JP2009140727A - Power storage device - Google Patents

Power storage device Download PDF

Info

Publication number
JP2009140727A
JP2009140727A JP2007315441A JP2007315441A JP2009140727A JP 2009140727 A JP2009140727 A JP 2009140727A JP 2007315441 A JP2007315441 A JP 2007315441A JP 2007315441 A JP2007315441 A JP 2007315441A JP 2009140727 A JP2009140727 A JP 2009140727A
Authority
JP
Japan
Prior art keywords
current collector
storage device
power storage
secondary battery
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007315441A
Other languages
Japanese (ja)
Other versions
JP5136030B2 (en
Inventor
Toshiyuki Kawai
利幸 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007315441A priority Critical patent/JP5136030B2/en
Publication of JP2009140727A publication Critical patent/JP2009140727A/en
Application granted granted Critical
Publication of JP5136030B2 publication Critical patent/JP5136030B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve such problems wherein, when a plurality of current collectors having tabs each in different position are used, production process becomes complicated and production cost is increased because of production of these current collectors, and when the exposed part of each electrode is functioned as the tab by shifting and stacking a plurality of electrodes (bipolar electrodes), a power storage device enlarges only the electrode shifted part. <P>SOLUTION: A power storage device includes a current collector 11, a positive electrode and a negative electrode 10 stacked through an electrolyte 14, and a plurality of wiring leads 20, 20b electrically connected to a plurality of current collectors, wherein the positive electrode and the negative electrode are positioned in almost the same region as viewed from the stacking direction. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、正極体及び負極体が電解質を介して積層された構成を有する二次電池等の蓄電装置に関するものである。   The present invention relates to a power storage device such as a secondary battery having a configuration in which a positive electrode body and a negative electrode body are laminated via an electrolyte.

従来、二次電池等の蓄電装置は、電気自動車(EV)、ハイブリッド自動車(HEV)、燃料電池車(FCV)の駆動源として用いられており、高出力の要求に応じるために、複数の単電池を電気的に直列に接続した組電池を用いている。   Conventionally, a power storage device such as a secondary battery is used as a drive source for an electric vehicle (EV), a hybrid vehicle (HEV), and a fuel cell vehicle (FCV). An assembled battery in which batteries are electrically connected in series is used.

このような組電池では、単電池の電圧を計測するために、単電池毎に電圧検出用のタブが設けられている(例えば、特許文献1参照)。具体的には、集電体の側辺に突形状のタブを一体的に形成したものがある。   In such an assembled battery, a tab for voltage detection is provided for each cell in order to measure the voltage of the cell (see, for example, Patent Document 1). Specifically, there is one in which a protruding tab is integrally formed on the side of the current collector.

ここで、電圧検出用のタブは単電池毎に設けられているため、タブ同士が互いに接触して短絡しないように、これらのタブが、積層方向視において互いに異なる位置となるように配置されている。   Here, since the tabs for voltage detection are provided for each unit cell, these tabs are arranged so as to be different from each other in the stacking direction so that the tabs do not contact each other and are short-circuited. Yes.

しかしながら、単電池毎に、電圧検出用のタブを異なる位置に設ける場合には、タブの位置が異なる集電体等を製造しなければならないため、電池の製造工程が複雑になるとともに、製造コストが上昇してしまう。   However, when the voltage detection tabs are provided at different positions for each unit cell, current collectors with different tab positions must be manufactured, which complicates the battery manufacturing process and reduces the manufacturing cost. Will rise.

そこで、集電体の一部が露出するように、複数のバイポーラ電極をずらして積層し、集電体の露出部分にリードを接続した二次電池がある(例えば、特許文献2参照)。この構成では、集電体の露出部分を電圧検出用のタブとして機能させることができ、バイポーラ電極を同一形状とすることができる。これにより、位置が異なるタブを有する複数の集電体等を形成する必要がなくなる。   Thus, there is a secondary battery in which a plurality of bipolar electrodes are stacked so as to expose a part of the current collector, and leads are connected to the exposed part of the current collector (see, for example, Patent Document 2). In this configuration, the exposed portion of the current collector can function as a voltage detection tab, and the bipolar electrodes can have the same shape. This eliminates the need to form a plurality of current collectors having tabs at different positions.

特開2004−319362号公報(段落番号0020、図1等)JP 2004-319362 A (paragraph number 0020, FIG. 1 etc.) 特開2006−139994号公報(段落番号0010、図1等)JP 2006-139994 A (paragraph number 0010, FIG. 1 etc.) 特開2006−156000号公報JP 2006-156000 A

しかしながら、特許文献2に記載の二次電池のように、複数のバイポーラ電極をずらして積層した場合には、このバイポーラ電極をずらした分だけ、二次電池が大型化するおそれがある。   However, when a plurality of bipolar electrodes are stacked while being shifted as in the secondary battery described in Patent Document 2, the size of the secondary battery may be increased by the amount of shifting the bipolar electrodes.

