JP2009140893A - 電子線装置、電子線形状測定方法及び画像処理方法 - Google Patents

電子線装置、電子線形状測定方法及び画像処理方法 Download PDF

Info

Publication number
JP2009140893A
JP2009140893A JP2007319244A JP2007319244A JP2009140893A JP 2009140893 A JP2009140893 A JP 2009140893A JP 2007319244 A JP2007319244 A JP 2007319244A JP 2007319244 A JP2007319244 A JP 2007319244A JP 2009140893 A JP2009140893 A JP 2009140893A
Authority
JP
Japan
Prior art keywords
electron beam
imaging
shape
detector
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007319244A
Other languages
English (en)
Other versions
JP5228463B2 (ja
Inventor
Yasutoshi Odaka
康稔 小▲高▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2007319244A priority Critical patent/JP5228463B2/ja
Publication of JP2009140893A publication Critical patent/JP2009140893A/ja
Application granted granted Critical
Publication of JP5228463B2 publication Critical patent/JP5228463B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】試料に照射される電子線(電子線プローブ)の形状を高精度に測定可能な電子線装置及び電子線形状測定方法を提供する。また、STEM像から偽像を適切に除去する画像処理方法を提供する。
【解決手段】走査透過型電子顕微鏡(STEM)の試料位置に第1の電子線検出器21を挿入し、この第1の電子線検出器21を上下方向に移動して、最大電流となる位置を探索する。その位置を、STEM像観察時の試料挿入位置とする。次に、結像レンズ22a〜22cの結像面に第2の電子線検出器25を挿入し、最大電流が得られるように結像レンズ22a〜22cのレンズ条件を調整する。その後、CCDカメラ26により電子線形状を撮影する。制御部10は、この電子線形状を用いてSTEM像をコンボリューション処理し、STEM像から偽像を除去する。
【選択図】図1

