JP2011035020A - Bonding wire for semiconductor - Google Patents

Bonding wire for semiconductor Download PDF

Info

Publication number
JP2011035020A
JP2011035020A JP2009177315A JP2009177315A JP2011035020A JP 2011035020 A JP2011035020 A JP 2011035020A JP 2009177315 A JP2009177315 A JP 2009177315A JP 2009177315 A JP2009177315 A JP 2009177315A JP 2011035020 A JP2011035020 A JP 2011035020A
Authority
JP
Japan
Prior art keywords
wire
palladium
silver
bonding
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009177315A
Other languages
Japanese (ja)
Other versions
JP5497360B2 (en
Inventor
Shinichi Terajima
晋一 寺嶋
Tomohiro Uno
智裕 宇野
Takashi Yamada
隆 山田
Daizo Oda
大造 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Micrometal Corp
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Materials Co Ltd
Nippon Micrometal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2009177315A priority Critical patent/JP5497360B2/en
Application filed by Nippon Steel Materials Co Ltd, Nippon Micrometal Corp filed Critical Nippon Steel Materials Co Ltd
Priority to US13/384,819 priority patent/US8742258B2/en
Priority to CN201080019191.6A priority patent/CN102422404B/en
Priority to SG2012004065A priority patent/SG178063A1/en
Priority to MYPI2012000003A priority patent/MY164643A/en
Priority to KR1020107028435A priority patent/KR101707244B1/en
Priority to CN201510431505.8A priority patent/CN105023902B/en
Priority to PCT/JP2010/062082 priority patent/WO2011013527A1/en
Priority to EP10804273.0A priority patent/EP2461358B1/en
Publication of JP2011035020A publication Critical patent/JP2011035020A/en
Application granted granted Critical
Publication of JP5497360B2 publication Critical patent/JP5497360B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/432Mechanical processes
    • H01L2224/4321Pulling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/438Post-treatment of the connector
    • H01L2224/43848Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45565Single coating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/4557Plural coating layers
    • H01L2224/45572Two-layer stack coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45639Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45644Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/45664Palladium (Pd) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48699Principal constituent of the connecting portion of the wire connector being Aluminium (Al)
    • H01L2224/487Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48717Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48724Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • H01L2224/85498Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/85499Material of the matrix
    • H01L2224/855Material of the matrix with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/85563Material of the matrix with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/85564Palladium (Pd) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00015Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed as prior art
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01007Nitrogen [N]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01016Sulfur [S]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01018Argon [Ar]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01025Manganese [Mn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01075Rhenium [Re]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20755Diameter ranges larger or equal to 50 microns less than 60 microns

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bonding wire for semiconductor, which ensures good wedge bonding even of palladium-plated lead frames and has excellent oxidation resistance, and in which copper or a copper alloy is used as a core wire. <P>SOLUTION: The bonding wire for semiconductor is characterized by comprising a core wire that comprises: copper or a copper alloy; a coating layer that is arranged on the surface of the core wire, has a thickness of 10 to 200 nm and contains palladium; and an alloy layer that is arranged on the surface of the coating layer, has a thickness of 3 to 30 nm and contains silver and palladium, wherein the silver is contained in the alloy layer of the silver and palladium at a concentration of 10 to 70 vol% inclusive. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、半導体素子上の電極と外部接続端子を接続するために使用される半導体用ボンディングワイヤーに関するものである。 The present invention relates to a semiconductor bonding wire used for connecting an electrode on a semiconductor element and an external connection terminal.

現在、半導体素子上の電極と外部接続端子との間を接続する半導体用ボンディングワイヤー(以下、「ボンディングワイヤー」という)としては、線径20−50μm程度で、材質は高純度4N(4−Nine、純度が99.99質量%以上)の金(Au)であるボンディングワイヤー(金ボンディングワイヤー)が主として使用されている。金ボンディングワイヤーを半導体素子であるシリコンチップ上の電極に接合させるには、超音波併用熱圧着方式のボールボンディングを行うことが一般的である。つまり、汎用ボンディング装置を用い、前記金ボンディングワイヤ−をキャピラリと呼ばれる治具の内部に通して、ワイヤー先端をアーク入熱で加熱溶融し、表面張力によりボール部を形成させた後に、150〜300℃の範囲内で加熱した前記電極上に、加熱溶融して形成されたボール部を圧着接合せしめる手法である。   At present, a semiconductor bonding wire (hereinafter referred to as “bonding wire”) for connecting between an electrode on a semiconductor element and an external connection terminal has a wire diameter of about 20-50 μm and is made of high-purity 4N (4-Nine). Bonding wire (gold bonding wire) which is gold (Au) having a purity of 99.99% by mass or more is mainly used. In order to bond a gold bonding wire to an electrode on a silicon chip that is a semiconductor element, it is common to perform ball bonding by a thermocompression bonding method using ultrasonic waves. That is, using a general-purpose bonding apparatus, the gold bonding wire is passed through a jig called a capillary, the wire tip is heated and melted by arc heat input, and a ball portion is formed by surface tension. This is a technique in which a ball portion formed by heating and melting is pressure-bonded onto the electrode heated within a range of ° C.

一方、金ボンディングワイヤーをリードやランド等の外部接続端子に接続する場合には、前述のようなボール部を形成することなく、金ボンディングワイヤーを直接電極に接合する、いわゆるウェッジボンディングを行うことが一般的である。近年、半導体実装の構造・材料・接続技術などは急速に多様化しており、例えば、実装構造では、現行のリードフレームを使用したQFP(Quad Flat Packaging)に加え、基板やポリイミドテープなどを使用するBGA(Ball Grid Array)、CSP(Chip Scale Packaging)などの新しい実装形態が実用化され、外部接続端子も多様化している。そのため、ウェッジボンディング特性は、従来以上に重要視されつつある。   On the other hand, when connecting a gold bonding wire to an external connection terminal such as a lead or a land, so-called wedge bonding can be performed by directly bonding the gold bonding wire to the electrode without forming the ball portion as described above. It is common. In recent years, the structure, materials, connection technology, etc. of semiconductor mounting have been diversified rapidly. For example, in the mounting structure, in addition to QFP (Quad Flat Packaging) using the current lead frame, a substrate, polyimide tape, etc. are used. New mounting forms such as BGA (Ball Grid Array) and CSP (Chip Scale Packaging) have been put into practical use, and external connection terminals are also diversified. For this reason, wedge bonding characteristics are becoming more important than ever.

また、半導体素子の小型化のニーズが高まっており、薄型実装を行うため、ボンディングワイヤー接続のループの高さを低くするという低ループボンディング技術や、複数枚積層したチップに向かって基板側からループを打ち上げる逆打ちボンディング技術等が広まりつつある。   In addition, there is a growing need for miniaturization of semiconductor elements, and in order to achieve thin mounting, low loop bonding technology that lowers the height of the bonding wire connection loop and loop from the substrate side toward multiple stacked chips The reverse-bonding technology that launches is spreading.

ところで、昨今の資源価格の高騰に伴い、金ボンディングワイヤーの原料となる金の価格も急騰しており、金に代わる低コストなワイヤー素材として、銅(Cu)が検討されている。しかしながら、金と比べて銅は酸化されやすいことから、単純な銅ボンディングワイヤーでは長期の保管が難しく、ウェッジボンディング特性も良好ではない。また、このような単純な銅ボンディングワイヤーの先端にボール部を形成する際には、ボール部が酸化しないように、還元雰囲気にしなければならない。具体的には、窒素(N)に4体積%程度の水素(H)を混在させたガスを用いて、ボール部周辺を還元雰囲気とすることが一般的であるのであるが、それでも金ボンディングワイヤーを用いたような良好なボールボンディングを行うことは難しい。これらの理由から、銅ボンディングワイヤーの利用は、一般的なLSI分野にまだ広まっていない。 By the way, with the recent increase in resource prices, the price of gold as a raw material for gold bonding wires has also increased rapidly, and copper (Cu) has been studied as a low-cost wire material that can replace gold. However, since copper is more easily oxidized than gold, it is difficult to store for a long time with a simple copper bonding wire, and the wedge bonding characteristics are not good. Moreover, when forming a ball part at the tip of such a simple copper bonding wire, a reducing atmosphere must be provided so that the ball part is not oxidized. Specifically, it is common to use a gas in which about 4% by volume of hydrogen (H 2 ) is mixed with nitrogen (N 2 ) to create a reducing atmosphere around the ball part. It is difficult to perform good ball bonding using a bonding wire. For these reasons, the use of copper bonding wires has not yet spread to the general LSI field.

そこで、銅ボンディングワイヤーの酸化という課題を解決するため、銅ワイヤーの表面に銀(Ag)を被覆した銅ボンディングワイヤーが提案されている。例えば、特許文献1では、銅ワイヤーに銀を被覆した具体例は示されていないが、ボンディングワイヤーの内部金属としてアルミニウム(Al)、銅、鉄(Fe)、鉄とニッケルの合金(FeNi)等の非純貴金属が挙げられ、前記ボンディングワイヤーの表面被覆金属として水分、塩分、アルカリ等に対する耐食性のある金属、例えば、金や銀とすることが開示されている。また、特許文献2では、銅ワイヤーに銀を被覆した具体例は示されていないが、銅系ワイヤーに金、銀を含む貴金属を被覆した銅系ボンディングワイヤーが例示されており、当該銅系ワイヤーに被覆を施せば、耐腐食性が一層向上すると記載されている。特許文献3では、アルミニウム(Al)や銅ワイヤーに、金や銀等の貴金属をメッキしたボンディングワイヤーが開示され、銅ボンディングワイヤーの場合には、前記メッキによって耐食性及び熱酸化の問題が解消され、リードフレームとの接合性も金ボンディングワイヤーと同様の信頼性が得られるとされている。特許文献4では、高純度銅極細線の表面に、貴金属あるいは耐食性金属を被覆した銅ボンディングワイヤーが開示され、前記被覆する貴金属の1つとして銀が使用されている。このように構成することで、銅ボンディングワイヤーの表面酸化(具体的には、大気中に10日間放置後の表面酸化の有無である。)が抑制できるとしている。また、前記銅極細線の直径としては15〜80μmとし、前記被覆する被膜は10nm〜1μmの平均層厚であるとしている(実施例では、25μm直径のワイヤーで、0.1μmの平均層厚の被膜である。)。特許文献5では、銅細線の表面に、銀を線径の0.001〜0.01倍の厚さに被覆した銅ボンディングワイヤー、即ち、直径25μmの銅細線で0.02〜0.3μm厚さの銀被覆となる銅ボンディングワイヤーが開示されている。銀を被覆することで銅の酸化を抑制され、並びにボール形成能が向上するとしている。   Then, in order to solve the subject called oxidation of a copper bonding wire, the copper bonding wire which coat | covered silver (Ag) on the surface of a copper wire is proposed. For example, Patent Document 1 does not show a specific example in which a copper wire is coated with silver, but the inner metal of the bonding wire is aluminum (Al), copper, iron (Fe), an alloy of iron and nickel (FeNi), or the like. It is disclosed that the surface metal of the bonding wire is a metal having corrosion resistance against moisture, salt, alkali, etc., for example, gold or silver. Patent Document 2 does not show a specific example in which a copper wire is coated with silver, but a copper-based bonding wire in which a copper-based wire is coated with a noble metal including gold and silver is exemplified. It is described that if the coating is applied, the corrosion resistance is further improved. In Patent Document 3, a bonding wire obtained by plating a noble metal such as gold or silver on aluminum (Al) or copper wire is disclosed. In the case of a copper bonding wire, the problem of corrosion resistance and thermal oxidation is eliminated by the plating, The bondability with the lead frame is said to be as reliable as the gold bonding wire. Patent Document 4 discloses a copper bonding wire in which a surface of a high-purity copper fine wire is coated with a noble metal or a corrosion-resistant metal, and silver is used as one of the noble metals to be coated. By configuring in this way, the surface oxidation of the copper bonding wire (specifically, the presence or absence of surface oxidation after being left in the atmosphere for 10 days) can be suppressed. In addition, the diameter of the copper fine wire is 15 to 80 μm, and the coating film to be coated has an average layer thickness of 10 nm to 1 μm (in the example, a wire having a diameter of 25 μm and an average layer thickness of 0.1 μm). It is a coating.) In Patent Document 5, a copper bonding wire in which silver is coated to a thickness of 0.001 to 0.01 times the wire diameter on the surface of a copper fine wire, that is, a copper fine wire having a diameter of 25 μm and a thickness of 0.02 to 0.3 μm. A copper bonding wire to be a silver coating is disclosed. By covering silver, the oxidation of copper is suppressed and the ball forming ability is improved.

しかしながら、上述のようにワイヤー表面に銀を被覆した銅ボンディングワイヤーでは、銅の表面酸化(特に、保管中の酸化の進行)を抑制できるが、ボンディングする際にワイヤー先端に形成するボール部が真球とならずにいびつとなることが多く、当該銅ボンディングワイヤーの実用化を妨げている。これは、ワイヤー先端をアーク入熱で加熱溶融する際に、融点の低い銀(融点961℃)が優先的に溶融してしまうのに対し、融点の高い銅(融点1083℃)は一部分のみしか溶融しないことが、関係していると思われる。また、特許文献5にあるように、ボンディングを還元雰囲気(10%H−N)で行えば、銀被覆でもボール部形成が良好となる場合が多いが、水素を含まない雰囲気では溶融時の酸化を抑制することができないのでボンディングを行うのは難しく、良好なボール部形成が達成できない。 However, as described above, the copper bonding wire in which the wire surface is coated with silver can suppress copper surface oxidation (particularly the progress of oxidation during storage), but the ball part formed at the wire tip during bonding is true. In many cases, it does not become a sphere, but it becomes distorted, which hinders the practical application of the copper bonding wire. This is because when the wire tip is heated and melted by arc heat input, silver having a low melting point (melting point 961 ° C.) is preferentially melted, whereas copper having a high melting point (melting point 1083 ° C.) is only a part. It seems related to not melting. Further, as described in Patent Document 5, if bonding is performed in a reducing atmosphere (10% H 2 —N 2 ), ball formation is often good even with silver coating, but in an atmosphere that does not contain hydrogen, Therefore, it is difficult to perform bonding, and good ball portion formation cannot be achieved.

