JP2009140953A - Bonding wire for semiconductor device - Google Patents

Bonding wire for semiconductor device Download PDF

Info

Publication number
JP2009140953A
JP2009140953A JP2007312429A JP2007312429A JP2009140953A JP 2009140953 A JP2009140953 A JP 2009140953A JP 2007312429 A JP2007312429 A JP 2007312429A JP 2007312429 A JP2007312429 A JP 2007312429A JP 2009140953 A JP2009140953 A JP 2009140953A
Authority
JP
Japan
Prior art keywords
bonding
wire
bonding wire
less
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007312429A
Other languages
Japanese (ja)
Other versions
JP4904252B2 (en
Inventor
Tomohiro Uno
智裕 宇野
Takashi Yamada
隆 山田
Daizo Oda
大造 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Micrometal Corp
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Materials Co Ltd
Nippon Micrometal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Materials Co Ltd, Nippon Micrometal Corp filed Critical Nippon Steel Materials Co Ltd
Priority to JP2007312429A priority Critical patent/JP4904252B2/en
Publication of JP2009140953A publication Critical patent/JP2009140953A/en
Application granted granted Critical
Publication of JP4904252B2 publication Critical patent/JP4904252B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/431Pre-treatment of the preform connector
    • H01L2224/4312Applying permanent coating, e.g. in-situ coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/432Mechanical processes
    • H01L2224/4321Pulling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/438Post-treatment of the connector
    • H01L2224/43848Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/43985Methods of manufacturing wire connectors involving a specific sequence of method steps
    • H01L2224/43986Methods of manufacturing wire connectors involving a specific sequence of method steps with repetition of the same manufacturing step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45565Single coating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/45664Palladium (Pd) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/45669Platinum (Pt) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/45673Rhodium (Rh) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48617Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48624Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48638Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48639Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48638Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48644Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48663Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/48664Palladium (Pd) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48699Principal constituent of the connecting portion of the wire connector being Aluminium (Al)
    • H01L2224/487Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48717Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48724Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48699Principal constituent of the connecting portion of the wire connector being Aluminium (Al)
    • H01L2224/487Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48738Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48739Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48699Principal constituent of the connecting portion of the wire connector being Aluminium (Al)
    • H01L2224/487Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48738Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48744Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48699Principal constituent of the connecting portion of the wire connector being Aluminium (Al)
    • H01L2224/487Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48763Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/48764Palladium (Pd) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48799Principal constituent of the connecting portion of the wire connector being Copper (Cu)
    • H01L2224/488Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48838Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48839Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48799Principal constituent of the connecting portion of the wire connector being Copper (Cu)
    • H01L2224/488Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48838Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48844Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48799Principal constituent of the connecting portion of the wire connector being Copper (Cu)
    • H01L2224/488Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48863Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/48864Palladium (Pd) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85009Pre-treatment of the connector or the bonding area
    • H01L2224/8503Reshaping, e.g. forming the ball or the wedge of the wire connector
    • H01L2224/85035Reshaping, e.g. forming the ball or the wedge of the wire connector by heating means, e.g. "free-air-ball"
    • H01L2224/85045Reshaping, e.g. forming the ball or the wedge of the wire connector by heating means, e.g. "free-air-ball" using a corona discharge, e.g. electronic flame off [EFO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85053Bonding environment
    • H01L2224/85054Composition of the atmosphere
    • H01L2224/85065Composition of the atmosphere being reducing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85053Bonding environment
    • H01L2224/85054Composition of the atmosphere
    • H01L2224/85075Composition of the atmosphere being inert
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • H01L2224/854Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/85438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/85439Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • H01L2224/854Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/85438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/85444Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • H01L2224/854Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/85463Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/85464Palladium (Pd) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01007Nitrogen [N]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01018Argon [Ar]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01022Titanium [Ti]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01025Manganese [Mn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01045Rhodium [Rh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01083Bismuth [Bi]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/012Semiconductor purity grades
    • H01L2924/012044N purity grades, i.e. 99.99%
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20752Diameter ranges larger or equal to 20 microns less than 30 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20753Diameter ranges larger or equal to 30 microns less than 40 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20755Diameter ranges larger or equal to 50 microns less than 60 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bonding wire principally comprising copper that enhances bondability in addition to conventional basic performance. <P>SOLUTION: A bonding wire for semiconductor device has a core material principally comprising copper, and an outer layer provided on the core material and comprising an oxidation resistant metal having a thickness of 20-150 nm, wherein the 0.2% yield strength is 0.07-0.14 mN/μm<SP>2</SP>, the maximum yield strength is 0.20-0.28 mN/μm<SP>2</SP>, the elongation ε per unit cross-section is between ε1 and ε2, and the ε1 and ε2 can be expressed as follows; ε1=(-0.001×R+0.055) and ε2=(-0.001×R+0.068), assuming R is the diameter of the wire. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、半導体素子上の電極と、回路配線基板(リードフレーム、基板、テープ等)の配線とを接続するために利用される半導体装置用ボンディングワイヤに関するものである。   The present invention relates to a bonding wire for a semiconductor device used for connecting an electrode on a semiconductor element and wiring of a circuit wiring board (lead frame, substrate, tape, etc.).

現在、半導体素子上の電極と、外部端子との間を接合する半導体装置用ボンディングワイヤ(以下、ボンディングワイヤ)として、線径20〜50μm程度の細線が主として使用されている。ボンディングワイヤの接合には超音波併用熱圧着方式が一般的であり、汎用ボンディング装置、ボンディングワイヤをその内部に通して接続に用いるキャピラリ冶具等が用いられる。ワイヤ先端をアーク入熱で加熱溶融し、表面張力によりフリーエアボール(以下、単に「ボール」又は「FAB」ともいう。)を形成させた後に、150〜300℃の範囲内で加熱した半導体素子の電極上に、このボール部を圧着接合せしめ、その後で、直接ボンディングワイヤを外部リード側に超音波圧着により接合させる。   Currently, fine wires having a wire diameter of about 20 to 50 μm are mainly used as bonding wires for semiconductor devices (hereinafter referred to as bonding wires) for bonding between electrodes on semiconductor elements and external terminals. Bonding wires are generally joined by ultrasonic thermocompression bonding, and a general-purpose bonding apparatus, a capillary jig used for connection through the bonding wire, or the like is used. A semiconductor element heated at a temperature of 150 to 300 ° C. after the tip of the wire is heated and melted by arc heat input to form a free air ball (hereinafter also simply referred to as “ball” or “FAB”) by surface tension. The ball portion is bonded to the electrode by pressure bonding, and then the bonding wire is directly bonded to the external lead by ultrasonic pressure bonding.

近年、半導体実装の構造・材料・接続技術等は急速に多様化しており、例えば、実装構造では、現行のリードフレームを使用したQFP(Quad Flat Packaging)に加え、基板、ポリイミドテープ等を使用するBGA(Ball Grid Array)、CSP(Chip Scale Packaging)等の新しい形態が実用化され、ループ性、接合性、量産性等をより向上したボンディングワイヤが求められている。そうしたボンディングワイヤの接続技術でも、現在主流のボール/ウェッジ接合の他に、狭ピッチ化に適したウェッジ/ウェッジ接合では、2ヶ所の部位で直接ボンディングワイヤを接合するため、細線の接合性の向上が求められる。   In recent years, semiconductor packaging structures, materials, connection technologies, etc. have been diversified rapidly. For example, packaging structures use substrates, polyimide tapes, etc. in addition to QFP (Quad Flat Packaging) using the current lead frame. New forms such as BGA (Ball Grid Array) and CSP (Chip Scale Packaging) have been put into practical use, and there is a demand for bonding wires with improved loop characteristics, bonding properties, mass productivity, and the like. Even in such bonding wire connection technology, in addition to the current mainstream ball / wedge bonding, wedge / wedge bonding suitable for narrow pitches directly bonds the bonding wire at two locations, improving the bondability of fine wires Is required.

ボンディングワイヤの接合相手となる材質も多様化しており、シリコン基板上の配線、電極材料では、従来のAl合金に加えて、より微細配線に好適な銅が実用化されている。また、リードフレーム上には、Agメッキ、Pdメッキ等が施されており、また、樹脂基板、テープ等の上には、銅配線が施され、その上に金等の貴金属元素及びその合金の膜が施されている場合が多い。こうした種々の接合相手に応じて、ボンディングワイヤの接合性、接合部の信頼性を向上することが求められる。   The materials used as bonding partners of the bonding wires are also diversified, and copper suitable for finer wiring has been put to practical use in addition to the conventional Al alloy as the wiring and electrode material on the silicon substrate. In addition, Ag plating, Pd plating, etc. are applied on the lead frame, and copper wiring is applied on the resin substrate, tape, etc., and noble metal elements such as gold and alloys thereof are formed thereon. In many cases, a film is applied. It is required to improve the bonding property of the bonding wire and the reliability of the bonded portion according to such various bonding partners.

ボンディングワイヤの素材は、これまで高純度4N系(純度>99.99mass%)の金が主に用いられている。しかし、金は高価であるため、材料費が安価である他種金属のボンディングワイヤが所望されている。   Conventionally, gold of high purity 4N type (purity> 99.99 mass%) has been mainly used as a material for the bonding wire. However, since gold is expensive, a bonding wire of another kind of metal having a low material cost is desired.

ワイヤボンディング技術からの要求では、ボール形成時に真球性の良好なボールを形成し、そのボール部と電極との接合部で十分な接合強度を得ることが重要である。また、接合温度の低温化、ボンディングワイヤの細線化等に対応するためにも、リード端子や配線基板上にボンディングワイヤをウェッジ接続において、剥離等が発生せずに連続ボンディングできること、また、十分な接合強度等が要求される。   In the demand from the wire bonding technology, it is important to form a ball having good sphericity when forming the ball and obtain a sufficient bonding strength at the bonding portion between the ball portion and the electrode. In addition, in order to cope with lower bonding temperature, thinner bonding wires, etc., it is possible to perform continuous bonding without causing peeling or the like when the bonding wire is connected to the lead terminal or the wiring board with a wedge. Bonding strength is required.

高粘性の熱硬化エポキシ樹脂が高速注入される樹脂封止工程では、ボンディングワイヤが変形して隣接ワイヤと接触することが問題となり、しかも、狭ピッチ化、長ワイヤ化、細線化も進む中で、樹脂封止時のワイヤ変形を少しでも抑えることが求められている。ワイヤ強度の増加により、こうした変形をある程度コントロールすることはできるものの、ループ制御が困難である点や、接合時の強度が低下する等の問題点が解決されないと実用化は難しい。   In the resin sealing process in which high-viscosity thermosetting epoxy resin is injected at a high speed, the bonding wire is deformed and comes into contact with the adjacent wire, and further, the pitch, lengthening, and thinning are progressing. Therefore, it is required to suppress the wire deformation at the time of resin sealing as much as possible. Although the deformation can be controlled to some extent by increasing the wire strength, it is difficult to put it to practical use unless the problems such as difficulty in loop control and a decrease in strength during bonding are not solved.

更に、ボンディングワイヤが接続され実装された半導体素子が実際に使用されるときの長期信頼性も重要となる。特に自動車に搭載される半導体素子などでは、厳しい安全性を確保するため、高温、高湿、熱サイクルなど厳しい環境での高い信頼性が要求される。こうした従来にない過酷な環境においても、ボンディングワイヤが接続された接合部では劣化することなく、高い信頼性が維持されなくてはならない。   Furthermore, long-term reliability when a semiconductor element to which a bonding wire is connected and mounted is actually used is also important. In particular, semiconductor elements mounted on automobiles are required to have high reliability in harsh environments such as high temperatures, high humidity, and thermal cycles in order to ensure strict safety. Even in such an unprecedented harsh environment, high reliability must be maintained without deteriorating at the joint where the bonding wire is connected.

上記要求を満足するワイヤ特性として、ボンディング工程におけるループ制御が容易であり、しかも電極部、リード部への接合性も向上しており、ボンディング以降の樹脂封止工程における過剰なワイヤ変形を抑制すること、更には、接続部の長期信頼性や過酷環境下での接合部安定性等の、総合的な特性を満足することが望まれている。   As the wire characteristics satisfying the above requirements, loop control in the bonding process is easy, and the bonding property to the electrode part and the lead part is improved, and excessive wire deformation in the resin sealing process after bonding is suppressed. In addition, it is desired to satisfy comprehensive characteristics such as long-term reliability of the connection portion and stability of the joint portion in a harsh environment.

材料費が安価で、電気伝導性に優れ、ボール接合(以下、「1st接合」ともいう)性、ウェッジ接合(以下、「2nd接合」ともいう)性等も高めるために、銅を素材とするボンディングワイヤが開発され、特許文献1等が開示されている。しかし、銅ボンディングワイヤでは、ワイヤ表面の酸化により接合強度が低下することや、樹脂封止されたときのワイヤ表面の腐食等が起こり易いことが問題となる。また、銅ボンディングワイヤではボール部の硬度がAuよりも高く、パッド電極上でボールを変形させて接合する際に、チップにクラック等の損傷を与えることが問題となる。銅ボンディングワイヤのウェッジ接合についても、Auに比べて接合マージンが狭く、量産性が低下することが懸念されている。これらが銅ボンディングワイヤの実用化が進まない原因ともなっている。   Copper is used as a raw material in order to improve the material cost, excellent electrical conductivity, ball bonding (hereinafter also referred to as “1st bonding”), wedge bonding (hereinafter also referred to as “2nd bonding”), and the like. Bonding wires have been developed, and Patent Document 1 is disclosed. However, a problem with copper bonding wires is that the bonding strength decreases due to oxidation of the wire surface, and that the wire surface is easily corroded when sealed with resin. In addition, since the hardness of the ball portion of the copper bonding wire is higher than that of Au, when the ball is deformed and bonded on the pad electrode, there is a problem that the chip is damaged such as a crack. Regarding wedge bonding of copper bonding wires, there is a concern that the bonding margin is narrower than that of Au and mass productivity is reduced. These are the reasons why the practical application of copper bonding wires does not progress.

銅ボンディングワイヤの表面酸化を防ぐ方法として、特許文献2には、金、銀、白金、パラジウム、ニッケル、コバルト、クロム、チタン等の貴金属や耐食性金属で銅を被覆したボンディングワイヤが提案されている。また、ボール形成性、メッキ液の劣化防止等の点から、特許文献3には、銅を主成分とする芯材、該芯材上に形成された銅以外の金属からなる異種金属層、及び該異種金属層の上に形成され、銅よりも高融点の耐酸化性金属からなる被覆層の構造をしたボンディングワイヤが提案されている。特許文献4には、銅を主成分とする芯材と、該芯材の上に芯材と成分又は組成の一方または両方の異なる金属と銅を含有する外皮層を有し、その外皮層の厚さが0.001〜0.02μmの薄膜であるボンディングワイヤが提案されている。また、2nd接合性を向上させる観点から、特許文献5には、銅を主成分とする芯材と前記芯材上形成された被覆層とを有し、0.2%耐力が0.115mN/μm以上かつ0.165mN/μm以下であるボンディングワイヤが提案されている。同様に特許文献6には、銅を主成分とする芯材と前記芯材上形成された被覆層とを有し、ボンディングワイヤの先端を水平面に接触するように垂下し、前記先端から15cm上を切断してボンディングワイヤを前記水平面に落下させることにより形成される円弧の曲率半径が、35mm以上であるボンディングワイヤが提案されている。 As a method for preventing the surface oxidation of a copper bonding wire, Patent Document 2 proposes a bonding wire in which copper is coated with a noble metal such as gold, silver, platinum, palladium, nickel, cobalt, chromium, titanium, or a corrosion-resistant metal. . Further, from the viewpoints of ball formability, prevention of deterioration of the plating solution, and the like, Patent Document 3 describes a core material mainly composed of copper, a dissimilar metal layer made of a metal other than copper formed on the core material, and There has been proposed a bonding wire formed on the dissimilar metal layer and having a coating layer structure made of an oxidation-resistant metal having a melting point higher than that of copper. Patent Document 4 has a core material containing copper as a main component, and an outer skin layer containing copper and a metal different from one or both of the core material and its component or composition on the core material. A bonding wire that is a thin film having a thickness of 0.001 to 0.02 μm has been proposed. Further, from the viewpoint of improving the 2nd bondability, Patent Document 5 has a core material mainly composed of copper and a coating layer formed on the core material, and has a 0.2% proof stress of 0.115 mN / Bonding wires having a size of μm 2 or more and 0.165 mN / μm 2 or less have been proposed. Similarly, Patent Document 6 includes a core material mainly composed of copper and a coating layer formed on the core material, the tip of the bonding wire is suspended so as to contact a horizontal plane, and 15 cm above the tip. A bonding wire is proposed in which the radius of curvature of an arc formed by cutting the wire and dropping the bonding wire onto the horizontal plane is 35 mm or more.

こうした半導体向けの銅ボンディングワイヤは、実用上の期待は大きいものの、これまで実用化されていなかった。ワイヤ製造の生産性、品質、またボンディング工程での歩留まり、性能安定性、さらに半導体使用時の長期信頼性などが総合的に満足されなくてはならない。   Although such copper bonding wires for semiconductors have great practical expectations, they have not been put to practical use. The productivity and quality of wire manufacturing, yield in the bonding process, performance stability, and long-term reliability when using semiconductors must be comprehensively satisfied.

量産で使用されるワイヤ特性として、ボンディング工程におけるループ制御が安定しており、接合性も向上しており、樹脂封止工程でのワイヤ変形を抑制すること、接合部の長期信頼性などの、総合的な特性を満足することで、最先端の狭ピッチ接続、積層チップ接続などの高密度実装に対応できることが望まれている。
特開昭61−99645号公報 特開昭62−97360号公報 特開2004−64033号公報 特開2007−12776号公報 特開2005−123540号公報 特開2005−123511号公報
As the wire characteristics used in mass production, the loop control in the bonding process is stable, the bondability is also improved, the wire deformation in the resin sealing process is suppressed, the long-term reliability of the joint, etc. By satisfying the overall characteristics, it is desired to be able to cope with high-density mounting such as state-of-the-art narrow pitch connection and multilayer chip connection.
JP-A-61-99645 JP-A-62-97360 JP 2004-64033 A JP 2007-12776 A JP 2005-123540 A JP 2005-123511 A

従来の単層構造の銅系ボンディングワイヤ(非被覆の銅系ボンディングワイヤのことであり、ワイヤ表面に厚さが1〜2nmの薄い自然酸化膜層等が形成されている場合がある。以下、単層銅ワイヤと記す。)の実用上の問題として、ワイヤ表面が酸化し易いこと、接合強度が低下すること等が起こり易いことが挙げられる。そこで、銅ボンディングワイヤの表面酸化を防ぐ手段として、ワイヤ表面に貴金属や耐酸化性金属を被覆することが可能である。   Conventional copper-based bonding wires having a single-layer structure (which is an uncoated copper-based bonding wire, and a thin natural oxide film layer having a thickness of 1 to 2 nm may be formed on the surface of the wire. As a practical problem of single-layer copper wire), it is easy to oxidize the wire surface and to reduce the bonding strength. Therefore, as a means for preventing the surface oxidation of the copper bonding wire, it is possible to coat the wire surface with a noble metal or an oxidation resistant metal.

半導体実装の高密度化、小型化、薄型化等のニーズを考慮して、本発明者らが評価したところ、銅ボンディングワイヤの表面を銅と異なる金属で覆った構造の従来複層銅ワイヤ(非被覆の銅ワイヤを単層銅ワイヤと呼ぶのに対し、1層からなる被覆層で被覆した前記銅ワイヤを複層銅ワイヤとしている。以下、従来複層銅ワイヤと記す。)では、後述するような実用上の問題が多く残されていることが判明した。   The present inventors evaluated in consideration of needs such as high density, miniaturization, and thinning of semiconductor mounting. As a result, a conventional multilayer copper wire having a structure in which the surface of a copper bonding wire is covered with a metal different from copper ( The uncoated copper wire is referred to as a single-layer copper wire, whereas the copper wire coated with a single coating layer is referred to as a multilayer copper wire (hereinafter referred to as a conventional multilayer copper wire). It turns out that many practical problems remain.

従来複層銅ワイヤの先端にボールを形成した場合、真球からずれた扁平ボールが形成されたり、ボール内部に溶融されないワイヤが残ったり、気泡が発生したりすることが問題となる。こうした正常でないボール部を電極上に接合すると、接合強度の低下、チップの損傷等の問題を起こす原因となる。   Conventionally, when a ball is formed at the tip of a multilayer copper wire, a flat ball deviated from a true sphere is formed, an unmelted wire remains in the ball, or bubbles are generated. If such an abnormal ball portion is bonded onto the electrode, it may cause problems such as a decrease in bonding strength and chip damage.

従来複層銅ワイヤによりボールを形成した場合、単層銅ワイヤあるいは現在主流の金ボンディングワイヤを使用した場合よりも、ボール接合部の形状不良および接合強度の低下などが起こり易いことが実用上の問題となる。具体的な不良事例では、真球からずれた扁平ボールの形成、ボールがワイヤに対して傾いて形成される芯ずれなどが発生したり、ボール内部に溶融されないワイヤが残ったり、気泡(ブローホール)が生成することが問題となる場合もある。こうした正常でないボール部を電極上に接合すると、ワイヤ中心からずれてボールが変形する偏芯変形、真円からずれる形状不良として楕円変形、花弁変形などが生じることで、電極面から接合部のはみ出し、接合強度の低下、チップの損傷、生産管理上の不具合などの問題を起こす原因となる。こうした初期接合の不良は、前述した長期信頼性の低下を誘発する場合もある。   In practice, when a ball is formed from a conventional multilayer copper wire, it is more likely to cause a defective shape of the ball joint and a decrease in bonding strength than when a single layer copper wire or a current mainstream gold bonding wire is used. It becomes a problem. Specific examples of defects include the formation of flat balls that deviate from the true sphere, misalignment in which the ball is tilted with respect to the wire, wire that remains unmelted inside the ball, ) May be a problem. When such an abnormal ball part is joined on the electrode, the joint part protrudes from the electrode surface due to eccentric deformation in which the ball is displaced from the center of the wire, elliptical deformation, petal deformation, etc. This may cause problems such as a decrease in bonding strength, chip damage, and problems in production management. Such poor initial bonding may induce the above-described deterioration in long-term reliability.

従来複層銅ワイヤのボール接合に関する不具合を解決する手法として、特許文献3には外皮層の厚さが0.001〜0.02μmとすることが開示されている。ここでの外皮層は濃度勾配の領域も含めており、外皮層と芯材との境界は外皮層を構成する金属Mの濃度が10mol%以上であることも記載されている。本発明者らの評価では、このように外皮層の厚さを薄膜化することにより、前述したボール接合部の問題が一部に改善されることは観察されたが、自動車に搭載される半導体素子等の用途で新たな環境下で使用される場合には必ずしも効果は十分でなく、むしろ、外皮層の厚さを薄くするほど扁平ボールの発生頻度は増加することが確認された。また、薄膜化により、ワイヤのウェッジ接合の向上が十分でないという問題が生じることも確認された。   As a technique for solving the problems related to ball bonding of conventional multilayer copper wires, Patent Document 3 discloses that the thickness of the outer skin layer is 0.001 to 0.02 μm. The outer skin layer here also includes a concentration gradient region, and it is also described that the concentration of the metal M constituting the outer skin layer is 10 mol% or more at the boundary between the outer skin layer and the core material. In the evaluation of the present inventors, it has been observed that by reducing the thickness of the outer skin layer in this way, the above-mentioned problem of the ball joint portion is partially improved. It has been confirmed that the frequency of flat balls increases as the thickness of the outer skin layer decreases, when the device is used in a new environment for applications such as devices. It has also been confirmed that the problem of insufficient improvement in wire wedge bonding occurs due to thinning.

従来複層銅ワイヤの2nd接合における接合性を向上させる手段として、特許文献5には0.2%耐力が0.115mN/μm以上かつ0.165mN/μm以下であるボンディングワイヤが提案されている。また、特許文献6にはボンディングワイヤの先端を水平面に接触するように垂下し、前記先端から15cm上を切断してボンディングワイヤを前記水平面に落下させることにより形成される円弧の曲率半径が、35mm以上であるボンディングワイヤが提案されている。しかしながら、上記特許文献5及び6に係るボンディングワイヤでは、2nd接合において十分な接合強度を得られず、また1st接合において電極に損傷を与えてしまうという懸念もあり、ひいては信頼性が低下するという問題があった。 Conventionally, as a means for improving the bondability in 2nd bonding of a multilayer copper wire, Patent Document 5 proposes a bonding wire having a 0.2% proof stress of 0.115 mN / μm 2 or more and 0.165 mN / μm 2 or less. ing. In Patent Document 6, the radius of curvature of an arc formed by hanging the tip of the bonding wire so as to contact the horizontal plane, cutting 15 cm above the tip and dropping the bonding wire onto the horizontal plane is 35 mm. The bonding wire which is the above is proposed. However, in the bonding wires according to Patent Documents 5 and 6, there is a concern that sufficient bonding strength cannot be obtained in the 2nd bonding, and that the electrode is damaged in the first bonding, and the reliability is lowered. was there.

本発明では、上述するような従来技術の問題を解決して、従来の基本性能に加えて、接合性をより向上することができる銅を主体とするボンディングワイヤを提供することを目的とする。   An object of the present invention is to solve the above-described problems of the prior art and to provide a bonding wire mainly composed of copper that can further improve the bondability in addition to the conventional basic performance.

上記目的を達成するために、請求項1に係る発明は、銅を主成分とする芯材と、前記芯材の上に設けられた、20nm以上150nm以下の厚さの耐酸化性金属からなる外層とを有するボンディングワイヤであって、0.2%耐力が0.07mN/μm以上0.14mN/μm以下、最大耐力が0.20mN/μm以上0.28mN/μm以下、及び、単位断面積当たりの伸び値(%/μm)がε1以上ε2以下であり、前記ε1及び前記ε2は、ワイヤの線径をRとすると、ε1=(−0.001×R+0.055)、ε2=(−0.001×R+0.068)であることを特徴とする。 In order to achieve the above object, an invention according to claim 1 is composed of a core material mainly composed of copper and an oxidation-resistant metal having a thickness of 20 nm or more and 150 nm or less provided on the core material. a bonding wire having an outer layer, 0.2% proof stress 0.07mN / μm 2 or more 0.14mN / μm 2 or less, the maximum yield strength is 0.20mN / μm 2 or more 0.28mN / μm 2 or less, and The elongation value per unit cross-sectional area (% / μm 2 ) is ε1 or more and ε2 or less, and ε1 and ε2 are ε1 = (− 0.001 × R + 0.055), where R is the wire diameter of the wire. , Ε2 = (− 0.001 × R + 0.068).

また、請求項2に係る発明は、C断面の粒子数がN個/μm以下であって、C断面の平均結晶粒径がGμm以上であり、前記N及びGは、N=(−0.01×R+0.7)G=(0.02×R+0.8)であることを特徴とする。 In the invention according to claim 2, the number of particles in the C cross section is N / μm 2 or less, the average crystal grain size in the C cross section is G μm or more, and the N and G are N = (− 0 .01 × R + 0.7) G = (0.02 × R + 0.8).

また、請求項3に係る発明は、前記耐酸化性金属が、Pd,Pt,及び、Rhから選ばれる1種以上の元素を主成分とすることを特徴とする。   The invention according to claim 3 is characterized in that the oxidation-resistant metal contains as a main component at least one element selected from Pd, Pt, and Rh.

また、請求項4に係る発明は、前記芯材が、P,B,Bi,Sn,Ag,及び、Mgから選ばれる1種以上の元素を含有し、ワイヤ全体に占める該元素濃度が総計で0.0001mol%以上0.03mol%以下の範囲であることを特徴とする。   In the invention according to claim 4, the core material contains one or more elements selected from P, B, Bi, Sn, Ag, and Mg, and the concentration of the element in the entire wire is a total. It is the range of 0.0001 mol% or more and 0.03 mol% or less.

本発明の請求項1記載の発明によれば、外層の厚さを所定厚さとしたことにより、FAB形成、ボール接合における圧着ボール形状と接合強度、及び信頼性評価を改善することができる。また、所定の機械特性を有することにより、ボール接合における電極の損傷及びネック部の損傷を低減し、ウェッジ接合における形状と接合強度を改善できると共に、接合マージンが向上するため、ボンディング工程の歩留まり、接合・ループ性能安定性などの量産安定性、および半導体使用時の長期信頼性を向上することができる。   According to the first aspect of the present invention, by setting the thickness of the outer layer to a predetermined thickness, it is possible to improve the pressure ball shape and bonding strength and reliability evaluation in FAB formation and ball bonding. In addition, by having predetermined mechanical characteristics, it is possible to reduce damage to the electrode and neck in ball bonding, improve the shape and bonding strength in wedge bonding, and improve the bonding margin. It can improve mass production stability such as bonding / loop performance stability and long-term reliability when using semiconductors.

また、請求項2に記載の発明によれば、上記所定の機械特性を有するボンディングワイヤを得ることができる。   Moreover, according to the invention of Claim 2, the bonding wire which has the said predetermined | prescribed mechanical characteristic can be obtained.

また、請求項3に記載の発明によれば、ボール形状を安定化させ、2nd接合性を向上させることができる。   In addition, according to the third aspect of the invention, the ball shape can be stabilized and the 2nd bondability can be improved.

また、請求項4に記載の発明によれば、ボール変形時の真円性、ループ制御性を向上させることができる。   Moreover, according to the invention of Claim 4, the roundness at the time of a ball deformation | transformation and loop controllability can be improved.

1.実施形態
以下、本発明の好適な実施形態について説明する。ボンディングワイヤについて、銅を主成分とする芯材と、耐酸化性金属を含有する外層で構成されたものを検討した結果、ワイヤの表面近傍に耐酸化性金属を含有することにより、ウェッジ接合性の向上などが期待できる反面、ボールの不安定形成、リフロー工程でのウェッジ接合部の破断が新たな問題となることなどが判明した。そこで、狭ピッチの小ボール接合などの新たな実装ニーズへの対応、量産性の更なる向上などにも対応できる銅系ボンディングワイヤを検討した結果、外層を有し、特定の厚さ範囲にすることが有効であることを見出した。更に、外層および芯材などの組成、構造などの制御が有効であることを見出した。
1. Embodiments Hereinafter, preferred embodiments of the present invention will be described. As a result of investigating a bonding wire composed of a core material mainly composed of copper and an outer layer containing an oxidation-resistant metal, wedge bonding properties can be achieved by including an oxidation-resistant metal near the surface of the wire. However, it has been found that unstable formation of the ball and breakage of the wedge joint in the reflow process become new problems. Therefore, as a result of examining copper-based bonding wires that can respond to new mounting needs such as narrow pitch small ball bonding and further improve mass productivity, it has an outer layer and a specific thickness range Found that it was effective. Furthermore, it has been found that control of the composition and structure of the outer layer and the core material is effective.

一般的に銅ワイヤは金ワイヤに比べ、表面が酸化し易いことや、硬いことから、1st接合においては形状の異常、接合強度不足、半導体素子の損傷(チップダメージ)、ネック部への微小な損傷(ネックダメージ)が発生するという問題がある。また、2nd接合においては、接合マージンが狭く日々の経時変化が激しい、接合強度がボンディング方向の影響を受けやすい、2nd接合部の量産安定性に欠けるという問題がある。ここで接合マージンとは、特に2nd接合の安定性、及び、ループの制御性すなわちループ高さのばらつきや、ネックダメージの抑制をいう。   In general, the surface of copper wire is easier to oxidize and is harder than gold wire, so in 1st bonding, shape abnormality, insufficient bonding strength, damage to semiconductor elements (chip damage), and minute damage to the neck There is a problem that damage (neck damage) occurs. Further, in the 2nd junction, there are problems that the junction margin is narrow and daily changes with time are severe, and that the bonding strength is easily affected by the bonding direction and the mass production stability of the 2nd junction is lacking. Here, the junction margin means the stability of the 2nd junction, and the controllability of the loop, that is, the variation in the loop height and the suppression of the neck damage.

これに対し本発明に係るボンディングワイヤは、銅を主成分とする芯材と、該芯材の上に設けられた、芯材と、成分及び組成が異なる耐酸化性金属を含有する外層を有し、0.2%耐力が0.07mN/μm以上0.14mN/μm以下、最大耐力が0.20mN/μm以上0.28mN/μm以下、及び、単位断面積当たりの伸び値(%/μm)がε1以上ε2以下であり、前記ε1及び前記ε2は、ワイヤの線形をRとすると、ε1=(−0.001×R+0.055)、ε2=(−0.001×R+0.068)であることが望ましい。説明の便宜上、本明細書において本発明に係るボンディングワイヤの上記機械特性を「軟質機械特性」と呼ぶ。ここで、0.2%耐力とは、明確な降伏点を有しない材料の降伏強度として評価されるもので、永久ひずみを0.2%生じるときの応力値である。また、最大耐力とは、ボンディングワイヤの破断強度をいう。また、伸び値とは、破断時におけるワイヤの最大伸び値をいう。また、ε1及びε2の単位は、%/μmである。 On the other hand, the bonding wire according to the present invention has a core material mainly composed of copper, and an outer layer containing an oxidation-resistant metal having a different component and composition from the core material provided on the core material. and 0.2% yield strength 0.07mN / μm 2 or more 0.14mN / μm 2 or less, the maximum yield strength is 0.20mN / μm 2 or more 0.28mN / μm 2 or less, and an elongation value per unit cross-sectional area (% / Μm 2 ) is ε1 or more and ε2 or less, and ε1 and ε2 are ε1 = (− 0.001 × R + 0.055), ε2 = (− 0.001 × R + 0.068) is desirable. For convenience of explanation, in the present specification, the mechanical property of the bonding wire according to the present invention is referred to as “soft mechanical property”. Here, the 0.2% yield strength is evaluated as the yield strength of a material that does not have a clear yield point, and is a stress value when a permanent strain of 0.2% is generated. The maximum proof stress refers to the breaking strength of the bonding wire. Further, the elongation value means the maximum elongation value of the wire at the time of breaking. The unit of ε1 and ε2 is% / μm 2 .

このボンディングワイヤであれば、上記したような軟質機械特性を有するため、1st接合における電極としてのパッドの損傷(以下、「パッドダメージ」という)、ネック部の損傷(以下、「ネックダメージ」という)、2nd接合における形状と接合強度、を改善できる。また、ボンディングワイヤは、軟質機械特性を有することにより、接合マージンが向上するため、ボンディング工程での量産安定性を向上することができる。尚、一般的に2nd接合において、メクレなどにより形状不良が生じた場合には、接合強度が低下する。また、剥がれなど接合不良が生じた場合には、自動ワイヤボンダーが停止する、という不具合が発生する。   Since this bonding wire has the above-mentioned soft mechanical characteristics, damage to the pad as an electrode in the first bonding (hereinafter referred to as “pad damage”) and damage to the neck portion (hereinafter referred to as “neck damage”). The shape and bonding strength in the 2nd bonding can be improved. In addition, since the bonding wire has soft mechanical characteristics, the bonding margin is improved, so that mass production stability in the bonding process can be improved. In general, in a 2nd joint, when a shape defect occurs due to a mesh or the like, the joint strength is lowered. In addition, when a bonding failure such as peeling occurs, the automatic wire bonder stops.

0.2%耐力が0.14mN/μmを超えた場合は、ボンディングワイヤが硬くなるので、チップダメージ、ネックダメージが増加するほか、2nd接合における形状が悪化したり、接合強度が低下したり、ひいてはボンディング工程での生産性が低下することになる。 When the 0.2% proof stress exceeds 0.14 mN / μm 2 , the bonding wire becomes hard, so that chip damage and neck damage increase, and the shape in 2nd bonding deteriorates and bonding strength decreases. As a result, productivity in the bonding process is lowered.

一方、0.2%耐力が0.07mN/μm未満の場合は、ボンディングワイヤの最大耐力が低下することとなるので、2nd接合における接合強度が低下して半導体使用時の長期信頼性が低下、樹脂封止時にボンディングワイヤが変形してショート不良が発生することとなる。 On the other hand, if the 0.2% proof stress is less than 0.07 mN / μm 2 , the maximum proof strength of the bonding wire will be reduced, so the bonding strength at the 2nd junction will be reduced and the long-term reliability when using semiconductors will be reduced. When the resin is sealed, the bonding wire is deformed to cause a short circuit defect.

また、最大耐力が0.28mN/μmを超えた場合は、ボンディングワイヤが硬くなるので、チップダメージ及びネックダメージが増加するほか、2nd接合における形状が悪化したり、接合強度が低下してボンディング工程での生産性が悪化したりすることになる。 When the maximum proof stress exceeds 0.28 mN / μm 2 , the bonding wire becomes hard, so that chip damage and neck damage are increased, and the shape in 2nd bonding is deteriorated, bonding strength is lowered and bonding is performed. Productivity in the process will deteriorate.

最大耐力が0.20mN/μm未満の場合は、ボンディングワイヤの最大耐力が低下することとなるので、2nd接合における接合強度が低下して半導体使用時の長期信頼性が低下、樹脂封止時にボンディングワイヤが変形してショート不良が発生することとなる。 When the maximum proof stress is less than 0.20 mN / μm 2 , the maximum proof strength of the bonding wire is lowered. Therefore, the bonding strength at the 2nd junction is lowered, and the long-term reliability when using the semiconductor is lowered. The bonding wire is deformed to cause a short circuit defect.

さらに、単位断面積当たりの伸び値が上記ε2を超えた場合は、ボンディングワイヤの最大耐力が低下するので、2nd接合における接合強度が低下して半導体使用時の長期信頼性が低下、さらに、ループ形状及びボンディングワイヤの直進性が悪化するため、樹脂封止時にボンディングワイヤが変形し、ショート不良が発生することとなる。   Furthermore, when the elongation value per unit cross-sectional area exceeds the above ε2, the maximum proof stress of the bonding wire is reduced, so that the bonding strength in the 2nd junction is reduced, and the long-term reliability when using the semiconductor is reduced. Since the straightness of the shape and the bonding wire is deteriorated, the bonding wire is deformed at the time of resin sealing, and a short circuit defect occurs.

一方、単位断面積当たりの伸び値が上記ε1未満の場合は、ボンディングワイヤが硬くなるので、チップダメージ及びネックダメージが増加するほか、2nd接合における形状が悪化したり、接合強度が低下したり、ひいてはボンディング工程での生産性が低下することになる。   On the other hand, when the elongation value per unit cross-sectional area is less than ε1, the bonding wire becomes hard, so that chip damage and neck damage increase, the shape in 2nd bonding deteriorates, bonding strength decreases, As a result, productivity in the bonding process is lowered.

また、C断面の粒子数がN個/μm以下であって、C断面の平均結晶粒径がGμm以上であり、前記N及びGを、N=(−0.01×R+0.7)、G=(0.02×R+0.8)とすることにより、軟質機械特性を有するボンディングワイヤを得ることができる。従って、このボンディングワイヤでは、上記したと同様に、パッドダメージ、2nd接合における形状と接合強度、ボンディング工程での量産安定性を改善することができる。尚、C断面とは、ボンディングワイヤの伸線方向に垂直な断面である。 Further, the number of particles in the C cross section is N / μm 2 or less, the average crystal grain size in the C cross section is G μm or more, and the N and G are N = (− 0.01 × R + 0.7), By setting G = (0.02 × R + 0.8), a bonding wire having soft mechanical properties can be obtained. Therefore, with this bonding wire, as described above, pad damage, shape and bonding strength in 2nd bonding, and mass production stability in the bonding process can be improved. The C cross section is a cross section perpendicular to the drawing direction of the bonding wire.

また、ここで、平均結晶粒径とは、粒界認識角度を大傾角粒界である15°以上に区分した上で、双晶も粒とみなし結晶粒径分布像を描画するとともに、粒径分布を算出したものである。尚、粒径(円相当径)分布および基本統計量は後方電子散乱図形法(Electron Backscatter Pattern、以下「EBSP」という)処理ソフトにより得られた各結晶粒のデータを表計算ソフトにより算出した。   Here, the average crystal grain size means that the grain boundary recognition angle is divided into 15 ° or more, which is a large-angle grain boundary, twins are also regarded as grains, and a crystal grain size distribution image is drawn. The distribution is calculated. The particle size (equivalent circle diameter) distribution and basic statistics were calculated by using spreadsheet software based on the data of each crystal grain obtained by Backn Electron Scatter Pattern (hereinafter referred to as “EBSP”) processing software.

本発明に係るボンディングワイヤの硬さは、適正なドーパント(dopant)の種類及び添加量と、熱処理と、加工プロセスの最適化とにより、C断面の結晶組織を、細粒と粗粒からなる混粒組織から、中粒の整粒組織に最適化して、制御することができる。このように結晶組織の粒径を整粒組織に制御することにより、粗大粒界での粒界すべり変形等の局所的な変形ではなく、均一な変形とすることができるため、ワイヤの0.2%耐力、最大耐力、及び単位断面積あたりの伸び値が一定範囲内にある軟質化機械特性を有する銅ワイヤを得る事できる。   The hardness of the bonding wire according to the present invention is such that the crystal structure of the C cross section is made of a mixture of fine grains and coarse grains by appropriate types and addition amounts of dopants, heat treatment, and optimization of the processing process. From the grain structure, it is possible to optimize and control the medium-sized sized structure. By controlling the grain size of the crystal structure to a sized structure in this way, it is possible to obtain a uniform deformation rather than a local deformation such as a grain boundary sliding deformation at a coarse grain boundary. It is possible to obtain a copper wire having softening mechanical properties in which 2% yield strength, maximum yield strength, and elongation value per unit cross-sectional area are within a certain range.

このようにして、本発明に係るボンディングワイヤは、細粒を少なくすることで平均粒径を増大させ、硬度を低下させて芯材を軟質化した。これにより、1st接合部のチップ損傷、ネックダメージを低減することができる。   In this way, the bonding wire according to the present invention increased the average particle size by reducing the fine particles and decreased the hardness to soften the core material. Thereby, chip damage and neck damage at the 1st junction can be reduced.

このチップダメージを低減することにより、本発明に係るボンディングワイヤは、半導体の高密度化、高速化に対応したLow-K材などを使用したチップへの適用が可能になり、高性能LSIにまで銅ワイヤの適用範囲を広げることができる。   By reducing this chip damage, the bonding wire according to the present invention can be applied to a chip using a low-K material corresponding to high density and high speed of a semiconductor, and even to a high performance LSI. The range of application of copper wire can be expanded.

また、本発明に係るボンディングワイヤは、C断面の結晶組織を整粒組織とすることにより芯材を軟質化させたので、変形性能を向上させることができる。これにより、本発明に係るボンディングワイヤは、ネックダメージが低減するので、半導体実装の薄型化、多段積層化に対応した低ループが可能になる。   Moreover, since the core material was softened by making the crystal structure of C cross section into a sized structure, the bonding wire according to the present invention can improve deformation performance. As a result, the neck damage of the bonding wire according to the present invention is reduced, so that a low loop corresponding to thinning of semiconductor mounting and multi-layer stacking is possible.

また、本発明に係るボンディングワイヤは、芯材を軟質化させたことにより、延性が向上し、さらにキャピラリ先端部の磨耗、汚れを低減できるため、2nd接合部の形状が安定化する。これにより、本発明に係るボンディングワイヤは、キャピラリ交換頻度が低下させ、さらには表面酸化されにくく大気中での表面性状が安定しているためにボンディングワイヤの巻長さを長くできるために、スプール交換の頻度も低減させることができるので、ボンディング工程の生産性向上、製造コスト低減を容易に実現させる事ができる。   In addition, since the bonding wire according to the present invention has softened core material, ductility is improved and wear and dirt at the capillary tip can be reduced, so that the shape of the 2nd joint is stabilized. As a result, the bonding wire according to the present invention reduces the frequency of capillary replacement, and further, the surface of the bonding wire is less likely to be oxidized and stable in the atmosphere. Since the frequency of replacement can also be reduced, the productivity of the bonding process can be improved and the manufacturing cost can be easily reduced.

C断面の粒子数がN個/μmを超えた場合、細粒が増加するため、ボンディングワイヤが硬くなるので、チップダメージ及びネックダメージが増加するほか、2nd接合における形状が悪化したり、接合強度が低下したりすることになる。 When the number of particles in the C cross section exceeds N particles / μm 2 , the fine particles increase and the bonding wire becomes hard, so chip damage and neck damage increase, and the shape in the 2nd bonding deteriorates and bonding The strength will decrease.

また、C断面の平均結晶粒径がGμm未満の場合は、細粒が増加するため、ボンディングワイヤが硬くなるので、チップダメージ及びネックダメージが増加するほか、2nd接合における形状が悪化したり、接合強度が低下したりすることになる。   In addition, when the average crystal grain size of the C cross section is less than G μm, fine grains increase and the bonding wire becomes hard, so chip damage and neck damage increase, and the shape in the 2nd junction deteriorates or is bonded. The strength will decrease.

また、前記外層の厚さが20nm以上150nm以下であるボンディングワイヤであることが望ましい。このボンディングワイヤであれば、FAB形成、1st接合における圧着ボール形状と接合強度、及びPCT(Pressure Cooker Test)において信頼性評価を改善することができる。   Further, it is desirable that the outer layer has a thickness of 20 nm to 150 nm. With this bonding wire, it is possible to improve reliability evaluation in FAB formation, pressure ball shape and bonding strength in 1st bonding, and PCT (Pressure Cooker Test).

本発明に係るボンディングワイヤでは、外層を有することにより、表面酸化物の影響が無くなり、2nd接合部の主な接合相手であるAu、Ag、Pd、Cuなどとの接合性が安定化するので、接合マージンを広くでき、日々の経時変化を抑制し、接合強度がボンディング方向の影響を受けないようにすることができる。   In the bonding wire according to the present invention, by having the outer layer, the influence of the surface oxide is eliminated, and the bonding property with Au, Ag, Pd, Cu, etc., which are the main bonding partners of the 2nd bonding portion, is stabilized. The bonding margin can be widened, daily changes with time can be suppressed, and the bonding strength can be prevented from being affected by the bonding direction.

また、本発明に係るボンディングワイヤでは、外層の厚さを20nm以上とすることにより、ワイヤ表面の濡れ性が安定するため、ボール偏芯を低減することができる。一方、外層厚さを150nm以下としたことにより、ボール部の均一性が向上するため、引け巣などの異常形状を低減することができる。このようにして、本発明に係るボンディングワイヤは、ボール形成性及び接合強度を安定化させることができる。   Further, in the bonding wire according to the present invention, by setting the thickness of the outer layer to 20 nm or more, the wettability of the wire surface is stabilized, so that the ball eccentricity can be reduced. On the other hand, when the outer layer thickness is set to 150 nm or less, the uniformity of the ball portion is improved, so that an abnormal shape such as a shrinkage nest can be reduced. In this way, the bonding wire according to the present invention can stabilize the ball formability and the bonding strength.

因みに、従来の銅ワイヤでは、ボール形成時にHガスを混合したN+5%ガスを流量1.0−2.0L/min程度要していた。さらに、従来では、単に外層を設けただけのボンディングワイヤではボール形成性が低下してしまうという問題があった。 Incidentally, in the conventional copper wire, N 2 + 5% gas mixed with H 2 gas was required at a flow rate of about 1.0 to 2.0 L / min during ball formation. Further, conventionally, there has been a problem that the ball forming property is lowered with a bonding wire simply provided with an outer layer.

これに対し本発明に係るボンディングワイヤでは、外層の厚さを20nm以上150nm以下としたことにより、ボール形状を安定化でき、耐酸化性を有することにより、Hガスを省略でき、4N以上のNガスで安定的に生産することが可能になる。さらに流量も0.5−1.0 L/min程度に半減できるため、Hガスの省略と合わせて、製造工程を省略、シールドガスの原単位を削減することができ、結果として大幅な生産ランニングコストを削減することができる。 On the other hand, in the bonding wire according to the present invention, the ball shape can be stabilized by having the thickness of the outer layer not less than 20 nm and not more than 150 nm, and by having oxidation resistance, H 2 gas can be omitted, and 4N or more. It becomes possible to produce stably with N 2 gas. In addition, since the flow rate can be halved to about 0.5-1.0 L / min, the manufacturing process can be omitted together with the omission of H 2 gas, and the basic unit of shielding gas can be reduced, resulting in significant production. Running costs can be reduced.

尚、外層厚さが20nm未満ではボールが偏芯変形してしまう。このボールの偏芯変形により、荷重及び超音波の伝達不良が生じ、1st接合における接合強度が低下する。また、外層厚さが20nm未満ではボール表面の酸化を抑制する効果が小さいため、結果として1st接合性が低下する。一方、外層厚さが150nmを超えると凝固時に引け巣が発生して、ボールが桃のような形状となるいわゆる桃尻変形を起こす。このボールの桃尻変形により、接地不良、荷重及び超音波の伝達不良が生じ、1st接合における接合強度が低下する。このような1st接合における接合不良により、信頼性評価を改善することが困難となる。また、外層厚さが20nm未満では、酸化を抑制する効果が小さいためウェッジ接合でも接合不良が生じ、2nd接合における信頼性評価を改善することも困難となる。   If the outer layer thickness is less than 20 nm, the ball will be eccentrically deformed. Due to the eccentric deformation of the ball, a load and an ultrasonic wave are poorly transmitted, and the bonding strength in the first bonding is lowered. Further, when the outer layer thickness is less than 20 nm, the effect of suppressing the oxidation of the ball surface is small, and as a result, the 1st bondability is lowered. On the other hand, if the thickness of the outer layer exceeds 150 nm, a shrinkage nest is generated during solidification, causing a so-called peach-shaped deformation in which the ball has a peach-like shape. Due to the deformation of the ball, the ground contact is poor, the load and the ultrasonic wave are poorly transmitted, and the bonding strength in the first bonding is lowered. Due to such poor bonding in the 1st bonding, it becomes difficult to improve the reliability evaluation. Further, when the outer layer thickness is less than 20 nm, the effect of suppressing oxidation is small, so that a joint failure occurs even in the wedge joint, and it is difficult to improve the reliability evaluation in the 2nd joint.

外層の主成分となる耐酸化性金属とは、銅以外の金属であり、ボンディングワイヤの接合性の改善に効果があり、銅の酸化防止にも有効である金属であることが望ましい。例えば、Pd,Pt,及び、Rh等が挙げられる。Pd、及びPtは、ボール形状を安定化させることが比較的容易である。Pdは材料費も比較的安価であり、銅との密着性も良好であるため、外層としての利用価値がさらに高まる。   The oxidation-resistant metal that is the main component of the outer layer is a metal other than copper, and is preferably a metal that is effective in improving the bondability of the bonding wire and is effective in preventing copper oxidation. For example, Pd, Pt, Rh, etc. are mentioned. Pd and Pt are relatively easy to stabilize the ball shape. Pd has a relatively low material cost and good adhesion to copper, so that the utility value as an outer layer is further increased.

芯材の主成分は銅であり、合金元素を添加して、銅合金中の成分、組成により、特性は改善する。前記銅を主成分とする芯材が、P,B,Bi,Sn,Ag,及び、Mgから選ばれる1種以上の添加元素を含有し、ボンディングワイヤ全体に占める該添加元素濃度が総計で0.0001mol%以上0.03mol%以下の範囲であることにより、ウェッジ接合のピール試験での破断伸びが増加することなどの効果が増大する。特に、ウェッジ接合のピール試験では改善効果が高い。これら合金元素の作用として、ワイヤ製造、ウェッジ接合において芯材の加工および再結晶での集合組織の形成を制御することにより、ウェッジ接合部近傍でのボンディングワイヤの破断伸びの増加に有効に作用していると考えられる。また、外層を構成する耐酸化性金属がPd,Pt,及び、Rhの場合に、ボール溶融により芯材中の該添加元素は耐酸化性金属と相乗作用することで、ボール変形時の真円性をさらに向上させる効果がある。こうした添加効果について、外層が形成されていない従来の銅系ボンディングワイヤに添加された場合と比較して、外層と該添加元素が併用された場合の方が、効果が促進されることが見出された。該添加元素の濃度が0.0001mol%未満であれば上述の改善効果が小さくなる場合がある。0.03mol%を超えると、ボール表面にシワ状の窪みが発生してボール形状が不安定になる場合がある。   The main component of the core material is copper, and the characteristics are improved by adding an alloying element and the components and composition in the copper alloy. The core containing copper as a main component contains one or more additive elements selected from P, B, Bi, Sn, Ag, and Mg, and the concentration of the additive elements in the entire bonding wire is 0 in total. By being in the range of 0.0001 mol% or more and 0.03 mol% or less, effects such as an increase in breaking elongation in the peel test of the wedge bonding are increased. In particular, in the peel test for wedge bonding, the improvement effect is high. As an effect of these alloy elements, by controlling the processing of the core material and the formation of texture by recrystallization in wire manufacturing and wedge bonding, it effectively works to increase the breaking elongation of the bonding wire in the vicinity of the wedge bond. It is thought that. In addition, when the oxidation-resistant metal constituting the outer layer is Pd, Pt, and Rh, the added element in the core material synergizes with the oxidation-resistant metal due to ball melting, so that a perfect circle when the ball is deformed This has the effect of further improving the performance. With regard to such an additive effect, it is found that the effect is promoted when the outer layer and the additive element are used in combination, compared to the case where the additive is added to a conventional copper-based bonding wire in which the outer layer is not formed. It was done. If the concentration of the additive element is less than 0.0001 mol%, the above improvement effect may be reduced. If it exceeds 0.03 mol%, a wrinkle-shaped depression may be generated on the ball surface and the ball shape may become unstable.

本発明のボンディングワイヤを製造するに当り、芯材の表面に外層を形成する工程、外層、芯材などの構造を制御する加工・熱処理工程が必要となる。まずは、外層、芯材の組成、厚さを制御するには、前述した外層を形成する工程において、外層形成の初期段階での厚さ、組成の管理がまずは重要である。   In manufacturing the bonding wire of the present invention, a step of forming an outer layer on the surface of the core material, and a processing / heat treatment step for controlling the structure of the outer layer, the core material, and the like are required. First, in order to control the composition and thickness of the outer layer and the core material, it is first important to manage the thickness and composition at the initial stage of forming the outer layer in the step of forming the outer layer.

また、上記した軟質機械特性を得る方法には熱処理を1回または複数回実施することが有効である。例えば、外層を形成する前に再結晶温度以上にて熱処理する方法、外層を形成した直後に再結晶温度以上にて熱処理する方法、外層を形成した後の伸線加工の途中において再結晶温度以上にて熱処理する方法、最終線径において仕上げ焼鈍し、のいずれか、または二以上の方法を適宜組み合わせて製造することもできる。また熱処理温度の制御により芯材の再結晶進行度を変えることも有効である。上記した方法を採用することにより、所望の軟質機械特性を有するボンディングワイヤを製造することができる。   In addition, it is effective to perform the heat treatment once or a plurality of times for the above-described method for obtaining the soft mechanical properties. For example, a method of heat treatment at a temperature higher than the recrystallization temperature before forming the outer layer, a method of heat treatment at a temperature higher than the recrystallization temperature immediately after forming the outer layer, or a temperature higher than the recrystallization temperature during the wire drawing after the outer layer is formed. It can also be produced by appropriately combining any one of the method of heat-treating and finish annealing at the final wire diameter, or two or more methods. It is also effective to change the recrystallization progress of the core material by controlling the heat treatment temperature. By adopting the above-described method, a bonding wire having desired soft mechanical characteristics can be manufactured.

外層を銅の芯材の表面に形成する方法には、メッキ法を用いる。メッキ法では、電解メッキ、無電解メッキ法のどちらでも製造可能である。ストライクメッキ、フラッシュメッキと呼ばれる電解メッキでは、メッキ速度が速く、下地との密着性も良好である。無電解メッキに使用する溶液は、置換型と還元型に分類され、膜が薄い場合には置換型メッキのみでも十分であるが、厚い膜を形成する場合には置換型メッキの後に還元型メッキを段階的に施すことが有効である。無電解法は装置等が簡便であり、容易であるが、電解法よりも時間を要する。   A plating method is used for forming the outer layer on the surface of the copper core. As the plating method, either electrolytic plating or electroless plating can be used. Electrolytic plating called strike plating or flash plating has a high plating speed and good adhesion to the substrate. Solutions used for electroless plating are classified into substitutional type and reduction type. If the film is thin, substitutional plating alone is sufficient, but when forming a thick film, reduction type plating is used after substitutional plating. It is effective to apply stepwise. The electroless method is simple and easy to use, but requires more time than the electrolysis method.

本明細書では、ボンディングワイヤの製造は、太径の芯材にメッキにより膜形成してから、狙いの線径まで複数回伸線する手法について説明する。このように、膜形成と伸線の組み合わせることにより、膜と芯材との密着性を向上することができる。具体例として、電解又は無電解のメッキ浴中に太い銅線を浸漬して膜を形成した後に、ワイヤを伸線して最終径に到達する手法等が可能である。   In the present specification, a method of manufacturing a bonding wire will be described in which a film is formed on a thick core material by plating, and then a wire is drawn a plurality of times to a target wire diameter. Thus, the adhesion between the film and the core material can be improved by combining film formation and wire drawing. As a specific example, a technique of drawing a thick copper wire in an electrolytic or electroless plating bath to form a film and then drawing the wire to reach the final diameter is possible.

外層を形成した後の加工工程では、ロール圧延、スエージング、ダイス伸線などを目的により選択、使い分ける。加工速度、圧加率またはダイス減面率などにより、加工組織、転位、結晶粒界の欠陥などを制御することは、外層の構造、密着性などにも影響を及ぼす。   In the processing step after forming the outer layer, roll rolling, swaging, die drawing, etc. are selected and used properly. Control of the processed structure, dislocations, defects at the grain boundaries, and the like by the processing speed, pressing rate or die area reduction rate also affects the structure and adhesion of the outer layer.

熱処理法として、ワイヤを連続的に掃引しながら熱処理を行い、しかも、一般的な熱処理である炉内温度を一定とするのでなく、炉内で温度傾斜をつけることで、本発明の特徴とする外層及び芯材を有するボンディングワイヤを量産することが容易となる。具体的な事例では、局所的に温度傾斜を導入する方法、温度を炉内で変化させる方法等がある。ボンディングワイヤの表面酸化を抑制する場合には、NやAr等の不活性ガスを炉内に流しながら加熱することも有効である。 As a heat treatment method, heat treatment is performed while continuously sweeping the wire, and the temperature in the furnace, which is a general heat treatment, is not constant, but a temperature gradient is provided in the furnace, which is a feature of the present invention. It becomes easy to mass-produce bonding wires having an outer layer and a core material. Specific examples include a method of introducing a temperature gradient locally and a method of changing the temperature in the furnace. In order to suppress the surface oxidation of the bonding wire, it is also effective to heat while flowing an inert gas such as N 2 or Ar into the furnace.

温度傾斜の方式では、炉入口近傍での正の温度傾斜(ワイヤの掃引方向に対し温度が上昇)、安定温度領域、炉出口近傍での負の温度傾斜(ワイヤの掃引方向に対し温度が下降)等、複数の領域で温度に傾斜をつけることが効果的である。これにより、炉入口近傍で外層と芯材との剥離等を生じることなく密着性を向上させ、安定温度領域で銅と耐酸化性金属との拡散を促進して所望する濃度勾配を形成し、さらに炉出口近傍で表面での銅の過剰な酸化を抑えることにより、得られたボンディングワイヤの接合性、ループ制御性等を改善することができる。こうした効果を得るには、出入口での温度勾配を10℃/cm以上設けることが望ましい。   In the temperature gradient method, a positive temperature gradient near the furnace inlet (temperature rises with respect to the wire sweep direction), a stable temperature range, and a negative temperature gradient near the furnace outlet (temperature falls with respect to the wire sweep direction) It is effective to give a temperature gradient in a plurality of regions. This improves adhesion without causing separation between the outer layer and the core material in the vicinity of the furnace inlet, promotes diffusion of copper and oxidation-resistant metal in a stable temperature region, and forms a desired concentration gradient, Further, by suppressing excessive oxidation of copper on the surface in the vicinity of the furnace outlet, it is possible to improve the bondability and loop controllability of the obtained bonding wire. In order to obtain such an effect, it is desirable to provide a temperature gradient at the entrance / exit of 10 ° C./cm or more.

温度を変化させる方法では、炉内を複数の領域に分割して、各領域で異なる温度制御を行うことで温度の分布を作ることも有効である。例えば、3ヶ所以上に炉内を分割して、独立に温度制御を行い、炉の両端を中央部よりも低温とすることで、温度傾斜の場合と同様の改善効果が得られる。また、ボンディングワイヤの表面酸化を抑制するため、炉の出口側を銅の酸化速度の遅い低温にすることで、ウェッジ接合部の接合強度の上昇が得られる。   In the method of changing the temperature, it is also effective to create a temperature distribution by dividing the furnace into a plurality of regions and performing different temperature control in each region. For example, the inside of the furnace is divided into three or more locations, temperature control is performed independently, and both ends of the furnace are set to a temperature lower than that of the central portion, so that the same improvement effect as in the case of the temperature gradient can be obtained. Further, in order to suppress the surface oxidation of the bonding wire, the bonding strength of the wedge joint can be increased by setting the outlet side of the furnace to a low temperature at which the oxidation rate of copper is low.

2.実施例
以下、本発明の実施例について説明する。実施例として、請求項1〜4に係るボンディングワイヤを、三種の線径(φ20μm、φ33μm、φ50μm)について作製し、作製したボンディングワイヤについて、平均結晶粒径G及び粒子数Nを測定した。また、上記実施例の効果を確認するため、比較例を作製した。実施例の作製方法及び分析方法は、以下の通りである。
2. Examples Hereinafter, examples of the present invention will be described. As examples, bonding wires according to claims 1 to 4 were prepared for three types of wire diameters (φ20 μm, φ33 μm, and φ50 μm), and the average crystal grain size G and the number N of particles were measured for the prepared bonding wires. Moreover, in order to confirm the effect of the said Example, the comparative example was produced. The production method and analysis method of the examples are as follows.

ボンディングワイヤの原材料として、芯材に用いる銅は純度が約99.99mass%以上の高純度の素材を用い、外層のPd,Pt,及び、Rhの素材には純度99.99mass%以上の原料を用意した。   As the raw material of the bonding wire, the copper used for the core material is a high-purity material having a purity of about 99.99 mass% or more, and the Pd, Pt, and Rh materials of the outer layer are materials having a purity of 99.99 mass% or more. Prepared.

ある線径まで細くした銅系ボンディングワイヤを芯材とし、そのワイヤ表面に異なる耐酸化性金属の層を形成するには、ある線径で電解メッキ及び無電解メッキ法により外層を形成してからさらに伸線加工により最終線径まで細くする方法を利用した。メッキ液は、半導体用途で市販されているメッキ液を使用した。   To form a copper-based bonding wire that has been thinned to a certain wire diameter and to form a different oxidation-resistant metal layer on the wire surface, after forming an outer layer by electrolytic plating and electroless plating with a certain wire diameter Furthermore, a method of thinning to the final wire diameter by wire drawing was used. As the plating solution, a plating solution commercially available for semiconductor applications was used.

直径が約6mm〜100μmのボンディングワイヤを予め準備し、そのワイヤ表面にメッキ法により外層を被覆し、熱処理と冷間伸線加工を2回以上繰り返して最終径まで伸線して所望の線径とした。最後に加工歪みを取り除き、熱処理を施すことにより、0.2%耐力が0.07mN/μm以上0.14mN/μm以下、最大耐力が0.20mN/μm以上0.28mN/μm以下、及び、単位断面積当たりの伸び値(%/μm)がε1以上ε2以下であり、前記ε1及び前記ε2が、ワイヤの線径をRとすると、ε1=(−0.001×R+0.055)、ε2=(−0.001×R+0.068)となるように調整し、実施例に係るボンディングワイヤを形成した。尚、ε1及びε2の値は表1に示すとおりである。 Prepare a bonding wire with a diameter of about 6 mm to 100 μm in advance, coat the outer surface of the wire with a plating method, repeat the heat treatment and cold wire drawing twice or more, and draw the wire to the final diameter. It was. Finally remove work strain, by heat treatment, 0.2% proof stress 0.07mN / μm 2 or more 0.14mN / μm 2 or less, the maximum yield strength is 0.20mN / μm 2 or more 0.28mN / μm 2 And the elongation value per unit cross-sectional area (% / μm 2 ) is ε1 or more and ε2 or less, and ε1 and ε2 are ε1 = (− 0.001 × R + 0) where R is the wire diameter of the wire. 0.055) and ε2 = (− 0.001 × R + 0.068), and the bonding wire according to the example was formed. The values of ε1 and ε2 are as shown in Table 1.

ワイヤ表面のC断面の膜厚測定には走査型電子顕微鏡(SEM)を用い、それ以外にも蛍光X線分析装置やオージェ分光分析法(AES)による深さ分析を用いた。AESによる深さ分析では、Arイオンでスパッタしながら深さ方向に測定して、深さの単位にはSiO換算で表示した。尚、Pdの膜厚は、Pd濃度が50mol%の値とした。よって、本発明でいう外層とは、外層を構成するPdの検出濃度の総計が50mol%の部位から表面であり、即ち、Pdの検出濃度の総計が50mol%以上の部位である。ボンディングワイヤ中の耐酸化性金属の分析は、ICP分析、ICP質量分析などにより測定した。 A scanning electron microscope (SEM) was used for measuring the film thickness of the C cross section on the wire surface, and depth analysis using a fluorescent X-ray analyzer or Auger spectroscopy (AES) was also used. In the depth analysis by AES, measurement was performed in the depth direction while sputtering with Ar ions, and the unit of depth was displayed in terms of SiO 2 . The film thickness of Pd was set to a value where the Pd concentration was 50 mol%. Therefore, the outer layer referred to in the present invention is a portion from the surface where the total Pd detection concentration constituting the outer layer is 50 mol%, that is, the portion where the total Pd detection concentration is 50 mol% or more. The analysis of the oxidation resistant metal in the bonding wire was measured by ICP analysis, ICP mass spectrometry, or the like.

また、作製したボンディングワイヤについて、C断面の粒子数及びC断面の平均結晶粒径を測定し、実施例に係るボンディングワイヤの粒子数がN個/μm以下であって、平均結晶粒径がGμm以上であることを確認した。前記N及びGは、N=(−0.01×R+0.7)、G=(0.02×R+0.8)である。尚、N及びGの値については表2に示すとおりである。ボンディングワイヤの平均結晶粒径及び粒子数の測定には、EBSP(Electron Backscatter Pattern)法を用いた。 Further, for the produced bonding wire, the number of particles in the C cross section and the average crystal grain size of the C cross section were measured, and the number of bonding wire particles according to the example was N / μm 2 or less, and the average crystal grain size was It was confirmed that it was G μm or more. N and G are N = (− 0.01 × R + 0.7) and G = (0.02 × R + 0.8). The values of N and G are as shown in Table 2. An EBSP (Electron Backscatter Pattern) method was used to measure the average crystal grain size and the number of particles of the bonding wire.

測定例として、図1にφ20μmの結晶粒径分布像、図2にφ50μmの結晶粒径分布像をそれぞれ示す。また、EBSP処理ソフトにより得られた各結晶粒のデータを表計算ソフトにより算出した結果を、図3及び図4(φ20μm)、図4(φ50μm)に示す。   As measurement examples, FIG. 1 shows a crystal grain size distribution image of φ20 μm, and FIG. 2 shows a crystal grain size distribution image of φ50 μm. Moreover, the result of having calculated the data of each crystal grain obtained by EBSP processing software with spreadsheet software is shown in FIG. 3, FIG. 4 (φ20 μm), and FIG. 4 (φ50 μm).

上記のように作製したボンディングワイヤの内訳を表3〜表5に示す。尚、表3は線径がφ20μmのボンディングワイヤ、表4は線径がφ33μmのボンディングワイヤ、表5は線径がφ50μmのボンディングワイヤのデータである。   Tables 3 to 5 show the breakdown of the bonding wires produced as described above. Table 3 shows data of bonding wires having a wire diameter of φ20 μm, Table 4 shows data of bonding wires having a wire diameter of φ33 μm, and Table 5 shows data of bonding wires having a wire diameter of φ50 μm.

ボンディングワイヤの接続には、市販の自動ワイヤボンダーを使用して、ボール/ウェッジ接合を行った。アーク放電によりワイヤ先端にフリーエアボールを作製し、それをシリコン基板上の電極膜に接合し、ワイヤ他端をリード端子上にウェッジ接合した。ボール形成時の酸化を抑制するために用いるシールドガスは、標準的な5vol%H+Nガスと、純Nガスを用いた。ガス流量は、0.5〜0.7L/minの範囲で調整した。 For connecting the bonding wires, a commercially available automatic wire bonder was used to perform ball / wedge bonding. A free air ball was produced at the tip of the wire by arc discharge, it was joined to the electrode film on the silicon substrate, and the other end of the wire was wedge joined to the lead terminal. The standard 5 vol% H 2 + N 2 gas and pure N 2 gas were used as the shielding gas for suppressing oxidation during ball formation. The gas flow rate was adjusted in the range of 0.5 to 0.7 L / min.

接合相手としては、シリコン基板上の電極膜の材料である、厚さ1μmのAl合金膜(Al-0.5mass%Cu膜)を使用した。一方、ウェッジ接合の相手には、表面にAgメッキ(厚さ:1〜4μm)したリードフレーム、又はAuメッキ/Niメッキ/Cuの電極構造の樹脂基板を使用した。   As a bonding partner, an Al alloy film (Al-0.5 mass% Cu film) having a thickness of 1 μm, which is a material of an electrode film on a silicon substrate, was used. On the other hand, a lead frame whose surface was Ag-plated (thickness: 1 to 4 μm) or a resin substrate having an electrode structure of Au plating / Ni plating / Cu was used as a partner for wedge bonding.

フリーエアボール形状の評価では、ボール径/ワイヤ径の比率が、1.7〜2.0の範囲とした。接合前のボール50本をSEMで観察して、ボール形状、偏芯(芯ずれ)、表面の凹凸が大きいかを評価した。   In the evaluation of the free air ball shape, the ratio of the ball diameter / wire diameter was in the range of 1.7 to 2.0. Fifty balls before joining were observed with an SEM to evaluate whether the ball shape, eccentricity (center misalignment), and surface irregularities were large.

フリーエアボール形状については、異常形状のボール発生が5本以上あれば、不良であり、改善が必要であるため×印、異常形状のボール発生が2本から4本の発生の場合で、且つFABが波打っている場合は△印、異常形状のボール発生が1本以下ではあるが、その程度であれば、実用上の大きな問題はないと判断して○印、異常形状のボール発生が1本未満でかつ、綺麗な真円を描いていた場合には◎印とし、FAB形成の「形状」の欄に表記した。   Regarding the free air ball shape, if there are 5 or more abnormally shaped balls, it is defective and needs to be improved. If the FAB is waving, the number of occurrences of △ marks and abnormally shaped balls is one or less. If it was less than one and a beautiful perfect circle was drawn, it was marked with “◎” and indicated in the “shape” column of FAB formation.

偏芯(芯ずれ)の判定では、芯ずれが5本以上あれば不良と判定し×印、2〜4本であれば、必要に応じて改善が望ましいので△印、芯ずれが1本以下で且つ実用上の大きな問題はないと判断できるのは○印、全く発生していない場合は◎印とし、FAB形成の「偏芯」の欄に表記した。   In the determination of eccentricity (center misalignment), if there are 5 or more misalignments, it is judged as defective, and if it is 2 or 4, it is desirable to improve if necessary, so Δ mark, 1 misalignment or less In addition, it can be judged that there is no serious problem in practical use, and is marked in the “Eccentricity” column of FAB formation when it is not generated at all.

表面形状(凹凸引け巣)については、凹凸引け巣が5本以上あり、且つ凹凸が大きい場合は×印、4本以下だが凹凸が大きい場合は改善が必要であるため、△印、4本以下だが、凹凸が小さく実用上問題ないと判断して○印、全く凹凸が発生していない場合は◎印とし、FAB形成の「表面形状(凹凸引け巣)」の欄に表記した。   As for the surface shape (uneven shrinkage nest), there are 5 or more uneven shrinkage nests, and if the unevenness is large, x mark is 4 or less, but if the unevenness is large, improvement is necessary. However, it was judged that there were no irregularities due to small irregularities, and a circle mark was given, and when no irregularities were generated, a circle mark was given, and it was written in the “surface shape (unevenness shrinkage nest)” column of FAB formation.

圧着ボール形状の判定では、接合されたボールを500本観察して、形状の真円性、寸法精度等を評価した。ボール径/ワイヤ径の比率が1.7〜2.2の範囲とした。真円からずれた異方性や花弁状等の不良ボール形状が5本以上であれば不良と判定し×印、不良ボール形状が2〜4本であれば、必要に応じて改善が望ましいので△印、不良ボール形状が1本以下であれば、良好であるため○印、不良ボールが全く発生していなかった場合は◎印で、1st接合の「圧着ボール形状」の欄に表記した。   In the determination of the pressure-bonded ball shape, 500 bonded balls were observed to evaluate the roundness of the shape, dimensional accuracy, and the like. The ratio of the ball diameter / wire diameter was in the range of 1.7 to 2.2. If there are 5 or more defective ball shapes such as anisotropy and petal shape deviating from a perfect circle, it is determined as defective, and if there are 2 to 4 defective ball shapes, improvement is desirable as necessary. If the number of Δ marks or defective balls is 1 or less, the result is good. If no defective balls are generated, the mark is marked in the “Press-bonded ball shape” column of 1st bonding.

接合強度の判定では、ボール径/ワイヤ径の比率が1.7〜2.2の範囲で、ボール高さが8〜16umの範囲で接合された1st側について20本のシェア強度測定試験を行い、そのシェア強度のMin値が10gf未満であれば、1st接合強度が不安定であるため×印、10gf以上15gf未満であれば、接合条件の変更で改善できるため△印、15gf以上20gf未満であれば、実用上問題ないと判断して○印、20gf以上の範囲であれば、良好であるため◎印で、1st接合の「接合強度」の欄に表記した。   In the determination of the bonding strength, 20 shear strength measurement tests are performed on the 1st side where the ball diameter / wire diameter ratio is in the range of 1.7 to 2.2 and the ball height is in the range of 8 to 16 um. If the Min value of the shear strength is less than 10 gf, the 1st joint strength is unstable. Therefore, if the mark is 10 gf or more and less than 15 gf, it can be improved by changing the joining conditions. Therefore, Δ mark, 15 gf or more and less than 20 gf. If it exists, it is judged that there is no problem in practical use, and if it is in the range of 20 gf or more, it is good and is marked in the “Joint strength” column of 1st joint because it is good.

また、ボンディング後、ワイヤをエッチングして剥離させ、パッドダメージの有無を評価した。尚、ワイヤボンディング条件の荷重、超音波時間及び超音波力は統一して、評価を実施した。500箇所確認して、ダメージが5箇所以上入っているなら×印、ダメージ箇所が2〜4箇所なら、顧客条件によって改善が望ましいから△印、ダメージ箇所が1箇所以下なら良好であるため○印、ダメージが全く入っていなかった場合は◎印で、1st接合の「パッドダメージ」の欄に表記した。   In addition, after bonding, the wire was etched and peeled to evaluate the presence or absence of pad damage. The load, the ultrasonic time and the ultrasonic force under the wire bonding conditions were unified and evaluated. Check 500 points. If there are 5 or more damages, mark X. If damages are 2-4, improvement is desirable depending on customer conditions. If there was no damage at all, it was marked with “◎” in the “pad damage” column of the 1st joint.

また、ボンディングされたワイヤのネック部を走査型電子顕微鏡(SEM)にて観察してネック損傷を評価した。ネック部で損傷を受け易い部位として、ウエッジ接合と反対方向のネック部の外側を注意して観察した。損傷形態では、微小亀裂、寸法の大きい亀裂、しわ状の凹凸などを調査した。ループ高さが低くなる場合、細径が細くなる場合に、通常はネック損傷の発生率が増加するため、より厳しい評価になる。そこで線径20um、ボンディング時のループ高さ100um、およびループ長さ2mmの台形形状ループとして、評価を実施した。100ワイヤ確認して、ダメージが8個以上入っているものを×印、5〜7個のものを△印、2〜4個のものを○印、0〜1個のものを◎印で、1st接合の「ネックダメージ」の欄に表記した。尚、ネックダメージの評価は線径がφ20μmのボンディングワイヤに対してのみ行った。このφ20μmの線径のボンディングワイヤにおいて、ボンディング高さ10μm、ボンディング長さ2mmでボンディングした場合の1st接合における比較例と実施例に係るネック部の様子を撮影した写真を図7に示す。このようにして、比較例にはネック部にネックダメージが入っているが、実施例にはネックダメージが入っていない様子を確認した。   Further, the neck portion of the bonded wire was observed with a scanning electron microscope (SEM) to evaluate neck damage. As a part that is easily damaged at the neck, the outside of the neck in the direction opposite to the wedge bonding was carefully observed. As for the form of damage, micro cracks, large cracks, wrinkled irregularities, etc. were investigated. When the loop height is lowered, when the narrow diameter is narrowed, the occurrence rate of neck damage usually increases, so that the evaluation becomes stricter. Therefore, evaluation was carried out as a trapezoidal loop with a wire diameter of 20um, a loop height of 100um during bonding, and a loop length of 2mm. Check 100 wires, if there are 8 or more damage, × mark, 5-7 marks △, 2-4 marks ○, 0-1 marks ◎ This is shown in the “neck damage” column of the 1st joint. The neck damage was evaluated only for the bonding wire having a wire diameter of φ20 μm. In this bonding wire having a diameter of φ20 μm, FIG. 7 shows a photograph of the neck portion according to the comparative example and the example in the first bonding in the case of bonding with a bonding height of 10 μm and a bonding length of 2 mm. Thus, although the neck damage was contained in the neck part in the comparative example, it was confirmed that the neck damage was not entered in the examples.

2nd接合の判定については、接合された2nd側を500箇所観察して、めくれの発生確認と、20本の2nd接合部のプル試験を行い、そのプル強度のMin値が3gf未満であれば、2nd接合強度が不十分であるため×印、3gf以上4gf未満の範囲であれば、接合条件の変更で改善できるため△印、4gf以上6gf未満の範囲であれば実用上は問題ないと判断して○印、6gf以上の範囲であれば、良好であるため◎印で、2nd接合の「形状」の欄に表記した。   For determination of 2nd bonding, observe the bonded 2nd side at 500 locations, check the occurrence of turning and perform a pull test of 20 2nd bonding portions, and if the Min value of the pull strength is less than 3 gf, Since the 2nd bonding strength is insufficient, it can be improved by changing the bonding conditions if it is in the range of x mark and 3 gf or more but less than 4 gf. In the range of 6 gf or more, it is good, and it is marked in the “shape” column of the 2nd junction because it is good.

量産性評価の判定では、初期、10万ワイヤ、30万ワイヤにて40ボールを観察し、最初に設定した条件で試料を作製し、ボール径、ボール高さ、1stシェア強度、2ndプル強度、ステッチ形状比較を実施して評価した。3項目以上で形状変化や、強度低下となった場合、連続ボンディング性に問題があるため、×印、2項目以上〜4項目未満であれば、接合条件変更などの改善が必要であるため△印、1項目以下であれば、条件によって改善が望ましいので○印、形状変化や強度低下がなかった場合は◎印で、量産性評価の各欄に表記した。   In the determination of mass productivity evaluation, 40 balls were observed initially at 100,000 wires and 300,000 wires, and a sample was prepared under the initially set conditions, and the ball diameter, ball height, 1st shear strength, 2nd pull strength, Stitch shape comparison was performed and evaluated. If the shape changes or strength decreases with 3 or more items, there is a problem with the continuous bonding property. Therefore, if the cross mark is 2 items or more to less than 4 items, it is necessary to improve the bonding conditions, etc. If it is less than 1 item, improvement is desirable depending on the conditions. Therefore, if there is no change in the shape or decrease in strength, it is indicated in each column of mass productivity evaluation.

PCTでは、121℃、2気圧、湿度100%の高温高湿環境で200時間加熱した。その後に、40本のワイヤの電気特性を評価した。電気抵抗が初期の3倍以上に上昇したワイヤの割合が30%以上の場合には接合不良のため×印、電気抵抗が3倍以上に上昇したワイヤの割合が、5%以上30%未満の範囲の場合には信頼性要求が厳しくないICには使用可能なため△印、電気抵抗が3倍以上に上昇したワイヤの割合が5%未満で且つ1.5倍以上に上昇した割合が10%以上30%未満の場合には実用上は問題ないため○印、1.5倍以上に上昇したワイヤの割合が10%未満であれば良好であるため◎印で、信頼性評価の「PCT」の欄に表記した。   In PCT, heating was performed for 200 hours in a high-temperature and high-humidity environment at 121 ° C., 2 atm and humidity of 100%. Thereafter, the electrical characteristics of 40 wires were evaluated. When the ratio of the wire whose electrical resistance has increased to 3 times or more of the initial value is 30% or more, it is X because of the bonding failure, and the ratio of the wire whose electrical resistance has increased 3 times or more is 5% or more and less than 30%. In the case of the range, since it can be used for an IC whose reliability requirement is not strict, the proportion of the wire whose electrical resistance has increased 3 times or more is less than 5% and the rate of increase of 1.5 times or more is 10 If the percentage is less than 30%, there is no practical problem. Therefore, it is good if the ratio of the wire that has risen to 1.5 times or more is less than 10%. In the "" column.

表6〜表8に、本発明に係るボンディングワイヤの評価結果と、比較例とを示す。尚、表6は線径がφ20μmのボンディングワイヤ、表7は線径がφ33μmのボンディングワイヤ、表8は線径がφ50μmのボンディングワイヤのデータである。実施例1〜83のボンディングワイヤは、外層の厚さが20nm以上150nm以下であることにより、FAB形成、1st接合における圧着ボール形状と接合強度、及びPCTで信頼性評価を改善できたことが確認された。一方、外層の厚さが20nm未満である比較例1,5,10,14,18,23、及び、外層の厚さが150nmを超える比較例15,17,19,22,25では、PCTで信頼性評価が低いことが確認された。   Tables 6 to 8 show the evaluation results of the bonding wires according to the present invention and comparative examples. Table 6 shows data of bonding wires having a wire diameter of φ20 μm, Table 7 shows data of bonding wires having a wire diameter of φ33 μm, and Table 8 shows data of bonding wires having a wire diameter of φ50 μm. As for the bonding wires of Examples 1 to 83, it was confirmed that the reliability evaluation could be improved by FAB formation, pressure bonding ball shape and bonding strength in 1st bonding, and PCT when the thickness of the outer layer was 20 nm or more and 150 nm or less. It was done. On the other hand, in Comparative Examples 1, 5, 10, 14, 18, 23 in which the thickness of the outer layer is less than 20 nm, and Comparative Examples 15, 17, 19, 22, 25 in which the thickness of the outer layer exceeds 150 nm, the PCT It was confirmed that the reliability evaluation was low.

実施例1〜83のボンディングワイヤは、0.2%耐力が0.07mN/μm以上0.14mN/μm以下、最大耐力が0.20mN/μm以上0.28mN/μm以下、及び、単位断面積当たりの伸び値(%/μm)がε1以上ε2以下であり、前記ε1及び前記ε2は、ワイヤの線径をRとすると、ε1=(−0.001×R+0.055)、ε2=(−0.001×R+0.068)である(表1)ことにより、パッドダメージ、2nd接合における形状と接合強度、量産性評価を改善できることが確認された。一方、単位断面積あたりの伸びが上記範囲から外れている比較例2〜4,6〜9,11〜14,16,17,20,21,24,25,及び0.2%耐力と最大耐力が上記範囲を外れている比較例15,22では、特に、パッドダメージ、2nd接合における形状、量産性評価が改善されないことが確認された。 Bonding wires of Examples 1-83, the 0.2% proof stress is 0.07mN / μm 2 or more 0.14mN / μm 2 or less, the maximum yield strength is 0.20mN / μm 2 or more 0.28mN / μm 2 or less, and The elongation value per unit cross-sectional area (% / μm 2 ) is ε1 or more and ε2 or less, and ε1 and ε2 are ε1 = (− 0.001 × R + 0.055), where R is the wire diameter of the wire. , Ε2 = (− 0.001 × R + 0.068) (Table 1), it was confirmed that pad damage, shape and bonding strength in 2nd bonding, and mass productivity evaluation can be improved. On the other hand, Comparative Examples 2-4, 6-9, 11-14, 16, 17, 20, 21, 21, 24, 25, and 0.2% proof stress and maximum proof strength, where the elongation per unit cross-sectional area is out of the above range. However, in Comparative Examples 15 and 22, which are out of the above range, it was confirmed that the pad damage, the shape at the 2nd junction, and the mass productivity evaluation were not improved.

実施例1〜83のボンディングワイヤは、C断面の粒子数がN個/μm以下であって、C断面の平均結晶粒径がGμm以上であり、前記N及びGは、N=(−0.01×R+0.7)G=(0.02×R+0.8)であることにより、軟質機械特性を有するボンディングワイヤを得ることができる。従って、このボンディングワイヤでは、上記したと同様に、パッドダメージ、2nd接合における形状と接合強度、量産性評価を改善することができる。一方、平均結晶粒径及び粒子数が上記範囲を外れている比較例3,4,7〜9,11〜14,16,17,20,21,24,25では、パッドダメージ、2nd接合における形状、量産性評価が改善されないことが確認された。 In the bonding wires of Examples 1 to 83, the number of particles in the C cross section is N / μm 2 or less, the average crystal grain size in the C cross section is G μm or more, and the N and G are N = (− 0 .01 × R + 0.7) G = (0.02 × R + 0.8) makes it possible to obtain a bonding wire having soft mechanical properties. Therefore, with this bonding wire, as described above, pad damage, shape and bonding strength in 2nd bonding, and mass productivity evaluation can be improved. On the other hand, in Comparative Examples 3, 4, 7-9, 11-14, 16, 17, 20, 21, 21, 24, 25 in which the average crystal grain size and the number of particles are out of the above ranges, the pad damage and the shape in the 2nd junction It was confirmed that the mass productivity evaluation was not improved.

φ20μmのボンディングワイヤにおけるEBSP測定結果である。It is an EBSP measurement result in a bonding wire having a diameter of 20 μm. φ50μmのボンディングワイヤにおけるEBSP測定結果である。It is an EBSP measurement result in a bonding wire having a diameter of 50 μm. φ20μmのボンディングワイヤにおけるEBSP処理ソフトにより得られた各結晶粒のデータを表計算ソフトにより算出した結果を示すグラフである。(A)比較例、(B)実施例It is a graph which shows the result of having calculated the data of each crystal grain obtained by the EBSP processing software in the bonding wire of φ20 μm by the spreadsheet software. (A) Comparative example, (B) Example 同上、φ20μmのボンディングワイヤにおけるEBSP処理ソフトにより得られた各結晶粒のデータを表計算ソフトにより算出した結果を示す表である。It is a table | surface which shows the result of having calculated the data of each crystal grain obtained by the EBSP processing software in the bonding wire of φ20 μm by the spreadsheet software. 同上、φ50μmのボンディングワイヤにおけるEBSP処理ソフトにより得られた各結晶粒のデータを表計算ソフトにより算出した結果を示すグラフである。(A)比較例、(B)実施例It is a graph which shows the result of having calculated the data of each crystal grain obtained by the EBSP processing software in the bonding wire of φ 50 μm by the spreadsheet software. (A) Comparative example, (B) Example 同上、φ50μmのボンディングワイヤにおけるEBSP処理ソフトにより得られた各結晶粒のデータを表計算ソフトにより算出した結果を示す表である。It is a table | surface which shows the result of having calculated the data of each crystal grain obtained by the EBSP processing software in the bonding wire of φ50 μm by the spreadsheet software. φ20μmのボンディングワイヤにおける、ボンディング後のネック部の様子を撮影したSEM写真である。It is the SEM photograph which image | photographed the mode of the neck part after bonding in the bonding wire of (phi) 20micrometer.

Claims (4)

銅を主成分とする芯材と、
前記芯材の上に設けられた、20nm以上150nm以下の厚さの耐酸化性金属からなる外層と
を有する半導体装置用ボンディングワイヤであって、
0.2%耐力が0.07mN/μm以上0.14mN/μm以下、最大耐力が0.20mN/μm以上0.28mN/μm以下、及び、単位断面積当たりの伸び値(%/μm)がε1以上ε2以下であり、前記ε1及び前記ε2は、ワイヤの線径をRとすると、
ε1=(−0.001×R+0.055)
ε2=(−0.001×R+0.068)
であることを特徴とする半導体装置用ボンディングワイヤ。
A core mainly composed of copper;
A bonding wire for a semiconductor device having an outer layer made of an oxidation-resistant metal having a thickness of 20 nm or more and 150 nm or less provided on the core;
0.2% proof stress 0.07mN / μm 2 or more 0.14mN / μm 2 or less, the maximum yield strength is 0.20mN / μm 2 or more 0.28mN / μm 2 or less, and an elongation value per unit cross-sectional area (% / Μm 2 ) is not less than ε1 and not more than ε2, and the ε1 and the ε2 are R when the wire diameter of the wire is R,
ε1 = (− 0.001 × R + 0.055)
ε2 = (− 0.001 × R + 0.068)
A bonding wire for a semiconductor device, characterized in that
C断面の粒子数がN個/μm以下であって、C断面の平均結晶粒径がGμm以上であり、前記N及びGは、
N=(−0.01×R+0.7)
G=(0.02×R+0.8)
であることを特徴とする請求項1記載の半導体装置用ボンディングワイヤ。
The number of particles in the C cross section is N / μm 2 or less, the average crystal grain size in the C cross section is G μm or more, and the N and G are:
N = (− 0.01 × R + 0.7)
G = (0.02 × R + 0.8)
The bonding wire for a semiconductor device according to claim 1, wherein:
前記耐酸化性金属が、Pd,Pt,及び、Rhから選ばれる1種以上の元素を主成分とすることを特徴とする請求項1記載の半導体装置用ボンディングワイヤ。   2. The bonding wire for a semiconductor device according to claim 1, wherein the oxidation-resistant metal contains, as a main component, one or more elements selected from Pd, Pt, and Rh. 前記芯材が、P,B,Bi,Sn,Ag,及び、Mgから選ばれる1種以上の元素を含有し、ワイヤ全体に占める該元素濃度が総計で0.0001mol%以上0.03mol%以下の範囲であることを特徴とする請求項1記載の半導体装置用ボンディングワイヤ。   The core material contains one or more elements selected from P, B, Bi, Sn, Ag, and Mg, and the total concentration of the elements in the entire wire is 0.0001 mol% or more and 0.03 mol% or less. The bonding wire for a semiconductor device according to claim 1, wherein the bonding wire is in a range of
JP2007312429A 2007-12-03 2007-12-03 Bonding wires for semiconductor devices Active JP4904252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007312429A JP4904252B2 (en) 2007-12-03 2007-12-03 Bonding wires for semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007312429A JP4904252B2 (en) 2007-12-03 2007-12-03 Bonding wires for semiconductor devices

Publications (2)

Publication Number Publication Date
JP2009140953A true JP2009140953A (en) 2009-06-25
JP4904252B2 JP4904252B2 (en) 2012-03-28

Family

ID=40871331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007312429A Active JP4904252B2 (en) 2007-12-03 2007-12-03 Bonding wires for semiconductor devices

Country Status (1)

Country Link
JP (1) JP4904252B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102687259A (en) * 2010-02-03 2012-09-19 新日铁高新材料株式会社 Copper bonding wire for semiconductor,and bonding structure of the copper bonding wire
CN103745963A (en) * 2014-01-28 2014-04-23 铭凯益电子(昆山)有限公司 Copper-based lead and semiconductor packaging structure carried with same
WO2014137286A1 (en) * 2013-03-05 2014-09-12 Heraeus Materials Singapore Pte.Ltd. Palladium coated copper wire for bonding applications
WO2014137287A1 (en) * 2013-03-05 2014-09-12 Heraeus Materials Singapore Pte. Ltd. Palladium coated copper wire for bonding applications
WO2014137288A1 (en) * 2013-03-05 2014-09-12 Heraeus Materials Singapore Pte.Ltd. Palladium coated copper wire for bonding applications
WO2016005068A1 (en) * 2014-07-11 2016-01-14 Heraeus Deutschland GmbH & Co. KG Process for manufacturing of a thick copper wire for bonding applications
CN105393352A (en) * 2013-05-03 2016-03-09 贺利氏材料新加坡私人有限公司 Copper bond wire and method of making the same
JP5985127B1 (en) * 2015-06-15 2016-09-06 日鉄住金マイクロメタル株式会社 Bonding wires for semiconductor devices
WO2016203899A1 (en) * 2015-06-15 2016-12-22 日鉄住金マイクロメタル株式会社 Bonding wire for semiconductor device
WO2016204138A1 (en) * 2015-06-15 2016-12-22 日鉄住金マイクロメタル株式会社 Bonding wire for semiconductor device
JP2017045924A (en) * 2015-08-28 2017-03-02 田中電子工業株式会社 Copper Alloy Bonding Wire
US10468370B2 (en) 2015-07-23 2019-11-05 Nippon Micrometal Corporation Bonding wire for semiconductor device
WO2021111908A1 (en) * 2019-12-02 2021-06-10 日鉄マイクロメタル株式会社 Semiconductor device copper bonding wire and semiconductor device
US11996382B2 (en) 2019-06-04 2024-05-28 Tanaka Denshi Kogyo K. K. Palladium-coated copper bonding wire, manufacturing method of palladium-coated copper bonding wire, semiconductor device using the same, and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005123499A (en) * 2003-10-20 2005-05-12 Sumitomo Electric Ind Ltd Bonding wire and integrated circuit device using it
JP2006100777A (en) * 2004-09-02 2006-04-13 Furukawa Electric Co Ltd:The Bonding wire and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005123499A (en) * 2003-10-20 2005-05-12 Sumitomo Electric Ind Ltd Bonding wire and integrated circuit device using it
JP2006100777A (en) * 2004-09-02 2006-04-13 Furukawa Electric Co Ltd:The Bonding wire and its manufacturing method

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102687259A (en) * 2010-02-03 2012-09-19 新日铁高新材料株式会社 Copper bonding wire for semiconductor,and bonding structure of the copper bonding wire
WO2014137286A1 (en) * 2013-03-05 2014-09-12 Heraeus Materials Singapore Pte.Ltd. Palladium coated copper wire for bonding applications
WO2014137287A1 (en) * 2013-03-05 2014-09-12 Heraeus Materials Singapore Pte. Ltd. Palladium coated copper wire for bonding applications
WO2014137288A1 (en) * 2013-03-05 2014-09-12 Heraeus Materials Singapore Pte.Ltd. Palladium coated copper wire for bonding applications
CN105393352A (en) * 2013-05-03 2016-03-09 贺利氏材料新加坡私人有限公司 Copper bond wire and method of making the same
JP2016524811A (en) * 2013-05-03 2016-08-18 ヘレウス マテリアルズ シンガポール ピーティーイー. リミテッド Copper bonding wire and manufacturing method thereof
CN103745963A (en) * 2014-01-28 2014-04-23 铭凯益电子(昆山)有限公司 Copper-based lead and semiconductor packaging structure carried with same
WO2016005068A1 (en) * 2014-07-11 2016-01-14 Heraeus Deutschland GmbH & Co. KG Process for manufacturing of a thick copper wire for bonding applications
CN107533992A (en) * 2015-06-15 2018-01-02 日铁住金新材料股份有限公司 Bonding wire for semiconductor device
JP2018139293A (en) * 2015-06-15 2018-09-06 日鉄住金マイクロメタル株式会社 Bonding wire for semiconductor device
WO2016204138A1 (en) * 2015-06-15 2016-12-22 日鉄住金マイクロメタル株式会社 Bonding wire for semiconductor device
JP2017005256A (en) * 2015-06-15 2017-01-05 日鉄住金マイクロメタル株式会社 Bonding wire for semiconductor device
JP2017005240A (en) * 2015-06-15 2017-01-05 日鉄住金マイクロメタル株式会社 Bonding wire for semiconductor device
CN107962313B (en) * 2015-06-15 2024-03-08 日铁新材料股份有限公司 Bonding wire for semiconductor device
US10737356B2 (en) 2015-06-15 2020-08-11 Nippon Micrometal Corporation Bonding wire for semiconductor device
CN106489199A (en) * 2015-06-15 2017-03-08 日铁住金新材料股份有限公司 Bonding wire for semiconductor device
CN106688086A (en) * 2015-06-15 2017-05-17 日铁住金新材料股份有限公司 Bonding wire for semiconductor device
JPWO2016204138A1 (en) * 2015-06-15 2017-09-14 日鉄住金マイクロメタル株式会社 Bonding wires for semiconductor devices
JP5985127B1 (en) * 2015-06-15 2016-09-06 日鉄住金マイクロメタル株式会社 Bonding wires for semiconductor devices
TWI618802B (en) * 2015-06-15 2018-03-21 Nippon Micrometal Corp Bonding wire for semiconductor device
CN107962313A (en) * 2015-06-15 2018-04-27 日铁住金新材料股份有限公司 Bonding wire for semiconductor device
JP2018078297A (en) * 2015-06-15 2018-05-17 日鉄住金マイクロメタル株式会社 Bonding wire for semiconductor device
TWI631227B (en) * 2015-06-15 2018-08-01 日商日鐵住金新材料股份有限公司 Bonding wire for semiconductor device
WO2016203899A1 (en) * 2015-06-15 2016-12-22 日鉄住金マイクロメタル株式会社 Bonding wire for semiconductor device
KR101910762B1 (en) 2015-06-15 2018-10-22 닛데쓰스미킹 마이크로 메탈 가부시키가이샤 Bonding wire for semiconductor devices
US10137534B2 (en) 2015-06-15 2018-11-27 Nippon Micrometal Corporation Bonding wire for semiconductor device
US10414002B2 (en) 2015-06-15 2019-09-17 Nippon Micrometal Corporation Bonding wire for semiconductor device
US10610976B2 (en) 2015-06-15 2020-04-07 Nippon Micrometal Corporation Bonding wire for semiconductor device
US10468370B2 (en) 2015-07-23 2019-11-05 Nippon Micrometal Corporation Bonding wire for semiconductor device
CN106486447A (en) * 2015-08-28 2017-03-08 田中电子工业株式会社 Copper alloy bonding wire
TWI714562B (en) * 2015-08-28 2021-01-01 日商田中電子工業股份有限公司 Copper alloy bonding wire
JP2017045924A (en) * 2015-08-28 2017-03-02 田中電子工業株式会社 Copper Alloy Bonding Wire
US11996382B2 (en) 2019-06-04 2024-05-28 Tanaka Denshi Kogyo K. K. Palladium-coated copper bonding wire, manufacturing method of palladium-coated copper bonding wire, semiconductor device using the same, and manufacturing method thereof
WO2021111908A1 (en) * 2019-12-02 2021-06-10 日鉄マイクロメタル株式会社 Semiconductor device copper bonding wire and semiconductor device
CN114761591A (en) * 2019-12-02 2022-07-15 日铁新材料股份有限公司 Copper bonding wire for semiconductor device and semiconductor device
EP4071256A4 (en) * 2019-12-02 2023-11-29 Nippon Micrometal Corporation Semiconductor device copper bonding wire and semiconductor device
CN114761591B (en) * 2019-12-02 2024-01-05 日铁新材料股份有限公司 Copper bonding wire for semiconductor device and semiconductor device

Also Published As

Publication number Publication date
JP4904252B2 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
JP4904252B2 (en) Bonding wires for semiconductor devices
JP4554724B2 (en) Bonding wires for semiconductor devices
JP4886899B2 (en) Bonding wire for semiconductor
JP4672373B2 (en) Bonding wires for semiconductor devices
JP5073759B2 (en) Bonding wires for semiconductor devices
WO2012043727A1 (en) Structure for joining multilayer copper bonding wire
JP6618662B2 (en) Cu alloy bonding wire for semiconductor devices
JP2007012776A (en) Bonding wire for semiconductor device
TWI657154B (en) Bonding wire for semiconductor device
WO2011013527A1 (en) Bonding wire for semiconductor
WO2006073206A9 (en) Bonding wire for semiconductor device
WO2011096487A1 (en) Copper bonding wire for semiconductor, and bonding structure of the copper bonding wire
TWI545207B (en) A bonding wire for a semiconductor device
JP5343069B2 (en) Bonding wire bonding structure
JP2006216929A (en) Bonding wire for semiconductor device
JP2011077254A (en) Bonding wire for semiconductor
JP2011035020A (en) Bonding wire for semiconductor
CN110998814B (en) Cu alloy bonding wire for semiconductor device
JP5393614B2 (en) Bonding wires for semiconductor devices
JP5591987B2 (en) Bonding wires for semiconductor devices
JP3697227B2 (en) Gold bonding wire for semiconductor device and manufacturing method thereof
WO2018155283A1 (en) Semiconductor-device bonding wire
JP2010245574A (en) Bonding wire for semiconductor device
WO2021166081A1 (en) Cu alloy bonding wire for semiconductor device
TW201840860A (en) Bonding wire for semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111219

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120106

R150 Certificate of patent or registration of utility model

Ref document number: 4904252

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250