Description

本発明は、試料に照射される電子線の形状を測定可能な電子線装置、その電子線装置における電子線形状測定方法、及び走査透過電子顕微鏡像(STEM像)から偽像を除去する画像処理方法に関する。
走査透過型電子顕微鏡(Scanning Transmission Electron Microscopy:STEM)を用いた高分解能像観察法の一つであるHAADF(High Angle Annular Dark Field:高角度散乱暗視野)−STEM法は、原子の配列を高分解能画像で観察できるため、微小領域の結晶構造の解析に極めて有用である。HAADF−STEM法では、細く絞った電子線プローブを試料表面に沿って走査し、大きな角度で散乱した透過電子をリング状の検出器により検出して観察像(STEM像)を得ている。
しかしながら、STEM像観察では、電磁レンズの球面収差や、電磁レンズ条件及びフォーカス条件等による電子線プローブ形状の変化に起因して、観察像に偽像が現れることが判明している。なお、偽像とは、実際には原子が存在しない位置にあたかも原子があるかのように現れる像である。
偽像は、STEM像をデコンボリューション処理(画像処理の一種)することにより除去できることが知られている。しかし、デコンボリューション処理により偽像を除去するためには、電子線プローブの形状を正確に知ることが必要である。STEM像観察における焦点位置は通常の透過型電子顕微鏡(Transmission Electron Microscope:TEM)とは異なり、またSTEM像観察では回折像の強度を実像として画像化しているため、電子線プローブの形状を直接観察することはできない。そのため、従来は、STEM像観察時の条件に基づいて電子線プローブ形状をシミュレーション計算している。
本願発明者らによる先の出願(特許文献1)には、電子線プローブ形状のシミュレーション方法、及び電子線プローブ形状のシミュレーション結果を用いてSTEM像をデコンボリューション処理し、偽像(虚像)を除去する方法が記載されている。
特開2003−249186号公報
上述したように、従来はシミュレーション計算によりSTEMの電子線プローブ形状を求めている。しかし、本願発明者らの実験・研究から、実際の電子線プローブ形状とシミュレーションにより算出した電子線プローブ形状とが異なることに起因して、デコンボリューションによる画像処理が適切に行われず、正確な原子像を得られないことがあることが判明した。つまり、実際のSTEMの電子線プローブ形状は、何らかの外乱の影響等により、シミュレーション計算により得られた電子線プローブ形状と異なるものになると考えられる。
以上から、本発明の目的は、試料に照射される電子線(電子線プローブ)の形状を高精度に測定可能な電子線装置及び電子線形状測定方法を提供することである。また、本発明の目的は、STEM像から偽像を適切に除去する画像処理方法を提供することである。
本発明の一観点によれば、試料に照射される電子線の形状を測定可能な電子線装置であって、電子線を出力する電子線源と、前記電子線源から出力された電子線の焦点を試料位置に合せる対物レンズと、前記電子線源と前記対物レンズとの間に配置され、前記電子線を試料表面に沿って走査可能な走査コイルと、前記試料位置を通過した電子線を結像面に結像する結像レンズと、電子線形状測定時に前記試料位置に配置される第1の電子線検出器と、前記電子線形状測定時に前記結像面の位置に配置される第2の電子線検出器と、前記電子線形状測定時に前記結像面又はその近傍に配置されて電子線形状を撮影する撮像部と、前記電子線源、前記対物レンズ、前記走査コイル及び前記結像レンズを制御するとともに、前記第1の電子線検出器、前記第2の電子線検出器及び前記撮像部から出力される信号を入力する制御部とを有する電子線装置が提供される。
また、本発明の他の観点によれば、電子線源から出力された電子線の焦点を試料位置に合わせる対物レンズと、試料を透過した電子線を結像面に結像させる結像レンズとを有する電子線装置の電子線形状測定方法において、前記対物レンズの焦点位置に第1の電子線検出器を配置し、該第1の電子線検出器を移動させて電流密度が最大となる位置を探索する工程と、前記第1の電子線検出器を電子線の通過域から退避させ、前記結像レンズの結像面に第2の電子線検出器を配置し、該第2の電子線検出器で検出される電子線の電流密度が最大となるように前記結像レンズのレンズ条件を調整する工程と、前記第2の電子線検出器を電子線の通過域から退避させ、前記結像レンズの結像面における電子線形状を測定する工程とを有する電子線形状測定方法が提供される。
本発明においては、試料位置の後方に配置された結像レンズのレンズ条件を調整し、試料面における電子線形状を結像レンズの結像面に投影する。これにより、試料面における電子線形状を高精度に測定することができる。また、本発明によれば、電子線形状を高精度に測定することができるので、STEM像のデコンボリューション処理に適用することにより、STEM像から偽像を高精度に排除することができる。
以下、本発明の実施形態について、添付の図面を参照して説明する。