一方、銀を被覆する代わりに、銅ワイヤーの表面にパラジウム(Pd)を被覆することも考えられる。実際に、特許文献2〜4には、被覆層には銀以外の貴金属としてパラジウムも例示されている。前記文献では、パラジウムの優勢性は示されていないが、銀よりも融点の高いパラジウム(融点1554℃)を被覆すると、上述の銀のように銅ワイヤーが溶融してボール部が形成される前に被覆層が溶融して真球状のボール部を形成できないという問題を解決できると考えられる。即ち、銅ワイヤーの表面にパラジウムを被覆することで、銅の酸化防止とボール部の真球性確保というふたつの課題を同時に解決できると考えられる。特許文献6では、芯線と被覆層(外周部)の2層ボンディングワイヤーにおいて芯線と被覆層との間に拡散層を設けて被覆層の密着性等を改善することが開示されているが、芯線に銅を、被覆層にパラジウムを使用する例が示されている。このようなパラジウムを被覆した銅ボンディングワイヤーでは、銅の酸化が抑制されているため、銅ボンディングワイヤーの長期保管やウェッジボンディング特性に優れるのみならず、ワイヤー先端にボール部を形成する際にボール部が酸化する懸念が大幅に改善されている。よって、危険なガスである水素を使わずに、純窒素ガスを用いてボール部周辺を窒素雰囲気としただけでも、真球のボール部が形成できる。   On the other hand, instead of coating silver, it is conceivable to coat palladium (Pd) on the surface of the copper wire. Actually, Patent Documents 2 to 4 also exemplify palladium as a noble metal other than silver in the coating layer. The above document does not show the predominance of palladium, but when palladium having a melting point higher than silver (melting point: 1554 ° C.) is coated, the copper wire is melted like the above-mentioned silver before the ball part is formed. It is considered that the problem that the coating layer melts and a spherical ball portion cannot be formed can be solved. That is, it is considered that the two problems of preventing oxidation of copper and ensuring the sphericity of the ball part can be solved simultaneously by coating the surface of the copper wire with palladium. Patent Document 6 discloses that in a two-layer bonding wire of a core wire and a coating layer (outer peripheral portion), a diffusion layer is provided between the core wire and the coating layer to improve the adhesiveness of the coating layer. In this example, copper is used for the coating layer and palladium is used for the coating layer. In such a copper bonding wire coated with palladium, copper oxidation is suppressed, so that not only the copper bonding wire is stored for a long time and the wedge bonding characteristics are excellent, but also the ball portion is formed when the ball portion is formed at the tip of the wire. Concern about oxidation is greatly improved. Therefore, a true ball portion can be formed by using pure nitrogen gas without using hydrogen, which is a dangerous gas, and simply forming a nitrogen atmosphere around the ball portion.

特開昭57−12543号公報JP 57-12543 A 特開昭59−181040号公報JP 59-181040 A 特開昭61−285743号公報JP-A 61-285743 特開昭62−97360号公報JP-A-62-97360 特開昭62−120057号公報JP 62-120057 A 再公表WO2002−23618Republished WO2002-23618

前述のように、銅ボンディングワイヤーは、銅ワイヤーの表面にパラジウムを被覆することで、金ボンディングワイヤーに比べて安価なボンディングワイヤーとして実用可能になってきたが、最近の半導体実装における構造・材料・接続技術などの急速な変化や多様化に必ずしも対応できないという問題が顕在化してきた。   As mentioned above, copper bonding wire has become practical as a bonding wire that is cheaper than gold bonding wire by covering the surface of copper wire with palladium. The problem of not always being able to cope with rapid changes and diversification of connection technology has become apparent.

例えば、これまでのリードフレームの表面は銀めっきされているのが一般的であったのに対して、最近ではパラジウムめっきされたリードフレームの使用が進みつつある。これは、従来の銀めっきされたリードフレーム(以下、「銀めっきリードフレーム」という)では、リードフレームをマザーボード等の基板に半田付けする前に、半田との濡れ性を少しでも高める目的で、リードの先端にあらかじめ薄く半田をめっきする工程(半田めっき工程)があり、高コストとなっていたので、銀よりも半田に対して高い濡れ性を確保できるパラジウムを銀の代わりにリードフレーム上にめっきすることで、該半田めっき工程を省略し、低コストとするものである。   For example, the surface of a lead frame so far is generally silver-plated, but recently, a lead frame plated with palladium has been used. This is because the conventional silver-plated lead frame (hereinafter referred to as “silver-plated lead frame”) is intended to increase the wettability with solder before soldering the lead frame to a substrate such as a mother board. Since there was a process to solder thinly on the tip of the lead in advance (solder plating process), it was expensive, so palladium that can secure higher wettability to solder than silver was put on the lead frame instead of silver By plating, the solder plating step is omitted and the cost is reduced.

発明者らは、銅ワイヤーの表面にパラジウムを被覆した銅ボンディングワイヤーの場合、これまでの銀めっきリードフレームでは顕在化していなかったが、パラジウムめっきされたリードフレームに対するウェッジ接合性が不充分となるケースが多くなるという問題を見出した。更に、発明者らは、前記問題について詳細に検討したところ、該銅ボンディングワイヤーの最表面はパラジウムであるため、パラジウムめっきされたリードフレームに対するウェッジ接合ではパラジウム同士が接触する。そうすると、パラジウムの硬度(パラジウムのモース硬度4.75、銅のモース硬度3.0)が高いためにパラジウムが変形し難いので、よってパラジウム表面の酸化皮膜層の破壊が不充分となることが、上記問題の原因であることを見出した。更に、ワイヤー最表面のパラジウムとリードフレーム上のパラジウムとの間で生じる拡散が遅いことで、両パラジウム層の間に充分な拡散層が形成されないことも、上記問題の原因であることを見出した。   In the case of a copper bonding wire in which the surface of the copper wire is coated with palladium, the inventors have not made it obvious in the conventional silver-plated lead frame, but the wedge bondability to the palladium-plated lead frame becomes insufficient. I found the problem that there were many cases. Furthermore, the inventors have studied the above-mentioned problem in detail, and since the outermost surface of the copper bonding wire is palladium, palladium contacts with each other in wedge bonding to a lead frame plated with palladium. Then, since the hardness of palladium (palladium Mohs hardness 4.75, copper Mohs hardness 3.0) is high, palladium is not easily deformed, and therefore the destruction of the oxide film layer on the palladium surface is insufficient. We found that it was the cause of the above problem. Furthermore, it has been found that the fact that a sufficient diffusion layer is not formed between both palladium layers due to slow diffusion between the palladium on the outermost surface of the wire and the palladium on the lead frame is also the cause of the above problem. .

本発明は、上記問題点に鑑みてなされたものであり、その目的とするところは、パラジウムめっきされたリードフレームであっても良好なウェッジ接合性を確保でき、耐酸化性に優れた、銅又は銅合金を芯線とする半導体素子用ボンディングワイヤーを提供することを目的とする。   The present invention has been made in view of the above-mentioned problems, and the object of the present invention is to secure good wedge bondability even with a palladium-plated lead frame and to have excellent oxidation resistance. Alternatively, it is an object to provide a bonding wire for a semiconductor element having a copper alloy as a core wire.

前述した目的を達成するための本発明の要旨は次の通りである。   The gist of the present invention for achieving the above-described object is as follows.

請求項1に係る半導体用ボンディングワイヤーは、銅又は銅合金から成る芯線と、該芯線の表面に、10〜200nmの厚さで形成されたパラジウムを含む被覆層と、該被覆層の表面に、3〜30nmの厚さで形成された銀とパラジウムとの合金層と、を有し、前記合金層中の銀の濃度が10体積%以上70体積%以下であることを特徴とする。   A bonding wire for semiconductor according to claim 1 is a core wire made of copper or a copper alloy, a coating layer containing palladium formed on the surface of the core wire with a thickness of 10 to 200 nm, and a surface of the coating layer, An alloy layer of silver and palladium formed with a thickness of 3 to 30 nm, wherein the silver concentration in the alloy layer is 10% by volume to 70% by volume.

請求項2に係る半導体用ボンディングワイヤーは、前記合金層の表面結晶粒の内、<100>結晶方位の伸線方向に対する傾きが15度以下である結晶粒の面積が、50%以上100%以下であることを特徴とする。   The bonding wire for a semiconductor according to claim 2 has an area of a crystal grain in which the inclination of the <100> crystal orientation with respect to the drawing direction is 15 degrees or less among the surface crystal grains of the alloy layer is 50% or more and 100% or less It is characterized by being.

請求項3に係る半導体用ボンディングワイヤーは、前記ボンディングワイヤーの表面のマイヤー硬度が、0.2〜2.0GPaの範囲であることを特徴とする。   The bonding wire for semiconductor according to claim 3 is characterized in that the Mayer hardness of the surface of the bonding wire is in a range of 0.2 to 2.0 GPa.

請求項4に係る半導体用ボンディングワイヤーは、前記合金層中の銀の濃度が、20体積%以上70体積%以下であることを特徴とする。   The bonding wire for semiconductor according to claim 4 is characterized in that the concentration of silver in the alloy layer is 20% by volume or more and 70% by volume or less.

請求項5に係る半導体用ボンディングワイヤーは、前記芯線が、B、P、Seの内の少なくとも1種を総計で5〜300質量ppm含有することを特徴とする。   The bonding wire for semiconductor according to claim 5 is characterized in that the core wire contains 5 to 300 mass ppm in total of at least one of B, P, and Se.

本発明によれば、パラジウムめっきされたリードフレームであっても良好なウェッジ接合性を確保でき、耐酸化性に優れた、銅又は銅合金を芯線とする安価な半導体素子用ボンディングワイヤーを提供できる。   ADVANTAGE OF THE INVENTION According to this invention, even if it is a palladium plated lead frame, favorable wedge bondability can be ensured, and it can provide the cheap bonding wire for semiconductor elements which made copper or copper alloy a core wire excellent in oxidation resistance. .

以下に、本発明のボンディングワイヤーの構成について更に説明する。尚、以下の説明において、特に断りの無い限り、「%」は「体積%」を意味する。また、組成は複数個所を分析した際に得られた金属のみの数値の平均値であり、炭素は自然混入物(不可避不純物)としては存在するが、以下で述べる組成には含めないものとする。   Below, the structure of the bonding wire of this invention is further demonstrated. In the following description, “%” means “volume%” unless otherwise specified. In addition, the composition is an average value of only the metal values obtained when analyzing a plurality of locations, and carbon exists as a natural contaminant (inevitable impurity) but is not included in the composition described below. .

パラジウムめっきされたリードフレーム(以下、「パラジウムめっきリードフレーム」という)上での良好なウェッジ接合性と耐酸化性の両者を確保し、かつ、銅又は銅合金を芯線とする安価なボンディングワイヤーを提供するには、銅又は銅合金から成る芯線の表面に特定の厚みのパラジウムを含む被覆層を形成し、更に、該被覆層の表面を特定の厚みで特定の組成の銀とパラジウムとの合金としたボンディングワイヤーが有効であることを、本発明者らは見出した。   An inexpensive bonding wire that secures both good wedge-bonding and oxidation resistance on a palladium-plated lead frame (hereinafter referred to as “palladium-plated lead frame”) and uses copper or copper alloy as the core wire. For providing, a coating layer containing palladium having a specific thickness is formed on the surface of a core wire made of copper or a copper alloy, and the surface of the coating layer is made of an alloy of silver and palladium having a specific thickness and a specific composition. The present inventors have found that the bonding wire is effective.

