JP2009141172A - Electronic device and method of manufacturing substrate - Google Patents

Electronic device and method of manufacturing substrate Download PDF

Info

Publication number
JP2009141172A
JP2009141172A JP2007316720A JP2007316720A JP2009141172A JP 2009141172 A JP2009141172 A JP 2009141172A JP 2007316720 A JP2007316720 A JP 2007316720A JP 2007316720 A JP2007316720 A JP 2007316720A JP 2009141172 A JP2009141172 A JP 2009141172A
Authority
JP
Japan
Prior art keywords
substrate
thickness
metal plate
electronic device
inner layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007316720A
Other languages
Japanese (ja)
Inventor
Yuichi Sakaguchi
友一 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007316720A priority Critical patent/JP2009141172A/en
Publication of JP2009141172A publication Critical patent/JP2009141172A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electronic device in which heat dissipation of electronic components is enhanced by improving heat conductivity of an intervening agent, and to provide a method of manufacturing a substrate. <P>SOLUTION: In the electronic device 100 having a substrate 12 stuck on a metal plate 14 through the intervening agent 13 such as an adhesive and grease, the substrate 12 has: a pad portion 15b of an inner layer electrode 15 exposed to the side of the electronic component 11; and a pad portion 15a exposed to the side of the metal plate 14, the pad portion 15a being a thickness-regulating member for regulating the thickness of the intervening agent 13. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、基板を金属板に貼り合わせた電子装置等に関し、特に、基板と金属板を介装する介装剤の厚みを規定した電子装置及び基板の製造方法に関する。   The present invention relates to an electronic device or the like in which a substrate is bonded to a metal plate, and more particularly, to an electronic device and a method for manufacturing the substrate that define the thickness of an intervening agent that interposes the substrate and the metal plate.

電子部品、特にパワーMOSやIGBT(Insulated Gate Bipolar Transistor)等のパワー半導体は発熱が大きく、電子部品が固定された基板102を介して放熱させる構造を取ることが多い。図6は、従来の電子部品の放熱構造の一例を示す。基板102に固定された電子部品101の発熱を接着剤又はグリース(以下、介装剤という)103を介して金属板104に伝熱することで、熱伝導率の高い金属板から効率よく放熱することを図っている。しかしながら、金属板104と比べ介装剤103の熱伝導率が小さく、放熱性が低下することが知られている。例えば、介装剤103の熱伝導率は数W/mkであるのに対し、金属板104の熱伝導率は100〜200W/mkである(アルミの場合約200W/mk)。このため、効率よく放熱するには介装剤103を極力薄くすることが要求されるが、従来の介装剤103の厚さdは120μm±40μmと、比較的大きな厚みとなっている。   Electronic components, particularly power semiconductors such as power MOSs and IGBTs (Insulated Gate Bipolar Transistors), generate a large amount of heat and often have a structure in which heat is radiated through a substrate 102 on which the electronic components are fixed. FIG. 6 shows an example of a conventional heat dissipation structure for an electronic component. The heat generated by the electronic component 101 fixed to the substrate 102 is transferred to the metal plate 104 via an adhesive or grease (hereinafter referred to as an intervening agent) 103, thereby efficiently radiating heat from the metal plate having high thermal conductivity. I am trying to do that. However, it is known that the thermal conductivity of the intercalating agent 103 is smaller than that of the metal plate 104 and the heat dissipation is reduced. For example, the thermal conductivity of the intercalating agent 103 is several W / mk, whereas the thermal conductivity of the metal plate 104 is 100 to 200 W / mk (about 200 W / mk in the case of aluminum). For this reason, in order to efficiently dissipate heat, it is required to make the intercalating agent 103 as thin as possible. However, the thickness d of the conventional intervening agent 103 is 120 μm ± 40 μm, which is a relatively large thickness.