図1は、本発明の実施形態に係る電子線装置の構成を示す模式図である。本実施形態では、本発明を走査透過型電子顕微鏡(STEM)に適用した例を示している。
本実施形態に係る走査透過型電子顕微鏡は、図1に示すように、制御部10と、電子銃(電子線源)11と、収束レンズ12a,12bと、収束レンズ絞り13と、偏向コイル14と、走査コイル15と、球面収差・非点収差補正部16と、二次電子検出器17と、対物レンズ18a,18bと、試料20が搭載される試料搭載部19と、上部電子線検出器(第1の電子線検出器)21と、結像レンズ(投影レンズともいう)22a,22b,22cと、シャッター23と、蛍光板24と、下部電子線検出器(第2の電子線検出器)25と、CCD(charge-coupled device)カメラ(撮像部)26と、STEM検出器(電子顕微鏡像取得部)27とにより構成される。
電子銃11は、制御部10からの信号に応じた加速電圧で電子を加速し、電子線として出力する。電子銃11の下方には、複数段(図1では2段)の収束レンズ12a,12bが配置されている。これらの収束レンズ12a,12bは、制御部10からの信号に応じて、電子銃11から放出された電子線を所望の大きさに収束する。
収束レンズ12a,12bの下方には収束レンズ絞り13が配置されている。収束レンズ12a,12bにより収束された電子線は不要な広がり部分をもつため、この収束レンズ絞り13により不要な広がり部分をカットする。
収束レンズ絞り13の下方には、偏向コイル14及び走査コイル15が配置されている。偏向コイル14は例えば相互に直交する方向に配置された2組のコイルにより構成されており、制御部10からの信号に応じて収束レンズ12a,12bにより収束された電子線の軸合わせを行う。
走査コイル15は、制御部10からの信号に応じて、試料搭載部19に搭載された試料20の表面を電子線プローブが走査するように電子線を屈折する。
走査コイル15の下方には、球面収差・非点収差補正部16、二次電子検出器17、対物レンズ18a,18b、試料搭載部19及び上部電子線検出器21が配置されている。
試料20は試料搭載部19に搭載され、上下方向に離隔する対物レンズ18a,18bのほぼ中間の位置(中心位置)に配置される。対物レンズ18a,18bは、制御部10からの信号に応じて、試料20の表面又はその近傍で焦点が合うように電子線を屈折する。球面収差・非点収差補正部16は、制御部10からの信号に応じて、対物レンズ18a,18bの球面収差及び非点収差を補正する。二次電子検出器17は、電子線の照射により試料20から放出された二次電子を検出する。なお、球面収差・非点収差補正部16及び二次電子検出器17は必要に応じて配設すればよく、本発明において必須の構成要素ではない。
試料搭載部19は、横方向に移動可能に配設されている。後述するように、STEM像観察時には試料搭載部19に搭載された試料20が電子線の通過域に配置され、電子線プローブ形状測定時には試料搭載部19は横方向に移動し、替わりに上部電子線検出器21が電子線の通過域に配置される。上部電子線検出器21としては、例えばファラデーゲージ等を使用することができる。
試料搭載部19及び対物レンズ18a,18bの下方には、複数段(図1では3段)の結像レンズ22a,22b,22cが配置されている。本実施形態においては、結像レンズ22a,22b,22cに2つのモードが設定されている。一つはSTEM像観察時に用いられる回折像モード(電子顕微鏡像取得モード)であり、他の一つは電子線プローブ形状測定時に用いられる実像モード(電子線形状測定モード)である。回折像モードから実像モードへの変更、及び実像モードから回折像モードへの変更は、結像レンズ22a,22b,22cのレンズ条件を切り替えること、すなわち結像レンズ22a,22b,22cに供給する電流を変化させることにより行われる。
本実施形態では、結像レンズ22a,22b,22cが、実像で1万〜4万倍、回折像で2cm〜100cmの範囲で可変する機能を有するものとする。回折像モード及び実像モードについては後述する。
結像レンズ22a,22b,22cの下方には、シャッター23、蛍光板24、下部電子線検出器25、CCDカメラ26及びSTEM検出器27等が配置されている。シャッター23は、CCDカメラ26により電子線プローブの形状を撮影する際に、電子線量が飽和しないようにするために設けている。シャッター23はSTEM像観察時には側方に退避しており、電子線プローブ形状測定時に電子線の通過域に配置される。この場合、ビームブランク方式のシャッターを使用することも考えられるが、ビームブランク方式のシャッターでは撮影した電子線プローブの形状ににじみが現れる。このため、シャッター23としては、ビームブランク方式のシャッターではなく、メカニカル方式のシャッターを使用することが好ましい。
蛍光板24は電子により蛍光を発生するものであり、電子線の確認に用いられる。この蛍光板24は横方向に移動可能に配設されている。後述するように、結像レンズ22a,22b,22cのフォーカスを調整するときには、蛍光板24に替えて下部電子線検出器25が電子線の通過域に配置される。なお、下部電子線検出器25としては、上部電子線検出器21と同様に、ファラデーゲージ等を使用することができる。