本発明の蓄電装置は、集電体を含み、電解質を介して積層された正極体及び負極体と、複数の集電体に電気的に接続された複数の配線とを有し、正極体及び負極体は、この積層方向視において、略同一領域内に位置していることを特徴とする。   The power storage device of the present invention includes a current collector and includes a positive electrode body and a negative electrode body stacked via an electrolyte, and a plurality of wirings electrically connected to the plurality of current collectors. The negative electrode body is characterized by being located in substantially the same region as viewed in the stacking direction.

ここで、正極体及び負極体を略同一形状に形成することができる。また、集電体のうち積層方向における一方の面に、配線を接続することができる。   Here, the positive electrode body and the negative electrode body can be formed in substantially the same shape. In addition, a wiring can be connected to one surface of the current collector in the stacking direction.

また、配線の端部を、積層方向において隣り合う集電体の間に配置することができる。さらに、配線の端部を、集電体と、この集電体に対して積層方向で隣り合う電解質との間に配置することができる。ここで、配線の端部を集電体及び電解質間に配置する場合には、電極層の厚さを配線の厚さと略等しくすることができる。   Moreover, the edge part of wiring can be arrange | positioned between the electrical power collectors adjacent in a lamination direction. Furthermore, the end of the wiring can be disposed between the current collector and the electrolyte adjacent to the current collector in the stacking direction. Here, when the end portion of the wiring is disposed between the current collector and the electrolyte, the thickness of the electrode layer can be made substantially equal to the thickness of the wiring.

また、複数の配線を含むフレキシブル基板を用いた場合には、フレキシブル基板に、配線毎に分岐され、各集電体側に延びる複数の接続部を設けることができる。   In addition, when a flexible substrate including a plurality of wirings is used, a plurality of connection portions that are branched for each wiring and extend to each current collector side can be provided on the flexible substrate.

なお、正極体や負極体は、集電体と、この集電体の表面に形成された電極層(正極層や負極層)とで構成することができる。また、集電体の両面(互いに対向する面)に正極層及び負極層が形成されたバイポーラ電極を用いることもできる。   In addition, a positive electrode body and a negative electrode body can be comprised with a collector and the electrode layer (a positive electrode layer or a negative electrode layer) formed in the surface of this collector. In addition, a bipolar electrode in which a positive electrode layer and a negative electrode layer are formed on both surfaces (surfaces facing each other) of the current collector can also be used.

本発明の蓄電装置によれば、正極体及び負極体を、積層方向視において、略同一領域内に配置しているため、蓄電装置の大型化を抑制できる。   According to the power storage device of the present invention, since the positive electrode body and the negative electrode body are arranged in substantially the same region when viewed in the stacking direction, the increase in size of the power storage device can be suppressed.

以下、本発明の実施例について説明する。   Examples of the present invention will be described below.

本発明の実施例1である二次電池(蓄電装置)について、図1及び図2を用いて説明する。ここで、図1は、本実施例の二次電池の側面図であり、図2は、本実施例の二次電池の正面図(上面図)である。   A secondary battery (power storage device) that is Embodiment 1 of the present invention will be described with reference to FIGS. Here, FIG. 1 is a side view of the secondary battery of this example, and FIG. 2 is a front view (top view) of the secondary battery of this example.

なお、本実施例では、二次電池について説明するが、蓄電装置としての電気二重層キャパシタ(コンデンサ)にも本発明を適用することができる。   Note that in this embodiment, a secondary battery will be described, but the present invention can also be applied to an electric double layer capacitor (capacitor) as a power storage device.

集電体11の一方の面には、正極活物質を含む正極層12が形成されている。ここで、正極層12には、必要に応じて、導電助材、バインダ、イオン伝導性を高めるための高分子ゲル電解質、高分子電解質、添加剤などを含めることができる。   A positive electrode layer 12 including a positive electrode active material is formed on one surface of the current collector 11. Here, the positive electrode layer 12 can contain a conductive additive, a binder, a polymer gel electrolyte for increasing ion conductivity, a polymer electrolyte, an additive, and the like, as necessary.

また、集電体11の他方の面には、負極活物質を含む負極層13が形成されている。ここで、負極層13には、必要に応じて、導電助材、バインダ、イオン伝導性を高めるための高分子ゲル電解質、高分子電解質、添加剤などを含めることができる。   A negative electrode layer 13 including a negative electrode active material is formed on the other surface of the current collector 11. Here, the negative electrode layer 13 can contain a conductive additive, a binder, a polymer gel electrolyte for improving ion conductivity, a polymer electrolyte, an additive, and the like as necessary.