ところで、電子機器をアッセンブリする際、金属板104上に基板102を搭載する工程において、例えば金属板104に膜状に塗布した接着剤に基板102を配置して接着剤を硬化させることで、基板102を金属板104上に固定する固定方法が知られている(例えば、特許文献1、2参照。)。特許文献1には、電子部品101(基板102に相当)と基板102(金属板104に相当)との間にスペーサを狭装し、スペーサの厚さにより電子部品下の接着材の厚さを規定する固定方法が記載されている。また、特許文献2には、電子部品101(基板102に相当)の基板102(金属板104に相当)側にバンプ電極を設け、バンプ電極と基板とが導通した状態で電子部品101と基板102の間の接着剤を硬化させる固定方法が記載されている。
特開2006−23250号公報 特開2005−252135号公報
By the way, when assembling an electronic device, in the step of mounting the substrate 102 on the metal plate 104, for example, the substrate 102 is placed on the adhesive applied in a film shape on the metal plate 104 and the adhesive is cured, thereby the substrate. A fixing method for fixing 102 on a metal plate 104 is known (for example, see Patent Documents 1 and 2). In Patent Document 1, a spacer is sandwiched between the electronic component 101 (corresponding to the substrate 102) and the substrate 102 (corresponding to the metal plate 104), and the thickness of the adhesive under the electronic component is determined by the thickness of the spacer. The specified fixing method is described. In Patent Document 2, a bump electrode is provided on the substrate 102 (corresponding to the metal plate 104) side of the electronic component 101 (corresponding to the substrate 102), and the electronic component 101 and the substrate 102 are in a state where the bump electrode and the substrate are electrically connected. A fixing method is described in which the adhesive is cured.
JP 2006-23250 A JP-A-2005-252135

しかしながら、特許文献1の固定方法のようにスペーサを狭装して介装剤103の厚さを規定する場合、充分な薄さのスペーサを用意することが困難であり、高精度に厚みを制御されたスペーサを用意するとコスト増となるおそれがある。また、スペーサの厚さが均一でないと介装剤103の厚さも不均一になってしまう。また、特許文献2の固定方法のように電極バンプを設けた場合、高さの極低い電極バンプを形成したり電極バンプ間の高さを均一にすることは難しく、介装剤103の厚さを極力薄くすることは困難である。   However, when the thickness of the mediator 103 is defined by narrowing the spacer as in the fixing method of Patent Document 1, it is difficult to prepare a sufficiently thin spacer, and the thickness is controlled with high accuracy. If a prepared spacer is prepared, the cost may increase. Further, if the spacer thickness is not uniform, the thickness of the intercalating agent 103 will also be non-uniform. Further, when electrode bumps are provided as in the fixing method of Patent Document 2, it is difficult to form extremely low electrode bumps or make the height between the electrode bumps uniform, and the thickness of the intercalation agent 103 It is difficult to make the thickness as thin as possible.

本発明は、上記課題に鑑み、介装剤の伝熱性を向上させ電子部品の放熱性にすぐれた電子装置及び基板の製造方法を提供することを目的とする。   An object of this invention is to provide the manufacturing method of an electronic device and a board | substrate which improved the heat conductivity of the intervention agent and was excellent in the heat dissipation of an electronic component in view of the said subject.

上記課題に鑑み、本発明は、介装剤を介して基板を金属板に貼り合わせた電子装置において、基板は、金属板側に介装剤の厚さを規定する厚さ規定部材を有する、ことを特徴とする。   In view of the above problems, the present invention provides an electronic device in which a substrate is bonded to a metal plate via an intervening agent, and the substrate has a thickness defining member that defines the thickness of the intercalating agent on the metal plate side. It is characterized by that.

本発明によれば、介装剤の厚みを厚さ規定部材に規定できるので、介装剤の伝熱性を向上させることができる。   According to the present invention, since the thickness of the intervention agent can be regulated by the thickness regulating member, the heat transfer property of the intervention agent can be improved.

また、本発明の一形態において、厚さ規定部材はメッキ工程にて形成された膜である、ことを特徴とする。   In one embodiment of the present invention, the thickness defining member is a film formed by a plating process.

本発明によれば、メッキ加工により厚さ規定部材を形成するので、厚さ規定部材を薄くかつ高精度に形成することができる。   According to the present invention, since the thickness defining member is formed by plating, the thickness defining member can be formed thin and with high accuracy.

また、本発明の一形態において、厚さ規定部材は、金属板側の面から反対側の面まで基板を貫通し反対側の面に露出した導通材と導通している、ことを特徴とする。   In one embodiment of the present invention, the thickness defining member is electrically connected to a conductive material penetrating the substrate from the surface on the metal plate side to the opposite surface and exposed on the opposite surface. .

本発明によれば、厚さ規定部材が基板を貫通した導通材と導通しているので、基板の反対側の面に露出した導通材と金属板との導通をチェックすることで、介装剤の厚さが厚さ規定部材の厚さとなるよう基板を金属板に固定できたか否かを検査することができる。   According to the present invention, since the thickness defining member is electrically connected to the conductive material penetrating the substrate, the interposition agent is checked by checking the conductivity between the conductive material exposed on the opposite surface of the substrate and the metal plate. It can be inspected whether or not the substrate can be fixed to the metal plate so that the thickness of the substrate becomes the thickness of the thickness defining member.

介装剤の伝熱性を向上させ電子部品の放熱性にすぐれた電子装置及び基板の製造方法を提供することができる。   It is possible to provide a method for manufacturing an electronic device and a substrate that improve the heat conductivity of the intercalating agent and have excellent heat dissipation of the electronic component.