まず、銅又は銅合金から成る芯線の表面に、適切な厚みのパラジウムを含む被覆層を形成する構成について説明する。前述のように銅又は銅合金は酸化されやすいため、銅又は銅合金からなるボンディングワイヤーでは長期保管やウェッジボンディング特性が劣るものの、銅又は銅合金からなる芯線の表面にパラジウムを含む被覆層を形成しておけば、銅の酸化が抑制されることで、前述の長期保管やウェッジボンディング特性に優れるのみならず、ボンディングワイヤーの先端にボール部を形成する際にボール部が酸化する懸念が大幅に改善されることになる。これは、前記被覆層に、銅に比べて酸化し難い(即ち、酸化物生成熱△H0が大きい)パラジウムを含むので前記効果が得られるのである。そのため、危険なガスである水素と窒素との混合ガスを使用せずに、純窒素ガスを用いてボール部周辺を窒素雰囲気としただけでも、真球のボール部が形成できる。このような効果を得るためには、該被覆層の厚みは10〜200nmである必要があり、10nm未満であれば酸化抑制効果が不充分となる。該被覆層の厚みが200nmを超えると、ボール部の表面に直径数μmの大きさの気泡が生じることが多く、好ましくない。ここで、パラジウムを含む被覆層におけるパラジウム以外に含まれる元素は、パラジウムの不可避不純物と芯線やワイヤーの最表面を構成する元素である。また、該被覆層のパラジウムの含有量は、50%以上であれば充分な酸化抑制効果が得られる。但し、該被覆層に含まれるパラジウム以外の元素として、後述する最表面を構成する銀は含まれないか、若しくは銀を含む場合には銀濃度が10%未満であることが好ましい。該被覆層の銀の濃度が10%以上になると、上述のような銀被覆ワイヤーの問題(ボール形成時の酸化等)が現れるからである。 First, the structure which forms the coating layer containing palladium of appropriate thickness on the surface of the core wire which consists of copper or a copper alloy is demonstrated. As mentioned above, copper or copper alloy is easily oxidized, so long as the bonding wire made of copper or copper alloy is inferior in long-term storage and wedge bonding characteristics, a coating layer containing palladium is formed on the surface of the core wire made of copper or copper alloy. If this is done, the copper oxidation is suppressed, which not only improves the long-term storage and wedge bonding characteristics described above, but also greatly increases the concern that the ball part will oxidize when the ball part is formed at the tip of the bonding wire. It will be improved. This is because the coating layer contains palladium that is not easily oxidized compared to copper (that is, the oxide generation heat ΔH 0 is large), and thus the above-described effect can be obtained. Therefore, a true ball portion can be formed by using pure nitrogen gas and making the surrounding of the ball portion a nitrogen atmosphere without using a gas mixture of hydrogen and nitrogen, which is a dangerous gas. In order to obtain such an effect, the thickness of the coating layer needs to be 10 to 200 nm, and if it is less than 10 nm, the oxidation suppressing effect is insufficient. When the thickness of the coating layer exceeds 200 nm, bubbles with a diameter of several μm are often generated on the surface of the ball part, which is not preferable. Here, the element contained other than palladium in the coating layer containing palladium is an element constituting the inevitable impurity of palladium and the outermost surface of the core wire or wire. Further, if the content of palladium in the coating layer is 50% or more, a sufficient oxidation suppressing effect can be obtained. However, as an element other than palladium contained in the coating layer, silver constituting the outermost surface described later is not contained, or when silver is contained, the silver concentration is preferably less than 10%. This is because when the silver concentration of the coating layer is 10% or more, the above-described problems of the silver-coated wire (oxidation during ball formation, etc.) appear.

銅又は銅合金から成る芯線の表面にパラジウムを含む被覆層を形成する上述の構成のみでは、パラジウムめっきリードフレーム上で良好なウェッジ接合性を確保することはできない。この課題を解決するには、本発明者らは、更に、銀とパラジウムとの合金層を該被覆層の表面に更に形成すると良いことを見出した。該合金層は、前記被覆層の上に更に3〜30nmの厚みで形成されているものである。これは、ウェッジ接合性はワイヤーの最表面から3nm程度の領域の物性値に支配されることに起因する。つまり、ワイヤーの最表面から3nmの領域が、銀とパラジウムとの合金であれば、パラジウムめっきリードフレーム上にウェッジ接合させる際、ワイヤーの最表面を構成する銀とパラジウムとの該合金中の銀がパラジウムめっきリードフレーム上のパラジウムに向けて優先的に拡散し、ボンディングワイヤーとパラジウムめっきリードフレームの両者の間に合金層を形成しやすくする。そのため、パラジウムめっきリードフレームとのウェッジボンディング性が向上し、例えば、2ndピール強度が良好となるのである。これは、銀とパラジウムとの間の相互拡散の方が、パラジウムの自己拡散よりも早いことに起因する。但し、該合金層の厚みが3nmに満たないと、ボンディングワイヤーの下地である被覆層が前記ウェッジボンディング性に影響してしまうので、パラジウムめっきリードフレームとのウェッジボンディング性は確保できない。前記効果を得るためには、前記銀とパラジウムとの合金層の厚みの上限に特に制限は無いが、該厚みを30nm超とするには、後述する炉内温度を720℃超と高温にしなければならず、安定した品質を確保しがたくなるので該合金の厚みの上限を30nm以下とした。   Only the above-described configuration in which the coating layer containing palladium is formed on the surface of the core wire made of copper or a copper alloy cannot ensure good wedge bondability on the palladium-plated lead frame. In order to solve this problem, the present inventors have found that an alloy layer of silver and palladium may be further formed on the surface of the coating layer. The alloy layer is further formed with a thickness of 3 to 30 nm on the coating layer. This is due to the fact that the wedge bondability is governed by the physical property values in the region of about 3 nm from the outermost surface of the wire. In other words, if the region of 3 nm from the outermost surface of the wire is an alloy of silver and palladium, the silver in the alloy of silver and palladium constituting the outermost surface of the wire when wedge-bonded onto the palladium plating lead frame Diffuses preferentially toward the palladium on the palladium plated lead frame, making it easier to form an alloy layer between the bonding wire and the palladium plated lead frame. Therefore, the wedge bonding property with the palladium plating lead frame is improved, and for example, the 2nd peel strength is improved. This is due to the fact that interdiffusion between silver and palladium is faster than self-diffusion of palladium. However, if the thickness of the alloy layer is less than 3 nm, the covering layer, which is the base of the bonding wire, affects the wedge bonding property, so that the wedge bonding property with the palladium plated lead frame cannot be ensured. In order to obtain the effect, there is no particular limitation on the upper limit of the thickness of the alloy layer of silver and palladium, but in order to make the thickness more than 30 nm, the furnace temperature to be described later must be higher than 720 ° C. Since it is difficult to ensure stable quality, the upper limit of the thickness of the alloy is set to 30 nm or less.

また、前記銀とパラジウムとの合金層による上記効果を得るためには、該合金層中の銀の組成(銀濃度)が特定の範囲である必要がある。具体的には、前記銀とパラジウムとの合金層中の銀濃度が、10%以上70%以下であり、より好ましくは20%以上70%以下であれば前述のパラジウムめっきリードフレームとのウェッジボンディング性が更に高まるので良い。前記銀濃度が10%未満では前述の効果は得られない。逆に、前記銀濃度が70%を超えると、ワイヤー先端にボール部を形成する際に銀とパラジウムとから成る前記合金層中の銀だけ優先的に溶融していびつなボール部が形成される危険性が増すので良くない。それに対し、該合金層中の銀濃度が70%以下であれば、ワイヤーの表面層では銀とパラジウムが均質に混ざっているため、ワイヤー先端にボール部を形成する際に銀だけ優先的に溶融して、いびつなボール部が形成される危険性は無く、ボール部の真球性や寸法精度を損なうことは無い。また、前記銀濃度が、10%以上40%以下であればボール部の真球性や寸法精度が更に良好となるので良い。   In addition, in order to obtain the above-described effect by the alloy layer of silver and palladium, the silver composition (silver concentration) in the alloy layer needs to be in a specific range. Specifically, if the silver concentration in the alloy layer of silver and palladium is 10% or more and 70% or less, and more preferably 20% or more and 70% or less, wedge bonding with the above-described palladium plating lead frame It is good because the nature is further enhanced. If the silver concentration is less than 10%, the above-mentioned effects cannot be obtained. Conversely, when the silver concentration exceeds 70%, when the ball portion is formed at the tip of the wire, only the silver in the alloy layer made of silver and palladium is preferentially melted to form a distorted ball portion. Not good because it increases the risk. On the other hand, if the silver concentration in the alloy layer is 70% or less, since silver and palladium are homogeneously mixed in the surface layer of the wire, only silver is preferentially melted when forming the ball portion at the wire tip. Thus, there is no risk that an irregular ball portion is formed, and the sphericity and dimensional accuracy of the ball portion are not impaired. Further, if the silver concentration is 10% or more and 40% or less, the sphericity and dimensional accuracy of the ball part may be further improved.

したがって、銅又は銅合金から成る芯線の表面に適切な厚みのパラジウムを含む被覆層を形成し、該被覆層の表面を適切な厚みと組成の銀とパラジウムとの合金層を施したボンディングワイヤーでは、パラジウムめっきリードフレーム上での良好なウェッジ接合性と耐酸化性の両者を確保し、かつ、銅又は銅合金を芯線とする安価なボンディングワイヤーを提供することができるのである。   Therefore, in a bonding wire in which a coating layer containing palladium having an appropriate thickness is formed on the surface of a core wire made of copper or a copper alloy, and an alloy layer of silver and palladium having an appropriate thickness and composition is applied to the surface of the coating layer. Therefore, it is possible to provide an inexpensive bonding wire having both good wedge bondability and oxidation resistance on the palladium plated lead frame and having copper or a copper alloy as a core wire.

また、更に、上記銀とパラジウムとの合金層中の銀濃度を、20%以上70%以下にすると、次のような効果も同時に得られることが判明した。   Further, it has been found that the following effects can be obtained at the same time when the silver concentration in the alloy layer of silver and palladium is 20% or more and 70% or less.

一般に、キャピラリの内壁においてキャピラリとボンディングワイヤーが接触する領域では、ボンディングの工程中、絶えずキャピラリとボンディングワイヤーがこすれあっているのであるが、その際、キャピラリがボンディングワイヤーにすり傷を与えることを避けるため、キャピラリの内壁は、前記領域において凹凸の無いよう加工されている。   In general, in the region where the capillary and the bonding wire are in contact with each other on the inner wall of the capillary, the capillary and the bonding wire are constantly rubbed during the bonding process. Therefore, the inner wall of the capillary is processed so that there is no unevenness in the region.

因みに従来の場合、パラジウムを含む被覆層だけを銅又は銅合金からなる芯線の表面に有するボンディングワイヤーを用いて、例えば5mmを超えるような長尺スパンのボンディングを多数回繰り返すと、前記キャピラリとボンディングワイヤーとが接触するキャピラリの領域が磨耗してしまう。そうすると、該領域に鋭利な凹凸が生じるようになり、その結果、キャピラリによって形成されたすり傷がワイヤー表面で目立つようになる。これは、パラジウムが硬い金属であるのでパラジウムを含む被覆層も硬くなることに起因する。   Incidentally, in the conventional case, when a bonding wire having only a covering layer containing palladium on the surface of a core wire made of copper or a copper alloy is used and a long span bonding exceeding, for example, 5 mm is repeated many times, the capillary and the bonding are bonded. The area of the capillary that comes into contact with the wire wears out. Then, sharp unevenness is generated in the region, and as a result, the scratch formed by the capillary becomes conspicuous on the wire surface. This is because palladium is a hard metal, and the coating layer containing palladium is also hard.

これに対し本発明では、前記被覆層の表面に設けられた、上記銀とパラジウムとの合金層において、該合金層中の銀の濃度を高くしたので、上記のような鋭利な凹凸の発生を抑制できる。上記銀とパラジウムとの合金層では、銀はパラジウムと全率固溶と呼ばれるように均質に混ざっており、銀の濃度が高い場合には、キャピラリとボンディングワイヤーが接触する領域において銀が優先的に変形に寄与することで、上記のような鋭利な凹凸の発生を抑制できる。このような効果を得られるのは、銀濃度が20%以上で、より好ましくは30%以上の場合である。また、銀濃度が70%以上であると、前述の理由からボール部の真球性や寸法精度が充分には得られない。   On the other hand, in the present invention, in the alloy layer of silver and palladium provided on the surface of the coating layer, the concentration of silver in the alloy layer is increased. Can be suppressed. In the above alloy layer of silver and palladium, silver is homogeneously mixed so as to be called a solid solution with palladium, and when the concentration of silver is high, silver is preferential in the region where the capillary and the bonding wire are in contact with each other. By contributing to the deformation, it is possible to suppress the occurrence of such sharp irregularities. Such an effect can be obtained when the silver concentration is 20% or more, more preferably 30% or more. On the other hand, if the silver concentration is 70% or more, the sphericity and dimensional accuracy of the ball portion cannot be sufficiently obtained for the reasons described above.

また、上記銀とパラジウムとの合金層で、該合金層中の銀濃度を20%以上にすると、次のような効果も同時に得られることが判明した。   Further, it has been found that the following effects can be obtained at the same time when the silver concentration in the alloy layer is 20% or more in the alloy layer of silver and palladium.

因みに従来の場合、パラジウムを含む被覆層だけを銅又は銅合金からなる芯線の表面に有するボンディングワイヤーでは、該ボンディングワイヤーの先端に30μm強の直径のボール部を作ると、数μmの直径の気泡がボール部の表面に多発してしまう場合がある。これは、昨今の電子機器の小型化、高機能化が関係している。つまり、電子機器の小型化、高機能化を支えるため、半導体素子も小型化、高機能化しているのであるが、ボンディングワイヤーにおいては接合部の面積を小さくする目的で、ワイヤー先端に形成するボール部を小さくする傾向が強まっており、従来は小さくても50μm弱の直径のボール部が使用されていたのに対し、昨今は30μm強の直径のボール部が量産で使用されつつある。前記のような数μmの微小な気泡は従来の50μm以上の直径のボール部においても形成されてはいたのだが、ボール径が大きいために必然的に接合面積も大きくなり、このような微小な気泡はこれまで特に問題視されてこなかった。しかしながら、昨今の30μm強の直径の小さなボール部では接合面積も小さくなることから、これまでは問題とならなかったような程度の上記気泡であっても、接合部の接合強度や長期信頼性に影響を及ぼすとされ、問題視されることになりつつあるのである。   Incidentally, in the conventional case, in a bonding wire having only a coating layer containing palladium on the surface of a core wire made of copper or a copper alloy, if a ball part having a diameter of 30 μm or more is formed at the tip of the bonding wire, a bubble having a diameter of several μm May occur frequently on the surface of the ball portion. This is related to the recent downsizing and higher functionality of electronic devices. In other words, in order to support miniaturization and high functionality of electronic devices, semiconductor elements are also miniaturized and highly functional, but in the case of bonding wires, a ball formed at the tip of the wire in order to reduce the area of the joint. There is an increasing tendency to reduce the size of the ball, and in the past, a ball having a diameter of less than 50 μm was used, but a ball having a diameter of more than 30 μm has been used in mass production. Although the above-mentioned minute bubbles of several μm have been formed even in the conventional ball portion having a diameter of 50 μm or more, the joining area is inevitably increased due to the large ball diameter. Bubbles have not been particularly problematic until now. However, since the joint area is small in the ball part with a diameter of slightly more than 30 μm these days, even the above-mentioned bubbles that have not been a problem until now can improve the joint strength and long-term reliability of the joint part. It is believed to have an impact and is becoming a problem.