ここで、不図示ではあるが、二次電池1の積層方向における両端に位置する集電体11には、一方の面にのみ電極層(正極層12又は負極層13)が形成されている。また、これらの集電体11には、図2に示すように、正極タブ15及び負極タブ16がそれぞれ接続されている。正極タブ15及び負極タブ16は、不図示の電気機器(例えば、インバータ)に接続されている。   Here, although not shown, the current collector 11 positioned at both ends in the stacking direction of the secondary battery 1 has an electrode layer (positive electrode layer 12 or negative electrode layer 13) formed only on one surface. Further, as shown in FIG. 2, a positive electrode tab 15 and a negative electrode tab 16 are connected to these current collectors 11, respectively. The positive electrode tab 15 and the negative electrode tab 16 are connected to an electric device (not shown) (for example, an inverter).

集電体11としては、例えば、アルミニウム箔や銅箔を用いることができる。また、正極活物質としては、例えば、遷移金属とリチウムとの複合酸化物を用いることができる。具体的には、LiCoOなどのLi・Co系複合酸化物、LiNiOなどのLi・Ni系複合酸化物、スピネルLiMnなどのLi・Mn系複合酸化物、LiFeOなどのLi・Fe系複合酸化物を用いることができる。 As the current collector 11, for example, an aluminum foil or a copper foil can be used. Moreover, as a positive electrode active material, the composite oxide of a transition metal and lithium can be used, for example. Specifically, Li · Co-based composite oxide such as LiCoO 2, Li · Ni-based composite oxide such as LiNiO 2, Li · Mn-based composite oxide such as spinel LiMn 2 O 4, Li · such LiFeO 2 An Fe-based composite oxide can be used.

また、負極活物質としては、例えば、金属酸化物、リチウム−金属複合酸化物金属、カーボンを用いることができる。   Moreover, as a negative electrode active material, a metal oxide, lithium-metal complex oxide metal, and carbon can be used, for example.

上述したように、本実施例では、集電体11の両面に正極層12及び負極層13が形成されたバイポーラ電極10を用いている。なお、バイポーラ電極10に限らず、他の構造の電極を用いることもできる。具体的には、集電体の両面に同一の電極層(正極層又は負極層)が形成された電極を用いたり、集電体の片面のみに電極層が形成された電極を用いたりすることができる。   As described above, in this embodiment, the bipolar electrode 10 in which the positive electrode layer 12 and the negative electrode layer 13 are formed on both surfaces of the current collector 11 is used. In addition, the electrode of not only the bipolar electrode 10 but another structure can also be used. Specifically, an electrode in which the same electrode layer (positive electrode layer or negative electrode layer) is formed on both surfaces of the current collector, or an electrode in which an electrode layer is formed only on one surface of the current collector is used. Can do.

また、複数の金属泊を貼り合わせた、いわゆる複合集電体を用いることもできる。この複合集電体を用いる場合において、正極用集電体の材料としてアルミニウム等を用い、負極用集電体の材料としてニッケルや銅等を用いることができる。複合集電体としては、正極用集電体及び負極用集電体を直接接触させたものを用いたり、正極用集電体及び負極用集電体の間に導電性を有する層を設けたものを用いたりすることができる。   A so-called composite current collector in which a plurality of metal stays are bonded together can also be used. In the case of using this composite current collector, aluminum or the like can be used as the material for the positive electrode current collector, and nickel, copper, or the like can be used as the material for the negative electrode current collector. As the composite current collector, one in which the positive electrode current collector and the negative electrode current collector are in direct contact is used, or a conductive layer is provided between the positive electrode current collector and the negative electrode current collector. You can use things.

一方、正極層12及び負極層13の間には、固体電解質14が配置されている。固体電解質14としては、高分子固体電解質や無機固体電解質を用いることができる。   On the other hand, a solid electrolyte 14 is disposed between the positive electrode layer 12 and the negative electrode layer 13. As the solid electrolyte 14, a polymer solid electrolyte or an inorganic solid electrolyte can be used.

本実施例の二次電池1では、積層されるバイポーラ電極10が、すべて略等しい構造(製造誤差を含む)となっている。また、図2に示すように、二次電池1を積層方向から見たときに、すべてのバイポーラ電極10が略同一領域内に位置するように配置されている。言い換えると、二次電池1を積層方向から見たときに、各バイポーラ電極10が、他のバイポーラ電極10と略重なる(略一致する)ように配置されている。なお、製造誤差等によって、複数のバイポーラ電極10が互いにずれてしまうこともある。   In the secondary battery 1 of the present embodiment, the stacked bipolar electrodes 10 all have substantially the same structure (including manufacturing errors). Further, as shown in FIG. 2, when the secondary battery 1 is viewed from the stacking direction, all the bipolar electrodes 10 are arranged so as to be located in substantially the same region. In other words, when the secondary battery 1 is viewed from the stacking direction, each bipolar electrode 10 is disposed so as to substantially overlap (substantially match) the other bipolar electrode 10. Note that a plurality of bipolar electrodes 10 may be displaced from each other due to manufacturing errors or the like.

