタ回路94は、第1弱電界領域よりも第2弱電界領域にて、より強力に高周波数成分を除去する。 Further, in the second weak electric field region, the HCC filter circuit 94 outputs SH -OUT obtained by applying both the RC filters 112 and 122 to the input signal SH -IN . Therefore, SH -OUT is basically a signal that has been subjected to high frequency component removal corresponding to the product of the frequency characteristics of the RC filters 112 and 122. That is, the HCC filter circuit 94 removes the high frequency component more strongly in the second weak electric field region than in the first weak electric field region.

また、上述の構成では、HCCの強度が2段階に変化する構成を示したが、SM−DCのレベルを判定するコンパレータを増やし、より多段階に変化する構成とすることもできる。また、上述の構成では、RCフィルタで構成される複数のLPFを用いる構成として、それらが直列接続される構成を示したが、特性が異なるLPFを並列に配置し、それらのいずれかをスイッチ回路で選択する構成とすることもできる。 In the above-described configuration, the configuration in which the strength of the HCC changes in two stages is shown, but a configuration in which the number of comparators for determining the level of SM -DC is increased to change in more stages can be used. Further, in the above-described configuration, a configuration in which a plurality of LPFs configured by RC filters are used is shown as a configuration in which they are connected in series. However, LPFs having different characteristics are arranged in parallel, and any one of them is connected to a switch circuit. It can also be set as the structure selected by.

本発明の実施形態に係るFMラジオ受信機の概略のブロック構成図である。1 is a schematic block configuration diagram of an FM radio receiver according to an embodiment of the present invention. 本発明の実施形態のFMラジオ受信機におけるHCCフィルタ回路及び受信電界強度判別回路の概略の構成を示す回路図である。It is a circuit diagram which shows the schematic structure of the HCC filter circuit and reception electric field strength discrimination | determination circuit in the FM radio receiver of embodiment of this invention. 本発明の実施形態に係るFMラジオ受信機の入出力特性を説明する模式的なグラフである。It is a typical graph explaining the input-output characteristic of the FM radio receiver which concerns on embodiment of this invention. 本発明の実施形態のFMラジオ受信機におけるHCCフィルタ回路及び受信電界強度判別回路の他の概略の構成を示す回路図である。It is a circuit diagram which shows the other schematic structure of the HCC filter circuit and reception electric field strength discrimination | determination circuit in the FM radio receiver of embodiment of this invention. 従来のHCC機能を実現するHCCフィルタ回路及び受信電界強度判別回路の回路図である。It is a circuit diagram of the HCC filter circuit and reception electric field strength discrimination circuit which implement | achieve the conventional HCC function.

符号の説明Explanation of symbols

50 FMラジオ受信機、52 アンテナ、54 RFアンプ、56 第1局部発振回路、58 第1混合回路、60,64 BPF、62 アンプ、66 第2局部発振回路、68 第2混合回路、70 IFBPF、72 リミッタアンプ、74 検波回路、76 ステレオ復調部、82 Sメータ回路、84 受信電界強度判別回路、90 メイン復調回路、92 サブ復調回路、94 HCCフィルタ回路、96 マトリクス回路、100,102 フィルタ回路、110,120 混合器、112,122 RCフィルタ、114,124 バイパス回路、130,132 コンパレータ。   50 FM radio receiver, 52 antenna, 54 RF amplifier, 56 first local oscillation circuit, 58 first mixing circuit, 60, 64 BPF, 62 amplifier, 66 second local oscillation circuit, 68 second mixing circuit, 70 IFBPF, 72 limiter amplifier, 74 detector circuit, 76 stereo demodulator, 82 S meter circuit, 84 reception field strength discriminating circuit, 90 main demodulator circuit, 92 sub demodulator circuit, 94 HCC filter circuit, 96 matrix circuit, 100, 102 filter circuit, 110, 120 Mixer, 112, 122 RC filter, 114, 124 Bypass circuit, 130, 132 Comparator.