蛍光板24の下には電子線プローブ形状を撮影するCCDカメラ26が配置される。このCCDカメラ26は、STEM像観察時には電子線の通過域から外れるように側方に移動する。CCDカメラ26に替えて、イメージングプレート又は感光フィルム等を使用して電子線プローブ形状を取得するようにしてもよい。
STEM検出器27はSTEM像観察時に使用される。このSTEM検出器27はリング状の形状を有し、試料20により大きな角度で散乱された透過電子を検出する。制御部10は、STEM検出器27から出力された信号を信号処理してSTEM像を作成する。そして、STEM像に対しデコンボリューション処理を実行して、偽像を除去する。
以下、本発明の実施形態に係る電子線形状測定方法を説明する前に、本発明の理解を容易にするための予備的事項について説明する。
図2は、試料としてSi(011)結晶を用いてHAADF−STEM高分解能像を取得し、デコンボリューション処理を行った結果を示す図である。ここで、図2(a)は、横軸に位置をとり、縦軸に強度をとって、デコンボリューション前の電子線プローブの強度分布と、デコンボリューション後の電子線プローブの強度分布とを示している。また、図2(b)はデコンボリューション前及びデコンボリューション後のシミュレーション像を示しており、図2(c)はデコンボリューション前及びデコンボリューション後のHAADF−STEM像を示している。
デコンボリューション処理は、図2(a)に示すように、電子顕微鏡像に重畳されている有限の電子線プローブ形状の影響を除去し、電子線プローブ形状をデルタ関数として計算するものである。図2(b),(c)から、デコンボリューション前には原子間の原子が存在しない部分に偽像(明度が低い輝点)が現れているが、デコンボリューション処理により偽像が除去されていることがわかる。
次に、結像レンズの動作モードについて説明する。本発明においては、結像レンズ22a,22b,22cの動作モードを変化させて電子プローブの形状を測定する。図3はTEM(透過型電子顕微鏡)の結像系を示す模式図、図4はSTEM(走査透過型電子顕微鏡)の結像系を示す模式図である。なお、図3において、31a,31bは対物レンズ(図1,図4の対物レンズ18a,18bに対応)を示し、32a,32b,32cは結像レンズ(図1,図4の結像レンズ22a,22b,22cに対応)を示し、33は試料(図1,図4の試料20に対応)を示している。また、図3、図4において、34は結像面を示している。
図3に示すように、TEMでは、試料面、すなわち対物レンズ31a,31bの中心位置における像を結像レンズ32a,32b,32cで拡大して画像を取得する。これに対し、STEMでは、図4に示すように、極めて細く収束した電子線を試料20に照射し、試料20の一点一点での回折強度を画像化することにより画像を取得する。STEMの結像レンズ22a,22b,22cは、結像面に回折像を投影する。
すなわち、STEMの結像系では、実像を投影するのではないため、直接的に電子線形状を評価することができない。また、図3,図4に示すように、TEMの試料位置とSTEMの試料位置とは必ずしも同じではなく、ほとんどの場合異なることが判明している。本実施形態に係る電子線装置(STEM)において、図4に示すように、結像レンズ22a,22b,22cが結像面34に回折像を投影するようにレンズ条件を設定する動作モードを、回折像モードと呼んでいる。
図5に、本実施形態に係る電子線装置(STEM)の実像モードにおける結像レンズ22a,22b,22cのレンズ条件を示す。この図5に示すように、実像モードでは、STEM像取得時の試料面における電子線プローブ形状を結像面で直接観察できるように、結像レンズ22a,22b,22cのレンズ条件を設定する。
また、回折像モードでは走査コイル15により電子線プローブを走査するが、実像モードでは走査コイル15は励磁した状態のまま、走査中心位置に固定する。結像レンズ22a,22b,22cの拡大倍率は、例えば1.5万倍〜4万倍とする。なお、電子線プローブ形状の測定にはスケールを校正する必要があるが、金やSi等のように格子間隔が既知の単結晶を用いてスケールを校正する。
ところで、本実施形態では、上述したように、STEMの結像レンズ22a,22b,22cを実像モードにして電子線プローブの形状を測定する。この場合、結像レンズ22a,22b,22cの動作モード以外の条件が変化してしまうと、STEM像取得時と電子線プローブ形状測定時との条件が異なり、デコンボリューション処理しても偽像を除去することができなくなってしまう。従って、電子線プローブ形状測定時とSTEM像取得時の結像レンズ動作モード以外の条件を一致させることが重要である。
図6(a)は、STEM像観察時の条件に基づいてシミュレーション計算して得た電子線プローブ形状(強度分布)を示す図である。また、図6(b)は、実験により直接測定した電子線プローブ形状(強度分布)を示す図である。図6(a),(b)では、フォーカスずれ量が−30nmから−80nmまでのときの電子線プローブ形状を求めている。なお、STEM像観察時の条件は、加速電圧が200kV、照射角が12mrad、球面収差係数が1mmとしている。