以下、本発明実施するために最良の形態について図面を参照しながら説明する。
図1は、本実施形態の放熱構造を備えた電子装置100の概略断面図を示す。電子装置100は、放熱用の金属板14と、電子部品11が搭載された基板12とが、介装剤13を介して固定されている。介装剤13の厚さdは内層電極15のパッド部15aのパッド厚d‘により規定される。パッド部15aはメッキにより形成されているので、パッド厚d’を最小で数ミクロン程度に制御してパッド部15aを形成することができる。
The best mode for carrying out the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic cross-sectional view of an electronic device 100 including the heat dissipation structure of this embodiment. In the electronic device 100, a metal plate 14 for heat dissipation and a substrate 12 on which the electronic component 11 is mounted are fixed via an intercalating agent 13. The thickness d of the intercalating agent 13 is defined by the pad thickness d ′ of the pad portion 15 a of the inner layer electrode 15. Since the pad portion 15a is formed by plating, the pad portion 15a can be formed by controlling the pad thickness d 'to a minimum of several microns.

したがって、熱伝導率の小さい介装剤13の厚さを、単に膜状に塗布した場合等と比較して10分の1以下に薄くすることができるので、電子部品11の発する熱を金属板14から放熱しやすくすることができる。   Therefore, since the thickness of the intercalating agent 13 having a low thermal conductivity can be reduced to 1/10 or less compared with the case where it is simply applied in the form of a film or the like, the heat generated by the electronic component 11 can be reduced to a metal plate. The heat can be easily radiated from 14.

また、内層電極15の電子部品11側(以下、電子部品11側を表面と、反対側を裏面という。)に露出したパッド部15bと、パッド部15aは内層スルーホール15cにより導通しているので、金属板14とパッド部15bとの導通をチェックすることで、パッド部15aのパッド厚d‘で基板12を金属板14に固定できたか否かを検査することができる。   Further, the pad portion 15b exposed to the electronic component 11 side of the inner layer electrode 15 (hereinafter, the electronic component 11 side is referred to as the front surface and the opposite side is referred to as the rear surface) and the pad portion 15a are electrically connected by the inner layer through hole 15c. By checking the conduction between the metal plate 14 and the pad portion 15b, it is possible to inspect whether or not the substrate 12 can be fixed to the metal plate 14 with the pad thickness d ′ of the pad portion 15a.

図2は、電子装置100の製造工程の一例を示す。始めに、基板12に内層電極15を形成する。図2(a)の基板12は、プリント基板等に用いられる一般的な材料、例えば、ガラスエポキシ樹脂、セラミック(アルミナ)、紙フェノール、ガラスコンポジット、テフロン(登録商標)等で形成する。熱伝導率を考慮すれば例えばセラミック(18W/mk)がガラスエポキシ(0.1W/mk)よりも好ましい。   FIG. 2 shows an example of a manufacturing process of the electronic device 100. First, the inner layer electrode 15 is formed on the substrate 12. The substrate 12 in FIG. 2A is formed of a general material used for a printed circuit board or the like, for example, glass epoxy resin, ceramic (alumina), paper phenol, glass composite, Teflon (registered trademark), or the like. In consideration of thermal conductivity, for example, ceramic (18 W / mk) is preferable to glass epoxy (0.1 W / mk).

内層電極15は、基板12の表面から裏面まで貫通した貫通孔に導通材を貫通させ、基板12の少なくとも裏面にパッド厚d‘が制御された金属を析出して形成する(図2(b))。パッド部15aの形成にはメッキ工程を適用するが詳しくは後述する。   The inner layer electrode 15 is formed by passing a conductive material through a through-hole penetrating from the front surface to the back surface of the substrate 12 and depositing a metal with a controlled pad thickness d ′ on at least the back surface of the substrate 12 (FIG. 2B). ). A plating process is applied to form the pad portion 15a, which will be described later in detail.

次に、基板12の所定位置に電子部品11を搭載する(図2(c))。電子部品11は、例えば、発熱の大きいパワーMOSやIGBT等のパワー半導体、マイクロプロセッサ、発光素子等であるが、どのような電子部品11を搭載してもよい。電子部品11は例えばはんだ、導電性ペースト又はアンダーフィルを硬化させて基板12に搭載されている。   Next, the electronic component 11 is mounted at a predetermined position on the substrate 12 (FIG. 2C). The electronic component 11 is, for example, a power semiconductor such as a power MOS or IGBT that generates a large amount of heat, a microprocessor, a light emitting element, or the like, but any electronic component 11 may be mounted. The electronic component 11 is mounted on the substrate 12 by curing, for example, solder, conductive paste, or underfill.