Claims (2)

受信信号を復調し、復調信号を生成する復調回路と、
前記受信信号に基づいて、受信電界強度に応じた電界強度信号を生成する強度信号生成回路と、
前記電界強度信号に基づいて、前記受信電界強度が所定の第1閾値以上である中電界以上の領域、前記第1閾値未満かつ所定の第2閾値以上である第1弱電界領域、及び前記第2閾値未満である第2弱電界領域のいずれにあるかを判別する受信電界強度判別回路と、
前記第1弱電界領域及び前記第2弱電界領域にて動作し、前記復調信号に含まれる高周波数域のノイズ成分を減衰させるハイカット回路と、
を有し、
前記ハイカット回路は、前記受信電界強度判別回路による判別結果に応じて減衰特性を変化させ、所定の目的高周波数域での減衰度を前記第1弱電界領域よりも前記第2弱電界領域にて大きく設定すること、
を特徴とするラジオ受信機。
A demodulation circuit that demodulates the received signal and generates a demodulated signal;
An intensity signal generation circuit for generating an electric field strength signal corresponding to the received electric field strength based on the received signal;
Based on the electric field strength signal, the received electric field strength is a region that is equal to or greater than a predetermined first threshold value, a first weak electric field region that is less than the first threshold value and is equal to or greater than a predetermined second threshold value, and the first A received electric field strength discriminating circuit for discriminating which of the second weak electric field regions is less than two threshold values;
A high cut circuit that operates in the first weak electric field region and the second weak electric field region and attenuates a noise component in a high frequency region included in the demodulated signal;
Have
The high cut circuit changes an attenuation characteristic according to a determination result by the reception electric field strength determination circuit, and a degree of attenuation in a predetermined target high frequency region is higher in the second weak electric field region than in the first weak electric field region. Set it larger,
A radio receiver characterized by.
請求項1に記載のラジオ受信機において、
前記第2弱電界領域は、前記復調信号に含まれる弱電界ノイズの発生電界領域に対応して設定されること、を特徴とするラジオ受信機。
The radio receiver according to claim 1,
The radio receiver according to claim 1, wherein the second weak electric field region is set corresponding to an electric field region where weak electric field noise is included in the demodulated signal.
JP2007320611A 2007-12-12 2007-12-12 Radio receiver Pending JP2009147500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007320611A JP2009147500A (en) 2007-12-12 2007-12-12 Radio receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007320611A JP2009147500A (en) 2007-12-12 2007-12-12 Radio receiver

Publications (1)

Publication Number Publication Date
JP2009147500A true JP2009147500A (en) 2009-07-02

Family

ID=40917638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007320611A Pending JP2009147500A (en) 2007-12-12 2007-12-12 Radio receiver

Country Status (1)

Country Link
JP (1) JP2009147500A (en)

Similar Documents

Publication Publication Date Title
JP5331130B2 (en) System and method for station detection and search in a wireless receiver
JP4916974B2 (en) FM tuner
US8095095B2 (en) Band switch control apparatus for intermediate frequency filter
US7440737B2 (en) Noise blanker control
CN101383623B (en) FM tuner
JP2009105727A (en) Fm receiver
JP4837591B2 (en) FM receiver
US7542748B2 (en) Signal processing circuit comprising an attenuating unit, a detecting unit, and an attenuation rate setting unit
JP4682133B2 (en) Method and apparatus for providing an automatic gain control function using multiple feedback sources
US20100284541A1 (en) Receiving apparatus
US20070003070A1 (en) Signal detection method and device
JP4258373B2 (en) Receiving machine
JP2009088618A (en) Receiving device
JPH07231273A (en) Tuner for receiving satellite broadcast
US8619997B2 (en) Receiving apparatus
JP2009147500A (en) Radio receiver
JP2006191430A (en) Radio receiver
JP2009273093A (en) Fm receiver
US7627030B2 (en) Radio receiver with selectively disabled equalizer
JP4160269B2 (en) FM radio receiver
JP4805221B2 (en) FM tuner
JP2009021721A (en) Fm tuner
JP2009105729A (en) Fm radio receiver
JP2004363694A (en) Receiver provided with noise canceller
JP4775740B2 (en) Receiver circuit

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20110601

Free format text: JAPANESE INTERMEDIATE CODE: A711