本発明者らは、このような気泡の存在箇所が常にパラジウムであることを見出した。つまり、該気泡の原因は、ボール部を形成する際にワイヤー表面に存在するパラジウムがボール中に偏析してパラジウム単層の濃化領域を形成し、該領域に有機物起因のガスが閉じ込められることにある。   The present inventors have found that the location of such bubbles is always palladium. In other words, the cause of the bubbles is that when the ball portion is formed, palladium existing on the wire surface segregates in the ball to form a concentrated region of the palladium single layer, and organic matter-derived gas is confined in the region. It is in.

これに対し本発明では、パラジウムを含む被覆層の表面に、特定の濃度以上の銀を含有させたことにより、ボール部を形成する際にはパラジウムの濃化領域は形成されず、代わりに銀−パラジウム合金あるいは銅−パラジウム−銀三元合金の濃化領域が形成されることになる。したがって本発明のボンディングワイヤーでは、該濃化領域であれば、有機物起因のガスが閉じ込められる危険性は薄らぐので、30μm強という小さな直径のボール部を形成した場合であっても、気泡の発生を抑制することができる。即ち、本発明に係る、銀とパラジウムとの合金中の銀の濃度が、20%以上であると、上記効果が得られるものであり、より好ましくは30%以上であると該効果が更に高まるので良い。   On the other hand, in the present invention, since the surface of the coating layer containing palladium contains silver having a specific concentration or more, when the ball portion is formed, a palladium concentrated region is not formed, but instead silver. -A concentrated region of palladium alloy or copper-palladium-silver ternary alloy will be formed. Therefore, in the bonding wire of the present invention, if it is the concentrated region, the risk of trapping gas due to organic matter is lessened. Therefore, even when a ball part having a small diameter of slightly over 30 μm is formed, generation of bubbles is prevented. Can be suppressed. That is, when the silver concentration in the alloy of silver and palladium according to the present invention is 20% or more, the above effect can be obtained, and more preferably 30% or more, the effect is further enhanced. So good.

被覆層並びに合金層の厚さと組成の測定方法は、ボンディングワイヤーの表面からスパッタ法により深さ方向に掘り下げながら分析する手法や、ボンディングワイヤーの断面での線分析又は点分析が有効である。前者の掘り下げながら測定する手法では、測定深さが大きくなると測定時間が掛かり過ぎる。後者の線分析又は点分析は、断面全体での濃度分布や数箇所での再現性の確認等が比較的容易である点が利点である。ボンディングワイヤーの断面では線分析が比較的簡便であるが、分析の精度を向上させたい場合には、線分析での分析間隔を狭くしたり、特に詳細に分析したい領域を拡大した上で点分析を行うことも有効である。ここで、合金層の厚さは、表面から深さ方向に組成分析して銀の濃度が10体積%以上である部分の距離(深さ)である。また、被覆層の厚さは、前記合金層の厚さとなる界面から深さ方向に組成分析してパラジウムの濃度が50%以上である部分の距離(深さ)である。これらの分析に用いる分析装置として、EPMA(電子線マイクロ分析、Electron Probe Micro Analysis)、EDX(エネルギー分散型X線分析、Energy Dispersive X-Ray Analysis)、AES(オージェ電子分光法、Auger Electron Spectroscopy)、TEM(透過型電子顕微鏡、Transmission Electron Microscope)等が利用できる。上記いずれか1つの方法で得られる厚さや組成が本発明の範囲内であれば、本発明の作用効果が得られるものである。   As a method for measuring the thickness and composition of the coating layer and the alloy layer, a method of analyzing the surface of the bonding wire while digging in the depth direction by a sputtering method, or a line analysis or a point analysis in a cross section of the bonding wire is effective. In the former method of measuring while digging, if the measurement depth increases, it takes too much measurement time. The latter line analysis or point analysis is advantageous in that it is relatively easy to confirm the concentration distribution over the entire cross section, reproducibility at several locations, and the like. Line analysis is relatively simple in the cross section of the bonding wire, but if you want to improve the accuracy of the analysis, narrow the analysis interval in the line analysis or expand the area to be analyzed in detail, and then perform point analysis. It is also effective to perform. Here, the thickness of the alloy layer is the distance (depth) of the portion where the silver concentration is 10% by volume or more by analyzing the composition in the depth direction from the surface. The thickness of the coating layer is the distance (depth) of the portion where the concentration of palladium is 50% or more by composition analysis in the depth direction from the interface that becomes the thickness of the alloy layer. EPMA (Electron Probe Micro Analysis), EDX (Energy Dispersive X-Ray Analysis), AES (Auger Electron Spectroscopy) are used as analytical equipment for these analyses. TEM (Transmission Electron Microscope) can be used. If the thickness and composition obtained by any one of the above methods are within the scope of the present invention, the effects of the present invention can be obtained.

上述のような、パラジウムめっきリードフレーム上での良好なウェッジ接合性と耐酸化性の両者を確保し、更に、後述するループ特性も満足させるためには、ワイヤー表面の結晶方位、ワイヤー表面の硬さ、又は芯線中の添加元素の種類と組成を特定の範囲としたボンディングワイヤーが有効であることを、発明者らは見出した。   In order to ensure both good wedge bondability and oxidation resistance on the palladium-plated lead frame as described above, and to satisfy the loop characteristics described later, the crystal orientation of the wire surface and the hardness of the wire surface In addition, the inventors have found that a bonding wire having a specific range of the type and composition of the additive element in the core wire is effective.

ワイヤー表面の結晶方位に関しては、前記合金層の表面結晶粒の内、<100>結晶方位の伸線方向に対する傾きが無い又は小さい方がより好ましい。具体的には、前記傾きが15度以下である結晶粒の面積を50%以上100%以下とすれば、逆打ちボンディングを行った際であっても、ループの表面にしわが生じにくくなるので良く、より好ましくは70%以上100%以下とすれば更にその効果が高まるので更に良い。尚、ここでのしわとは、ループを形成した際に生じる表面の微小な傷や凹凸の総称である。その結果、例えば、昨今増加しつつある、2nd接合用電極にボール接合をし、1st接合用電極にウェッジ接合を行うことでループ高さを抑制してチップの薄型化を容易にする。   As for the crystal orientation of the wire surface, it is more preferable that the <100> crystal orientation has no or little inclination with respect to the drawing direction among the surface crystal grains of the alloy layer. Specifically, if the area of the crystal grains having the inclination of 15 degrees or less is set to 50% or more and 100% or less, wrinkles are unlikely to occur on the surface of the loop even when reverse bonding is performed. More preferably, it is 70% or more and 100% or less because the effect is further enhanced. Here, the wrinkle is a general term for minute scratches and irregularities on the surface that are generated when a loop is formed. As a result, for example, ball bonding is performed on the 2nd bonding electrode, which is increasing recently, and wedge bonding is performed on the 1st bonding electrode, thereby suppressing the loop height and facilitating the thinning of the chip.

因みに、上記のような逆打ちボンディングでは、まず、1st接合用電極にボール接合を行い、接合したボール直上のボンディングワイヤーを切断し、その後、2nd接合用電極にボール接合をし、最後に先ほど作製した1st接合用電極上のボール部に対してウェッジ接合を行う。この時、1st接合用電極にボール接合した後でボール直上のボンディングワイヤーを切断する際に、ボンディングワイヤーに大きな衝撃が加えられると、ボンディングワイヤーの表面にしわが生じ、デバイスの使用による加熱とデバイスの停止に伴う室温への冷却という熱疲労が長期間に渡ってデバイスに加わると、該しわが亀裂の発生を加速することがある。   By the way, in the reverse bonding as described above, first, the ball is bonded to the 1st bonding electrode, the bonding wire immediately above the bonded ball is cut, and then the ball bonding is performed to the 2nd bonding electrode. Wedge bonding is performed on the ball portion on the first bonding electrode. At this time, when the bonding wire on the ball is cut after bonding the ball to the 1st bonding electrode, if a large impact is applied to the bonding wire, the surface of the bonding wire will be wrinkled. When thermal fatigue of cooling to room temperature accompanying stoppage is applied to the device for a long period of time, the wrinkles may accelerate the generation of cracks.

本発明者らが鋭意検討した結果、このしわ不良にはワイヤー表面(合金層)の結晶方位が関係しており、該方位が<111>結晶方位に代表されるように、強度は高いが延性に乏しい方位である場合に顕著にしわが生じることが判明した。本発明者らが更に検討を重ねた結果、該しわを抑制するためには、ワイヤー表面において<100>結晶方位の伸線方向に対する傾きを小さくし、該傾きが15度以下である結晶粒の面積を50%以上とすると、しわを抑制するに足る延性が確保できることが判明した。しかし、該傾きが15度以下である結晶粒の面積が50%未満では、このような効果は得られない。ここで、前記合金層の表面で観察される結晶粒の<100>結晶方位の伸線方向に対する傾きは、TEM観察装置中に設置した微小領域X線法あるいは電子後方散乱図形(EBSD、Electron Backscattered Diffraction)法等で測定できるものである。中でも、EBSD法は個別の結晶粒の方位を観察し、隣り合う測定点間での結晶方位の角度差を図示できるという特徴を有し、ボンディングワイヤーのような細線であっても、比較的簡便ながら精度良く結晶粒の傾きを観察できるのでより好ましい。また、該傾きが15度以下である結晶粒の面積は、微小領域X線法ではそれぞれの結晶粒における結晶方位のX線強度をもとに結晶方位の体積比率として求めることができ、またEBSD法では、前記で観察した個別の結晶粒の方位から直接算出可能である。前記面積の比率を算出するには、ワイヤー表面の任意の面であって、ボンディングワイヤーの伸線方向と垂直な方向においてボンディングワイヤーの直径の少なくとも1/4の幅を、ボンディングワイヤーの伸線方向に少なくとも100μmの長さの面を観察し、その観察面積を100として、該傾きが15度以下である結晶粒の占める面積の百分率とする。上記いずれか1つの方法で得られる厚さや組成が本発明の範囲内であれば、本発明の作用効果が得られるものである。   As a result of intensive studies by the present inventors, this wrinkle defect is related to the crystal orientation of the wire surface (alloy layer), and the strength is high but ductile as represented by <111> crystal orientation. It was found that wrinkles were noticeably generated when the orientation was poor. As a result of further studies by the present inventors, in order to suppress the wrinkle, the inclination of the <100> crystal orientation with respect to the wire drawing direction is reduced on the wire surface, and the crystal grains having the inclination of 15 degrees or less are reduced. It was found that when the area was 50% or more, ductility sufficient to suppress wrinkles could be secured. However, such an effect cannot be obtained when the area of the crystal grains having the inclination of 15 degrees or less is less than 50%. Here, the inclination of the <100> crystal orientation of the crystal grain observed on the surface of the alloy layer with respect to the drawing direction is determined by a micro-region X-ray method or an electron backscattered pattern (EBSD, Electron Backscattered) installed in a TEM observation apparatus. Diffraction) method or the like. Among other things, the EBSD method has the feature that the orientation of individual crystal grains can be observed and the angle difference of the crystal orientation between adjacent measurement points can be illustrated, and even a thin wire such as a bonding wire is relatively simple. However, it is more preferable because the inclination of the crystal grains can be observed with high accuracy. In addition, the area of a crystal grain having an inclination of 15 degrees or less can be obtained as a volume ratio of the crystal orientation based on the X-ray intensity of the crystal orientation in each crystal grain in the micro region X-ray method. In the method, it is possible to directly calculate from the orientation of the individual crystal grains observed as described above. In order to calculate the ratio of the area, the width of at least 1/4 of the diameter of the bonding wire in the direction perpendicular to the wire drawing direction of the bonding wire is an arbitrary surface of the wire surface, and the wire drawing direction of the bonding wire A surface having a length of at least 100 μm is observed, and the observation area is defined as 100, and the percentage of the area occupied by the crystal grains having the inclination of 15 degrees or less is defined. If the thickness and composition obtained by any one of the above methods are within the scope of the present invention, the effects of the present invention can be obtained.

ワイヤー表面の硬さに関しては、前記ワイヤー表面のマイヤー硬度を0.2〜2.0GPaの範囲とすると、80μmクラスのループ高さという低ループボンディング時であっても、ネックダメージと呼ばれる不良の発生が抑制されるので更に良い。   Regarding the hardness of the wire surface, if the Meyer hardness of the wire surface is in the range of 0.2 to 2.0 GPa, the occurrence of defects called neck damage is suppressed even during low loop bonding with a loop height of 80 μm class. So even better.

このネックダメージは、ボール部と母線部との境界領域(ネック部)における損傷を指し、極端に低いループ高さでループを形成する際に、ネック部に過度な負担がかかることで生じる不良である。昨今のフラッシュメモリー等の薄型電子機器では、メモリーの容量を少しでも大容量化するために、薄いシリコンチップを複数枚搭載した薄型デバイスを使用しているのであるが、このような薄型デバイスでは必然的にループ高さを低くせざるを得ないため、従来、前記ネックダメージが発生し易くなっている。   This neck damage refers to damage in the boundary area (neck part) between the ball part and the busbar part. It is a defect that occurs when an excessive load is applied to the neck part when forming a loop with an extremely low loop height. is there. In recent thin electronic devices such as flash memory, thin devices with multiple thin silicon chips are used in order to increase the capacity of the memory as much as possible. Since the loop height must be lowered, the neck damage has been easily generated.