各バイポーラ電極10の集電体11には、複数の配線20aを含むフレキシブル基板20が接続されている。なお、上述したように、二次電池1の積層方向における両端に位置する集電体11には、二次電池1の出力を取り出すための正極タブ15及び負極タブ16も接続されている。   A flexible substrate 20 including a plurality of wirings 20 a is connected to the current collector 11 of each bipolar electrode 10. As described above, the positive electrode tab 15 and the negative electrode tab 16 for taking out the output of the secondary battery 1 are also connected to the current collectors 11 located at both ends in the stacking direction of the secondary battery 1.

以下、フレキシブル基板20の構成について、具体的に説明する。   Hereinafter, the configuration of the flexible substrate 20 will be specifically described.

フレキシブル基板20は、各集電体11に電気的及び機械的に接続される複数の配線20aを有している。これらの配線20aは、二次電池1に含まれる集電体11の数だけ設けられている。各配線20aの表面は、絶縁層によって覆われている。また、各配線20aの一端に設けられた端子部(不図示)は、絶縁層から露出した状態となっている。   The flexible substrate 20 has a plurality of wirings 20 a that are electrically and mechanically connected to each current collector 11. These wirings 20a are provided as many as the current collectors 11 included in the secondary battery 1. The surface of each wiring 20a is covered with an insulating layer. Moreover, the terminal part (not shown) provided in the end of each wiring 20a is in the state exposed from the insulating layer.

また、フレキシブル基板20は、この一端側(二次電池1に接続される側)において、複数に分岐された接続部20bを有している。なお、フレキシブル基板20の他端側は、単電池の電圧を検出するための電圧検出回路(不図示)に接続されている。ここで、単電池は、積層方向において隣り合う2つのバイポーラ電極10と、これらのバイポーラ電極10によって挟まれた固体電解質14とによって構成される発電要素である。   In addition, the flexible substrate 20 has a connection portion 20b branched into a plurality at one end side (side connected to the secondary battery 1). The other end side of the flexible substrate 20 is connected to a voltage detection circuit (not shown) for detecting the voltage of the unit cell. Here, the unit cell is a power generation element constituted by two bipolar electrodes 10 adjacent in the stacking direction and a solid electrolyte 14 sandwiched between these bipolar electrodes 10.

各接続部20bには、各配線20aが配置されている。各接続部20bは、図1に示すように、曲げ形成されることによって、対応する集電体11の位置まで延びており、各配線20a(端子部)を集電体11と電気的及び機械的に接続させる。ここで、配線20aの端子部に導電性を有する接着剤を塗布し、配線20a(端子部)及び集電体11を電気的及び機械的に接続することができる。   Each wiring 20a is arranged in each connecting portion 20b. As shown in FIG. 1, each connecting portion 20b is bent to extend to the position of the corresponding current collector 11, and each wiring 20a (terminal portion) is electrically and mechanically connected to the current collector 11. Connect. Here, a conductive adhesive can be applied to the terminal portion of the wiring 20a to connect the wiring 20a (terminal portion) and the current collector 11 electrically and mechanically.

ここで、接続部20b及び集電体11の接触面積は、適宜設定することができる。具体的には、配線20a及び集電体11の接続時に、導電性接着剤が接続部20b及び集電体11の接触領域外に漏れないように、上記接触面積を設定することができる。すなわち、導電性接着剤が接触領域外に漏れてしまう場合には、この漏れた導電性接着剤と他の集電体11とが接触して短絡してしまうおそれがあるため、接続部20b及び集電体11の接触領域内に導電性接着剤が収まるようにする必要がある。   Here, the contact area between the connecting portion 20b and the current collector 11 can be set as appropriate. Specifically, when the wiring 20a and the current collector 11 are connected, the contact area can be set so that the conductive adhesive does not leak out of the contact area between the connection portion 20b and the current collector 11. That is, when the conductive adhesive leaks out of the contact area, the leaked conductive adhesive and other current collectors 11 may come into contact with each other to cause a short circuit. It is necessary to make the conductive adhesive fit in the contact area of the current collector 11.