次に、パッド部15aと金属板14とが当接する当接面に接着剤又はグリースが接触しないように、金属板14の所定部位に接着剤又はグリース等を膜状に塗布し、基板12を金属板14の方向に加圧する。基板12の加圧により、介装剤13の厚さdがパッド厚d‘になるまで介装剤13(接着剤又はグリース等)が流動する。したがって、介装剤13の厚さdはパッド部15aのパッド厚d’に規定され、その薄さにより良好な伝熱性を実現する。介装剤13は、例えば、熱、時間、光等の作用で硬化する接着剤、又は、放熱性に優れたシリコングリース等であり、介装剤13が充分に薄い厚さdまで流動することを考慮すると粘度の低い材料であることが好ましい。   Next, an adhesive or grease or the like is applied to a predetermined portion of the metal plate 14 in a film shape so that the adhesive or grease does not contact the contact surface where the pad portion 15a and the metal plate 14 abut, and the substrate 12 is Pressure is applied in the direction of the metal plate 14. Due to the pressurization of the substrate 12, the interstitial agent 13 (adhesive or grease, etc.) flows until the thickness d of the interstitial agent 13 reaches the pad thickness d ′. Therefore, the thickness d of the intercalating agent 13 is defined by the pad thickness d 'of the pad portion 15a, and good heat transfer is realized by the thinness. The intervening agent 13 is, for example, an adhesive that is cured by the action of heat, time, light, or silicon grease having excellent heat dissipation, and the intervening agent 13 flows to a sufficiently thin thickness d. In view of the above, it is preferable that the material has a low viscosity.

金属板14は、熱伝導率の高い例えば、アルミニウムや銅など金属材料が板状に形成されてなるものであり、電子部品11が発生した熱を外部に放熱するヒートシンクとしての機能を有している。なお、金属板14に冷却水等の流路を形成してもよいし、複数の金属板が積層されていてもよい。   The metal plate 14 is formed by forming a metal material such as aluminum or copper having a high thermal conductivity into a plate shape, and has a function as a heat sink that dissipates heat generated by the electronic component 11 to the outside. Yes. Note that a flow path such as cooling water may be formed in the metal plate 14, or a plurality of metal plates may be laminated.

内層電極15の形成工程について図3に基づき説明する。まず、基板12にスルーホール21を形成する(図3(a))。スルーホール21は例えば、レーザ又はドリルによって形成することができる。スルーホール21の直径は例えば数10〜数100μm、又は、数100μm〜数m程度であるが直径の大きさは適宜設計できる。レーザとしては例えば、炭酸レーザ(CO2)、エキシマレーザ、YAGレーザを用い、ドリルとしては例えば尖端にダイヤモンドチップを取り付けたドリルを用いる。   The formation process of the inner layer electrode 15 is demonstrated based on FIG. First, the through hole 21 is formed in the substrate 12 (FIG. 3A). The through hole 21 can be formed by, for example, a laser or a drill. The diameter of the through hole 21 is, for example, several tens to several hundreds μm, or about several hundreds μm to several meters, but the size of the diameter can be designed as appropriate. As the laser, for example, a carbon dioxide laser (CO2), excimer laser, or YAG laser is used, and as the drill, for example, a drill having a diamond tip attached to the tip is used.

次に、形成されたスルーホール21にスクリーン印刷等によって導電性ペースト22を充填する。導電性ペースト22を例えば加熱や光照射により硬化させ、その後、基板12表面及び裏面の導電性ペースト22の突出部分がなくなるように研磨し、基板12表面を平坦化する(図3(b))。   Next, the formed through hole 21 is filled with a conductive paste 22 by screen printing or the like. The conductive paste 22 is cured by, for example, heating or light irradiation, and then polished so as to eliminate the protruding portions of the conductive paste 22 on the front surface and the back surface of the substrate 12 to flatten the surface of the substrate 12 (FIG. 3B). .

次に、基板12に無電解メッキを施す。金属を含む溶剤(例えば水)に溶ける化合物と還元剤をメッキ液に溶かし、基板12をそのメッキ液に浸潤させ基板12の表面で金属を析出させる(図3(c))。必要に応じて、基板12に前処理(基板12表面を清浄化した後で活性化して、金属が析出しやすくする処理)を施す。溶解させる金属は例えば銅やニッケルである。なお、無電解メッキの後、電解メッキにより厚みを増大させてもよい。   Next, the substrate 12 is subjected to electroless plating. A compound that dissolves in a solvent containing metal (for example, water) and a reducing agent are dissolved in a plating solution, and the substrate 12 is infiltrated into the plating solution to deposit a metal on the surface of the substrate 12 (FIG. 3C). If necessary, the substrate 12 is subjected to a pretreatment (a treatment that activates after cleaning the surface of the substrate 12 so that metal is easily deposited). The metal to be dissolved is, for example, copper or nickel. In addition, after electroless plating, the thickness may be increased by electrolytic plating.