電子線プローブ形状及び強度は、電磁レンズの球面収差の影響によるフォーカスずれ量により変化する。図6(a),(b)に示すように、シミュレーション計算により求めた電子線プローブ形状(図6(a))と実際に測定して得た電子線プローブ形状(図6(b))とは大きく異なる。電子線プローブの電流量はフォーカスずれ量に依存し、強度全体を積分した場合はフォーカスずれ量が−65nmのときに電流量が最大値となり、プローブ中心の半値幅(実効的に有効なプローブ領域)で積分した場合はフォーカスずれ量が−50nm(シェルツァーフォーカス)のときに電流量が最大値となる。図7に、フォーカス値(フォーカスずれ量)と電子線強度の積分値(全体及び半値幅)との関係をまとめて示す。なお、ビーム強度の積分値のフォーカス依存性は、計算結果と実測結果とで同様の傾向となる。
図8は、電子線プローブのフォーカス位置と電子線量との関係を示す模式図である。この図8に示すように、フォーカスが最適状態のときに電流密度は最大となり、アンダーフォーカスのとき及びオーバーフォーカスのときにはいずれも電流密度は小さくなる。フォーカス値に対する電流量の関係は、図7に示したように、電子線プローブ全体で積分したときにはフォーカス値が−65nmのときに最大となり、半値幅で積分したときにはフォーカス値が−50nmのときに最大となる。すなわちフォーカス値が−65nmのときに電流量は最大値をとるが、最高分解能であるシェルツァーフォーカスを定義したほうがよいので、本実施形態では半値幅で積分したときに電流量が最大となる位置を最適フォーカス位置とする。
図9は、本実施形態における電子線プローブ形状の測定方法の概念を示す模式図である。まず、予め設定された条件で対物レンズ18a,18bを駆動し、試料位置におけるフォーカスを調整する。すなわち、上部電子線検出器21を試料位置に挿入し、上部電子線検出器21で検出される電流量(半値幅で積分したときの電流量)が最大になるようにフォーカスを合わせる。このとき、通常のTEM観察では対物レンズのレンズ条件を微調整してフォーカスを合せるが、対物レンズのレンズ条件を変化させると電子線入射条件が変わってしまい、デコンボリューション処理しても偽像を除去することができなくなる。そのため、電子線入射条件を変えずに、上部電子線検出器21の高さ方向の位置を調整して半値幅で積分したときに電流量が最大となる位置を探索し、フォーカス位置とする。STEM像観察時には、このフォーカス位置が試料挿入位置となる。フォーカス位置が決定した後、上部電子線検出器21を側方に退避させる。
次に、実像モードにおける結像レンズ22a,22b,22cのフォーカス位置を調整する。すなわち、結像面の位置に下部電子線検出器25を挿入し、対物レンズ18a,18bのレンズ条件を変化させることなく、下部電子線検出器25で検出される電流量(半値幅で積分したときの電流量)が最大となるように結像レンズ22a,22b,22cのレンズ条件を変化させる。下部電子線検出器25で検出される電流量が最大となる結像レンズ22a,22b,22cのレンズ条件(実像モードにおけるレンズ条件)が決定したら、下部電子線検出器25を側方に退避させる。
このようにして対物レンズ18a,18b及び結像レンズ22a,22b,22cのフォーカスの調整が完了した後、CCDカメラ26(又は、イメージングプレート若しくはフィルム等)を用いて電子線形状の撮影を行う。このとき、前述したようにメカニカル方式のシャッター23を用いて、電子線量が飽和しないようにする。図10(a)に実際に撮影した電子線プローブの形状を示し、図10(b)にその電子線形状の二次元強度プロファイル(図10(a)中に破線の矢印で示す位置における二次元強度プロファイル)を測定した結果を示す。
なお、図10(b)では二次元強度プロファイルの測定例を示しているが、三次元強度プロファイルを測定してもよい。図11に、三次元強度プロファイルの例を示す。図11では、加速電圧を200kV、電子線入射角を12mradとし、フォーカスずれ量が−30nmのとき(図11(a))、−50nmのとき(図11(b))、及び−70nmのとき(図11(c))の電子線強度の三次元強度プロファイルを示している。
次に、図12に示すフローチャートを参照して、本発明の実施形態に係る画像処理方法を説明する。図12において、ステップS11〜S20は電子線プローブの形状を測定する工程であり、前述の電子線プローブ形状の測定方法と重複する。また、ステップS21〜S26はSTEM像を取得し、デコンボリューション処理して偽像を除去する工程である。以下の説明では、図1の電子線装置の構成図も参照する。
まず、ステップS11において、測定条件を設定する。例えば、電子線の加速電圧を200kV、照射角を12mradとする。また、拡大倍率を1.5万倍〜4万倍に設定する。
次に、ステップS12において、電子線の光軸を調整するとともに、電子線の入射条件を固定する。すなわち、走査コイル15は励磁された状態のまま、走査中心位置に固定する。また、対物レンズ18a,18bのレンズ条件を固定する。電子線の入射条件(実験条件)は、制御部10内に記憶される。