なお、配線20a(端子部)及び集電体11の接続方法は、導電性接着剤を用いた方法に限るものではなく、超音波溶接、熱溶接、レーザ溶接、リベット、かしめ、電子ビームなどを用いたり、異方性導電フィルムを介して接続したりすることもできる。   In addition, the connection method of the wiring 20a (terminal part) and the current collector 11 is not limited to a method using a conductive adhesive, but ultrasonic welding, heat welding, laser welding, rivets, caulking, electron beam, etc. It can also be used or connected via an anisotropic conductive film.

各接続部20bの先端は、二次電池1の積層方向において隣り合う集電体11の間に位置している。すなわち、各接続部20bの先端は、集電体11の一方の面(正極層12が形成された面)に接続されている。   The tip of each connection portion 20 b is located between the current collectors 11 adjacent in the stacking direction of the secondary battery 1. That is, the tip of each connection portion 20b is connected to one surface of the current collector 11 (the surface on which the positive electrode layer 12 is formed).

なお、各接続部20bの先端を、集電体11の他方の面、言い換えれば、負極層13が形成された面に接続するようにしてもよい。   In addition, you may make it connect the front-end | tip of each connection part 20b to the other surface of the electrical power collector 11, in other words, the surface in which the negative electrode layer 13 was formed.

また、各接続部20bの先端を、集電体11と固体電解質14との間に配置することもできる。すなわち、各接続部20bの先端を、集電体11及び固体電解質14によって狭持させることもできる。このように構成すれば、接続部20bの先端が、集電体11から外れてしまうのを抑制することができる。   In addition, the tip of each connection portion 20 b can be disposed between the current collector 11 and the solid electrolyte 14. That is, the tip of each connection portion 20 b can be held between the current collector 11 and the solid electrolyte 14. If comprised in this way, it can suppress that the front-end | tip of the connection part 20b remove | deviates from the electrical power collector 11. FIG.

このように構成する場合には、集電体11及び固体電解質14の幅(積層方向と直交する方向の長さ)を、固体電解質14の幅よりも広くなるように設定する必要がある。   In the case of such a configuration, it is necessary to set the width of the current collector 11 and the solid electrolyte 14 (the length in the direction orthogonal to the stacking direction) to be wider than the width of the solid electrolyte 14.

ここで、正極層12(又は負極層13)の厚さ(積層方向の長さ)と、接続部20bの厚さとを略等しい値に設定すれば、接続部20bの先端を、集電体11及び固体電解質14によって狭持することができ、接続部20bの位置決めを行うことができる。   Here, if the thickness of the positive electrode layer 12 (or the negative electrode layer 13) (the length in the stacking direction) and the thickness of the connection portion 20b are set to substantially equal values, the tip of the connection portion 20b is connected to the current collector 11. And can be held by the solid electrolyte 14, and the connecting portion 20b can be positioned.

本実施例の二次電池1は、ラミネートフィルムなどの外装部材内に収容することができる。ラミネートフィルムとして、一般的には、熱融着性樹脂フィルム、金属箔、剛性を有する樹脂フィルムがこの順序で積層された高分子金属複合フィルムが用いられる。ここで、熱融着性樹脂フィルムは、二次電池1を収容する際のシールとして用いられ、金属箔や剛性を有する樹脂フィルムは、湿性、耐通気性、耐薬品性を持たせるために用いられる。   The secondary battery 1 of the present embodiment can be accommodated in an exterior member such as a laminate film. Generally, a polymer metal composite film in which a heat-fusible resin film, a metal foil, and a resin film having rigidity are laminated in this order is used as the laminate film. Here, the heat-fusible resin film is used as a seal when the secondary battery 1 is accommodated, and the metal foil and the resin film having rigidity are used for providing moisture resistance, air resistance, and chemical resistance. It is done.

本実施例の二次電池1によれば、フレキシブル基板20に形成された複数の接続部20bを各集電体11に接続するようにしているため、従来のように集電体11に電圧検出用のタブを形成する必要がなくなる。   According to the secondary battery 1 of the present embodiment, since the plurality of connecting portions 20b formed on the flexible substrate 20 are connected to each current collector 11, voltage detection is performed on the current collector 11 as in the past. There is no need to form a tab.

これにより、バイポーラ電極10として、同一形状の電極を用いることができる。このように同一形状のバイポーラ電極10を用いることで、二次電池1の製造工程、具体的には、バイポーラ電極10の製造工程を簡素化することができる。   Thereby, an electrode having the same shape can be used as the bipolar electrode 10. Thus, by using the bipolar electrode 10 having the same shape, the manufacturing process of the secondary battery 1, specifically, the manufacturing process of the bipolar electrode 10 can be simplified.

ここで、位置が異なるタブ(電圧検出用のタブ)を有する複数の集電体を形成する場合には、形状が異なる複数の集電体を製造しなければならず、製造工程が複雑化し、製造コストが上昇してしまう。しかし、本実施例では、同一形状(同一構成)のバイポーラ電極10を用いることができるため、バイポーラ電極10を容易に製造することができる。そして、バイポーラ電極10の積層工程を容易に行うことができる。これにより、二次電池1の製造コストが上昇してしまうのを抑制することができる。   Here, when forming a plurality of current collectors having tabs with different positions (voltage detection tabs), it is necessary to manufacture a plurality of current collectors having different shapes, which complicates the manufacturing process. Manufacturing costs will increase. However, since the bipolar electrode 10 having the same shape (same configuration) can be used in this embodiment, the bipolar electrode 10 can be easily manufactured. And the lamination process of the bipolar electrode 10 can be performed easily. Thereby, it can suppress that the manufacturing cost of the secondary battery 1 rises.

また、本実施例では、複数のバイポーラ電極10を、積層方向視において、互いに略重なるように、言い換えれば、互いに略一致するように積層しているため、二次電池10の外形が異形となるのを防止することができる。   Further, in the present embodiment, the plurality of bipolar electrodes 10 are stacked so as to substantially overlap each other when viewed in the stacking direction, in other words, are stacked so as to substantially match each other. Can be prevented.

しかも、バイポーラ電極をずらして配置する場合(特許文献2)に比べて、二次電池を小型化することができる。すなわち、バイポーラ電極をずらして積層した場合には、このずらした分だけ、二次電池が大型化してしまうが、本実施例のようにバイポーラ電極10をずらさずに積層すれば、二次電池の大型化を抑制することができる。   In addition, the secondary battery can be reduced in size as compared with the case where the bipolar electrodes are shifted and arranged (Patent Document 2). That is, when the bipolar electrodes are stacked while being shifted, the secondary battery is increased in size by this shift. However, if the bipolar electrodes 10 are stacked without being shifted as in this embodiment, the secondary battery is An increase in size can be suppressed.

また、複数のバイポーラ電極をずらして積層した場合には、二次電池の両側面が凹凸形状となり、この凹凸部分において、エネルギロスが生じてしまうことになるが、本実施例では、複数のバイポーラ電極10を、積層方向視において、互いに略重なるように積層しているため、エネルギロスの発生を抑制することができる。   In addition, when a plurality of bipolar electrodes are stacked in a shifted manner, both side surfaces of the secondary battery have a concavo-convex shape, and energy loss occurs at the concavo-convex portion. Since the electrodes 10 are stacked so as to substantially overlap each other when viewed in the stacking direction, generation of energy loss can be suppressed.

一方、積層構造の二次電池では、一般的に、積層方向の両端側から狭持機構によって加圧する構成となっているが、バイポーラ電極が積層方向に対してずれている場合には、このずれた部分に対して狭持機構による加圧力が作用しないことになる。しかも、バイポーラ電極の位置をずらすことで、バイポーラ電極の積層工程において、各バイポーラ電極を位置決めするための構成が複雑となってしまう。   On the other hand, a secondary battery having a laminated structure generally has a structure in which pressure is applied by a sandwiching mechanism from both ends in the stacking direction. The pressing force by the holding mechanism does not act on the part. In addition, shifting the position of the bipolar electrode complicates the configuration for positioning each bipolar electrode in the bipolar electrode stacking step.

ここで、本実施例の二次電池1を、積層方向における両端側から狭持機構によって狭持(加圧)した場合には、すべてのバイポーラ電極10に対して狭持機構による加圧力を作用させることができる。これにより、充放電に伴う二次電池1の体積膨張を効率良く抑制することができる。   Here, when the secondary battery 1 of the present embodiment is sandwiched (pressurized) by the sandwiching mechanism from both ends in the stacking direction, the pressure applied by the sandwiching mechanism acts on all the bipolar electrodes 10. Can be made. Thereby, the volume expansion of the secondary battery 1 accompanying charging / discharging can be suppressed efficiently.

さらに、バイポーラ電極をずらして積層した構成の二次電池に比べて、二次電池内での電流ロスを抑制でき、二次電池のエネルギ効率が低下してしまうのを抑制することができる。   Furthermore, as compared with a secondary battery having a configuration in which bipolar electrodes are shifted and stacked, current loss in the secondary battery can be suppressed, and reduction in energy efficiency of the secondary battery can be suppressed.

なお、本実施例では、固体電解質14を用いた場合について説明したが、これに限るものではない。具体的には、固体電解質14の代わりに、ゲル状又は液状の電解質を用いることもできる。   In addition, although the present Example demonstrated the case where the solid electrolyte 14 was used, it does not restrict to this. Specifically, instead of the solid electrolyte 14, a gel-like or liquid electrolyte can also be used.

この場合には、図3に示すように、積層方向において隣り合う集電体11の間に、絶縁材料で形成されたシール部材30を配置すればよい。このシール部材30によって、電解質が漏れてしまうのを防止することができる。なお、図3において、図1、2で説明した部材と同一の部材については、同一符号を用いている。   In this case, as shown in FIG. 3, a sealing member 30 formed of an insulating material may be disposed between the current collectors 11 adjacent in the stacking direction. The seal member 30 can prevent the electrolyte from leaking. In FIG. 3, the same members as those described in FIGS.

また、本実施例では、配線20aを含むフレキシブル基板20を用いた場合について説明したが、これに限るものではない。すなわち、集電体11に電気的に接続され、単電池の出力を取り出すことができるものであれば、いかなる構成であってもよい。具体的には、絶縁層で覆われた独立の配線を設け、この配線を各集電体11に接続することができる。   Moreover, although the present Example demonstrated the case where the flexible substrate 20 containing the wiring 20a was used, it does not restrict to this. That is, any configuration may be used as long as it is electrically connected to the current collector 11 and can take out the output of the unit cell. Specifically, an independent wiring covered with an insulating layer can be provided, and this wiring can be connected to each current collector 11.

なお、フレキシブル基板20のように、接続部20b以外の領域において、複数の配線20aを互いに絶縁状態としつつ、一体的に構成することで、配線20aのレイアウトを容易に行うことができる。   In addition, like the flexible substrate 20, in the region other than the connection portion 20b, the wirings 20a can be easily laid out by integrally configuring the plurality of wirings 20a while being insulated from each other.

本実施例の二次電池1は、例えば、電気自動車(EV)、ハイブリッド自動車(HEV)、燃料電池車(FCV)におけるモータ駆動用の蓄電装置として用いることができる。   The secondary battery 1 of the present embodiment can be used as a power storage device for driving a motor in, for example, an electric vehicle (EV), a hybrid vehicle (HEV), and a fuel cell vehicle (FCV).

本発明の実施例1である二次電池の側面図である。It is a side view of the secondary battery which is Example 1 of this invention. 実施例1である二次電池の正面図(上面図)である。1 is a front view (top view) of a secondary battery that is Example 1. FIG. 実施例1の変形例である二次電池の部分拡大図である。6 is a partially enlarged view of a secondary battery which is a modification of Example 1. FIG.

符号の説明Explanation of symbols

1:二次電池
10:バイポーラ電極
11:集電体
12:正極層
13:負極層
14:固体電解質
20:フレキシブル基板
20a:配線
20b:接続部
1: Secondary battery 10: Bipolar electrode 11: Current collector 12: Positive electrode layer 13: Negative electrode layer 14: Solid electrolyte 20: Flexible substrate 20a: Wiring 20b: Connection part

Claims (6)

集電体を含み、電解質を介して積層された正極体及び負極体と、
前記複数の集電体に電気的に接続された複数の配線とを有し、
前記正極体及び前記負極体は、この積層方向視において、略同一領域内に位置していることを特徴とする蓄電装置。
A positive electrode body and a negative electrode body each including a current collector and laminated via an electrolyte;
A plurality of wires electrically connected to the plurality of current collectors;
The power storage device, wherein the positive electrode body and the negative electrode body are located in substantially the same region as viewed in the stacking direction.
前記正極体及び前記負極体が略同一形状に形成されていることを特徴とする請求項1に記載の蓄電装置。   The power storage device according to claim 1, wherein the positive electrode body and the negative electrode body are formed in substantially the same shape. 前記配線は、前記集電体のうち、前記積層方向における一方の面に接続されていることを特徴とする請求項1又は2に記載の蓄電装置。   The power storage device according to claim 1, wherein the wiring is connected to one surface of the current collector in the stacking direction. 前記配線の端部は、前記積層方向において隣り合う前記集電体の間に配置されていることを特徴とする請求項1から3のいずれか1つに記載の蓄電装置。   4. The power storage device according to claim 1, wherein an end portion of the wiring is disposed between the current collectors adjacent to each other in the stacking direction. 前記配線の端部は、前記集電体と、該集電体に対して前記積層方向で隣り合う前記電解質との間に配置されていることを特徴とする請求項4に記載の蓄電装置。   The power storage device according to claim 4, wherein an end of the wiring is disposed between the current collector and the electrolyte adjacent to the current collector in the stacking direction. 前記複数の配線を含むフレキシブル基板を有しており、
前記フレキシブル基板は、前記配線毎に分岐され、前記各集電体側に延びる複数の接続部を有することを特徴とする請求項1から5のいずれか1つに記載の蓄電装置。
A flexible substrate including the plurality of wirings;
6. The power storage device according to claim 1, wherein the flexible substrate has a plurality of connection portions that are branched for each of the wirings and extend toward the current collectors.
JP2007315441A 2007-12-06 2007-12-06 Power storage device Active JP5136030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007315441A JP5136030B2 (en) 2007-12-06 2007-12-06 Power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007315441A JP5136030B2 (en) 2007-12-06 2007-12-06 Power storage device

Publications (2)

Publication Number Publication Date
JP2009140727A true JP2009140727A (en) 2009-06-25
JP5136030B2 JP5136030B2 (en) 2013-02-06

Family

ID=40871157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007315441A Active JP5136030B2 (en) 2007-12-06 2007-12-06 Power storage device

Country Status (1)

Country Link
JP (1) JP5136030B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012054390A (en) * 2010-09-01 2012-03-15 Nissan Motor Co Ltd Wiring board, stack and bipolar secondary battery
JP2012138261A (en) * 2010-12-27 2012-07-19 Auto Network Gijutsu Kenkyusho:Kk Battery module, terminal for thin battery, and tab lead
JP2020061221A (en) * 2018-10-05 2020-04-16 日産自動車株式会社 Bipolar secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001250741A (en) * 2000-03-06 2001-09-14 Meidensha Corp Laminated electric double layer capacitor
JP2004253155A (en) * 2003-02-18 2004-09-09 Nissan Motor Co Ltd Bipolar battery
JP2005235428A (en) * 2004-02-17 2005-09-02 Nissan Motor Co Ltd Bipolar battery, battery pack, and vehicle equipped with these batteries
JP2006139994A (en) * 2004-11-11 2006-06-01 Nissan Motor Co Ltd Bipolar battery
JP2006156000A (en) * 2004-11-26 2006-06-15 Nissan Motor Co Ltd Bipolar battery and its manufacturing method, battery pack, and automobile

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001250741A (en) * 2000-03-06 2001-09-14 Meidensha Corp Laminated electric double layer capacitor
JP2004253155A (en) * 2003-02-18 2004-09-09 Nissan Motor Co Ltd Bipolar battery
JP2005235428A (en) * 2004-02-17 2005-09-02 Nissan Motor Co Ltd Bipolar battery, battery pack, and vehicle equipped with these batteries
JP2006139994A (en) * 2004-11-11 2006-06-01 Nissan Motor Co Ltd Bipolar battery
JP2006156000A (en) * 2004-11-26 2006-06-15 Nissan Motor Co Ltd Bipolar battery and its manufacturing method, battery pack, and automobile

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012054390A (en) * 2010-09-01 2012-03-15 Nissan Motor Co Ltd Wiring board, stack and bipolar secondary battery
JP2012138261A (en) * 2010-12-27 2012-07-19 Auto Network Gijutsu Kenkyusho:Kk Battery module, terminal for thin battery, and tab lead
JP2020061221A (en) * 2018-10-05 2020-04-16 日産自動車株式会社 Bipolar secondary battery
JP7190314B2 (en) 2018-10-05 2022-12-15 日産自動車株式会社 bipolar secondary battery

Also Published As

Publication number Publication date
JP5136030B2 (en) 2013-02-06

Similar Documents

Publication Publication Date Title
JP4775226B2 (en) Method for manufacturing power storage device
JP5256589B2 (en) An assembled battery in which a plurality of film-clad batteries are arranged adjacent to each other
US20200235360A1 (en) Battery Cell of Venting Structure Using Taping
JP5214692B2 (en) battery
TWI699925B (en) Battery
JP4661020B2 (en) Bipolar lithium ion secondary battery
JP2010257945A (en) Secondary battery
JP5591087B2 (en) Battery module and plate assembly
JP2019061779A (en) Power storage device and power storage method
KR101797338B1 (en) Secondary battery
JP2016189246A (en) Square secondary battery
JP4655593B2 (en) Bipolar battery
JP2018181622A (en) Multilayer type secondary battery
US10158107B2 (en) Battery comprising insulative films
JP2008016263A (en) Electric storage apparatus
US20140023913A1 (en) Prismatic secondary battery
JP5136030B2 (en) Power storage device
JP7488695B2 (en) Solid-state battery module and solid-state battery cell
KR101734327B1 (en) Pouch type secondary battery
JP5472284B2 (en) Film outer battery and battery pack
JP2013239398A (en) Lead terminal for power storage device, and nonaqueous electrolyte power storage device equipped with the same
JP5509592B2 (en) Bipolar secondary battery
JP7399763B2 (en) battery module
JP2013101977A (en) Battery and ultrasonic bonding method of battery
JP2019053818A (en) Power storage element, and power storage device including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121029

R151 Written notification of patent or utility model registration

Ref document number: 5136030

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3