発明者らは、上記ネックダメージの発生には、ワイヤー表面の硬度が密接に関係していることを明らかにし、該硬度を低くすれば、低ループボンディング時にネックに過度の負荷が与えられても、表面が塑性変形でき、ネックダメージを抑制できることを見出した。具体的には、前記ボンディングワイヤーの表面のマイヤー硬度を2.0GPa以下とすれば、上記効果が得られる。但し、前記ボンディングワイヤーの表面のマイヤー硬度が2.0GPaを超える場合、通常の銀合金並みの硬度となってしまい、低ループボンディング時にネックに過度の負荷が与えられると、表面層が充分には塑性変形できず、前記効果は得られない。一方、前記ボンディングワイヤーの表面のマイヤー硬度が0.2GPa未満の場合では、硬度が小さすぎるのでボンディングワイヤーを取り扱い過程でワイヤー表面に容易に傷が入り易くなり、取り扱い方法によっては多くの表面傷が生じる場合がある。ここで、マイヤー硬度とは、鋼球あるいは超硬合金球の圧子を用いて計測する硬さのことで、圧子で試験面にくぼみをつけたときの荷重を、永久くぼみの直径の投影面積で除した値を指し、その値は応力の次元を有する。ナノインデンション法と呼ばれる物質表面の解析手法を用いると、1nm程度の深さにおけるマイヤー硬度も測定可能であるので、本発明のマイヤー硬度値の確認には、ナノインデンション法を用いるのが好ましい。また、ボンディングワイヤーの表面のマイヤー硬度は、合金層及び被覆層を有するボンディングワイヤーの最表面をナノインデンション法で測定して得られるものである。尚、0.2〜2.0GPaのマイヤー硬度は、おおむね50〜570Hvのビッカース硬度に相当する。   The inventors clarified that the hardness of the wire surface is closely related to the occurrence of the neck damage, and if the hardness is lowered, even if an excessive load is applied to the neck during low-loop bonding. It was found that the surface can be plastically deformed and neck damage can be suppressed. Specifically, the above effect can be obtained by setting the Meyer hardness of the surface of the bonding wire to 2.0 GPa or less. However, when the Meyer hardness of the surface of the bonding wire exceeds 2.0 GPa, the hardness becomes the same as that of a normal silver alloy, and if an excessive load is applied to the neck during low-loop bonding, the surface layer is sufficiently plastic. It cannot be deformed and the above effect cannot be obtained. On the other hand, when the Meyer hardness of the surface of the bonding wire is less than 0.2 GPa, since the hardness is too small, the surface of the bonding wire is easily damaged in the process of handling the bonding wire, and many surface scratches occur depending on the handling method. There is a case. Here, Meyer's hardness is the hardness measured using a steel ball or cemented carbide ball indenter. The load when the test surface is indented with the indenter is the projected area of the diameter of the permanent indentation. The value has a dimension of stress. Since the Mayer hardness at a depth of about 1 nm can be measured using a material surface analysis method called the nanoindentation method, it is preferable to use the nanoindentation method for confirming the Meyer hardness value of the present invention. . The Mayer hardness of the surface of the bonding wire is obtained by measuring the outermost surface of the bonding wire having the alloy layer and the coating layer by the nanoindentation method. A Meyer hardness of 0.2 to 2.0 GPa corresponds to a Vickers hardness of about 50 to 570 Hv.

芯線中の添加元素の種類と組成に関し、本発明に係る伸線は、銅又は銅合金からなるものであるが、前記芯線には、本発明の作用効果を損なわない範囲で種々の添加元素を添加してもよい。該芯線に添加できる元素の例としては、Ca、B、P、Al、Ag、Se等が挙げられる。これらの添加元素の中で、B、P、Seの内の少なくとも1種を含むのがより好ましい。該添加元素が総計で5〜300質量ppm含有すると、ボンディングワイヤーの強度がより向上する。その結果、例えば、5mmを超えるループ長さという長尺ループのボンディングをした際でもループの直進性が確保できるようになる。これは、該添加元素が芯線における銅結晶粒内での固溶強化あるいは結晶粒界の強化に寄与するためと思われる。但し、5質量ppmを下回る添加では上記強度の更なる向上という効果は得られない。一方、300質量ppmを超える添加は、ボール部を過剰に硬化せしめることになるので、ボールボンディング時にチップを損傷する危険性が高まり好ましくない場合がある。芯線中の成分含有量を分析する手法については、ボンディングワイヤーを切断し、その断面部からスパッタ等により深さ方向に掘り下げながら分析する手法や、該断面での線分析又は点分析が有効である。前者の掘り下げながら測定する手法では、測定深さが大きくなると測定時間が掛かり過ぎる。後者の線分析又は点分析は、断面全体での濃度分布や数箇所での再現性の確認等が比較的容易である点が利点である。ボンディングワイヤーの断面では線分析が比較的簡便であるが、分析の精度を向上させたい場合には、線分析での分析間隔を狭くしたり、特に詳細に分析したい領域を拡大した上で点分析を行うことも有効である。これらの分析に用いる分析装置として、EPMA、EDX、AES、TEM等が利用できる。また、平均的な組成の調査には、表面部から段階的に酸等の薬液でボンディングワイヤーを溶解していき、その溶液中に含まれる濃度から溶解した部位の組成を求める手法も可能である。上記いずれか1つの方法で得られる厚さや組成が本発明の範囲内であれば、本発明の作用効果が得られるものである。   Regarding the kind and composition of the additive element in the core wire, the wire drawing according to the present invention is made of copper or a copper alloy, but various additive elements are added to the core wire as long as the effects of the present invention are not impaired. It may be added. Examples of elements that can be added to the core wire include Ca, B, P, Al, Ag, Se, and the like. Among these additive elements, it is more preferable to include at least one of B, P, and Se. When the additive elements are contained in a total amount of 5 to 300 ppm by mass, the strength of the bonding wire is further improved. As a result, for example, even when a long loop having a loop length exceeding 5 mm is bonded, the straightness of the loop can be ensured. This is presumably because the additive element contributes to solid solution strengthening or grain boundary strengthening in the copper crystal grains in the core wire. However, if the addition is less than 5 ppm by mass, the effect of further improving the above strength cannot be obtained. On the other hand, the addition exceeding 300 mass ppm may undesirably increase the risk of damaging the chip at the time of ball bonding because the ball portion is excessively cured. For the method of analyzing the component content in the core wire, it is effective to cut the bonding wire and analyze it while digging in the depth direction from the cross-sectional portion by sputtering or the like, and line analysis or point analysis in the cross-section. . In the former method of measuring while digging, if the measurement depth increases, it takes too much measurement time. The latter line analysis or point analysis is advantageous in that it is relatively easy to confirm the concentration distribution over the entire cross section, reproducibility at several locations, and the like. Line analysis is relatively simple in the cross section of the bonding wire, but if you want to improve the accuracy of the analysis, narrow the analysis interval in the line analysis or expand the area to be analyzed in detail, and then perform point analysis. It is also effective to perform. EPMA, EDX, AES, TEM, etc. can be used as an analyzer used for these analyses. In addition, in order to investigate the average composition, it is also possible to use a technique in which the bonding wire is dissolved stepwise from the surface with a chemical solution such as acid, and the composition of the dissolved portion is determined from the concentration contained in the solution. . If the thickness and composition obtained by any one of the above methods are within the scope of the present invention, the effects of the present invention can be obtained.

以上、本発明の好適な例を述べたが、本発明は適宜変形が可能である。例えば、前記芯線と前記被覆層との間には拡散層が形成されていても良い。例えば、パラジウムを含有する領域が前記被覆層と連続して、前記パラジウムや芯線を構成する銅が拡散してパラジウムを50%未満含有する拡散層である。このような拡散層が存在することにより、ボンディングワイヤーは、被覆層と芯線との密着性を向上することができる。   The preferred examples of the present invention have been described above, but the present invention can be modified as appropriate. For example, a diffusion layer may be formed between the core wire and the coating layer. For example, the palladium-containing region is a diffusion layer containing less than 50% palladium by diffusing the palladium and copper constituting the core wire continuously with the coating layer. Due to the presence of such a diffusion layer, the bonding wire can improve the adhesion between the coating layer and the core wire.

以下、本発明のボンディングワイヤーの製造方法について一例を説明する。   Hereinafter, an example is demonstrated about the manufacturing method of the bonding wire of this invention.

前記組成のボンディングワイヤーを製造するためには、高純度の銅(純度99.99%以上)、又は、これら高純度の銅と添加元素原料を出発原料として秤量した後、これを高真空下もしくは窒素やAr等の不活性雰囲気下で加熱して溶解することで銅又は銅合金のインゴットを得る。該インゴットを最終的に必要とする芯線の直径まで金属製のダイスを用いて伸線する。本発明に係るパラジウムを含む被覆層は、最終的な芯線の直径まで伸線した後に施される。パラジウムを含む被覆層を形成する手法としては、電解めっき、無電解めっき、蒸着法等が利用できるが、膜厚を安定的に制御できる電解めっきを利用するのが工業的には最も好ましい。その後、前記被覆層の表面に銀とパラジウムから成る合金を形成する。その方法は、どのような方法でもよいが、前記被覆層を形成した後、更にその表面に表皮層として銀膜を形成し、一定の炉内温度で電気炉中、ワイヤーを一定の速度の下で連続的に掃引することで、合金化を促す方法が、確実に該合金の組成と厚みを制御できるので好ましい。前記被覆層の表面に更に銀膜を形成する手法としては、電解めっき、無電解めっき、蒸着法等が利用できるが、上記の理由から電解めっきを利用するのが工業的には最も好ましい。前記合金化のための加熱時は、銀が硫化されやすいことを考慮して、炉内の雰囲気を窒素やAr等の不活性雰囲気とし、更に、従来のボンディングワイヤーの加熱法とは異なり、該雰囲気中に含有される硫黄濃度を900ppm以下とする。より好ましくは、不活性ガス中に水素等の還元性ガスを少なくとも100ppm混入させると、ワイヤーの硫化を防止する効果が更に高まるので良い。最も好ましくは、硫黄等の不純物ガスが装置外部から持ち込まれることを可能な限り避けるため、雰囲気炉(第一の雰囲気炉)の外側にさらにもう1層の第二の雰囲気炉を設置すると、例え第二の雰囲気路中に外部から不純物ガスが微量混入したとしても、これら不純物ガスは第一の雰囲気炉には容易には到達できないので良い。また、炉内の適切な温度はワイヤーの組成やワイヤーを掃引する速度によっても異なるが、おおむね230℃〜720℃の範囲とすると、安定した品質のボンディングワイヤーが得られるので良い。そして、伸線工程中にワイヤーを掃引する速度は、例えば40〜80m/min程度とすると安定した操業ができるので好ましい。   In order to manufacture a bonding wire having the above composition, high-purity copper (purity of 99.99% or more), or after weighing these high-purity copper and additive element materials as starting materials, these are weighed under high vacuum or nitrogen or An ingot of copper or copper alloy is obtained by melting under heating in an inert atmosphere such as Ar. The ingot is finally drawn using a metal die to the required core wire diameter. The coating layer containing palladium according to the present invention is applied after drawing to the final core diameter. As a method for forming the coating layer containing palladium, electrolytic plating, electroless plating, vapor deposition, or the like can be used. However, it is industrially most preferable to use electrolytic plating that can stably control the film thickness. Thereafter, an alloy composed of silver and palladium is formed on the surface of the coating layer. The method may be any method, but after the coating layer is formed, a silver film is further formed as a skin layer on the surface, and the wire is kept at a constant speed in an electric furnace at a constant furnace temperature. The method of accelerating alloying by sweeping continuously is preferable because the composition and thickness of the alloy can be reliably controlled. As a method for further forming a silver film on the surface of the coating layer, electrolytic plating, electroless plating, vapor deposition, or the like can be used. However, it is industrially most preferable to use electrolytic plating for the above reasons. At the time of heating for alloying, considering that silver is easily sulfided, the atmosphere in the furnace is made an inert atmosphere such as nitrogen or Ar. Furthermore, unlike conventional heating methods for bonding wires, The sulfur concentration contained in the atmosphere is set to 900 ppm or less. More preferably, at least 100 ppm of a reducing gas such as hydrogen is mixed in the inert gas, so that the effect of preventing sulfidation of the wire can be further enhanced. Most preferably, in order to avoid as much as possible impurity gas such as sulfur from being introduced from outside the apparatus, an additional second atmosphere furnace is installed outside the atmosphere furnace (first atmosphere furnace). Even if a small amount of impurity gas is mixed in from the outside into the second atmosphere path, these impurity gases may not easily reach the first atmosphere furnace. Moreover, although the suitable temperature in a furnace changes also with the composition of a wire, and the speed which sweeps a wire, when it is set as the range of about 230 degreeC-720 degreeC, it is good because a stable quality bonding wire is obtained. The speed at which the wire is swept during the wire drawing step is preferably about 40 to 80 m / min because stable operation can be performed.

本願発明のボンディングワイヤーの製造方法において、<100>結晶方位の伸線方向に対する傾きが15度以下である結晶粒の面積が50%以上100%以下とする製造方法は、通常の製造方法では製造することは難しく、特殊な方法で製造される。   In the manufacturing method of the bonding wire according to the present invention, the manufacturing method in which the area of the crystal grain having an inclination of <100> crystal orientation with respect to the drawing direction is 15 degrees or less is 50% or more and 100% or less is manufactured by a normal manufacturing method. It is difficult to do and is manufactured in a special way.

具体的には、前記の要領でインゴットを得た後、前記インゴットにパラジウムを含む被覆層を上記と同様にして形成する。更にその上に銀膜を上記と同様にして形成する。前記被覆層と銀膜を形成したインゴットを、最終的な芯線の直径まで金属製のダイスを用いて伸線する際に、線径80μm以上の太さでは前記ダイスの減面率を11〜19%程度として伸線し、線径80μm未満の太さにおける伸線時は前記減面率を7〜17%程度という、通常よりも大きな減面率で伸線する。これによって、銀膜上の方向性を有する集合組織(伸線方向に結晶方位が揃った集合組織)を発達させることができる。但し、大きな減面率で伸線すると断線が生じる危険性が高まることから、ボンディングワイヤーの断線を防ぐため、伸線速度は、例えば、4〜8m/minというような通常よりも低速とするのがより好ましい。本ボンディングワイヤーでも、伸線後に、前述と同様に合金化を促す熱処理を行う。伸線後に合金化を促す熱処理工程における温度が、低温であれば、<100>結晶方位の伸線方向に対する傾きが15度以下である結晶粒の面積の割合が高まり、高温であれば、該面積の割合が低下する。この面積の低下は、該工程で、加熱して再結晶化が促進されると、前述の集合組織における方向性が失われ易くなることに起因する。具体的には、前記炉内温度が230℃〜280℃であれば、前記面積の割合が100%となり、前記炉内温度が680℃〜720℃の範囲であれば、前記面積の割合が50%程度となり、前記面積の割合は熱処理の温度で制御できる。   Specifically, after an ingot is obtained as described above, a coating layer containing palladium is formed on the ingot in the same manner as described above. Further, a silver film is formed thereon in the same manner as described above. When the ingot formed with the coating layer and the silver film is drawn to a final core wire diameter using a metal die, the area reduction rate of the die is 11 to 19 at a wire diameter of 80 μm or more. When the wire is drawn at a wire diameter of less than 80 μm, the wire is drawn with a surface reduction rate of about 7 to 17%, which is larger than usual. Thereby, it is possible to develop a texture having a directivity on the silver film (a texture having crystal orientations aligned in the wire drawing direction). However, if the wire is drawn with a large area reduction rate, the risk of breakage increases. Therefore, in order to prevent the bonding wire from breaking, the wire drawing speed should be lower than usual, for example, 4 to 8 m / min. Is more preferable. Also in this bonding wire, after wire drawing, heat treatment for promoting alloying is performed in the same manner as described above. If the temperature in the heat treatment process that promotes alloying after wire drawing is low, the ratio of the area of the crystal grains with the inclination of the <100> crystal orientation with respect to the wire drawing direction is 15 degrees or less is increased. The area ratio decreases. This reduction in area is caused by the tendency to lose the directionality in the texture described above when recrystallization is promoted by heating in this step. Specifically, if the furnace temperature is 230 ° C. to 280 ° C., the area ratio is 100%, and if the furnace temperature is in the range of 680 ° C. to 720 ° C., the area ratio is 50%. The area ratio can be controlled by the temperature of the heat treatment.

本願発明のボンディングワイヤーの製造方法において、被覆層の表面のマイヤー硬度が0.2〜2.0GPaの範囲となるボンディングワイヤーの製造方法は、通常の製造方法では製造することは難しく、特殊な方法で、ワイヤー表面の銀とパラジウムとの合金を格別にやわらかくして製造する。具体的には、上述のいずれかの方法で目的の線径まで伸線し、前述の合金化のための熱処理工程を終えた後、更に、該ボンディングワイヤーをスプールごとにアルゴン雰囲気に制御された電気炉中に設置し、150〜200℃で20〜24時間の加熱をすることで製造できる。150℃より低温又は20時間より短時間の加熱では、銀とパラジウムとの合金を上記硬度のように格別にやわらかくすることはできない。200℃より高温又は24時間より長時間の加熱をすると、隣り合うワイヤー間の拡散が促進され、ワイヤー同士がくっついてしまう場合がある。   In the manufacturing method of the bonding wire of the present invention, the manufacturing method of the bonding wire in which the Mayer hardness of the surface of the coating layer is in the range of 0.2 to 2.0 GPa is difficult to manufacture by a normal manufacturing method, An alloy of silver and palladium on the surface is manufactured to be exceptionally soft. Specifically, the wire was drawn to the target wire diameter by any of the methods described above, and after the heat treatment step for alloying was completed, the bonding wire was further controlled in an argon atmosphere for each spool. It can be manufactured by installing in an electric furnace and heating at 150 to 200 ° C. for 20 to 24 hours. By heating at a temperature lower than 150 ° C. or shorter than 20 hours, the alloy of silver and palladium cannot be made particularly soft as the above-mentioned hardness. When heating at a temperature higher than 200 ° C. or longer than 24 hours, diffusion between adjacent wires is promoted, and the wires may stick to each other.

以下、実施例について説明する。   Examples will be described below.

ボンディングワイヤーの原材料として、芯線に用いた銅、芯線中の添加元素としてB、P、Se、Ca、Al、被覆層に用いたパラジウム、表皮層に使用した銀として純度が99.99質量%以上の素材をそれぞれ用意した。前記の銅、又は銅と添加元素原料を出発原料として秤量した後、これを高真空下で加熱して溶解することで銅又は銅合金の直径10mm程度のインゴットを得た。その後、鍛造、圧延、伸線を行って所定の直径のワイヤーを作製した。その後、各ワイヤーの表面にパラジウムを含む被覆層を電解めっきで形成した。ここで、前記被覆層の厚さは、電解めっきの時間で制御した。更にその後、前記被覆層の表面に電気めっきで銀膜を形成し、300〜800℃に保たれた炉内で該ワイヤ−を60m/minの速度で連続的に掃引することで、前記被覆層の表面に銀とパラジウムとの合金層を形成した。ここで、合金層の厚さは、前記銀膜の目付け量、即ち、電気めっき時間で制御した。このようにして直径が20μmのボンディングワイヤーを得た。尚、一部の試料においては、<100>結晶方位の伸線方向に対する傾きが15度以下である結晶粒の面積を制御するため、線径80μm以上の太さでは前記ダイスの減面率を13〜18%程度として伸線し、線径80μm未満の太さにおける伸線時は前記減面率を8〜12%程度という、通常よりも大きな減面率で伸線した。また、一部の試料においては、被覆層の表面のマイヤー硬度を制御するため、該ボンディングワイヤーをスプールごとアルゴン雰囲気に制御された電気炉中に設置し、150〜200℃で20〜24時間の加熱を施した。   As a raw material for the bonding wire, copper used for the core wire, B, P, Se, Ca, Al as additive elements in the core wire, palladium used for the coating layer, silver used for the skin layer has a purity of 99.99% by mass or more. Each material was prepared. After weighing the above-mentioned copper or copper and additive element material as a starting material, this was heated and melted under high vacuum to obtain an ingot having a diameter of about 10 mm of copper or copper alloy. Thereafter, forging, rolling, and wire drawing were performed to produce a wire having a predetermined diameter. Thereafter, a coating layer containing palladium was formed on the surface of each wire by electrolytic plating. Here, the thickness of the coating layer was controlled by the time of electrolytic plating. Thereafter, a silver film is formed by electroplating on the surface of the coating layer, and the wire is continuously swept at a speed of 60 m / min in a furnace maintained at 300 to 800 ° C. An alloy layer of silver and palladium was formed on the surface. Here, the thickness of the alloy layer was controlled by the basis weight of the silver film, that is, the electroplating time. In this way, a bonding wire having a diameter of 20 μm was obtained. In some samples, in order to control the area of the crystal grains whose inclination with respect to the drawing direction of the <100> crystal orientation is 15 degrees or less, the area reduction rate of the die is set to a thickness of 80 μm or more. Drawing was performed at about 13 to 18%, and at the time of drawing at a thickness of less than 80 μm, the above-mentioned area reduction was about 8 to 12%, which was drawn with a larger area reduction than usual. Moreover, in some samples, in order to control the Mayer hardness of the surface of the coating layer, the bonding wire and the spool are placed in an electric furnace controlled in an argon atmosphere, and the temperature is 150 to 200 ° C. for 20 to 24 hours. Heat was applied.

できあがった該ボンディングワイヤーにおける芯線の直径、被覆層及び合金層の厚みは、ボンディングワイヤーの表面をスパッタしながらAESで分析し、また、該ボンディングワイヤーを断面研磨し、EDXで組成を分析しながら測定した。パラジウムの濃度が50%以上で、かつ、銀の濃度が10%未満であった領域を被覆層とし、被覆層の表面にある銀とパラジウムとを含む合金層においては銀濃度が10〜70%の範囲であった領域を合金層とした。被覆層及び合金層の厚み及び組成をそれぞれ表1〜5に記載した。   The diameter of the core wire, the thickness of the coating layer and the alloy layer in the resulting bonding wire are analyzed by AES while sputtering the surface of the bonding wire, and the bonding wire is cross-polished and measured while analyzing the composition by EDX. did. A region in which the concentration of palladium is 50% or more and the concentration of silver is less than 10% is used as a coating layer, and the silver concentration in the alloy layer containing silver and palladium on the surface of the coating layer is 10 to 70%. The region that was in the range was used as the alloy layer. The thickness and composition of the coating layer and the alloy layer are shown in Tables 1 to 5, respectively.

被覆層によるボンディングワイヤーの酸化防止効果を評価するため、湿度が85%、温度が85℃という高温高湿炉中に72時間、ボンディングワイヤーをスプールごと放置し、あえてワイヤー表面の酸化を促進するような加速試験を行った。加熱後、ボンディングワイヤーを高温高湿炉から取り出し、表面の酸化の度合いを光学顕微鏡で観察した。この時、ワイヤー表面の全面が酸化していれば×印で、ワイヤー表面が酸化していなければ○印で表1、5中の「長期保管」の欄に記した。   To evaluate the anti-oxidation effect of the bonding wire by the coating layer, leave the bonding wire together with the spool for 72 hours in a high-temperature and high-humidity furnace with a humidity of 85% and a temperature of 85 ° C to promote oxidation of the wire surface. Accelerated tests were conducted. After heating, the bonding wire was taken out from the high-temperature and high-humidity furnace, and the degree of surface oxidation was observed with an optical microscope. At this time, if the entire surface of the wire was oxidized, it was marked with “x”, and if the wire surface was not oxidized, it was marked with “◯” in the column of “long-term storage” in Tables 1 and 5.

ボンディングワイヤーの接続には、市販の自動ワイヤーボンダーを使用した。ボンディングの直前にアーク放電によりボンディングワイヤーの先端にボール部を作製したが、その直径はボンディングワイヤーの直径の1.7倍となるように34μmとしておいた。ボール部作製時の雰囲気は窒素とした。   A commercially available automatic wire bonder was used to connect the bonding wires. A ball portion was produced at the tip of the bonding wire by arc discharge immediately before bonding, and its diameter was set to 34 μm so as to be 1.7 times the diameter of the bonding wire. Nitrogen was used as an atmosphere for producing the ball part.

ボール部の実際の直径は、各ボール部とも20個ずつSEMを用いて測定し、その最大値と最小値の差が、ボール径の平均値の10%超であればばらつきが激しく不良であるとして×を、5%超かつ10%以下であれば中間程度として△を、3%超かつ5%以下であれば実用上の不具合は無く良好とみなして○を、3%以下であれば極めて良好として◎を、表1、5中の「窒素中FAB真球性」の欄に記した。   The actual diameter of the ball part is measured with 20 SEMs for each ball part, and if the difference between the maximum value and the minimum value exceeds 10% of the average value of the ball diameter, the variation is severe and poor. If x is more than 5% and less than 10%, △ is intermediate, and if more than 3% and less than 5%, there is no practical problem and ○ is extremely less than 3%. “Good” was marked in the column of “FAB sphericity in nitrogen” in Tables 1 and 5.

また、ボール部をSEMで観察し、その外観に気泡が見られれば、表1、5中の「窒素中FAB気泡抑制」の欄にその旨を記した。更に、各ボール部を10個ずつ断面研磨して光学顕微鏡で観察し、断面部に気泡が観察されなければ極めて良好として◎◎印で、10個中1〜2個のボール部のみに気泡が観察されれば良好として◎印で、10個中3〜4個のボール部のみに気泡が観察されれば実用上問題の無いレベルとして○印で、10個中5個以上のボール部に気泡が観察されれば劣悪として×印で、表1、5中の「窒素中FAB気泡抑制」の欄に記した。   Further, when the ball portion was observed with an SEM and bubbles were observed in its appearance, this was described in the column of “Inhibition of FAB bubbles in nitrogen” in Tables 1 and 5. Furthermore, 10 ball sections are polished by a cross section and observed with an optical microscope. If no bubbles are observed in the cross section, it is very good, and ◎ marks indicate that bubbles are present only in 1 to 2 of the 10 ball sections. If it is observed, it is marked as ◎, and if bubbles are observed only in 3 to 4 ball parts out of 10, if there is no problem in practical use, it is marked as ◯ and bubbles are found in 5 or more of 10 ball parts. If it is observed, it was marked as “bad” by “×” in the column of “Inhibition of FAB bubbles in nitrogen” in Tables 1 and 5.

ボンディングワイヤーの接合の相手としては、Siチップ上に形成された厚さ1μmのAl電極と、表面が銀又はパラジウムめっきリードフレームのリードをそれぞれ用いた。作製したボール部を260℃に加熱した前記電極とボール接合した後、ボンディングワイヤーの母線部を260℃に加熱した前記リードとウェッジ接合し、再びボール部を作製することで、連続的にボンディングを繰り返した。ループ長が4.9mmとなるようにした。尚、一部の試料においてはループ長が約1mmの前記逆打ちボンディングを、また別な試料においてはループ長が約3mmでループ高さが76.2μm(3mil)の低ループボンディングを、更に別な試料においてはループ長が5.3mm(210mil)という長尺ボンディングをそれぞれ行った。   As bonding partners of the bonding wires, an Al electrode having a thickness of 1 μm formed on a Si chip and a lead having a surface of silver or palladium plated lead frame were used. After the ball portion thus prepared is bonded to the electrode heated to 260 ° C., the bus wire portion of the bonding wire is wedge-bonded to the lead heated to 260 ° C., and the ball portion is formed again, thereby continuously bonding. Repeated. The loop length was set to 4.9mm. In some samples, the above-mentioned reverse bonding with a loop length of about 1 mm is used, and for other samples, a low loop bonding with a loop length of about 3 mm and a loop height of 76.2 μm (3 mil) is used. Each sample was subjected to long bonding with a loop length of 5.3 mm (210 mil).

ボンディングワイヤーのウェッジボンディング性については、ウェッジ接合された状態のボンディングワイヤーをウェッジ接合部直上でつまみ、切断するまで上方に持ち上げ、その切断時に得られる破断荷重を読み取る、いわゆるピール強度測定法で、40本の破断荷重(ピール強度)を測定した。ピール強度の標準偏差が5mN超であればばらつきが大きく改善が必要であるため×を、5mN以下であれば実用上の大きな問題はないので○を、表1、5の「Ag-L/F 2nd接合」(銀めっきリードフレームのリードの場合)並びに「Pd-L/F 2nd接合」(パラジウムめっきリードフレームのリードの場合)の欄に表記した。   Regarding the wedge bondability of the bonding wire, the wedge-bonded bonding wire is picked immediately above the wedge joint, lifted upward until it is cut, and the breaking load obtained at the time of cutting is read, so-called peel strength measurement method. The breaking load (peel strength) of the book was measured. If the standard deviation of the peel strength exceeds 5mN, the variation is large and needs to be improved. If it is less than 5mN, there is no practical problem. “2nd bonding” (for silver-plated lead frame leads) and “Pd-L / F 2nd bonding” (for palladium-plated lead frame leads) are shown in the columns.

ここで、キャピラリによってループに傷が生じたか否かを光学顕微鏡で観察した。観察したループの本数は20本であり、1本も傷が無ければ極めて良好で◎◎印で、1〜2本のループのみに傷が観察された場合は良好で◎印で、3〜4本のループのみに傷が観察された場合は実用上問題の無いレベルで○印で、5本以上のループに傷が観察されれば劣悪で×印で、表1、5の「傷抑制」の欄に表記した。   Here, it was observed with an optical microscope whether or not the loop was damaged by the capillary. The number of loops observed was 20 and it was very good if there was no flaw, and ◎◎ marked, and when only one or two loops were scratched, it was good and ◎ marked 3-4 When scratches are observed only on the loops of the book, ○ marks at a level where there is no practical problem. Poor marks if scratches are observed on five or more loops. It was written in the column.

前記被覆層の表面で観察される結晶粒の<100>結晶方位の伸線方向に対する傾きは、EBSD法で個別の結晶粒の方位を観察した上で算出した。該算出にあたっては、ボンディングワイヤーの伸線方向と垂直な方向に8μmの幅を有し、ボンディングワイヤーの伸線方向に150μmの長さを有する面を、各試料とも3視野ずつ観察した。その値を表2〜4の「<100>結晶方位の伸線方向に対する傾きが15度以下である結晶粒の面積」欄に記載した。   The inclination of the <100> crystal orientation of the crystal grains observed on the surface of the coating layer with respect to the drawing direction was calculated after observing the orientation of the individual crystal grains by the EBSD method. In the calculation, a surface having a width of 8 μm in the direction perpendicular to the drawing direction of the bonding wire and a length of 150 μm in the drawing direction of the bonding wire was observed for each sample in three fields. The value was described in the column of “Area of crystal grain having inclination of <100> crystal orientation with respect to drawing direction of 15 ° or less” in Tables 2-4.

前記の逆打ちボンディングをした後の、ボンディングワイヤー表面におけるしわは、各試料とも20本のループを光学顕微鏡で観察し、1本もしわが無ければ極めて良好で◎◎印で、1〜2本のループのみにしわが観察された場合は良好で◎印で、3〜4本のループのみにしわが観察された場合は実用上問題の無いレベルで○印で、5本以上のループにしわが観察されれば劣悪で×印で、表2〜4の「逆打ちしわ抑制」欄に記載した。   The wrinkles on the bonding wire surface after the reverse bonding described above are very good if there are no wrinkles in each sample when 20 loops are observed with an optical microscope. If only wrinkles are observed in the loop, it is good and marked with ◎, and if wrinkles are observed only in 3 to 4 loops, it is marked with ○ mark at a level where there is no practical problem, and wrinkles are observed in 5 or more loops. If it is inferior, it is indicated by a “x” mark in the “Reverse wrinkle suppression” column of Tables 2-4.

ワイヤー表面のマイヤー硬度は、ナノインデンション法によって、1nm程度の深さ精度で測定し、その値を表3〜4の「ワイヤーの表面のマイヤー硬度」欄に記載した。   The Mayer hardness of the wire surface was measured with a depth accuracy of about 1 nm by the nanoindentation method, and the value was listed in the “Meyer hardness of the wire surface” column of Tables 3-4.

前記の低ループボンディングをした後の、ネック部におけるダメージの有無は、各試料とも20本のループを光学顕微鏡で観察し、1本もダメージが無ければ良好で◎印で、20本中1〜2本でダメージが観察されれば問題の無いレベルで○印で、20本中3本以上でダメージが観察されれば劣悪で×印で、表3〜4の「76.2μm(3mil)級低ループネックダメージ」欄に記載した。   The presence or absence of damage in the neck portion after the low-loop bonding described above was observed if 20 loops of each sample were observed with an optical microscope. If damage is observed with 2 pieces, it is marked with a circle with no problem level, and if damage is observed with 3 or more pieces out of 20 pieces, it is inferior and marked with x mark, “76.2 μm (3mil) class low in Table 3-4” It is described in the “Loop Neck Damage” column.

前記の長尺ボンディングをした後のループの曲がりについては、各試料のループ20本を投影機を用いて測定した。ここで、その平均値をループ長さで除した値をワイヤー曲がり率とし、4%未満であれば極めて良好で◎印で、4〜5%であれば実用上問題ないレベルとして○印で、5%超であれば不良と判断して×印で、表4の「5.3mm(210mil)級長尺曲がり」の欄に表記した。   Regarding the bending of the loop after the long bonding, 20 loops of each sample were measured using a projector. Here, the value obtained by dividing the average value by the loop length is the wire bending rate, and if it is less than 4%, it is very good, and if it is 4-5%, it is marked as ◯ as a practically no problem level, If it exceeds 5%, it is judged as defective, and is indicated in the column of “5.3 mm (210 mil) long bend” in Table 4 with a cross.

表1の実施例1〜36に記載のように、銅の芯線の表面に10〜200nmの厚みのパラジウム被覆層を形成し、該被覆層の表面に更に3〜30nmの厚みの銀とパラジウムとの合金層を有するボンディングワイヤーでは、耐酸化性(「長期保管」欄)やボール部の真球性(「窒素中FAB真球性」欄)を確保しつつ、かつパラジウムめっきリードフレーム上での良好なウェッジ接合性(「Pd-L/F 2nd接合」欄)が得られるものである。これらに対し、比較例1に示すように、銅ワイヤーの上に特に被覆層を設けない芯線のみでは、長期保管や2nd接合性が劣悪である。また、比較例2に示すように、銅芯線の表面の被覆層を銀とした場合は、窒素中でのボール部の真球性が劣っている。また、比較例3〜5に示すように、銅芯線の上にパラジウムの被覆層のみを設けた場合は、パラジウムめっきリードフレーム上でのウェッジ接合性が劣悪である。また、比較例6に示すように、銅芯線の上に10〜200nmの範囲内の厚みでパラジウムの被覆層を形成しても、更にその表面上に形成した銀とパラジウムとの合金層の厚みが3nmより薄い場合は、パラジウムめっきリードフレーム上でのウェッジ接合性が劣悪である。また、比較例7に示すように、銅芯線の上に10〜200nmの範囲内の厚みでパラジウムの被覆層を形成しても、更にその表面上に形成した銀とパラジウムとの合金層の厚みが30nmよりも厚い場合は、安定した品質を確保しにくくなり、該合金層が酸化されたり硫化されたりすることで、評価したいずれの特性も劣悪である。また、比較例8に示すように、銅芯線の上に10〜200nmの範囲内の厚みでパラジウムの被覆層を形成し、更にその表面上に形成した銀とパラジウムとの合金層中の銀濃度が10%よりも低い場合はパラジウムめっきリードフレーム上でのウェッジ接合性が劣悪である。また、比較例9に示すように、銅芯線の上に10〜200nmの範囲内の厚みでパラジウムの被覆層を形成し、更にその表面上に形成した銀とパラジウムとの合金層中の銀濃度が70%を超えて高い場合は窒素中でのボール部の真球性が劣る。また、比較例10に示すように、銅芯線の上に形成したパラジウムの被覆層の厚みが10〜200nmの範囲を超えると、更にその表面上に形成した銀とパラジウムとの合金層の厚みが3〜30nmの範囲であっても、窒素中で小径のボール部を形成すると気泡が発生する(「窒素中FAB気泡抑制」欄)。   As described in Examples 1 to 36 of Table 1, a palladium coating layer having a thickness of 10 to 200 nm is formed on the surface of the copper core wire, and silver and palladium having a thickness of 3 to 30 nm are further formed on the surface of the coating layer. In the bonding wire having the alloy layer, the oxidation resistance ("long-term storage" column) and the true sphericity of the ball part ("FAB true sphericity in nitrogen" column) are secured, and on the palladium plated lead frame. Good wedge bondability ("Pd-L / F 2nd bond" column) can be obtained. On the other hand, as shown in Comparative Example 1, long-term storage and 2nd bondability are inferior only with a core wire that is not particularly provided with a coating layer on a copper wire. Moreover, as shown in Comparative Example 2, when the coating layer on the surface of the copper core wire is silver, the sphericity of the ball portion in nitrogen is inferior. Moreover, as shown in Comparative Examples 3 to 5, when only the palladium coating layer is provided on the copper core wire, the wedge bondability on the palladium plated lead frame is poor. Moreover, as shown in Comparative Example 6, even when a palladium coating layer is formed on a copper core wire with a thickness in the range of 10 to 200 nm, the thickness of the alloy layer of silver and palladium formed on the surface of the palladium coating layer is further increased. Is thinner than 3 nm, the wedge bondability on the palladium-plated lead frame is poor. Moreover, as shown in Comparative Example 7, even when a palladium coating layer is formed on a copper core wire with a thickness in the range of 10 to 200 nm, the thickness of the alloy layer of silver and palladium formed on the surface thereof is further increased. When the thickness is larger than 30 nm, it is difficult to ensure stable quality, and any of the evaluated characteristics is inferior because the alloy layer is oxidized or sulfided. Further, as shown in Comparative Example 8, a palladium coating layer was formed on the copper core wire with a thickness in the range of 10 to 200 nm, and the silver concentration in the alloy layer of silver and palladium formed on the surface was further increased. Is less than 10%, the wedge bondability on the palladium plated lead frame is poor. Further, as shown in Comparative Example 9, a silver coating concentration was formed on the copper core wire with a thickness in the range of 10 to 200 nm, and the silver concentration in the alloy layer of silver and palladium formed on the surface thereof was further increased. Is higher than 70%, the sphericity of the ball part in nitrogen is inferior. Moreover, as shown in Comparative Example 10, when the thickness of the palladium coating layer formed on the copper core wire exceeds the range of 10 to 200 nm, the thickness of the alloy layer of silver and palladium formed on the surface is further increased. Even in the range of 3 to 30 nm, bubbles are generated when a small-diameter ball portion is formed in nitrogen ("FAB bubble suppression in nitrogen" column).

実施例10〜36に示すように、前記銀とパラジウムとから成る合金中の銀濃度が20%以上であると、キャピラリによる傷の発生の抑制効果がより大きく(「傷抑制」欄)、かつ、窒素中で小径のボール部を形成しても気泡の発生が抑制される(「窒素中FAB気泡抑制」欄)。更に実施例19〜36に示すように、前記銀濃度が30%以上であると、前述の効果が更に高まった。   As shown in Examples 10 to 36, when the silver concentration in the alloy composed of silver and palladium is 20% or more, the effect of suppressing the occurrence of flaws by the capillaries is larger (“Scratch Control” column), and Even if a small-diameter ball portion is formed in nitrogen, the generation of bubbles is suppressed ("FAB bubble suppression in nitrogen" column). Furthermore, as shown in Examples 19 to 36, when the silver concentration was 30% or more, the above-described effect was further enhanced.

表2の実施例37〜52に示すように、前記ボンディングワイヤーの表面で観察される<100>結晶方位の伸線方向に対する傾きが15度以下である結晶粒の面積が50%以上100%以下であると、逆打ちボンディングした際にループの表面で発生するしわの抑制効果が高くなり(「逆打ちしわ抑制」欄)、該面積が70%以上であるとその効果が更に高まった。   As shown in Examples 37 to 52 in Table 2, the area of the crystal grains whose inclination with respect to the drawing direction of the <100> crystal orientation observed on the surface of the bonding wire is 15 degrees or less is 50% or more and 100% or less When it was, the effect of suppressing wrinkles generated on the surface of the loop during reverse bonding was increased (“Reverse Wrinkle Control” column), and the effect was further increased when the area was 70% or more.

表3の実施例53〜56、59〜62に示すように、前記ボンディングワイヤーの表面のマイヤー硬度が0.2〜2.0GPaの範囲であると、更に、低ループボンディングを行ってもネックダメージが抑制される(「76.2μm(3mil)級低ループネックダメージ」欄)。   As shown in Examples 53 to 56 and 59 to 62 in Table 3, when the Mayer hardness of the surface of the bonding wire is in the range of 0.2 to 2.0 GPa, neck damage is suppressed even when low loop bonding is performed. ("76.2 μm (3 mil) class low loop neck damage" column).

表4の実施例68〜76、80〜83に示すように、前記芯線が、B、P、Seの内の少なくとも1種を総計で5〜300質量ppm含有する銅合金では、長尺ボンディングを行った際であってもループの曲がりが抑制される(「5.3mm(210mil)級長尺曲がり」欄)。   As shown in Examples 68 to 76 and 80 to 83 in Table 4, when the core wire contains a total of 5 to 300 ppm by mass of at least one of B, P, and Se, long bonding is performed. Even when it is performed, the bending of the loop is suppressed ("5.3 mm (210 mil) class long bending" column).

表5の実施例84〜93に示すように、前記被覆層と前記芯線の間に拡散層が生じていたり、前記芯線に含まれる銅が前記被覆層中に拡散していたりしていても、本願発明の効果が確保できた。   As shown in Examples 84 to 93 in Table 5, even if a diffusion layer is formed between the coating layer and the core wire, or copper contained in the core wire is diffused in the coating layer, The effect of the present invention can be secured.

Figure 2011035020
Figure 2011035020

Figure 2011035020
Figure 2011035020

Figure 2011035020
Figure 2011035020

Figure 2011035020
Figure 2011035020

Figure 2011035020
Figure 2011035020

Claims (5)

銅又は銅合金から成る芯線と、
該芯線の表面に、10〜200nmの厚さで形成されたパラジウムを含む被覆層と、
該被覆層の表面に、3〜30nmの厚さで形成された銀とパラジウムとの合金層と、を有し、
前記合金層中の銀の濃度が10体積%以上70体積%以下であることを特徴とする半導体用ボンディングワイヤー。
A core wire made of copper or copper alloy;
A coating layer containing palladium formed on the surface of the core wire with a thickness of 10 to 200 nm;
On the surface of the coating layer, an alloy layer of silver and palladium formed with a thickness of 3 to 30 nm,
A bonding wire for a semiconductor, wherein a concentration of silver in the alloy layer is 10% by volume or more and 70% by volume or less.
前記合金層の表面結晶粒の内、<100>結晶方位の伸線方向に対する傾きが15度以下である結晶粒の面積が、50%以上100%以下であることを特徴とする請求項1記載の半導体用ボンディングワイヤー。 2. The area of crystal grains in which the inclination of the <100> crystal orientation with respect to the wire drawing direction is 15 degrees or less among the surface crystal grains of the alloy layer is 50% or more and 100% or less. Bonding wire for semiconductor. 前記ボンディングワイヤーの表面のマイヤー硬度が、0.2〜2.0GPaの範囲であることを特徴とする請求項1又は2に記載の半導体用ボンディングワイヤー。 3. The bonding wire for a semiconductor according to claim 1, wherein a Mayer hardness of the surface of the bonding wire is in a range of 0.2 to 2.0 GPa. 前記合金層中の銀の濃度が、20体積%以上70体積%以下であることを特徴とする請求項1〜3のいずれかに記載の半導体用ボンディングワイヤー。 4. The bonding wire for a semiconductor according to claim 1, wherein a concentration of silver in the alloy layer is 20 vol% or more and 70 vol% or less. 前記芯線が、B、P、Seの内の少なくとも1種を総計で5〜300質量ppm含有することを特徴とする請求項1〜4のいずれかに記載の半導体用ボンディングワイヤー。 5. The bonding wire for a semiconductor according to claim 1, wherein the core wire contains at least one of B, P, and Se in a total amount of 5 to 300 ppm by mass.
JP2009177315A 2009-07-30 2009-07-30 Bonding wire for semiconductor Active JP5497360B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2009177315A JP5497360B2 (en) 2009-07-30 2009-07-30 Bonding wire for semiconductor
CN201080019191.6A CN102422404B (en) 2009-07-30 2010-07-16 Bonding wire for semiconductor
SG2012004065A SG178063A1 (en) 2009-07-30 2010-07-16 Bonding wire for semiconductor
MYPI2012000003A MY164643A (en) 2009-07-30 2010-07-16 Bonding wire for semiconductor
US13/384,819 US8742258B2 (en) 2009-07-30 2010-07-16 Bonding wire for semiconductor
KR1020107028435A KR101707244B1 (en) 2009-07-30 2010-07-16 Bonding wire for semiconductor
CN201510431505.8A CN105023902B (en) 2009-07-30 2010-07-16 Bonding wire for semiconductor
PCT/JP2010/062082 WO2011013527A1 (en) 2009-07-30 2010-07-16 Bonding wire for semiconductor
EP10804273.0A EP2461358B1 (en) 2009-07-30 2010-07-16 Bonding wire for semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009177315A JP5497360B2 (en) 2009-07-30 2009-07-30 Bonding wire for semiconductor

Publications (2)

Publication Number Publication Date
JP2011035020A true JP2011035020A (en) 2011-02-17
JP5497360B2 JP5497360B2 (en) 2014-05-21

Family

ID=43763836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009177315A Active JP5497360B2 (en) 2009-07-30 2009-07-30 Bonding wire for semiconductor

Country Status (1)

Country Link
JP (1) JP5497360B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013089630A (en) * 2011-10-13 2013-05-13 Hitachi Chemical Co Ltd Semiconductor package and manufacturing method of the same
JP5937770B1 (en) * 2015-05-26 2016-06-22 日鉄住金マイクロメタル株式会社 Bonding wires for semiconductor devices
TWI550639B (en) * 2015-05-26 2016-09-21 Nippon Micrometal Corp Connecting wires for semiconductor devices
JP2016225610A (en) * 2015-05-26 2016-12-28 日鉄住金マイクロメタル株式会社 Bonding wire for semiconductor device
JP2017028262A (en) * 2015-07-23 2017-02-02 日鉄住金マイクロメタル株式会社 Bonding wire for semiconductor device
EP3131113A4 (en) * 2015-06-15 2017-03-22 Nippon Micrometal Corporation Bonding wire for semiconductor device
CN107109533A (en) * 2014-12-11 2017-08-29 贺利氏德国有限责任两合公司 Engagement electric wire for semiconductor device
JP2019111751A (en) * 2017-12-25 2019-07-11 東芝ホクト電子株式会社 Thermal print head and thermal printer
JP2019111752A (en) * 2017-12-25 2019-07-11 東芝ホクト電子株式会社 Thermal print head and thermal printer
JP6651065B1 (en) * 2018-09-21 2020-02-19 日鉄ケミカル&マテリアル株式会社 Cu alloy bonding wire for semiconductor device
WO2020059856A1 (en) * 2018-09-21 2020-03-26 日鉄ケミカル&マテリアル株式会社 Cu alloy bonding wire for semiconductor device
US10622531B2 (en) 2017-09-28 2020-04-14 Nichia Corporation Light-emitting device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7293142B2 (en) 2020-01-07 2023-06-19 東芝デバイス&ストレージ株式会社 semiconductor equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006740A (en) * 2002-03-26 2004-01-08 Sumitomo Electric Wintec Inc Bonding wire and integrated circuit device using the same
JP2005268771A (en) * 2004-02-20 2005-09-29 Nippon Steel Corp Gold bonding wire for semiconductor device and its method of connection
JP2006190763A (en) * 2005-01-05 2006-07-20 Nippon Steel Corp Bonding wire for semiconductor device
JP2008198688A (en) * 2007-02-09 2008-08-28 Noritake Co Ltd Conductive paste and manufacturing method of piezoelectric element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006740A (en) * 2002-03-26 2004-01-08 Sumitomo Electric Wintec Inc Bonding wire and integrated circuit device using the same
JP2005268771A (en) * 2004-02-20 2005-09-29 Nippon Steel Corp Gold bonding wire for semiconductor device and its method of connection
JP2006190763A (en) * 2005-01-05 2006-07-20 Nippon Steel Corp Bonding wire for semiconductor device
JP2008198688A (en) * 2007-02-09 2008-08-28 Noritake Co Ltd Conductive paste and manufacturing method of piezoelectric element

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013089630A (en) * 2011-10-13 2013-05-13 Hitachi Chemical Co Ltd Semiconductor package and manufacturing method of the same
CN107109533A (en) * 2014-12-11 2017-08-29 贺利氏德国有限责任两合公司 Engagement electric wire for semiconductor device
CN107109533B (en) * 2014-12-11 2020-07-17 贺利氏德国有限责任两合公司 Bonding wire for semiconductor device
US10672733B2 (en) 2015-05-26 2020-06-02 Nippon Micrometal Corporation Cu alloy core bonding wire with Pd coating for semiconductor device
US10497663B2 (en) 2015-05-26 2019-12-03 Nippon Micrometal Corporation Cu alloy core bonding wire with Pd coating for semiconductor device
JP5937770B1 (en) * 2015-05-26 2016-06-22 日鉄住金マイクロメタル株式会社 Bonding wires for semiconductor devices
JP2016225610A (en) * 2015-05-26 2016-12-28 日鉄住金マイクロメタル株式会社 Bonding wire for semiconductor device
TWI550639B (en) * 2015-05-26 2016-09-21 Nippon Micrometal Corp Connecting wires for semiconductor devices
US10236272B2 (en) 2015-05-26 2019-03-19 Nippon Micrometal Corporation Cu alloy core bonding wire with Pd coating for semiconductor device
US10137534B2 (en) 2015-06-15 2018-11-27 Nippon Micrometal Corporation Bonding wire for semiconductor device
US10414002B2 (en) 2015-06-15 2019-09-17 Nippon Micrometal Corporation Bonding wire for semiconductor device
US10737356B2 (en) 2015-06-15 2020-08-11 Nippon Micrometal Corporation Bonding wire for semiconductor device
EP3131113A4 (en) * 2015-06-15 2017-03-22 Nippon Micrometal Corporation Bonding wire for semiconductor device
US10610976B2 (en) 2015-06-15 2020-04-07 Nippon Micrometal Corporation Bonding wire for semiconductor device
JP2020174185A (en) * 2015-07-23 2020-10-22 日鉄マイクロメタル株式会社 Bonding wire for semiconductor device
US10468370B2 (en) 2015-07-23 2019-11-05 Nippon Micrometal Corporation Bonding wire for semiconductor device
JP2017028262A (en) * 2015-07-23 2017-02-02 日鉄住金マイクロメタル株式会社 Bonding wire for semiconductor device
US10622531B2 (en) 2017-09-28 2020-04-14 Nichia Corporation Light-emitting device
JP2019111751A (en) * 2017-12-25 2019-07-11 東芝ホクト電子株式会社 Thermal print head and thermal printer
JP2019111752A (en) * 2017-12-25 2019-07-11 東芝ホクト電子株式会社 Thermal print head and thermal printer
WO2020059856A1 (en) * 2018-09-21 2020-03-26 日鉄ケミカル&マテリアル株式会社 Cu alloy bonding wire for semiconductor device
JP6651065B1 (en) * 2018-09-21 2020-02-19 日鉄ケミカル&マテリアル株式会社 Cu alloy bonding wire for semiconductor device
US10985130B2 (en) 2018-09-21 2021-04-20 Nippon Steel Chemical & Material Co., Ltd. Cu alloy bonding wire for semiconductor device
EP3745450A4 (en) * 2018-09-21 2023-06-14 NIPPON STEEL Chemical & Material Co., Ltd. Cu alloy bonding wire for semiconductor device

Also Published As

Publication number Publication date
JP5497360B2 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
JP5497360B2 (en) Bonding wire for semiconductor
JP4637256B1 (en) Bonding wire for semiconductor
KR101707244B1 (en) Bonding wire for semiconductor
JP4554724B2 (en) Bonding wires for semiconductor devices
JP5073759B2 (en) Bonding wires for semiconductor devices
US7820913B2 (en) Bonding wire for semiconductor device
JP4886899B2 (en) Bonding wire for semiconductor
JP4672373B2 (en) Bonding wires for semiconductor devices
JPWO2002023618A1 (en) Semiconductor bonding wire and method of manufacturing the same
CN107195609B (en) Bonding wire for semiconductor device
JP2007012776A (en) Bonding wire for semiconductor device
JP5343069B2 (en) Bonding wire bonding structure
JP2006216929A (en) Bonding wire for semiconductor device
KR20200039726A (en) Cu alloy bonding wire for semiconductor devices
JPWO2016203899A1 (en) Bonding wires for semiconductor devices
CN110998814B (en) Cu alloy bonding wire for semiconductor device
JP5393614B2 (en) Bonding wires for semiconductor devices
JP5591987B2 (en) Bonding wires for semiconductor devices
JP2010245574A (en) Bonding wire for semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140306

R150 Certificate of patent or registration of utility model

Ref document number: 5497360

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250