次に、ステップS13において、試料位置に上部電子線検出器21を挿入する。そして、ステップS14,S15において、上部電子線検出器21の位置を上下方向に移動して、最大電流が得られる位置を探索する。最大電流が得られる位置が決定したら、ステップS15からステップS16に移行し、その最大電流が得られる位置をSTEM像観察時の試料挿入位置とする。
次に、ステップS17に移行し、結像レンズ22a,22b,22cの結像面の位置に下部電子線検出器25を挿入する。そして、ステップS18,S19において、下部電子線検出器25で検出される電流値が最大となるように、結像レンズ22a,22b,22cのレンズ条件を調整する。
このようにして結像レンズ22a,22b,22cの調整が完了したら、ステップS19からステップS20に移行する。ステップS20では、CCDカメラ26により電子線プローブ形状を撮影し、この画像データを制御部10に入力する。制御部10は、この画像データを画像処理して電子線プローブ形状を測定する(図10、図11参照)。
このようにして電子線プローブ形状の測定が完了した後、上部電子線検出器21、シャッター23、下部電子線検出器25及びCCDカメラ26を電子線の通過域から退避させる。
次に、ステップS21に移行する。ステップS21では、試料20を試料搭載部19に搭載し、ステップS16で決定した試料挿入位置に挿入する。その後、ステップS22において、制御部10は結像レンズ22a,22b,22cを回折像モードに切り替えるとともに、電子銃11、収束レンズ12a,12b、偏向コイル14、走査レンズ15及び対物レンズ18a,18b等を制御し、STEM検出器27によりSTEM像の画像データを取得する。STEM検出器27により取得されたSTEM像のデータは、制御部10に入力される。
次に、ステップS23において、制御部10は、デコンボリューション計算を行う。このとき、制御部10は、ステップS20で測定した電子線プローブ形状の測定結果と電子線の入射条件とを読み出し、デコンボリューション計算時のパラメータとして使用する。
次に、デコンボリューション処理が終了した後、ステップS24において解析像(デコンボリューション処理後のSTEM像)を検証し、ステップS25において偽像の有無を判定する。偽像がある場合、電子線の入射条件(例えば、フォーカス値)が実際と異なることが考えられる。この場合、ステップS23に戻り、電子線の入射条件を若干変化させて、再度デコンボリューション計算を行う。ステップ25で偽像がないと判定した場合は、ステップS26に移行する。このようにして、偽像を除去したSTEM像が得られる。
本実施形態では、結像レンズ22a,22b,22cのレンズ条件を調整して電子線プローブの形状を実測し、その結果を用いてSTEM検出器27により取得したSTEM像をデコンボリューション処理し、STEM像から偽像を除去する。これにより、偽像を適切に除去することができて、正確な原子像を得ることができる。
なお、上述の実施形態では本発明をSTEMに応用した例について説明したが、本発明はその他に、電子線により試料を加工する電子線加工装置の電子線プローブ形状の測定等に応用することもできる。
図1は、本発明の実施形態に係る電子線装置の構成を示す模式図である。 図2(a)はデコンボリューション前の電子線プローブの強度分布と、デコンボリューション後の電子線プローブの強度分布とを示す図、図2(b)はデコンボリューション前及びデコンボリューション後のシミュレーション像を示す図、図2(c)はデコンボリューション前及びデコンボリューション後のHAADF−STEM像を示す図である。 図3は、TEMの結像系を示す模式図である。 図4は、STEMの結像系(回折像モード)を示す模式図である。 図5は、STEMの結像系(実像モード)を示す模式図である。 図6(a)はSTEM像観察時の条件に基づいてシミュレーション計算して得た電子線プローブ形状(強度分布)を示す図、図6(b)は実験により直接測定した電子線プローブ形状(強度分布)を示す図である。 図7は、フォーカス値と電子線強度の積分値(全体及び半値幅)との関係をまとめて示す図である。 図8は、電子線プローブのフォーカス位置と電子線量との関係を示す模式図である。 図9は、実施形態における電子線プローブ形状の測定方法の概念を示す模式図である。 図10(a)は実際に撮影した電子線プローブの形状を示す図、図10(b)にその電子線形状の二次元強度プロファイルを測定した結果を示す図である。 図11(a),(b),(c)は、電子線形状の三次元強度プロファイルを示す図である。 図12は、本発明の実施形態に係る画像処理方法を示すフローチャートである。
符号の説明
10…制御部、
11…電子銃、
12a,12b…収束レンズ、
13…収束レンズ絞り、
14…偏向コイル、
15…走査コイル、
16…球面収差・非点収差補正部、
17…二次電子検出器、
18a,18b,31a,31b…対物レンズ、
19…試料搭載部、
20,33…試料、
21…上部電子線検出器、
22a,22b,22c,32a,32b,32c…結像レンズ、
23…シャッター、
24…蛍光板、
25…下部電子線検出器、
26…CCDカメラ、
27…STEM検出器、
34…結像面。