かかるメッキ工程で、パッド厚d‘を制御する。無電解メッキにより形成されるメッキ厚は、メッキ液の温度、金属濃度、液の攪拌速度等が一定であれば、基板12をメッキ液に浸潤させる時間により制御される。メッキ厚さは±10%程度の精度で制御でき、例えば数〜10μm程度のメッキ厚から形成できる。   In this plating process, the pad thickness d 'is controlled. The plating thickness formed by electroless plating is controlled by the time during which the substrate 12 is infiltrated into the plating solution if the temperature of the plating solution, the metal concentration, the stirring speed of the solution, etc. are constant. The plating thickness can be controlled with an accuracy of about ± 10%, and can be formed with a plating thickness of about several to 10 μm, for example.

本実施形態のパッド厚d‘は、基板12と金属板14の加工精度に応じて設定する。すなわち、基板12と金属板14が直接接触してしまい、パッド部15aの当接面が金属板14と離間することがないように設定する。パッド厚d’は例えば、好ましくは約10μm〜100μm、より好ましくは約10μm〜50μm、さらに好ましくは10μm〜30μmである。   The pad thickness d ′ of this embodiment is set according to the processing accuracy of the substrate 12 and the metal plate 14. That is, the setting is made so that the substrate 12 and the metal plate 14 are not in direct contact and the contact surface of the pad portion 15 a is not separated from the metal plate 14. The pad thickness d ′ is, for example, preferably about 10 μm to 100 μm, more preferably about 10 μm to 50 μm, and further preferably 10 μm to 30 μm.

なお、基板12の表面のパッド部15bは導通チェックに用いるだけなので、基板12の表面に露出していれば厚み制御されなくてもよい。   Since the pad portion 15b on the surface of the substrate 12 is only used for continuity check, the thickness may not be controlled as long as it is exposed on the surface of the substrate 12.

次に、金属膜23の表面に、フォトレジスト24をパターニングする(図3(d))。
金属膜23にフォトレジスト24を塗布し、遮光パターンを有するフォトマスクを介した露光を与え、現像及び硬膜処理を施す。フォトマスクのパターン形状は例えばスルーホール21より少し大きい円がスルーホール21と同位置に開口した形状である。なお、フォトレジスト24は、例えば、カゼイン又はポリビニルアルコールと、重クロム酸アンモンとを混合した水溶性のものである。
Next, a photoresist 24 is patterned on the surface of the metal film 23 (FIG. 3D).
Photoresist 24 is applied to metal film 23, exposure is performed through a photomask having a light-shielding pattern, and development and hardening are performed. The pattern shape of the photomask is, for example, a shape in which a circle slightly larger than the through hole 21 is opened at the same position as the through hole 21. Note that the photoresist 24 is a water-soluble one in which, for example, casein or polyvinyl alcohol and ammonium dichromate are mixed.

次に、フォトレジスト24をエッチングマスクとして使用しエッチングする(図3(e))。金属膜23を銅とした場合、エッチング液は塩化鉄又は塩化銅と水の混合液である。   Next, etching is performed using the photoresist 24 as an etching mask (FIG. 3E). When the metal film 23 is made of copper, the etching solution is iron chloride or a mixed solution of copper chloride and water.

そして、最後にスルーホール21上のフォトレジスト24を除去して金属膜23を露出させる(図3(f))。例えば、酸性の水溶液、アルカリ水溶液(水酸化ナトリウム・水酸化カリウム)に浸してフォトレジスト24を除去する。   Finally, the photoresist 24 on the through hole 21 is removed to expose the metal film 23 (FIG. 3F). For example, the photoresist 24 is removed by dipping in an acidic aqueous solution or an alkaline aqueous solution (sodium hydroxide / potassium hydroxide).

以上の処理で、基板12に内層電極15を形成できる。メッキ工程によりパッド部15aのパッド厚d‘を制御できるので、別体のスペーサ等で介装剤13の厚さdを制御する場合よりも、介装剤13の厚さdを小さくできる。したがって、電子部品11が発する熱を金属板14から放熱させやすくできる。また、内層電極15は金属板14とパッド部15bを導通させるので、金属板14とパッド部15bが導通しているか否かをチェックすることで、パッド厚d‘で基板12を金属板14に固定できたか否かを検査することができる。   With the above processing, the inner layer electrode 15 can be formed on the substrate 12. Since the pad thickness d 'of the pad portion 15a can be controlled by the plating process, the thickness d of the intercalating agent 13 can be made smaller than when the thickness d of the intervening agent 13 is controlled by a separate spacer or the like. Accordingly, the heat generated by the electronic component 11 can be easily radiated from the metal plate 14. Further, since the inner layer electrode 15 makes the metal plate 14 and the pad portion 15b conductive, it is checked whether or not the metal plate 14 and the pad portion 15b are conductive, thereby making the substrate 12 to the metal plate 14 with the pad thickness d ′. It can be inspected whether or not it has been fixed.

なお、図2(b)の状態から、例えばスパッタリングや蒸着により金属を成膜させてもよい。この場合、成膜前にスルーホール21以外の部分をマスクし、成膜後、マスクを除去することで、図5(f)と同等の内層電極15を形成することができる。   Note that, from the state of FIG. 2B, a metal film may be formed by sputtering or vapor deposition, for example. In this case, the inner layer electrode 15 equivalent to that shown in FIG. 5F can be formed by masking portions other than the through holes 21 before film formation and removing the mask after film formation.

内層電極15の形成工程の別の一例について図4に基づき説明する。図3と同一の工程は詳細を省略する。   Another example of the formation process of the inner layer electrode 15 will be described with reference to FIG. Details of the same steps as those in FIG. 3 are omitted.

まず、基板12にスルーホール21を形成する(図4(a))。次に、基板12に無電解メッキを施す(図4(b))。これにより基板12を覆う金属膜23が形成される。メッキ液はスルーホール21に浸入するが、スルーホール21内部はメッキ液との接触が少ないので、基板12表面よりも薄い金属膜23が形成される。断線を回避するためスルーホール21の直径を大きめにしてもよい。より好ましくは金属膜23がスルーホール21を閉塞してもよい。   First, the through hole 21 is formed in the substrate 12 (FIG. 4A). Next, electroless plating is applied to the substrate 12 (FIG. 4B). Thereby, a metal film 23 covering the substrate 12 is formed. Although the plating solution enters the through hole 21, the metal film 23 thinner than the surface of the substrate 12 is formed because the inside of the through hole 21 has little contact with the plating solution. To avoid disconnection, the diameter of the through hole 21 may be increased. More preferably, the metal film 23 may block the through hole 21.

次に、金属膜23の表面に、フォトレジスト24をパターニングする(図4(c))。フォトレジスト24のパターン形状は例えばスルーホール21より少し大きい同心円である。これにより、電子部品11側からスルーホール21、及び金属板14 側までフォトレジスト24により金属膜23をマスクできる。フォトレジスト24をパターニングする前にスルーホール21を穴埋めしてもよい。   Next, a photoresist 24 is patterned on the surface of the metal film 23 (FIG. 4C). The pattern shape of the photoresist 24 is, for example, a concentric circle slightly larger than the through hole 21. Thereby, the metal film 23 can be masked by the photoresist 24 from the electronic component 11 side to the through hole 21 and the metal plate 14 side. The through hole 21 may be filled before patterning the photoresist 24.

次に、フォトレジスト24をエッチングマスクとして使用しエッチングし(図4(d))、最後にフォトレジスト24を除去して金属膜23を露出させる(図4(e))。すなわち、基板12の表面と裏面を導通できればよいので、スルーホール21が導通材で閉塞されていなくてもよい。   Next, etching is performed using the photoresist 24 as an etching mask (FIG. 4D), and finally the photoresist 24 is removed to expose the metal film 23 (FIG. 4E). That is, since it is sufficient that the front surface and the back surface of the substrate 12 can be conducted, the through hole 21 may not be blocked by the conducting material.

以上の処理で、基板12に内層電極15を形成できる。図4のような工程では、導電性ペースト22の充填が不要なのでコスト増を抑制できる。   With the above processing, the inner layer electrode 15 can be formed on the substrate 12. In the process as shown in FIG. 4, it is not necessary to fill the conductive paste 22, so an increase in cost can be suppressed.

図5は、内層電極15の配置例を示す図である。図5(a)は基板12及び内層電極15の平面図の一例である。図5(a)では、基板12に4個の内層電極15が形成され、それぞれ基板12の中心線に対し線対称又は中心に対し点対称に配置されている。線対称又は点対称に内層電極15を配置することで、金属板14に加圧して基板12を固定する際、基板12が傾斜するおそれを低減できる。なお、4個以上の内層電極15を無作為(ランダム)に配置してもよい。また、内層電極15の数は5以上でもよく、その数は、基板12の面積とパッド部15aの面積の比率、基板12の剛性(たわみやすさ)等に応じて増減することが好適となる。   FIG. 5 is a diagram illustrating an arrangement example of the inner layer electrode 15. FIG. 5A is an example of a plan view of the substrate 12 and the inner layer electrode 15. In FIG. 5A, four inner layer electrodes 15 are formed on the substrate 12, and are arranged in line symmetry with respect to the center line of the substrate 12 or point symmetry with respect to the center. By arranging the inner layer electrodes 15 in line symmetry or point symmetry, the possibility of the substrate 12 tilting when pressing the metal plate 14 to fix the substrate 12 can be reduced. Four or more inner layer electrodes 15 may be arranged randomly (randomly). The number of inner layer electrodes 15 may be five or more, and the number is preferably increased or decreased according to the ratio of the area of the substrate 12 to the area of the pad portion 15a, the rigidity (easiness of deflection) of the substrate 12, and the like. .

図5(b)は基板12及び内層電極15の平面図の別の一例を示す。図5(b)では内層電極15が長方形に形成されている。長方形とすることで、金属板14との接触面積を増大させることができるので、金属板14に加圧して固定する際、基板12と内層電極15を安定して接触させることができる。長方形の内層電極15を3以上形成してもよいし、互いに長手方向が並行になるように配置するのでなく、長手方向が所定角度(例えば90度)を成すように配置してもよい。また、図5(b)では内層電極15の長手方向が基板12の辺に平行になるよう内層電極15を形成したが、基板12の辺と内層電極15の長手方向に角度を持たせてもよい。また、図5(a)と図5(b)の内層電極15を1つの基板12に混在させてもよい。   FIG. 5B shows another example of a plan view of the substrate 12 and the inner layer electrode 15. In FIG. 5B, the inner layer electrode 15 is formed in a rectangular shape. Since the contact area with the metal plate 14 can be increased by using a rectangular shape, the substrate 12 and the inner layer electrode 15 can be stably brought into contact with each other when the metal plate 14 is pressed and fixed. Three or more rectangular inner layer electrodes 15 may be formed, or may be arranged such that the longitudinal directions form a predetermined angle (for example, 90 degrees) instead of being arranged so that the longitudinal directions are parallel to each other. In FIG. 5B, the inner layer electrode 15 is formed so that the longitudinal direction of the inner layer electrode 15 is parallel to the side of the substrate 12, but an angle may be provided between the side of the substrate 12 and the longitudinal direction of the inner layer electrode 15. Good. Further, the inner layer electrode 15 shown in FIGS. 5A and 5B may be mixed in one substrate 12.

本実施形態の基板構造は、メッキ工程でパッド厚d‘を所定以下に薄くかつ高精度に制御してパッド部15aを形成することができるので、接着剤やグリースの介装剤13を薄くして電子部品11の放熱性を向上させることができる。また、介装剤13を薄くしても、内層電極15のパッド部15bと金属板14により導通チェックできるので、パッド厚d’で固定されていることを容易に検査できる。   In the substrate structure of this embodiment, the pad portion 15a can be formed by controlling the pad thickness d 'below a predetermined value and with high precision in the plating step, so that the adhesive or grease intercalating agent 13 is made thin. Thus, the heat dissipation of the electronic component 11 can be improved. Even if the intercalating agent 13 is made thin, the continuity check can be performed by the pad portion 15b of the inner layer electrode 15 and the metal plate 14, so that it can be easily inspected that it is fixed with the pad thickness d '.

また、本実施形態では、基板12を金属板14に固定する工程を例にしたが、電子部品11を基板12に固定する場合に適用してもよい。   Moreover, in this embodiment, although the process which fixes the board | substrate 12 to the metal plate 14 was made into an example, you may apply when fixing the electronic component 11 to the board | substrate 12. FIG.

電子装置の概略断面図である。It is a schematic sectional drawing of an electronic device. 電子装置の製造工程の一例を示す図である。It is a figure which shows an example of the manufacturing process of an electronic device. 内層電極の形成工程の一例を示す図である。It is a figure which shows an example of the formation process of an inner layer electrode. 内層電極の形成工程の一例を示す図である。It is a figure which shows an example of the formation process of an inner layer electrode. 内層電極の配置例を示す図である。It is a figure which shows the example of arrangement | positioning of an inner layer electrode. 従来の電子部品の放熱構造の一例を示す図である。It is a figure which shows an example of the heat dissipation structure of the conventional electronic component.

符号の説明Explanation of symbols

11 電子部品
12 基板
13 介装剤
14 金属板
15 内層電極
15a、15b パッド部
21 スルーホール
23 金属膜
100 電子装置
DESCRIPTION OF SYMBOLS 11 Electronic component 12 Board | substrate 13 Interposition agent 14 Metal plate 15 Inner layer electrode 15a, 15b Pad part 21 Through hole 23 Metal film 100 Electronic device

Claims (4)

介装剤を介して基板を金属板に貼り合わせた電子装置において、
前記基板は、前記金属板側に前記介装剤の厚さを規定する厚さ規定部材を有する、
ことを特徴とする電子装置。
In an electronic device in which a substrate is bonded to a metal plate via an intervening agent,
The substrate has a thickness defining member that defines the thickness of the interposition agent on the metal plate side.
An electronic device characterized by that.
前記厚さ規定部材はメッキ加工にて形成された金属膜である、ことを特徴とする請求項1記載の電子装置。   The electronic device according to claim 1, wherein the thickness defining member is a metal film formed by plating. 前記厚さ規定部材は、前記金属板側の面から反対側の面まで前記基板を貫通し前記反対側の面に露出した導通材と導通している、
ことを特徴とする請求項2記載の電子装置。
The thickness defining member is electrically connected to a conductive material penetrating the substrate from the surface on the metal plate side to the surface on the opposite side and exposed on the surface on the opposite side,
The electronic device according to claim 2.
金属板に伝熱材を介して貼り合わせられる基板の製造方法において、
前記金属板側の面から反対側の面まで貫通した貫通孔に導通材を充填するステップと、
前記金属板側の面に露出した前記導通材に、前記伝熱材の厚さを規定する厚さ規定部材を形成するステップと、
を有することを特徴とする基板の製造方法。



In the method of manufacturing a substrate that is bonded to a metal plate via a heat transfer material,
Filling a conductive material into a through hole penetrating from the surface on the metal plate side to the surface on the opposite side;
Forming a thickness defining member defining the thickness of the heat transfer material on the conductive material exposed on the surface of the metal plate;
A method for manufacturing a substrate, comprising:



JP2007316720A 2007-12-07 2007-12-07 Electronic device and method of manufacturing substrate Pending JP2009141172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007316720A JP2009141172A (en) 2007-12-07 2007-12-07 Electronic device and method of manufacturing substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007316720A JP2009141172A (en) 2007-12-07 2007-12-07 Electronic device and method of manufacturing substrate

Publications (1)

Publication Number Publication Date
JP2009141172A true JP2009141172A (en) 2009-06-25

Family

ID=40871494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007316720A Pending JP2009141172A (en) 2007-12-07 2007-12-07 Electronic device and method of manufacturing substrate

Country Status (1)

Country Link
JP (1) JP2009141172A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014107568A (en) * 2012-11-23 2014-06-09 Schott Ag Housing component, specifically for electronics housing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014107568A (en) * 2012-11-23 2014-06-09 Schott Ag Housing component, specifically for electronics housing
US9585268B2 (en) 2012-11-23 2017-02-28 Schott Ag Housing component

Similar Documents

Publication Publication Date Title
JP4950693B2 (en) Electronic component built-in wiring board and its mounting parts
JP6347946B2 (en) Display element and manufacturing method thereof
TW201626512A (en) Wiring circuit board, semiconductor device, wiring circuit board manufacturing method, and semiconductor device manufacturing method
TW201242442A (en) Printed circuit board and method of manufacturing the same
BR102013010101A2 (en) Electronic component and device
US9980371B2 (en) Printed wiring board
KR20080077588A (en) Wiring board for chip on film, preparing method thereof and semiconductor device
TWI655714B (en) Package substrate, package semiconductor device and packaging method thereof
JP2005051088A (en) Printed circuit board with heat conductive member, and method for manufacturing the same
JP4983386B2 (en) COF wiring board
TW201911984A (en) Circuit board and manufacturing method thereof
JP2009182200A (en) Semiconductor device and method of manufacturing the same
TW201414015A (en) LED package and method for producing the same
JP2014063875A (en) Printed circuit board
JP2011077305A (en) Substrate with built-in functional element, method of manufacturing the same, and electronic apparatus
TWI453870B (en) Printed circuit board and method of manufacturing the same
JP2006261505A (en) Insulating heat transfer sheet
JP2007305617A (en) Multilayer wiring board
JP2009141172A (en) Electronic device and method of manufacturing substrate
JP2015211162A (en) Method for manufacturing glass member, glass member, and glass interposer
KR20080097379A (en) Manufacturing method of heat sink
JP6025614B2 (en) Heat dissipating structure of heat generating component and audio device using the same
JP5736714B2 (en) Semiconductor device and manufacturing method thereof
CN112088429A (en) Vapor chamber and method for manufacturing same
JP2009212326A (en) Electronic device and method of manufacturing the same