Claims (6)

  1. 試料に照射される電子線の形状を測定可能な電子線装置であって、
    電子線を出力する電子線源と、
    前記電子線源から出力された電子線の焦点を試料位置に合せる対物レンズと、
    前記電子線源と前記対物レンズとの間に配置され、前記電子線を試料表面に沿って走査可能な走査コイルと、
    前記試料位置を通過した電子線を結像面に結像する結像レンズと、
    電子線形状測定時に前記試料位置に配置される第1の電子線検出器と、
    前記電子線形状測定時に前記結像面の位置に配置される第2の電子線検出器と、
    前記電子線形状測定時に前記結像面又はその近傍に配置されて電子線形状を撮影する撮像部と、
    前記電子線源、前記対物レンズ、前記走査コイル及び前記結像レンズを制御するとともに、前記第1の電子線検出器、前記第2の電子線検出器及び前記撮像部から出力される信号を入力する制御部と
    を有することを特徴とする電子線装置。
  2. 更に、前記試料を透過した電子を検出して電子顕微鏡像を取得する電子顕微鏡像取得部を有し、
    前記制御部は、電子線形状を測定する電子線形状測定モードと、前記電子顕微鏡像を取得する電子顕微鏡像取得モードとを備え、前記電子線形状測定モードでは前記試料面における電子線形状を前記撮像部に投影するように前記結像レンズを制御し、前記電子顕微鏡像取得モードでは前記第1の電子線検出器、前記第2の電子線検出器及び前記撮像部を電子線の通過域から退避させ、前記試料による回折像を前記電子顕微鏡像取得部に投影するように前記結像レンズを制御することを特徴とする請求項1に記載の電子線装置。
  3. 前記制御部は、前記撮像部で撮影した電子線形状に応じて、前記電子顕微鏡像取得部で取得した電子顕微鏡像をデコンボリューション処理することを特徴とする請求項2に記載の電子線装置。
  4. 前記制御部は、電子線形状測定時に、前記第1の電子線検出器を前記電子線の移動方向に沿って移動させ、前記第1の電子線検出器で検出される電流密度が最大となる位置を探索することを特徴とする請求項1乃至3のいずれか1項に記載の電子線装置。
  5. 電子線源から出力された電子線の焦点を試料位置に合わせる対物レンズと、試料を透過した電子線を結像面に結像させる結像レンズとを有する電子線装置の電子線形状測定方法において、
    前記対物レンズの焦点位置に第1の電子線検出器を配置し、該第1の電子線検出器を移動させて電流密度が最大となる位置を探索する工程と、
    前記第1の電子線検出器を電子線の通過域から退避させ、前記結像レンズの結像面に第2の電子線検出器を配置し、該第2の電子線検出器で検出される電子線の電流密度が最大となるように前記結像レンズのレンズ条件を調整する工程と、
    前記第2の電子線検出器を電子線の通過域から退避させ、前記結像レンズの結像面における電子線形状を測定する工程と
    を有することを特徴とする電子線形状測定方法。
  6. 請求項5の電子線形状測定方法により測定した電子線形状を用いて電子顕微鏡像をデコンボリューション処理し、前記電子線顕微鏡像から偽像を除去することを特徴とする画像処理方法。
JP2007319244A 2007-12-11 2007-12-11 電子線装置、電子線形状測定方法及び画像処理方法 Expired - Fee Related JP5228463B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007319244A JP5228463B2 (ja) 2007-12-11 2007-12-11 電子線装置、電子線形状測定方法及び画像処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007319244A JP5228463B2 (ja) 2007-12-11 2007-12-11 電子線装置、電子線形状測定方法及び画像処理方法

Publications (2)

Publication Number Publication Date
JP2009140893A true JP2009140893A (ja) 2009-06-25
JP5228463B2 JP5228463B2 (ja) 2013-07-03

Family

ID=40871293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007319244A Expired - Fee Related JP5228463B2 (ja) 2007-12-11 2007-12-11 電子線装置、電子線形状測定方法及び画像処理方法

Country Status (1)

Country Link
JP (1) JP5228463B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011196802A (ja) * 2010-03-18 2011-10-06 Sii Nanotechnology Inc 試料加工観察方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63298949A (ja) * 1987-05-28 1988-12-06 Jeol Ltd 広狭領域が同時観察可能な分析電子顕微鏡
JPH06310076A (ja) * 1993-04-28 1994-11-04 Hitachi Ltd 透過形走査電子線装置及び試料密度測定方法
JPH1196951A (ja) * 1997-09-25 1999-04-09 Hitachi Ltd 倍率制御型荷電粒子ビーム照射装置
JP2003149347A (ja) * 2001-11-16 2003-05-21 Nippon Telegr & Teleph Corp <Ntt> 荷電粒子ビームの形状測定装置
JP2003249186A (ja) * 2002-02-22 2003-09-05 Fujitsu Ltd 走査透過型電子顕微鏡に依る観察方法及び観察装置
JP2007109509A (ja) * 2005-10-13 2007-04-26 Fujitsu Ltd 電磁レンズの球面収差測定方法及び球面収差測定装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63298949A (ja) * 1987-05-28 1988-12-06 Jeol Ltd 広狭領域が同時観察可能な分析電子顕微鏡
JPH06310076A (ja) * 1993-04-28 1994-11-04 Hitachi Ltd 透過形走査電子線装置及び試料密度測定方法
JPH1196951A (ja) * 1997-09-25 1999-04-09 Hitachi Ltd 倍率制御型荷電粒子ビーム照射装置
JP2003149347A (ja) * 2001-11-16 2003-05-21 Nippon Telegr & Teleph Corp <Ntt> 荷電粒子ビームの形状測定装置
JP2003249186A (ja) * 2002-02-22 2003-09-05 Fujitsu Ltd 走査透過型電子顕微鏡に依る観察方法及び観察装置
JP2007109509A (ja) * 2005-10-13 2007-04-26 Fujitsu Ltd 電磁レンズの球面収差測定方法及び球面収差測定装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011196802A (ja) * 2010-03-18 2011-10-06 Sii Nanotechnology Inc 試料加工観察方法

Also Published As

Publication number Publication date
JP5228463B2 (ja) 2013-07-03

Similar Documents

Publication Publication Date Title
JP4553889B2 (ja) 粒子光学レンズの収差関数における収差係数の決定方法
JP5735262B2 (ja) 荷電粒子光学装置及びレンズ収差測定方法
JP2007180013A (ja) ロンチグラムを用いた収差測定方法及び収差補正方法及び電子顕微鏡
JP2021067697A (ja) ウエハ検査システム及び装置
JP2020149767A (ja) 荷電粒子線装置
JP2006173027A (ja) 走査透過電子顕微鏡、及び収差測定方法、ならびに収差補正方法
JP5817360B2 (ja) 走査透過型電子顕微鏡の観察方法及び走査透過型電子顕微鏡
JP4829584B2 (ja) 電子線装置の自動調整方法及び電子線装置
JP6163063B2 (ja) 走査透過電子顕微鏡及びその収差測定方法
JP2009054575A (ja) 走査型電子顕微鏡の調整方法、及び走査電子顕微鏡
US8294118B2 (en) Method for adjusting optical axis of charged particle radiation and charged particle radiation device
JP5228463B2 (ja) 電子線装置、電子線形状測定方法及び画像処理方法
JP2015018721A (ja) 透過電子顕微鏡
US11545337B2 (en) Scanning transmission electron microscope and adjustment method of optical system
JP6843913B2 (ja) 透過電子顕微鏡の制御方法および透過電子顕微鏡
JP2010218912A (ja) 荷電粒子線装置
JP2007109509A (ja) 電磁レンズの球面収差測定方法及び球面収差測定装置
JP2021163753A (ja) 3d回折データを取得するための方法およびシステム
JP2007242514A (ja) 透過型電子顕微鏡及びその制御方法
JP7285871B2 (ja) 走査透過電子顕微鏡および光学系の調整方法
JP7381432B2 (ja) 荷電粒子線装置
JP5502794B2 (ja) 電子顕微鏡
JP6796609B2 (ja) 収差測定方法および電子顕微鏡
JP2018181629A (ja) 撮影方法および透過電子顕微鏡
JP6227866B2 (ja) 荷電粒子装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees