JP2009139565A - Display device and its manufacturing method - Google Patents

Display device and its manufacturing method Download PDF

Info

Publication number
JP2009139565A
JP2009139565A JP2007314912A JP2007314912A JP2009139565A JP 2009139565 A JP2009139565 A JP 2009139565A JP 2007314912 A JP2007314912 A JP 2007314912A JP 2007314912 A JP2007314912 A JP 2007314912A JP 2009139565 A JP2009139565 A JP 2009139565A
Authority
JP
Japan
Prior art keywords
semiconductor layer
switching element
pixel switching
light
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007314912A
Other languages
Japanese (ja)
Inventor
Daram Pal Gosain
ダラム パル ゴサイン
Tsutomu Tanaka
田中  勉
Masabumi Kunii
正文 國井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2007314912A priority Critical patent/JP2009139565A/en
Publication of JP2009139565A publication Critical patent/JP2009139565A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To detect a position of a body to be sensed in a display region and to further improve an S/N ratio of data obtained by the photodetector receiving IR emitted from an illumination section, by making the photodetector receive, in one surface side of a display panel, reflection light of illumination light reflected by the body to be sensed. <P>SOLUTION: A position sensor element 32a includes a semiconductor layer 47 having a band gap narrower than that of a silicon semiconductor and reflection light H is received by the position sensor 32a in the semiconductor layer 47. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、表示装置、および、その製造方法に関する。特に、本発明は、画素が複数配置された表示領域に、受光素子が複数形成されている表示パネルと、その表示パネルの一方の面の側から照明光を出射する照明部とを具備しており、その照明光によって表示領域にて画像を表示すると共に、表示パネルの他方の面の側において、その照明光が被検知体によって反射された反射光を、受光素子が受光することによって、表示領域における被検知体の位置を検出する表示装置、および、その製造方法に関する。   The present invention relates to a display device and a manufacturing method thereof. In particular, the present invention includes a display panel in which a plurality of light receiving elements are formed in a display area in which a plurality of pixels are arranged, and an illumination unit that emits illumination light from one surface side of the display panel. The image is displayed in the display area by the illumination light, and the light receiving element receives the reflected light reflected by the object to be detected on the other surface side of the display panel. The present invention relates to a display device that detects the position of a detection object in a region, and a manufacturing method thereof.

液晶表示装置,有機EL表示装置などの表示装置は、薄型、軽量、低消費電力といった利点を有する。   Display devices such as liquid crystal display devices and organic EL display devices have advantages such as thinness, light weight, and low power consumption.

このような表示装置において、液晶表示装置は、一対の基板の間に液晶層が封入された液晶パネルを、表示パネルとして有している。液晶パネルは、たとえば、透過型であって、液晶パネルの背面に設けられたバックライトなどの照明装置が出射した照明光を、その液晶パネルが変調して透過させる。そして、その変調した照明光によって画像の表示が、液晶パネルの正面にて実施される。   In such a display device, the liquid crystal display device includes a liquid crystal panel in which a liquid crystal layer is sealed between a pair of substrates as a display panel. The liquid crystal panel is, for example, a transmission type, and the liquid crystal panel modulates and transmits the illumination light emitted from an illumination device such as a backlight provided on the back surface of the liquid crystal panel. An image is displayed on the front surface of the liquid crystal panel by the modulated illumination light.

この液晶パネルは、たとえば、アクティブマトリクス方式であり、画素スイッチング素子として機能する薄膜トランジスタ(TFT:Thin Film Transistor)が複数形成されているTFTアレイ基板と、そのTFTアレイ基板に対面するように対向する対向基板と、TFTアレイ基板および対向基板の間に設けられた液晶層とを有する。このアクティブマトリクス方式の液晶パネルにおいては、画素スイッチング素子が画素電極に電位を入力することによって、液晶層に印加する電圧を可変し、その画素を透過する光の透過率を制御して、その光を変調させる。   This liquid crystal panel is, for example, an active matrix method, and a TFT array substrate on which a plurality of thin film transistors (TFTs) functioning as pixel switching elements are formed, and a facing surface facing the TFT array substrate. A substrate, and a liquid crystal layer provided between the TFT array substrate and the counter substrate. In this active matrix type liquid crystal panel, the pixel switching element inputs a potential to the pixel electrode, thereby changing the voltage applied to the liquid crystal layer and controlling the transmittance of the light transmitted through the pixel. Is modulated.

上記のような液晶パネルにおいては、上記の画素スイッチング素子として機能するTFTの他に、位置センサ素子として機能する受光素子を内蔵したものが提案されている。   In the liquid crystal panel as described above, a liquid crystal panel having a light receiving element functioning as a position sensor element in addition to the TFT functioning as the pixel switching element has been proposed.

上記のように位置センサ素子として受光素子が内蔵された液晶パネルは、ユーザーインターフェイスとしての機能が実現できるため、I/Oタッチパネル(Integrated−Optical touch panel)と呼ばれている。このタイプの液晶パネルにおいては、液晶パネルの前面に、別途、抵抗膜方式や静電容量方式のタッチパネルを設置する必要がなくなる。このため、装置の小型化を、容易に実現できる。また、さらに、抵抗膜方式や静電容量方式のタッチパネルを設置した場合には、そのタッチパネルによって表示領域において透過する光が減少する場合や、その光が干渉される場合があるため、表示画像の品質が低下する場合があるが、上記のように液晶パネルに位置センサ素子として受光素子を内蔵することによって、この不具合の発生を防止できる。   As described above, a liquid crystal panel in which a light receiving element is built in as a position sensor element can realize a function as a user interface, and therefore is called an I / O touch panel (Integrated-Optical touch panel). In this type of liquid crystal panel, it is not necessary to separately install a resistive film type or capacitive type touch panel on the front surface of the liquid crystal panel. For this reason, size reduction of an apparatus is easily realizable. Furthermore, when a resistive film type or capacitive type touch panel is installed, the light transmitted through the display area by the touch panel may decrease or the light may interfere with the display image. Although the quality may be lowered, the occurrence of this problem can be prevented by incorporating the light receiving element as the position sensor element in the liquid crystal panel as described above.

このような液晶パネルにおいては、たとえば、液晶パネルの前面に触れられたユーザーの指やタッチペンなどの被検知体からの可視光線を、その位置センサ素子として内蔵された受光素子が受光して光電変換することで、受光データを生成する。その後、その位置センサ素子である受光素子によって得られた受光データに基づいて、その被検知体が接触した位置を特定し、その特定された位置に対応する操作が、液晶表示装置自身や、その液晶表示装置に接続された他の電子機器において実施される。   In such a liquid crystal panel, for example, visible light from a detected object such as a user's finger or a touch pen touching the front surface of the liquid crystal panel is received by a light receiving element built in as a position sensor element and subjected to photoelectric conversion. As a result, light reception data is generated. After that, based on the light reception data obtained by the light receiving element that is the position sensor element, the position where the detected object is in contact is specified, and the operation corresponding to the specified position is performed by the liquid crystal display device itself, This is implemented in another electronic device connected to the liquid crystal display device.

上記のように受光素子を用いて被検知体の位置を検出する場合には、受光素子によって得られる受光データは、外光に含まれる可視光線の影響によって、多くのノイズを含む場合がある。また、表示領域において黒表示を実施する場合には、TFTアレイ基板に設けられた受光素子は、被検知体から出射される可視光線を受光することが困難である。このため、正確に、位置を検出をすることが困難な場合がある。   When the position of the detection target is detected using the light receiving element as described above, the light reception data obtained by the light receiving element may include a lot of noise due to the influence of visible light included in the external light. Further, when black display is performed in the display area, it is difficult for the light receiving element provided on the TFT array substrate to receive visible light emitted from the detection target. For this reason, it may be difficult to detect the position accurately.

このような不具合を改善するために、赤外線を用いる技術が提案されている。ここでは、被検知体から反射される赤外線を、受光素子が受光することによって受光データを取得し、その取得したデータに基づいて、被検知体の位置を特定している(たとえば、特許文献1,特許文献2,特許文献3参照)。   In order to improve such a problem, a technique using infrared rays has been proposed. In this case, the light receiving element receives the infrared light reflected from the detected object, thereby acquiring the received light data, and specifies the position of the detected object based on the acquired data (for example, Patent Document 1). , Patent Document 2 and Patent Document 3).

特開2005−275644号公報JP 2005-275644 A 特開2004−318819号公報JP 2004-318819 A 特開2006−301864号公報JP 2006-301864 A

しかしながら、上記においては、受光素子が赤外線を受光する感度が低いことに起因して、受光素子によって得られたデータにノイズが含まれ、十分なS/N比のデータを得ることが困難な場合がある。このため、赤外線の光強度を強くする必要が生じ、消費電力の増加が生ずる場合がある。特に、モバイル用途においては、この不具合が顕在化する場合がある。   However, in the above, when the light receiving element has low sensitivity to receive infrared rays, the data obtained by the light receiving element includes noise, and it is difficult to obtain data with a sufficient S / N ratio. There is. For this reason, it is necessary to increase the light intensity of infrared rays, which may increase power consumption. Especially in mobile applications, this problem may become apparent.

したがって、本発明は、位置センサ素子として設けられた受光素子によって得られるデータのS/N比を改善することが可能な表示装置、および、その製造方法を提供する。   Therefore, the present invention provides a display device capable of improving the S / N ratio of data obtained by a light receiving element provided as a position sensor element, and a manufacturing method thereof.

本発明は、画素が複数配置された表示領域に受光素子が複数形成されている表示パネルと、前記表示パネルの一方の面の側から照明光を出射する照明部とを具備し、前記表示パネルの他方の面の側において前記照明光が被検知体によって反射された反射光を前記受光素子が受光することにより、前記表示領域における被検知体の位置を検出する表示装置であって、前記照明部は、可視光線と赤外線とを前記照明光として出射するように構成されており、前記受光素子は、シリコン半導体よりもバンドギャップが狭い半導体層を含み、当該半導体層において前記反射光を受光するように構成されている。   The present invention includes a display panel in which a plurality of light receiving elements are formed in a display area in which a plurality of pixels are arranged, and an illumination unit that emits illumination light from one surface side of the display panel. The display device detects the position of the detected object in the display region by the light receiving element receiving the reflected light reflected by the detected object on the other surface side of the display, The unit is configured to emit visible light and infrared light as the illumination light, and the light receiving element includes a semiconductor layer having a narrower band gap than a silicon semiconductor, and receives the reflected light in the semiconductor layer. It is configured as follows.

本発明においては、シリコン半導体よりもバンドギャップが狭い半導体層を受光素子が含み、当該半導体層において反射光を受光素子が受光する。   In the present invention, the light receiving element includes a semiconductor layer having a narrower band gap than the silicon semiconductor, and the light receiving element receives the reflected light in the semiconductor layer.

本発明によれば、受光素子によって得られたデータのS/N比を改善することが可能な表示装置、および、その製造方法を提供する。   The present invention provides a display device capable of improving the S / N ratio of data obtained by a light receiving element, and a method for manufacturing the same.

本発明にかかる実施形態の一例について説明する。   An example of an embodiment according to the present invention will be described.

<実施形態1>
(液晶表示装置の全体構成)
図1は、本発明にかかる実施形態1において、液晶表示装置100の構成を示す断面図である。
<Embodiment 1>
(Overall configuration of liquid crystal display device)
FIG. 1 is a cross-sectional view showing a configuration of a liquid crystal display device 100 according to Embodiment 1 of the present invention.

本実施形態の液晶表示装置100は、図1に示すように、液晶パネル200と、バックライト300と、データ処理部400とを有する。各部について順次説明する。   As shown in FIG. 1, the liquid crystal display device 100 according to the present embodiment includes a liquid crystal panel 200, a backlight 300, and a data processing unit 400. Each part will be described sequentially.

液晶パネル200は、アクティブマトリクス方式であり、図1に示すように、TFTアレイ基板201と対向基板202と液晶層203とを有する。   The liquid crystal panel 200 is an active matrix system, and includes a TFT array substrate 201, a counter substrate 202, and a liquid crystal layer 203 as shown in FIG.

この液晶パネル200においては、TFTアレイ基板201と対向基板202とが間隔を隔てるよう対面している。そして、そのTFTアレイ基板201と対向基板202との間に挟まれるように、液晶層203が設けられている。   In the liquid crystal panel 200, the TFT array substrate 201 and the counter substrate 202 face each other with a gap therebetween. A liquid crystal layer 203 is provided so as to be sandwiched between the TFT array substrate 201 and the counter substrate 202.

そして、液晶パネル200は、透過型であって、図1に示すように、TFTアレイ基板201の側に位置するようにバックライト300が配置されており、TFTアレイ基板201において対向基板202に対面している面とは反対側の面に、バックライト300から出射された照明光が照射される。そして、液晶パネル200は、複数の画素(図示無し)が配置され、画像を表示する表示領域PAを含み、その液晶パネル200の背面側に設置されたバックライト300が出射した照明光を、第1の偏光板206を介して背面から受け、その背面から受けた光を表示領域PAにおいて変調する。ここでは、TFTアレイ基板201において画素に対応するように、複数のTFTが画素スイッチング素子(図示無し)として設けられており、その画素スイッチング素子であるTFTがスイッチング制御されることによって、背面から受けた照明光を変調する。そして、その変調された照明光が、第2の偏光板207を介して、正面側に出射し、表示領域PAにおいて画像が表示される。   The liquid crystal panel 200 is a transmissive type, and as shown in FIG. 1, a backlight 300 is disposed so as to be positioned on the TFT array substrate 201 side, and the TFT array substrate 201 faces the counter substrate 202. Illumination light emitted from the backlight 300 is irradiated to the surface opposite to the surface being operated. The liquid crystal panel 200 includes a plurality of pixels (not shown), includes a display area PA for displaying an image, and receives illumination light emitted from the backlight 300 installed on the back side of the liquid crystal panel 200. The light received from the rear surface through the first polarizing plate 206 is modulated in the display area PA. Here, a plurality of TFTs are provided as pixel switching elements (not shown) so as to correspond to the pixels in the TFT array substrate 201, and the TFTs that are the pixel switching elements are controlled from the back side to receive from the back side. Modulates the illumination light. Then, the modulated illumination light is emitted to the front side through the second polarizing plate 207, and an image is displayed in the display area PA.

また、本実施形態においては、この液晶パネル200は、いわゆるI/Oタッチパネルであり、詳細については後述するが、液晶パネル200においてバックライト300が設置された背面に対して反対側となる正面に、ユーザーの指やタッチペンなどの被検知体が接触または近接した際に、その被検知体によって反射される反射光を受光する受光素子が、位置センサ素子(図示無し)として形成されている。たとえば、フォトダイオードが、この位置センサ素子として形成されている。この受光素子である位置センサ素子は、液晶パネル200の正面側において、被検知体が反射する反射光を受光する。すなわち、対向基板202の側からTFTアレイ基板201の側へ向かう反射光を受光する。そして、受光素子である位置センサ素子は、光電変換することによって、受光データを生成する。   Further, in the present embodiment, the liquid crystal panel 200 is a so-called I / O touch panel, which will be described in detail later, but on the front side opposite to the back surface of the liquid crystal panel 200 on which the backlight 300 is installed. When a detected object such as a user's finger or a touch pen comes into contact or comes close, a light receiving element that receives reflected light reflected by the detected object is formed as a position sensor element (not shown). For example, a photodiode is formed as the position sensor element. The position sensor element, which is a light receiving element, receives reflected light reflected by the detection object on the front side of the liquid crystal panel 200. That is, the light reflected from the counter substrate 202 side toward the TFT array substrate 201 is received. And the position sensor element which is a light receiving element produces light reception data by performing photoelectric conversion.

バックライト300は、図1に示すように、液晶パネル200の背面に対面しており、その液晶パネル200の表示領域PAに照明光を出射する。ここでは、バックライト300は、図1に示すように、光源301と、その光源301から照射された光を拡散することよって面状の光に変換する導光板302とを有しており、液晶パネル200の表示領域PAの全面に平面光を照射する。   As shown in FIG. 1, the backlight 300 faces the back surface of the liquid crystal panel 200, and emits illumination light to the display area PA of the liquid crystal panel 200. Here, as shown in FIG. 1, the backlight 300 includes a light source 301 and a light guide plate 302 that converts light emitted from the light source 301 into diffused light by diffusing light. The entire surface of the display area PA of the panel 200 is irradiated with plane light.

具体的には、バックライト300は、液晶パネル200を構成するTFTアレイ基板201と対向基板202とにおいて、TFTアレイ基板201の側に位置するように配置されている。そして、TFTアレイ基板201において対向基板202に対面している面とは反対側の面に、その平面光を照射する。つまり、バックライト300は、TFTアレイ基板201の側から対向基板202の側へ向かうように平面光を照明する。   Specifically, the backlight 300 is disposed so as to be positioned on the TFT array substrate 201 side in the TFT array substrate 201 and the counter substrate 202 constituting the liquid crystal panel 200. Then, the plane light is irradiated to the surface of the TFT array substrate 201 opposite to the surface facing the counter substrate 202. That is, the backlight 300 illuminates the planar light so as to go from the TFT array substrate 201 side to the counter substrate 202 side.

本実施形態においては、バックライト300の光源301は、図1に示すように、たとえば、可視光源301aと、赤外光源301bとを有する。可視光源301aと赤外光源301bとのそれぞれは、導光板302の端部に設けられ、可視光線と非可視光線とを照明光として出射する。具体的には、可視光源301aは、白色LEDであり、白色の可視光線を照射面から照射する。また、赤外光源301bは、赤外LEDであり、赤外線を照射面から照射する。たとえば、中心波長が850nmである赤外線を照射する。そして、可視光源301aから照射された白色の可視光線と、赤外光源301bから照射された赤外線とが、導光板302において拡散され、平面光として、液晶パネル200の背面に照射される。   In the present embodiment, the light source 301 of the backlight 300 includes, for example, a visible light source 301a and an infrared light source 301b as shown in FIG. Each of the visible light source 301a and the infrared light source 301b is provided at an end of the light guide plate 302, and emits visible light and invisible light as illumination light. Specifically, the visible light source 301a is a white LED, and irradiates white visible light from the irradiation surface. The infrared light source 301b is an infrared LED, and irradiates infrared rays from the irradiation surface. For example, infrared rays having a center wavelength of 850 nm are irradiated. And the white visible light irradiated from the visible light source 301a and the infrared light irradiated from the infrared light source 301b are diffused in the light guide plate 302, and irradiated to the back surface of the liquid crystal panel 200 as planar light.

データ処理部400は、図1に示すように、制御部401と、位置検出部402とを有する。データ処理部400は、コンピュータを含み、プログラムによってコンピュータが各部として動作するように構成されている。   As illustrated in FIG. 1, the data processing unit 400 includes a control unit 401 and a position detection unit 402. The data processing unit 400 includes a computer, and is configured such that the computer operates as each unit according to a program.

データ処理部400の制御部401は、液晶パネル200とバックライト300との動作を制御するように構成されている。制御部401は、液晶パネル200に制御信号を供給することによって、液晶パネル200に複数設けられた画素スイッチング素子(図示無し)の動作を制御する。たとえば、線順次駆動を実行させる。また、制御部401は、バックライト300に制御信号を供給することによって、バックライト300の動作を制御し、バックライト300から照明光を照射する。このように、制御部401は、液晶パネル200とバックライト300との動作を制御することによって、液晶パネル200の表示領域PRに画像を表示する。   The control unit 401 of the data processing unit 400 is configured to control the operation of the liquid crystal panel 200 and the backlight 300. The control unit 401 controls the operation of a plurality of pixel switching elements (not shown) provided in the liquid crystal panel 200 by supplying a control signal to the liquid crystal panel 200. For example, line sequential driving is executed. In addition, the control unit 401 controls the operation of the backlight 300 by supplying a control signal to the backlight 300, and irradiates illumination light from the backlight 300. Thus, the control unit 401 displays an image on the display region PR of the liquid crystal panel 200 by controlling the operations of the liquid crystal panel 200 and the backlight 300.

このほかに、制御部401は、液晶パネル200に制御信号を供給することによって、液晶パネル200に位置センサ素子として複数設けられた受光素子(図示無し)の動作を制御し、その位置センサ素子から受光データを収集する。たとえば、線順次駆動を実行させて、受光データを収集する。   In addition, the control unit 401 controls the operation of a plurality of light receiving elements (not shown) provided as position sensor elements in the liquid crystal panel 200 by supplying a control signal to the liquid crystal panel 200, and from the position sensor elements Collect the received light data. For example, line-sequential driving is executed to collect received light data.

データ処理部400の位置検出部402は、液晶パネル200に複数設けられた受光素子(図示無し)である位置センサ素子から収集した受光データに基づいて、液晶パネル200の表示領域において、ユーザーの指やタッチペンなどの被検知体が接触または近接した位置を検出する。   The position detection unit 402 of the data processing unit 400 is operated by a user's finger in the display area of the liquid crystal panel 200 based on light reception data collected from position sensor elements that are a plurality of light reception elements (not shown) provided in the liquid crystal panel 200. Detects the position where an object to be detected such as a touch pen or a touch pen comes into contact or close to.

(液晶パネルの全体構成)
液晶パネル200について詳細に説明する。
(Overall configuration of LCD panel)
The liquid crystal panel 200 will be described in detail.

図2は、本発明にかかる実施形態1において、液晶パネル200を示す平面図である。   FIG. 2 is a plan view showing the liquid crystal panel 200 in Embodiment 1 according to the present invention.

図2に示すように、液晶パネル200は、表示領域PAと、周辺領域CAとを有する。   As shown in FIG. 2, the liquid crystal panel 200 includes a display area PA and a peripheral area CA.

液晶パネル200において表示領域PAには、図2に示すように、複数の画素Pが水平方向xと垂直方向yとのそれぞれにマトリクス状に並ぶように配置されており、画像を表示する。詳細については後述するが、画素Pは、画素スイッチング素子として機能するTFT(図示無し)を含む。そして、この複数の画素Pに対応するように、位置センサ素子として機能する受光素子(図示無し)が、複数、形成されている。   In the liquid crystal panel 200, as shown in FIG. 2, a plurality of pixels P are arranged in a matrix in the horizontal direction x and the vertical direction y in the display area PA to display an image. Although details will be described later, the pixel P includes a TFT (not shown) that functions as a pixel switching element. A plurality of light receiving elements (not shown) functioning as position sensor elements are formed so as to correspond to the plurality of pixels P.

液晶パネル200において周辺領域CAは、図2に示すように、表示領域PAの周辺を囲うように設けられている。この周辺領域CAにおいては、図2に示すように、表示用垂直駆動回路11と、表示用水平駆動回路12と、センサ用垂直駆動回路13と、センサ用水平駆動回路14とが形成されている。たとえば、上記の画素スイッチング素子として機能するTFT(図示無し)と、位置センサ素子として機能する受光素子(図示無し)と同様にして形成された半導体素子によって、この各回路が構成されている。そして、表示領域PAにおいて画素Pに対応するように画素スイッチング素子として設けられたTFTを、表示用垂直駆動回路11および表示用水平駆動回路12が駆動し、画像表示を実行する。そして、これと共に、表示領域PAにおいて画素Pに対応するように位置センサ素子として設けられた受光素子(図示無し)を、センサ用垂直駆動回路13とセンサ用水平駆動回路14とが駆動し、受光データを収集する。   In the liquid crystal panel 200, the peripheral area CA is provided so as to surround the display area PA as shown in FIG. In the peripheral area CA, as shown in FIG. 2, a display vertical drive circuit 11, a display horizontal drive circuit 12, a sensor vertical drive circuit 13, and a sensor horizontal drive circuit 14 are formed. . For example, each of these circuits is constituted by a TFT (not shown) that functions as the pixel switching element and a semiconductor element that is formed in the same manner as a light receiving element (not shown) that functions as a position sensor element. Then, the display vertical drive circuit 11 and the display horizontal drive circuit 12 drive the TFT provided as the pixel switching element so as to correspond to the pixel P in the display area PA, and execute image display. At the same time, the sensor vertical drive circuit 13 and the sensor horizontal drive circuit 14 drive a light receiving element (not shown) provided as a position sensor element so as to correspond to the pixel P in the display area PA. Collect data.

具体的には、表示用垂直駆動回路11は、図2に示すように、垂直方向yに延在している。表示用垂直駆動回路11は、垂直方向yにおいて複数の画素Pに対応するように画素スイッチング素子として形成された各TFT(図示無し)のゲート電極に接続されている。そして、表示用垂直駆動回路11は、供給される駆動信号に基づいて、その垂直方向yに並ぶ複数のTFTに、走査信号を、順次、供給する。ここでは、水平方向xに並ぶ複数の画素Pに対応して形成された複数のTFTのそれぞれにゲート線(図示無し)が接続され、そのゲート線が垂直方向yに並ぶ複数の画素Pに対応するように複数形成されており、表示用垂直駆動回路11は、その複数をゲート線に、順次、走査信号を供給する。   Specifically, the display vertical drive circuit 11 extends in the vertical direction y as shown in FIG. The display vertical drive circuit 11 is connected to the gate electrode of each TFT (not shown) formed as a pixel switching element so as to correspond to a plurality of pixels P in the vertical direction y. Then, the display vertical drive circuit 11 sequentially supplies scanning signals to a plurality of TFTs arranged in the vertical direction y based on the supplied drive signals. Here, a gate line (not shown) is connected to each of the plurality of TFTs formed corresponding to the plurality of pixels P arranged in the horizontal direction x, and the gate lines correspond to the plurality of pixels P arranged in the vertical direction y. A plurality of display vertical drive circuits 11 sequentially supply scanning signals to the gate lines.

表示用水平駆動回路12は、図2に示すように、水平方向xに延在している。表示用水平駆動回路12は、水平方向xにおいて複数の画素Pに対応するように画素スイッチング素子として形成された各TFT(図示無し)のソース電極に接続されている。そして、表示用水平駆動回路12は、供給される駆動信号に基づいて、その垂直方向yに並ぶ複数のTFTに、データ信号を、順次、供給する。ここでは、垂直方向yに並ぶ複数の画素Pに対応して形成された複数のTFTのそれぞれに信号線(図示無し)が接続され、その信号線が水平方向xに並ぶ複数の画素Pに対応するように複数形成されており、表示用水平駆動回路12は、その複数の信号線に、順次、映像データ信号を供給する。   As shown in FIG. 2, the display horizontal drive circuit 12 extends in the horizontal direction x. The display horizontal drive circuit 12 is connected to the source electrode of each TFT (not shown) formed as a pixel switching element so as to correspond to a plurality of pixels P in the horizontal direction x. The display horizontal drive circuit 12 sequentially supplies data signals to a plurality of TFTs arranged in the vertical direction y based on the supplied drive signal. Here, a signal line (not shown) is connected to each of the plurality of TFTs formed corresponding to the plurality of pixels P arranged in the vertical direction y, and the signal lines correspond to the plurality of pixels P arranged in the horizontal direction x. The display horizontal drive circuit 12 sequentially supplies video data signals to the plurality of signal lines.

センサ用垂直駆動回路13は、図2に示すように、垂直方向yに延在している。センサ用垂直駆動回路13は、垂直方向yにおいて複数の画素Pに対応するように位置センサ素子として形成された各受光素子(図示無し)に接続されている。そして、センサ用垂直駆動回路13は、供給される駆動信号に基づいて、その垂直方向yに並ぶ複数の受光素子において、受光データを読み出す受光素子を選択する。ここでは、水平方向xに並ぶ複数の画素Pに対応して形成された複数の受光素子のそれぞれにゲート線(図示無し)が接続され、そのゲート線が垂直方向yに並ぶ複数の画素Pに対応するように複数形成されており、センサ用垂直駆動回路13は、その複数のゲート線を順次選択するように走査信号を供給する。   As shown in FIG. 2, the sensor vertical drive circuit 13 extends in the vertical direction y. The sensor vertical drive circuit 13 is connected to each light receiving element (not shown) formed as a position sensor element so as to correspond to the plurality of pixels P in the vertical direction y. Based on the supplied drive signal, the sensor vertical drive circuit 13 selects a light receiving element from which light reception data is read out among the plurality of light receiving elements arranged in the vertical direction y. Here, a gate line (not shown) is connected to each of the plurality of light receiving elements formed corresponding to the plurality of pixels P arranged in the horizontal direction x, and the gate lines are connected to the plurality of pixels P arranged in the vertical direction y. The sensor vertical drive circuit 13 supplies a scanning signal so as to sequentially select the plurality of gate lines.

センサ用水平駆動回路14は、水平方向xに延在している。センサ用水平駆動回路14は、水平方向xにおいて複数の画素Pに対応するように位置センサ素子として形成された各受光素子(図示無し)に接続されている。そして、センサ用水平駆動回路14は、供給される駆動信号に基づいて、その垂直方向yに並ぶ複数の受光素子から受光データを、順次、読み出す。ここでは、垂直方向yに並ぶ複数の画素Pに対応して形成された複数の受光素子のそれぞれに、信号読み出し線(図示無し)が接続され、その信号読み出し線が水平方向xに並ぶ複数の画素Pに対応するように複数形成されており、センサ用水平駆動回路14は、その複数の信号読み出し線を介して受光素子から、順次、受光データを読み出した後、位置検出部402へ出力する。そして、液晶パネル200の表示領域PAにユーザーの指やタッチペンなどの被検知体が接触または近接した位置を、その受光素子から出力される受光データに基づいて、位置検出部402が検出する。   The sensor horizontal drive circuit 14 extends in the horizontal direction x. The sensor horizontal drive circuit 14 is connected to each light receiving element (not shown) formed as a position sensor element so as to correspond to a plurality of pixels P in the horizontal direction x. Then, the sensor horizontal drive circuit 14 sequentially reads the received light data from the plurality of light receiving elements arranged in the vertical direction y based on the supplied drive signal. Here, a signal readout line (not shown) is connected to each of the plurality of light receiving elements formed corresponding to the plurality of pixels P arranged in the vertical direction y, and the plurality of signal readout lines are arranged in the horizontal direction x. A plurality of sensor horizontal drive circuits 14 are formed so as to correspond to the pixels P, and sequentially read the received light data from the light receiving elements via the plurality of signal read lines, and then output them to the position detection unit 402. . Then, the position detection unit 402 detects the position where the detection object such as the user's finger or touch pen is in contact with or close to the display area PA of the liquid crystal panel 200 based on the light reception data output from the light receiving element.

(液晶パネルの表示領域の構成)
図3は、本発明の実施形態1において、液晶パネル200における表示領域PAに設けられた画素Pの概略を模式的に示す断面図である。図4は、本発明の実施形態1において、液晶パネル200の表示領域PAに設けられた画素Pの概略を模式的に示す平面図である。図3は、図4においてX1−X2部分に対応する部分を示している。
(Configuration of LCD panel display area)
FIG. 3 is a cross-sectional view schematically showing an outline of the pixel P provided in the display area PA in the liquid crystal panel 200 in Embodiment 1 of the present invention. FIG. 4 is a plan view schematically showing an outline of the pixel P provided in the display area PA of the liquid crystal panel 200 in the first embodiment of the present invention. FIG. 3 shows a portion corresponding to the X1-X2 portion in FIG.

図3に示すように、液晶パネル200は、TFTアレイ基板201と、対向基板202と、液晶層203とを有している。液晶パネル200は、TFTアレイ基板201と対向基板202とがスペーサ(図示無し)によって間隔を隔てられ、シール材(図示無し)で貼り合わされており、そのTFTアレイ基板201と対向基板202との間の間隔に液晶層203が設けられている。   As illustrated in FIG. 3, the liquid crystal panel 200 includes a TFT array substrate 201, a counter substrate 202, and a liquid crystal layer 203. In the liquid crystal panel 200, a TFT array substrate 201 and a counter substrate 202 are spaced apart by a spacer (not shown) and bonded together with a sealing material (not shown). Between the TFT array substrate 201 and the counter substrate 202, The liquid crystal layer 203 is provided in the interval.

また、図3と図4とに示すように、液晶パネル200は、画素Pにおいて、光透過領域TAと遮光領域RAとを含む。   As shown in FIGS. 3 and 4, the liquid crystal panel 200 includes a light transmission region TA and a light shielding region RA in the pixel P.

光透過領域TAにおいては、バックライト300から出射された照明光が、TFTアレイ基板201の側から対向基板202の側へ透過する。ここでは、光透過領域TAには、図3と図4とに示すように、カラーフィルタ層21が形成されており、バックライト300から出射された照明光が着色されて、TFTアレイ基板201の側から対向基板202の側へ透過する。   In the light transmission region TA, the illumination light emitted from the backlight 300 is transmitted from the TFT array substrate 201 side to the counter substrate 202 side. Here, as shown in FIGS. 3 and 4, the color filter layer 21 is formed in the light transmission region TA, and the illumination light emitted from the backlight 300 is colored, so that the TFT array substrate 201 is colored. The light passes from the side to the counter substrate 202 side.

一方で、遮光領域RAにおいては、図3と図4とに示すように、ブラックマトリクス層21Kが形成されており、バックライト300から出射された照明光を、ブラックマトリクス層21Kが、カラーフィルタ層21の周囲において遮光する。   On the other hand, as shown in FIGS. 3 and 4, the black matrix layer 21 </ b> K is formed in the light shielding region RA, and the black matrix layer 21 </ b> K converts the illumination light emitted from the backlight 300 into the color filter layer. The light is shielded around 21.

そして、この遮光領域RAにおいては、図3と図4とに示すように、受光領域SAが形成されている。   In the light shielding area RA, as shown in FIGS. 3 and 4, a light receiving area SA is formed.

この受光領域SAにおいては、TFTアレイ基板201と対向基板202とが対面する面において、対向基板202の側からTFTアレイ基板201の側へ向かう光を受光する受光素子が、位置センサ素子32aとして形成されている。具体的には、図3に示すように、液晶パネル200は、対向基板202の側からTFTアレイ基板201の側へ向かう光において、ブラックマトリクス層21Kに形成された開口21aを透過する光を、その位置センサ素子32aが受光するように形成されている。この位置センサ素子32aは、図3に示すように、液晶パネル200の正面側において、ユーザーの指などの被検知体によってバックライト300から照射された照明光が反射された反射光を、対向基板202の側から受けて受光する。   In the light receiving area SA, a light receiving element that receives light traveling from the counter substrate 202 side to the TFT array substrate 201 side is formed as a position sensor element 32a on the surface where the TFT array substrate 201 and the counter substrate 202 face each other. Has been. Specifically, as shown in FIG. 3, the liquid crystal panel 200 transmits light that passes through the openings 21 a formed in the black matrix layer 21 </ b> K in the light from the counter substrate 202 side to the TFT array substrate 201 side. The position sensor element 32a is formed to receive light. As shown in FIG. 3, the position sensor element 32 a transmits reflected light obtained by reflecting illumination light emitted from the backlight 300 by a detection object such as a user's finger on the front side of the liquid crystal panel 200. The light is received from the 202 side.

液晶パネル200の各部について説明する。   Each part of the liquid crystal panel 200 will be described.

TFTアレイ基板201について下記に示す。   The TFT array substrate 201 will be described below.

TFTアレイ基板201は、光を透過する絶縁体の基板であり、たとえば、ガラスにより形成されている。このTFTアレイ基板201においては、図3に示すように、対向基板202に対面する側の面に、画素スイッチング素子31と、位置センサ素子32aと、画素電極62とが形成されている。   The TFT array substrate 201 is an insulating substrate that transmits light, and is made of, for example, glass. In the TFT array substrate 201, as shown in FIG. 3, a pixel switching element 31, a position sensor element 32a, and a pixel electrode 62 are formed on the surface facing the counter substrate 202.

なお、図3においては、画素Pのカラーフィルタ層21において赤フィルタ層21Rに対応するドット領域について示しているが、その他の緑フィルタ層21Gと青フィルタ層21Bとに対応するドット領域においては、位置センサ素子32aを除いた他の部材が、赤フィルタ層21Rに対応するドット領域の場合と同様に形成されている。   In FIG. 3, the dot region corresponding to the red filter layer 21R in the color filter layer 21 of the pixel P is shown, but in the other dot regions corresponding to the green filter layer 21G and the blue filter layer 21B, Other members excluding the position sensor element 32a are formed in the same manner as in the case of the dot region corresponding to the red filter layer 21R.

TFTアレイ基板201の各部について示す。   Each part of the TFT array substrate 201 will be described.

画素スイッチング素子31は、図3に示すように、TFTアレイ基板201において対向基板202に対面する側の面に形成されている。画素スイッチング素子31は、ゲート電極45と、ゲート絶縁膜46gと、半導体層48とを含み、たとえば、LDD構造のボトムゲート型TFTとして形成されている。   As shown in FIG. 3, the pixel switching element 31 is formed on the surface of the TFT array substrate 201 that faces the counter substrate 202. The pixel switching element 31 includes a gate electrode 45, a gate insulating film 46g, and a semiconductor layer 48, and is formed, for example, as a bottom gate type TFT having an LDD structure.

具体的には、画素スイッチング素子31において、ゲート電極45は、たとえば、モリブデンなどの金属材料を用いて形成されている。   Specifically, in the pixel switching element 31, the gate electrode 45 is formed using a metal material such as molybdenum, for example.

また、画素スイッチング素子31において、ゲート絶縁膜46gは、シリコン酸化膜などの絶縁材料を用いて形成されている。   In the pixel switching element 31, the gate insulating film 46g is formed using an insulating material such as a silicon oxide film.

また、画素スイッチング素子31において、半導体層48は、ゲート電極45に対応するようにチャネル形成領域が形成されると共に、そのチャネル領域を挟むように一対のソース・ドレイン領域48A,48Bが形成されている。ここでは、LDD構造になるように、この一対のソース・ドレイン領域48A,48Bは、チャネル領域48Cを挟むように一対の低濃度不純物領域48Ab,48Bbが形成され、さらに、その一対の低濃度不純物領域48Ab,48Bbを挟むように、一対の高濃度不純物領域48Aa,48Baが形成されている。具体的には、n型不純物をドープすることで、低濃度不純物領域48Ab,48Bbを形成し、その低濃度不純物領域48Ab,48Bbよりも多くn型不純物をドープすることで、一対の高濃度不純物領域48Aab,48Baを形成する。   In the pixel switching element 31, the semiconductor layer 48 has a channel formation region corresponding to the gate electrode 45 and a pair of source / drain regions 48 </ b> A and 48 </ b> B so as to sandwich the channel region. Yes. Here, a pair of low-concentration impurity regions 48Ab and 48Bb are formed in the pair of source / drain regions 48A and 48B so as to sandwich the channel region 48C so as to have an LDD structure. A pair of high concentration impurity regions 48Aa and 48Ba are formed so as to sandwich the regions 48Ab and 48Bb. Specifically, low-concentration impurity regions 48Ab and 48Bb are formed by doping n-type impurities, and a pair of high-concentration impurities are doped by doping n-type impurities more than the low-concentration impurity regions 48Ab and 48Bb. Regions 48Aab and 48Ba are formed.

本実施形態においては、半導体層48は、シリコン半導体よりもバンドギャップが狭くなるように形成されている。具体的には、半導体層48は、シリコン(Si)とゲルマニウム(Ge)とを含むように形成されている。たとえば、SiGe(1−x)の組成式において、0.6<x<1の関係になるように、半導体層48を形成することが好適である。特に、x=0.8にすることが好適であるので、たとえば、Si0.8Ge0.2の組成式に対応するように、半導体層48を形成している。 In the present embodiment, the semiconductor layer 48 is formed so that the band gap is narrower than that of the silicon semiconductor. Specifically, the semiconductor layer 48 is formed to include silicon (Si) and germanium (Ge). For example, it is preferable to form the semiconductor layer 48 such that 0.6 <x <1 in the composition formula of Si x Ge (1-x) . In particular, since x = 0.8 is preferable, for example, the semiconductor layer 48 is formed so as to correspond to the composition formula of Si 0.8 Ge 0.2 .

そして、画素スイッチング素子31においては、ソース電極53とドレイン電極54ととが、半導体層48を被覆する層間絶縁層49に設けられた開口に、アルミニウムなどの導電材料を埋め込み、パターン加工することによって形成されている。   In the pixel switching element 31, the source electrode 53 and the drain electrode 54 are formed by embedding a conductive material such as aluminum in the opening provided in the interlayer insulating layer 49 that covers the semiconductor layer 48, and patterning it. Is formed.

位置センサ素子32aは、受光素子であって、図3に示すように、TFTアレイ基板201において対向基板202に対面する側の面に形成されている。ここでは、位置センサ素子32aは、図3に示すように、液晶パネル200の正面側において、指などの被検知体によって反射され、対向基板202の側からTFTアレイ基板201の側へ向う反射光を、液晶層203を介して受光するように、TFTアレイ基板201に設けられている。この位置センサ素子32aは、たとえば、PIN構造のフォトダイオードを含むPINセンサであって、コントロール電極43と、コントロール電極43上に設けられた絶縁膜46sと、絶縁膜46sを介してコントロール電極43に対面する半導体層47とを含む。そして、位置センサ素子32aは、受光領域SAから入射する光を受光し、光電変換することによって、受光データを生成し、読み出される。   The position sensor element 32a is a light receiving element, and is formed on the surface of the TFT array substrate 201 facing the counter substrate 202 as shown in FIG. Here, as shown in FIG. 3, the position sensor element 32 a is reflected by a detection object such as a finger on the front side of the liquid crystal panel 200 and is reflected from the counter substrate 202 side to the TFT array substrate 201 side. Is provided on the TFT array substrate 201 so as to receive light through the liquid crystal layer 203. The position sensor element 32a is, for example, a PIN sensor including a photodiode having a PIN structure, and includes a control electrode 43, an insulating film 46s provided on the control electrode 43, and the control electrode 43 via the insulating film 46s. And a semiconductor layer 47 facing each other. The position sensor element 32a receives the light incident from the light receiving area SA and photoelectrically converts the light to generate and read out the received light data.

具体的には、位置センサ素子32aにおいて、コントロール電極43は、たとえば、モリブデンなどの金属材料を用いて形成されている。金属材料などのように光を遮光するザ遮光材料によってコントロール電極43を形成することによって、背面側から入射する照明光が半導体層47に入射しないように、その照明光を遮光することができる。つまり、本実施形態においては、コントロール電極43は、遮光膜として機能するように形成されている。   Specifically, in the position sensor element 32a, the control electrode 43 is formed using a metal material such as molybdenum, for example. By forming the control electrode 43 with a light shielding material that shields light such as a metal material, the illumination light can be shielded from entering the semiconductor layer 47 from the back side. That is, in the present embodiment, the control electrode 43 is formed so as to function as a light shielding film.

また、位置センサ素子32aにおいて、絶縁膜46sは、シリコン酸化膜などの絶縁材料を用いて形成されている。   In the position sensor element 32a, the insulating film 46s is formed using an insulating material such as a silicon oxide film.

また、位置センサ素子32aにおいて、半導体層47は、p層47pとn層47nとi層47iとを含み、PIN構造になるように構成されており、光電変換を行う。具体的には、p層47pは、p型不純物がドープされることによって形成され、n層47nは、n型不純物がドープされることによって形成され、i層47iは、高抵抗であって、p層47pとn層47nとの間に介在している。   In the position sensor element 32a, the semiconductor layer 47 includes a p layer 47p, an n layer 47n, and an i layer 47i, and is configured to have a PIN structure, and performs photoelectric conversion. Specifically, the p layer 47p is formed by doping with a p-type impurity, the n layer 47n is formed by doping with an n-type impurity, and the i layer 47i has a high resistance, It is interposed between the p layer 47p and the n layer 47n.

本実施形態においては、位置センサ素子32aの半導体層47は、シリコン半導体よりもバンドギャップが狭くなるように形成されている。ここでは、位置センサ素子32aの半導体層47は、画素スイッチング素子31の半導体層48とバンドギャップが互いに同じになるように形成されている。具体的には、半導体層47は、画素スイッチング素子31の半導体層48と同様に、シリコン(Si)とゲルマニウム(Ge)とを含むように形成されている。たとえば、SiGe(1−x)の組成式において、0.6<x<1の関係になるように、半導体層47が形成されている。特に、x=0.8にすることが好適であるので、画素スイッチング素子31の半導体層48と同様に、たとえば、Si0.8Ge0.2の組成式に対応するように、位置センサ素子32aの半導体層47は、形成されている。 In the present embodiment, the semiconductor layer 47 of the position sensor element 32a is formed so that the band gap is narrower than that of the silicon semiconductor. Here, the semiconductor layer 47 of the position sensor element 32a is formed so as to have the same band gap as the semiconductor layer 48 of the pixel switching element 31. Specifically, the semiconductor layer 47 is formed so as to contain silicon (Si) and germanium (Ge) similarly to the semiconductor layer 48 of the pixel switching element 31. For example, the semiconductor layer 47 is formed so as to have a relationship of 0.6 <x <1 in the composition formula of Si x Ge (1-x) . In particular, since x = 0.8 is preferable, as with the semiconductor layer 48 of the pixel switching element 31, for example, the position sensor element corresponds to the composition formula of Si 0.8 Ge 0.2. The semiconductor layer 47 of 32a is formed.

そして、位置センサ素子32aにおいて、アノード電極51とカソード電極52とが、層間絶縁層49に設けられた開口にアルミニウムを埋め込むことによって形成されている。   In the position sensor element 32 a, the anode electrode 51 and the cathode electrode 52 are formed by embedding aluminum in an opening provided in the interlayer insulating layer 49.

画素電極62は、図3に示すように、TFTアレイ基板201において対向基板202に対面する面を被覆するように、絶縁材料で形成された平坦化膜60上に設けられている。ここでは、図3に示すように、画素電極62は、平坦化膜60上において、光透過領域TAに対応するように形成されており、液晶層203に接続されている。画素電極62は、いわゆる透明電極であって、たとえば、ITOを用いて形成されている。そして、画素電極62は、バックライト300によって照明された光を変調するために、対向電極23と共に、液晶層203に電圧を印加する。なお、この画素電極62は、表示領域PAにおいて、複数の画素Pのそれぞれに対応するように複数がマトリクス状になるように配置されており、特に図示をしていないが、画素スイッチング素子31のドレイン電極54に接続されている。   As shown in FIG. 3, the pixel electrode 62 is provided on the planarizing film 60 formed of an insulating material so as to cover the surface of the TFT array substrate 201 facing the counter substrate 202. Here, as shown in FIG. 3, the pixel electrode 62 is formed on the planarizing film 60 so as to correspond to the light transmission region TA, and is connected to the liquid crystal layer 203. The pixel electrode 62 is a so-called transparent electrode, and is formed using, for example, ITO. The pixel electrode 62 applies a voltage to the liquid crystal layer 203 together with the counter electrode 23 in order to modulate the light illuminated by the backlight 300. The pixel electrodes 62 are arranged in a matrix so as to correspond to each of the plurality of pixels P in the display area PA. Although not particularly illustrated, the pixel electrodes 62 of the pixel switching element 31 are arranged. The drain electrode 54 is connected.

対向基板202について示す。   The counter substrate 202 is shown.

対向基板202は、TFTアレイ基板201の場合と同様に、光を透過する絶縁体の基板であり、ガラスにより形成されている。そして、対向基板202は、図3に示すように、TFTアレイ基板201に対して間隔を隔てるよう対面している。そして、対向基板202には、図3に示すように、カラーフィルタ層21と、ブラックマトリクス層21Kと、平坦化膜22と、対向電極23とが形成されている。   Similar to the TFT array substrate 201, the counter substrate 202 is an insulating substrate that transmits light and is formed of glass. The counter substrate 202 faces the TFT array substrate 201 at a distance as shown in FIG. As shown in FIG. 3, the color filter layer 21, the black matrix layer 21 </ b> K, the planarization film 22, and the counter electrode 23 are formed on the counter substrate 202.

対向基板202の各部について示す。   Each part of the counter substrate 202 will be described.

カラーフィルタ層21は、図3に示すように、対向基板202にてTFTアレイ基板201に対面する側の面に形成されている。カラーフィルタ層21は、図4に示すように、光透過領域TAに対応するように、赤フィルタ層21Rと緑フィルタ層21Gと青フィルタ層21Bとが形成されている。ここでは、赤フィルタ層21Rと緑フィルタ層21Gと青フィルタ層21Bとのそれぞれは、矩形形状であり、水平方向xに並ぶように形成されている。カラーフィルタ層21は、たとえば、顔料や染料などの着色剤を含有するポリイミド樹脂を用いて形成される。ここでは、赤と緑と青との3原色を1組として構成されている。そして、カラーフィルタ層21は、バックライト300から出射された照明光を着色する。   As shown in FIG. 3, the color filter layer 21 is formed on the surface of the counter substrate 202 facing the TFT array substrate 201. As shown in FIG. 4, the color filter layer 21 includes a red filter layer 21R, a green filter layer 21G, and a blue filter layer 21B so as to correspond to the light transmission region TA. Here, each of the red filter layer 21R, the green filter layer 21G, and the blue filter layer 21B has a rectangular shape and is formed so as to be aligned in the horizontal direction x. The color filter layer 21 is formed using, for example, a polyimide resin containing a colorant such as a pigment or a dye. Here, the three primary colors of red, green and blue are configured as one set. The color filter layer 21 colors the illumination light emitted from the backlight 300.

ブラックマトリクス層21Kは、図3に示すように、表示領域PAにおいて複数の画素Pを区画するように、遮光領域RAに形成され、光を遮光する。ここでは、ブラックマトリクス層21Kは、対向基板202にてTFTアレイ基板201に対面する側の面に形成されている。また、ブラックマトリクス層21Kは、光が透過する開口21aが、受光領域SAに対応するように形成されている。つまり、ブラックマトリクス層21Kは、図3と図4に示すように、遮光領域RAにおいて受光領域SA以外の領域に対応するように形成されている。たとえば、ブラックマトリクス層21Kは、黒色の金属酸化膜を用いて形成される。   As shown in FIG. 3, the black matrix layer 21K is formed in the light shielding area RA so as to partition the plurality of pixels P in the display area PA, and shields light. Here, the black matrix layer 21 </ b> K is formed on the surface of the counter substrate 202 that faces the TFT array substrate 201. Further, the black matrix layer 21K is formed so that the opening 21a through which light passes corresponds to the light receiving area SA. That is, as shown in FIGS. 3 and 4, the black matrix layer 21K is formed so as to correspond to a region other than the light receiving region SA in the light shielding region RA. For example, the black matrix layer 21K is formed using a black metal oxide film.

平坦化膜22は、図3に示すように、光透過領域TAと、遮光領域RAとのそれぞれに対応するように、対向基板202にてTFTアレイ基板201に対面する側の面に形成されている。ここでは、平坦化膜22は、光透過性の絶縁材料によって形成されている。そして、カラーフィルタ層21とブラックマトリクス層21Kとのそれぞれを被覆し、対向基板202にてTFTアレイ基板201に対面する面側を平坦化している。   As shown in FIG. 3, the planarizing film 22 is formed on the surface of the counter substrate 202 facing the TFT array substrate 201 so as to correspond to the light transmission area TA and the light shielding area RA. Yes. Here, the planarizing film 22 is formed of a light transmissive insulating material. Each of the color filter layer 21 and the black matrix layer 21K is covered, and the surface side facing the TFT array substrate 201 is flattened by the counter substrate 202.

対向電極23は、図3に示すように、対向基板202にてTFTアレイ基板201に対面する側の面に形成されている。ここで、対向電極23は、平坦化膜22を被覆するように形成されている。対向電極23は、いわゆる透明電極であって、たとえば、ITOを用いて形成されている。   As shown in FIG. 3, the counter electrode 23 is formed on the surface of the counter substrate 202 facing the TFT array substrate 201. Here, the counter electrode 23 is formed so as to cover the planarizing film 22. The counter electrode 23 is a so-called transparent electrode, and is formed using, for example, ITO.

液晶層203について示す。   The liquid crystal layer 203 is described.

液晶層203は、図3に示すように、TFTアレイ基板201と対向基板202との間にて挟持されており、配向処理されている。たとえば、液晶層203は、TFTアレイ基板201と対向基板202との間において、スペーサ(図示なし)により所定の距離が保持された間隔に、封入されている。そして、液晶層203は、TFTアレイ基板201および対向基板202に形成された液晶配向膜(図示なし)によって配向されている。たとえば、液晶層203は、液晶分子が垂直配向するように形成される。   As shown in FIG. 3, the liquid crystal layer 203 is sandwiched between the TFT array substrate 201 and the counter substrate 202 and is subjected to an alignment process. For example, the liquid crystal layer 203 is sealed between the TFT array substrate 201 and the counter substrate 202 at a distance that is maintained at a predetermined distance by a spacer (not shown). The liquid crystal layer 203 is aligned by a liquid crystal alignment film (not shown) formed on the TFT array substrate 201 and the counter substrate 202. For example, the liquid crystal layer 203 is formed so that liquid crystal molecules are vertically aligned.

(製造方法)
以下より、本実施形態の液晶表示装置100の製造方法において、画素スイッチング素子31と位置センサ素子32aとを形成する工程について説明する。
(Production method)
Hereinafter, a process of forming the pixel switching element 31 and the position sensor element 32a in the method for manufacturing the liquid crystal display device 100 of the present embodiment will be described.

図5は、本発明にかかる実施形態1において、画素スイッチング素子31と位置センサ素子32aとを形成する工程を示す断面図である。   FIG. 5 is a cross-sectional view showing a process of forming the pixel switching element 31 and the position sensor element 32a in the first embodiment according to the present invention.

図5においては、(a),(b),(c)の順にて、画素スイッチング素子31と位置センサ素子32aとを製造する際の各製造工程を示しており、この製造工程を実施することによって、図3に示すように、画素スイッチング素子31と位置センサ素子32aと形成する。   FIG. 5 shows each manufacturing process in manufacturing the pixel switching element 31 and the position sensor element 32a in the order of (a), (b), and (c), and this manufacturing process is performed. Thus, as shown in FIG. 3, the pixel switching element 31 and the position sensor element 32a are formed.

各工程について順次説明する。   Each process will be described sequentially.

まず、図5(a)に示すように、画素スイッチング素子31のゲート電極45と、位置センサ素子32aのコントロール電極43とを形成する。   First, as shown in FIG. 5A, the gate electrode 45 of the pixel switching element 31 and the control electrode 43 of the position sensor element 32a are formed.

ここでは、TFTアレイ基板201の表面に、たとえば、モリブデンなどの導電材料を、スパッタリング法によってスパッタし、導電体膜(図示無し)を成膜後、リソグラフィ技術を用いて、その導電体膜をパターン加工することによって、画素スイッチング素子31のゲート電極45と、位置センサ素子32aのコントロール電極43とを形成する。たとえば、65nm厚になるように、このゲート電極45とコントロール電極43とのそれぞれを形成する。   Here, a conductive material such as molybdenum is sputtered on the surface of the TFT array substrate 201 by a sputtering method to form a conductive film (not shown), and then the conductive film is patterned using a lithography technique. By processing, the gate electrode 45 of the pixel switching element 31 and the control electrode 43 of the position sensor element 32a are formed. For example, each of the gate electrode 45 and the control electrode 43 is formed so as to have a thickness of 65 nm.

つぎに、図5(b)に示すように、画素スイッチング素子31のゲート絶縁膜46gと、位置センサ素子32aの絶縁膜46sとを形成する。   Next, as shown in FIG. 5B, a gate insulating film 46g of the pixel switching element 31 and an insulating film 46s of the position sensor element 32a are formed.

ここでは、画素スイッチング素子31のゲート電極45と、位置センサ素子32aのコントロール電極43とを被覆するように、絶縁層46をTFTアレイ基板201の表面に形成することによって、画素スイッチング素子31のゲート電極45上にゲート絶縁膜46gを設けると共に、位置センサ素子32aのコントロール電極43上に絶縁膜46sを設ける。たとえば、PECVD(Plasma Enhanced Chemical Vapor Deposition)法により、70nm厚のシリコン酸化膜(SiO)を絶縁層46として成膜することによって、画素スイッチング素子31のゲート絶縁膜46gと、位置センサ素子32aの絶縁膜46sとを形成する。 Here, the gate of the pixel switching element 31 is formed by forming the insulating layer 46 on the surface of the TFT array substrate 201 so as to cover the gate electrode 45 of the pixel switching element 31 and the control electrode 43 of the position sensor element 32a. A gate insulating film 46g is provided on the electrode 45, and an insulating film 46s is provided on the control electrode 43 of the position sensor element 32a. For example, by forming a 70 nm thick silicon oxide film (SiO 2 ) as the insulating layer 46 by PECVD (Plasma Enhanced Chemical Vapor Deposition), the gate insulating film 46g of the pixel switching element 31 and the position sensor element 32a An insulating film 46s is formed.

つぎに、図5(c)に示すように、画素スイッチング素子31の半導体層48と、位置センサ素子32aの半導体層47とを形成する。   Next, as shown in FIG. 5C, the semiconductor layer 48 of the pixel switching element 31 and the semiconductor layer 47 of the position sensor element 32a are formed.

ここでは、絶縁層46を被覆するように、TFTアレイ基板201の表面に半導体層(図示無し)を形成後、リソグラフィ技術を用いて、その半導体層をパターン加工することによって、画素スイッチング素子31の半導体層48と、この位置センサ素子32aの半導体層47とを形成する。   Here, after forming a semiconductor layer (not shown) on the surface of the TFT array substrate 201 so as to cover the insulating layer 46, the semiconductor layer is patterned using a lithography technique, whereby the pixel switching element 31 is formed. The semiconductor layer 48 and the semiconductor layer 47 of the position sensor element 32a are formed.

本実施形態においては、SiGe(1−x)(0.6<x<1)の組成式に対応する多結晶の半導体になるように、この画素スイッチング素子31の半導体層48と位置センサ素子32aの半導体層47とを形成する。 In the present embodiment, the semiconductor layer 48 and the position sensor of the pixel switching element 31 are formed so as to be a polycrystalline semiconductor corresponding to the composition formula of Si x Ge (1-x) (0.6 <x <1). The semiconductor layer 47 of the element 32a is formed.

具体的には、まず、シラン(SiH),ジシラン(Si),トリシラン(Si)などのようにシリコン元素を含有した分子からなるガスに、GeHのようにゲルマニウム元素を含有した分子からなるガスを混合した混合ガスを用いて、PECVD法にて、アモルファスなSiGe(1−x)膜(図示無し)を成膜する。たとえば、40nm厚になるように、成膜する。 Specifically, first, a germanium element such as GeH 4 is used as a gas composed of molecules containing a silicon element such as silane (SiH 4 ), disilane (Si 2 H 6 ), trisilane (Si 3 H 8 ), and the like. An amorphous Si x Ge (1-x) film (not shown) is formed by a PECVD method using a mixed gas in which a gas composed of molecules containing is mixed. For example, the film is formed so as to have a thickness of 40 nm.

ここでは、シリコン元素を含有した分子からなるガスと、ゲルマニウム元素を含有した分子からなるガスとの混合比を調整することで、任意な組成のSiGe(1−x)膜が成膜できる。そして、そのアモルファスなSiGe(1−x)膜を多結晶化する。たとえば、エキシマレーザーを用いて多結晶化する。その後、そのSiGe(1−x)膜をパターン加工することによって、図5(c)に示すように、画素スイッチング素子31の半導体層48と、位置センサ素子32aの半導体層47とを形成する。 Here, an Si x Ge (1-x) film having an arbitrary composition can be formed by adjusting a mixing ratio of a gas composed of molecules containing silicon element and a gas composed of molecules containing germanium element. . Then, the amorphous Si x Ge (1-x) film is polycrystallized. For example, it is polycrystallized using an excimer laser. Thereafter, the Si x Ge (1-x) film is patterned to form the semiconductor layer 48 of the pixel switching element 31 and the semiconductor layer 47 of the position sensor element 32a as shown in FIG. 5C. To do.

つぎに、図3に示すように、画素スイッチング素子31と位置センサ素子32aとを完成させる。   Next, as shown in FIG. 3, the pixel switching element 31 and the position sensor element 32a are completed.

ここでは、画素スイッチング素子31の半導体層48において、ゲート電極45に対応する部分をチャネル領域48Cにすると共に、そのチャネル領域48Cを挟むように一対のソース・ドレイン領域48A,48Bを形成する。本実施形態においては、LDD構造になるように、チャネル領域48Cを挟むように一対の低濃度不純物領域48Ab,48Bbを形成し、さらに、その一対の低濃度不純物領域48Ab,48Bbを挟むように、一対の高濃度不純物領域48Aa,48Baを形成することで、一対のソース・ドレイン領域48A,48Bを設ける。具体的には、イオン注入法によって、n型不純物を半導体層48にドープすることで、低濃度不純物領域48Ab,48Bbを形成する。そして、イオン注入法によって、その低濃度不純物領域48Ab,48Bbよりも多くn型不純物を半導体層48にドープすることで、一対の高濃度不純物領域48Aa,48Baを形成する。   Here, in the semiconductor layer 48 of the pixel switching element 31, a portion corresponding to the gate electrode 45 is used as a channel region 48C, and a pair of source / drain regions 48A and 48B are formed so as to sandwich the channel region 48C. In this embodiment, a pair of low-concentration impurity regions 48Ab and 48Bb are formed so as to sandwich the channel region 48C so as to have an LDD structure, and further, the pair of low-concentration impurity regions 48Ab and 48Bb are sandwiched therebetween. A pair of source / drain regions 48A and 48B are provided by forming a pair of high-concentration impurity regions 48Aa and 48Ba. Specifically, the n-type impurity is doped into the semiconductor layer 48 by ion implantation to form the low concentration impurity regions 48Ab and 48Bb. A pair of high-concentration impurity regions 48Aa and 48Ba are formed by doping the semiconductor layer 48 with n-type impurities more than the low-concentration impurity regions 48Ab and 48Bb by ion implantation.

また、位置センサ素子32aの半導体層47において、コントロール電極43に対応する部分には、i層47iが設けられており、さらに、そのi層47iを挟むように、p層47pとn層47nとが形成されている。つまり、位置センサ素子32aがPIN構造になるように形成されている。具体的には、イオン注入法によって、p型不純物を半導体層47にドープすることで、p層47pを形成する。また、イオン注入法によって、n型不純物を半導体層47にドープすることで、n層47nを形成する。   Further, in the semiconductor layer 47 of the position sensor element 32a, an i layer 47i is provided in a portion corresponding to the control electrode 43, and further, a p layer 47p and an n layer 47n are sandwiched between the i layer 47i. Is formed. That is, the position sensor element 32a is formed to have a PIN structure. Specifically, the p layer 47p is formed by doping the semiconductor layer 47 with a p-type impurity by ion implantation. Further, the n layer 47n is formed by doping the semiconductor layer 47 with an n-type impurity by an ion implantation method.

そして、図3に示すように、層間絶縁膜49をTFTアレイ基板201に被覆後、画素スイッチング素子31のソース電極53およびドレイン電極54と、位置センサ素子32aのアノード電極51およびカソード電極52とを形成する。ここでは、層間絶縁層49に開口に設けた後に、アルミニウムを埋め込みパターン加工することによって、画素スイッチング素子31のソース電極53およびドレイン電極54と、位置センサ素子32aのアノード電極51およびカソード電極52とを形成する。   Then, as shown in FIG. 3, after the interlayer insulating film 49 is coated on the TFT array substrate 201, the source electrode 53 and the drain electrode 54 of the pixel switching element 31, and the anode electrode 51 and the cathode electrode 52 of the position sensor element 32a are formed. Form. Here, after providing an opening in the interlayer insulating layer 49, the source electrode 53 and the drain electrode 54 of the pixel switching element 31 and the anode electrode 51 and the cathode electrode 52 of the position sensor element 32a are formed by embedding aluminum into a pattern pattern. Form.

その後、TFTアレイ基板201の面を被覆するように絶縁材料で平坦化膜60を形成後、その平坦化膜60上に画素電極62を形成する。ここでは、たとえば、ITOのような透明な導電材料を用いて、画素電極62を形成する。   Thereafter, a planarizing film 60 is formed with an insulating material so as to cover the surface of the TFT array substrate 201, and then a pixel electrode 62 is formed on the planarizing film 60. Here, for example, the pixel electrode 62 is formed using a transparent conductive material such as ITO.

そして、画素電極62などの各部が形成されたTFTアレイ基板201と、対向電極23などの各部が形成された対向基板202とを、画素電極62と対向電極23とが対向するように貼り合わせる。ここでは、貼り合わせるに当たり、TFTアレイ基板201と対向基板202とのそれぞれに、たとえば、ポリイミドで配向膜を形成した後に、その配向膜をラビング処理する。そして、TFTアレイ基板201と対向基板202とを、間隔を隔てて対面するように貼り合わせる。その後、そのTFTアレイ基板201と対向基板202との間の間隔に液晶を注入し、液晶層203を配向させて液晶パネル200を形成する。   Then, the TFT array substrate 201 in which each part such as the pixel electrode 62 is formed and the counter substrate 202 in which each part such as the counter electrode 23 is formed are bonded so that the pixel electrode 62 and the counter electrode 23 face each other. Here, for bonding, after forming an alignment film with, for example, polyimide on each of the TFT array substrate 201 and the counter substrate 202, the alignment film is rubbed. Then, the TFT array substrate 201 and the counter substrate 202 are bonded so as to face each other with a gap therebetween. Thereafter, liquid crystal is injected into the gap between the TFT array substrate 201 and the counter substrate 202, and the liquid crystal layer 203 is aligned to form the liquid crystal panel 200.

その後、偏光板、バックライトなどの周辺機器を実装して液晶表示装置100を完成する。   Thereafter, peripheral devices such as a polarizing plate and a backlight are mounted to complete the liquid crystal display device 100.

(動作)
以下より、上記の液晶表示装置100において、ユーザーの指などの被検知体が液晶パネル200の表示領域PAに接触もしくは移動された位置を検出する際の動作について説明する。
(Operation)
Hereinafter, in the liquid crystal display device 100 described above, an operation when a detected object such as a user's finger is in contact with or moved to the display area PA of the liquid crystal panel 200 will be described.

図6は、本発明に係る実施形態1において、被検知体が液晶パネル200の表示領域PAに接触もしくは移動された位置を検出する際の様子を模式的に示す断面図である。図6においては、要部を記載し、その他の部分については、記載を省略している。   FIG. 6 is a cross-sectional view schematically showing a state where the detected object detects a position in contact with or moved to the display area PA of the liquid crystal panel 200 in the first embodiment of the present invention. In FIG. 6, the main part is described, and the description of the other parts is omitted.

ユーザーの指などの被検知体Fが表示領域PAに接触もしくは移動された場合には、図6に示すように、バックライト300から照明された照明光Rが、その被検知体Fによって反射された反射光Hを、液晶パネル200に形成された位置センサ素子32aが受光する。   When the detected object F such as a user's finger is brought into contact with or moved to the display area PA, the illumination light R illuminated from the backlight 300 is reflected by the detected object F as shown in FIG. The reflected light H is received by the position sensor element 32 a formed on the liquid crystal panel 200.

ここでは、バックライト300が可視光線VRと赤外線IRとを含む照明光Rを、平面光として、液晶パネル200の背面に照射する。そして、その照明光Rは、液晶パネル200を介して、被検知体Fに照射され、被検知体Fによって反射される。そして、その被検知体Fによって反射された反射光Hを、位置センサ素子32aが受光する。   Here, the backlight 300 irradiates the back surface of the liquid crystal panel 200 with illumination light R including visible light VR and infrared light IR as planar light. Then, the illumination light R is applied to the detected object F via the liquid crystal panel 200 and is reflected by the detected object F. Then, the position sensor element 32a receives the reflected light H reflected by the detected object F.

このとき、照明光Rにおいて可視光線VRは、液晶パネル200の各部において吸収され、その強度が低下した状態で、位置センサ素子32aによって受光される。これに対して、照明光Rにおいて赤外線IRは、液晶パネル200の各部において吸収される割合が可視光線VRよりも小さいため、可視光線VRよりも大きな強度で、位置センサ素子32aによって受光される。   At this time, the visible light VR in the illumination light R is absorbed by each part of the liquid crystal panel 200, and is received by the position sensor element 32a in a state where the intensity thereof is lowered. On the other hand, the infrared light IR in the illumination light R is received by the position sensor element 32a with a greater intensity than the visible light VR because the proportion absorbed in each part of the liquid crystal panel 200 is smaller than the visible light VR.

そして、その受光した光の強度に応じた信号強度の受光データを位置センサ素子32aが生成する。その後、周辺回路によって受光データが読み出され、その受光データが読み出された位置センサ素子32aの位置と、その位置センサ素子32aから読み出された受光データの信号強度とのそれぞれに基づいて、被検知体Fが表示領域PAにおいて接触した位置が、位置検出部402によって検出される。   The position sensor element 32a generates light reception data having a signal intensity corresponding to the intensity of the received light. Thereafter, the light reception data is read by the peripheral circuit, and based on each of the position of the position sensor element 32a from which the light reception data is read and the signal intensity of the light reception data read from the position sensor element 32a, The position where the detection object F contacts in the display area PA is detected by the position detection unit 402.

以上のように、本実施形態においては、可視光線VRと赤外線IRとをバックライト300が液晶パネル200の背面側から照明光Rとして出射し、その液晶パネル200の正面側において、その照明光Rが被検知体Fによって反射された反射光Hを位置センサ素子32aが受光する。ここでは、位置センサ素子32aは、シリコン半導体よりもバンドギャップが狭い半導体層47を含み、その半導体層47において反射光Hを受光し、光電変換することで受光データを生成する。本実施形態においては、シリコンとゲルマニウムとを含むように、この半導体層47を形成している。このため、被検知体Fによって反射された反射光Hにおいては、可視光線VRが各部材によって吸収され、赤外線IRが多く含まれるが、本実施形態は、高感度に、その赤外線IRを受光し、受光データを生成することができる。   As described above, in the present embodiment, the backlight 300 emits the visible light VR and the infrared light IR as the illumination light R from the back side of the liquid crystal panel 200, and the illumination light R on the front side of the liquid crystal panel 200. The position sensor element 32a receives the reflected light H reflected by the detection object F. Here, the position sensor element 32a includes a semiconductor layer 47 whose band gap is narrower than that of a silicon semiconductor. The reflected light H is received by the semiconductor layer 47 and photoelectrically converted to generate received light data. In the present embodiment, the semiconductor layer 47 is formed so as to include silicon and germanium. For this reason, in the reflected light H reflected by the detection object F, the visible light VR is absorbed by each member and contains a large amount of infrared IR, but this embodiment receives the infrared IR with high sensitivity. The received light data can be generated.

図7は、本発明にかかる実施形態1において、半導体層の組成と、その半導体層の吸収係数とを示す図である。図7において、横軸は、光の波長(Wavelength)λ(nm)であり、縦軸は、その光の吸収係数(adsorption coefficient)α(cm−1)である。図7においては、結晶シリコン(Si)と、アモルファスシリコン(a−Si)と、ゲルマニウム(Ge)とのそれぞれについて、示している。 FIG. 7 is a diagram showing the composition of the semiconductor layer and the absorption coefficient of the semiconductor layer in the first embodiment according to the present invention. In FIG. 7, the horizontal axis represents the wavelength (Wavelength) λ (nm) of light, and the vertical axis represents the absorption coefficient α (cm −1 ) of the light. FIG. 7 shows each of crystalline silicon (Si), amorphous silicon (a-Si), and germanium (Ge).

図7に示すように、ゲルマニウム(Ge)は、赤外線IRの吸収係数が大きい。たとえば、波長が850nmである場合においては、ゲルマニウム(Ge)は、アモルファスシリコン(a−Si)と比較して、約1000倍の吸収係数を示し、結晶シリコン(Si)と比較して、約100倍の吸収係数を示す。このため、ゲルマニウム(Ge)を含有させることで、赤外線IRの吸収係数を向上できるので、高感度に、赤外線IRによる受光データを生成することができる。   As shown in FIG. 7, germanium (Ge) has a large infrared IR absorption coefficient. For example, in the case where the wavelength is 850 nm, germanium (Ge) has an absorption coefficient about 1000 times that of amorphous silicon (a-Si) and about 100 times that of crystalline silicon (Si). Double absorption coefficient. For this reason, since the absorption coefficient of infrared IR can be improved by containing germanium (Ge), the received light data by infrared IR can be produced | generated with high sensitivity.

したがって、本実施形態は、位置センサ素子32aによって得られた受光データのS/N比を改善することができる。   Therefore, this embodiment can improve the S / N ratio of the received light data obtained by the position sensor element 32a.

また、本実施形態においては、位置センサ素子32aの半導体層47と、画素スイッチング素子31の半導体層48とのそれぞれを、バンドギャップが互いに同じになるように形成している。つまり、位置センサ素子32aの半導体層47と、画素スイッチング素子31の半導体層48とのそれぞれを、互いに同じ組成になるように形成している。そして、さらに、本実施形態においては、画素スイッチング素子31と位置センサ素子32aとを、TFTアレイ基板201の同一面に形成している。したがって、本実施形態は、効率的に製造を実施することができる。   In the present embodiment, the semiconductor layer 47 of the position sensor element 32a and the semiconductor layer 48 of the pixel switching element 31 are formed so as to have the same band gap. That is, the semiconductor layer 47 of the position sensor element 32a and the semiconductor layer 48 of the pixel switching element 31 are formed to have the same composition. Further, in the present embodiment, the pixel switching element 31 and the position sensor element 32a are formed on the same surface of the TFT array substrate 201. Therefore, the present embodiment can be efficiently manufactured.

また、本実施形態においては、位置センサ素子32aの半導体層47と、画素スイッチング素子31の半導体層48とのそれぞれを、SiGe(1−x)の組成式において、0.6<x<1の関係になるように形成している。 In the present embodiment, each of the semiconductor layer 47 of the position sensor element 32a and the semiconductor layer 48 of the pixel switching element 31 is 0.6 <x <in the composition formula of Si x Ge (1-x). It is formed so as to have a relationship of 1.

図8は、本発明にかかる実施形態1において、シリコン半導体層中におけるゲルマニウム(Ge)の含有率(mol%)と、エネルギーギャップ(eV)との関係を示す図である。図8において、横軸は、ゲルマニウム(Ge)の含有率(mol%)であり、縦軸は、エネルギーギャップ(eV)である。ここでは、引っ張り歪み、または、圧縮歪みによってチャネル領域に歪みを与えた場合(COHERENTRY STRAINED)と、歪みを与えていない場合(UNSTRAINED)とを示している。なお、この図は、「R. People,「Indirect band gap of coherently strained GexSi1−x bulk alloys on {001} silicon substrate」,Physical Review B,The American Physical Society,1985年7月15日、32巻数、2号数、1405ページ」から引用した図である。   FIG. 8 is a diagram showing the relationship between the germanium (Ge) content (mol%) in the silicon semiconductor layer and the energy gap (eV) in the first embodiment according to the present invention. In FIG. 8, the horizontal axis represents the germanium (Ge) content (mol%), and the vertical axis represents the energy gap (eV). Here, a case where the channel region is strained by tensile strain or compression strain (COHERENTRY STRAINED) and a case where strain is not imparted (UNSTRAINED) are shown. In addition, this figure is "R. People," Indirect band gap of coherently strained GexSi1-x bulk all on on {001} silicon substrate ", Physical Review B, Thirth Month It is a figure quoted from "No. 2 number, 1405 pages".

図8に示すように、ゲルマニウム(Ge)の含有率が増加すると、エネルギーギャップ(バンドギャップ)が減少し、一方で、ゲルマニウム(Ge)の含有率が減少すると、エネルギーギャップ(バンドギャップ)が増加する。このため、ゲルマニウム(Ge)の含有率が40%以下の場合(x≦0.6)には、画素スイッチング素子31において光リークが生ずる場合がある。一方で、ゲルマニウム(Ge)の0%の場合(x=1)には、バンドギャップが広くなり、位置センサ素子32aの感度がダウンする。よって、SiGe(1−x)の組成式において、0.6<x<1の関係になるように、位置センサ素子32aの半導体層47と、画素スイッチング素子31の半導体層48とのそれぞれを形成することで、両特性を両立することができる。また、図8に示すように、チャネル領域に歪みを与えることによって、キャリア移動度を向上できる。このため、チャネル領域に歪みを与えることも可能である。 As shown in FIG. 8, when the germanium (Ge) content increases, the energy gap (band gap) decreases. On the other hand, when the germanium (Ge) content decreases, the energy gap (band gap) increases. To do. For this reason, when the germanium (Ge) content is 40% or less (x ≦ 0.6), light leakage may occur in the pixel switching element 31. On the other hand, in the case of 0% of germanium (Ge) (x = 1), the band gap becomes wide and the sensitivity of the position sensor element 32a decreases. Therefore, each of the semiconductor layer 47 of the position sensor element 32a and the semiconductor layer 48 of the pixel switching element 31 has a relationship of 0.6 <x <1 in the composition formula of Si x Ge (1-x). By forming, both characteristics can be compatible. As shown in FIG. 8, carrier mobility can be improved by distorting the channel region. For this reason, it is also possible to give distortion to the channel region.

<実施形態2>
以下より、本発明にかかる実施形態2について説明する。
<Embodiment 2>
Hereinafter, Embodiment 2 according to the present invention will be described.

(液晶パネルの表示領域の構成)
図9は、本発明にかかる実施形態2において、液晶パネル200における表示領域PAに設けられた画素Pの概略を模式的に示す断面図である。図9は、前述の図3と同様に、図4においてX1−X2部分に対応する部分を示している。
(Configuration of LCD panel display area)
FIG. 9 is a cross-sectional view schematically showing an outline of the pixel P provided in the display area PA in the liquid crystal panel 200 in the second embodiment of the invention. FIG. 9 shows a portion corresponding to the X1-X2 portion in FIG. 4 as in FIG.

本実施形態においては、図9に示すように、位置センサ素子32aの半導体層47の構成が、実施形態1と異なる。また、画素スイッチング素子31については、図9に示すように、その構成が同じであるが、その半導体層48の組成が実施形態1と異なる。この点を除き、本実施形態は、実施形態1と同様である。このため、重複する個所については、説明を省略する。   In the present embodiment, as shown in FIG. 9, the configuration of the semiconductor layer 47 of the position sensor element 32a is different from that of the first embodiment. Further, as shown in FIG. 9, the pixel switching element 31 has the same configuration, but the composition of the semiconductor layer 48 is different from that of the first embodiment. Except for this point, the present embodiment is the same as the first embodiment. For this reason, description is abbreviate | omitted about the overlapping part.

本実施形態において、画素スイッチング素子31の半導体層48は、実施形態1の場合のように、シリコン(Si)とゲルマニウム(Ge)とを含む半導体ではなく、ゲルマニウム(Ge)を含まないシリコン半導体である。たとえば、多結晶シリコンによって形成されている。   In the present embodiment, the semiconductor layer 48 of the pixel switching element 31 is not a semiconductor containing silicon (Si) and germanium (Ge) as in the case of the first embodiment, but a silicon semiconductor containing no germanium (Ge). is there. For example, it is made of polycrystalline silicon.

そして、画素スイッチング素子31の半導体層48においては、実施形態1と同様に、ゲート電極45に対応するようにチャネル形成領域が形成されると共に、そのチャネル領域を挟むように一対のソース・ドレイン領域48A,48Bが形成されている。   In the semiconductor layer 48 of the pixel switching element 31, a channel formation region is formed so as to correspond to the gate electrode 45, and a pair of source / drain regions is sandwiched between the channel region, as in the first embodiment. 48A and 48B are formed.

また、位置センサ素子32aの半導体層47は、実施形態1と同様に、コントロール電極43に対応する部分がi層47iとして形成され、さらに、そのi層47iを挟むように、p層47pとn層47nとが形成されている。   Further, as in the first embodiment, the semiconductor layer 47 of the position sensor element 32a is formed with a portion corresponding to the control electrode 43 as the i layer 47i, and further, the p layer 47p and the n layer so as to sandwich the i layer 47i. Layer 47n is formed.

しかしながら、本実施形態における位置センサ素子32aの半導体層47は、図9に示すように、実施形態1と異なる構成であって、第1半導体層47Xと、第2半導体層47Yとを含んでいる。   However, as shown in FIG. 9, the semiconductor layer 47 of the position sensor element 32a in the present embodiment has a configuration different from that of the first embodiment, and includes a first semiconductor layer 47X and a second semiconductor layer 47Y. .

この位置センサ素子32aの半導体層47において、第1半導体層47Xは、絶縁膜46上に形成されており、コントロール電極43に対応する部分にi層47iが設けられ、そのi層47iを挟むように、p層47pとn層47nとが形成されている。   In the semiconductor layer 47 of the position sensor element 32a, the first semiconductor layer 47X is formed on the insulating film 46, and an i layer 47i is provided in a portion corresponding to the control electrode 43 so as to sandwich the i layer 47i. In addition, a p layer 47p and an n layer 47n are formed.

本実施形態においては、第1半導体層47Xは、画素スイッチング素子31の半導体層48と同様に、ゲルマニウム(Ge)を含まない、シリコン半導体として形成されている。つまり、第1半導体層47Xは、画素スイッチング素子31の半導体層48とバンドギャップが互いに同じになるように形成されている。   In the present embodiment, the first semiconductor layer 47X is formed as a silicon semiconductor not containing germanium (Ge), like the semiconductor layer 48 of the pixel switching element 31. That is, the first semiconductor layer 47X is formed so that the band gap is the same as that of the semiconductor layer 48 of the pixel switching element 31.

一方で、位置センサ素子32aの半導体層47において、第2半導体層47Yは、図9に示すように、第1半導体層47X上に形成されている。つまり、第2半導体層47Yは、図9に示すように、第1半導体層47Xよりも対向基板202の側に位置するように、第1半導体層47X上に積層されている。   On the other hand, in the semiconductor layer 47 of the position sensor element 32a, the second semiconductor layer 47Y is formed on the first semiconductor layer 47X as shown in FIG. That is, as shown in FIG. 9, the second semiconductor layer 47Y is stacked on the first semiconductor layer 47X so as to be positioned closer to the counter substrate 202 than the first semiconductor layer 47X.

本実施形態においては、第2半導体層47Yは、図9に示すように、第1半導体層47Xと異なる形状であって、第1半導体層47Xの中央部分に対応するようにパターン加工されている。   In the present embodiment, as shown in FIG. 9, the second semiconductor layer 47Y has a shape different from that of the first semiconductor layer 47X and is patterned so as to correspond to the central portion of the first semiconductor layer 47X. .

また、第2半導体層47Yは、図9に示すように、画素スイッチング素子31の半導体層48よりも、対向基板202の側に位置するように形成されている。そして、図9に示すように、第2半導体層47Yは、コントロール電極43に対応する部分にi層47iが設けられ、そのi層47iを挟むように、p層47pとn層47nとが形成されている。   Further, as shown in FIG. 9, the second semiconductor layer 47 </ b> Y is formed so as to be positioned closer to the counter substrate 202 than the semiconductor layer 48 of the pixel switching element 31. As shown in FIG. 9, the second semiconductor layer 47Y is provided with an i layer 47i in a portion corresponding to the control electrode 43, and a p layer 47p and an n layer 47n are formed so as to sandwich the i layer 47i. Has been.

本実施形態においては、第2半導体層47Yは、シリコン半導体よりもバンドギャップが狭くなるように形成されている。つまり、第2半導体層47Yは、画素スイッチング素子31の半導体層48、および、上記の第1半導体層47Xよりもバンドギャップが狭くなるように形成されている。   In the present embodiment, the second semiconductor layer 47Y is formed so that the band gap is narrower than that of the silicon semiconductor. That is, the second semiconductor layer 47Y is formed to have a narrower band gap than the semiconductor layer 48 of the pixel switching element 31 and the first semiconductor layer 47X.

ここでは、第2半導体層47Yは、シリコン(Si)とゲルマニウム(Ge)とを含むように形成されている。たとえば、SiGe(1−x)の組成式において、0.6<x<1の関係になるように、第2半導体層47Yが形成されている。特に、x=0.8にすることが好適であるので、本実施形態においては、Si0.8Ge0.2の組成式に対応するように、第2半導体層47Yが形成されている。 Here, the second semiconductor layer 47Y is formed to include silicon (Si) and germanium (Ge). For example, in the composition formula of Si x Ge (1-x) , the second semiconductor layer 47Y is formed so as to have a relationship of 0.6 <x <1. In particular, since it is preferable to set x = 0.8, in the present embodiment, the second semiconductor layer 47Y is formed so as to correspond to the composition formula of Si 0.8 Ge 0.2 .

(製造方法)
以下より、本実施形態の液晶表示装置100の製造方法において、画素スイッチング素子31と位置センサ素子32aとを形成する工程について説明する。
(Production method)
Hereinafter, a process of forming the pixel switching element 31 and the position sensor element 32a in the method for manufacturing the liquid crystal display device 100 of the present embodiment will be described.

図10と図11は、本発明にかかる実施形態2において、画素スイッチング素子31と位置センサ素子32aとを形成する工程を示す断面図である。   10 and 11 are cross-sectional views showing a process of forming the pixel switching element 31 and the position sensor element 32a in the second embodiment according to the present invention.

図10と図11とにおいては、(a),(b),(c),(d),(e),(f),(g)の順にて、画素スイッチング素子31と位置センサ素子32aとを製造する際の各製造工程を示しており、この製造工程を実施することによって、図9に示すように、画素スイッチング素子31と位置センサ素子32aと形成する。   10 and 11, the pixel switching element 31 and the position sensor element 32a are arranged in the order of (a), (b), (c), (d), (e), (f), and (g). Each manufacturing process is shown in FIG. 9. By performing this manufacturing process, the pixel switching element 31 and the position sensor element 32a are formed as shown in FIG.

各工程について順次説明する。   Each process will be described sequentially.

まず、図10(a)に示すように、実施形態1の場合と同様にして、画素スイッチング素子31のゲート電極45と、位置センサ素子32aのコントロール電極43とを形成する。   First, as shown in FIG. 10A, the gate electrode 45 of the pixel switching element 31 and the control electrode 43 of the position sensor element 32a are formed in the same manner as in the first embodiment.

つぎに、図10(b)に示すように、実施形態1の場合と同様にして、画素スイッチング素子31のゲート絶縁膜46gと、位置センサ素子32aの絶縁膜46sとを形成する。   Next, as shown in FIG. 10B, the gate insulating film 46g of the pixel switching element 31 and the insulating film 46s of the position sensor element 32a are formed in the same manner as in the first embodiment.

つぎに、図10(c)に示すように、多結晶シリコン膜Spを形成する。   Next, as shown in FIG. 10C, a polycrystalline silicon film Sp is formed.

ここでは、絶縁膜46を被覆するように、TFTアレイ基板201の表面に多結晶シリコン膜Spを形成する。   Here, a polycrystalline silicon film Sp is formed on the surface of the TFT array substrate 201 so as to cover the insulating film 46.

具体的には、シラン(SiH),ジシラン(Si),トリシラン(Si)などのようにシリコン元素を含有した分子からなるガスを用いて、PECVD法にて、アモルファスシリコン膜(図示無し)を、たとえば、40nm厚になるように成膜する。そして、その後、エキシマレーザーを用いて、そのアモルファスシリコン膜を多結晶化し、多結晶シリコン膜Spを形成する。 Specifically, amorphous silicon is formed by PECVD using a gas composed of molecules containing silicon elements such as silane (SiH 4 ), disilane (Si 2 H 6 ), trisilane (Si 3 H 8 ), and the like. A film (not shown) is formed to a thickness of 40 nm, for example. Then, using an excimer laser, the amorphous silicon film is polycrystallized to form a polycrystal silicon film Sp.

つぎに、図10(d)に示すように、ストッパー酸化膜Soxを形成する。   Next, as shown in FIG. 10D, a stopper oxide film Sox is formed.

ここでは、多結晶シリコン膜Spを被覆するように、TFTアレイ基板201の表面に、ストッパー酸化膜Soxを形成する。たとえば、CVD法によって、20nm厚のシリコン酸化膜(SiO)を多結晶シリコン膜Sp上に成膜することによって、ストッパー酸化膜Soxを形成する。 Here, a stopper oxide film Sox is formed on the surface of the TFT array substrate 201 so as to cover the polycrystalline silicon film Sp. For example, a stopper oxide film Sox is formed by depositing a 20 nm thick silicon oxide film (SiO 2 ) on the polycrystalline silicon film Sp by the CVD method.

つぎに、図11(e)に示すように、ストッパー酸化膜Soxをパターン加工する。   Next, as shown in FIG. 11E, the stopper oxide film Sox is patterned.

ここでは、上述した第2半導体層47Yを形成する領域に開口APを形成するように、リソグラフィ技術によって、ストッパー酸化膜Soxをパターン加工する。   Here, the stopper oxide film Sox is patterned by a lithography technique so as to form the opening AP in the region where the second semiconductor layer 47Y is formed.

つぎに、図11(f)に示すように、第2半導体層47Yを形成する。   Next, as shown in FIG. 11F, the second semiconductor layer 47Y is formed.

ここでは、ストッパー酸化膜Soxに形成した開口AP内を埋めるように、シリコン・ゲルマニウム半導体を選択成長させることで、第2半導体層47Yを形成する。   Here, the second semiconductor layer 47Y is formed by selectively growing a silicon-germanium semiconductor so as to fill the opening AP formed in the stopper oxide film Sox.

具体的には、まず、シラン(SiH),ジシラン(Si),トリシラン(Si)などのようにシリコン元素を含有した分子からなるガスに、GeHのようにゲルマニウム元素を含有した分子からなるガスを混合した混合ガスを用いて、PECVD法にて、アモルファスなSiGe(1−x)膜(図示無し)を成膜する。たとえば、30nm厚になるように成膜する。 Specifically, first, a germanium element such as GeH 4 is used as a gas composed of molecules containing a silicon element such as silane (SiH 4 ), disilane (Si 2 H 6 ), trisilane (Si 3 H 8 ), and the like. An amorphous Si x Ge (1-x) film (not shown) is formed by a PECVD method using a mixed gas in which a gas composed of molecules containing is mixed. For example, the film is formed to have a thickness of 30 nm.

つぎに、図11(g)に示すように、画素スイッチング素子31の半導体層48と、位置センサ素子32aの第1半導体層47Xとを形成する。   Next, as shown in FIG. 11G, the semiconductor layer 48 of the pixel switching element 31 and the first semiconductor layer 47X of the position sensor element 32a are formed.

ここでは、上述した画素スイッチング素子31の半導体層48と、位置センサ素子32aの第1半導体層47Xとの形状に対応するように、多結晶シリコン膜Spをパターン加工することによって、画素スイッチング素子31の半導体層48と、位置センサ素子32aの第1半導体層47Xとを形成する   Here, by patterning the polycrystalline silicon film Sp so as to correspond to the shapes of the semiconductor layer 48 of the pixel switching element 31 and the first semiconductor layer 47X of the position sensor element 32a, the pixel switching element 31 is processed. The semiconductor layer 48 and the first semiconductor layer 47X of the position sensor element 32a are formed.

つぎに、図9に示すように、画素スイッチング素子31と位置センサ素子32aとを完成させる。   Next, as shown in FIG. 9, the pixel switching element 31 and the position sensor element 32a are completed.

ここでは、実施形態1と同様にして、不純物を各半導体層にドープすることによって、画素スイッチング素子31と位置センサ素子32aとを完成させる。   Here, as in the first embodiment, the pixel switching element 31 and the position sensor element 32a are completed by doping impurities into each semiconductor layer.

その後、図9に示すように、実施形態1と同様にして、液晶パネル200を形成する。なお、図9においては、上記のストッパー酸化膜Soxは層間絶縁膜49として機能するので図示を省略している。   Thereafter, as shown in FIG. 9, a liquid crystal panel 200 is formed in the same manner as in the first embodiment. In FIG. 9, the stopper oxide film Sox functions as the interlayer insulating film 49 and is not shown.

以上のように、本実施形態においては、位置センサ素子32aは、光を受光して受光データを生成する半導体層47が、第1半導体層47Xと第2半導体層47Yとを含む。ここでは、第1半導体層47Xは、画素スイッチング素子31の半導体層48とバンドギャップが互いに同じになるように形成されている。このため、同一工程にて形成可能であるので、効率的に製造することができる。この他に、他の周辺回路についても、同一工程にて形成できるので、製造の効率化を実現できる。また、第2半導体層47Yは、画素スイッチング素子31の半導体層48よりもバンドギャップが狭くなるように形成されている。そして、さらに、第2半導体層47Yは、第1半導体層47Xよりも液晶パネル200の正面側に位置するように、第1半導体層47Xの上に積層されている。この場合には、第2半導体層47Yにおいて歪みが与えられるので、キャリア移動度を向上できる。このため、本実施形態は、位置センサ素子32aにおいて高感度に受光データを生成することができると共に、画素スイッチング素子31においてリーク電流が生ずることを防止することができる。   As described above, in the present embodiment, in the position sensor element 32a, the semiconductor layer 47 that receives light and generates received light data includes the first semiconductor layer 47X and the second semiconductor layer 47Y. Here, the first semiconductor layer 47X is formed so that the band gap is the same as that of the semiconductor layer 48 of the pixel switching element 31. For this reason, since it can form in the same process, it can manufacture efficiently. In addition, since other peripheral circuits can be formed in the same process, manufacturing efficiency can be improved. The second semiconductor layer 47Y is formed so that the band gap is narrower than the semiconductor layer 48 of the pixel switching element 31. Further, the second semiconductor layer 47Y is stacked on the first semiconductor layer 47X so as to be positioned on the front side of the liquid crystal panel 200 with respect to the first semiconductor layer 47X. In this case, since the second semiconductor layer 47Y is distorted, carrier mobility can be improved. For this reason, this embodiment can generate light reception data with high sensitivity in the position sensor element 32a, and can prevent leakage current from occurring in the pixel switching element 31.

したがって、本実施形態は、位置センサ素子32によって得られた受光データのS/N比を改善することができる。   Therefore, the present embodiment can improve the S / N ratio of the received light data obtained by the position sensor element 32.

<実施形態3>
以下より、本発明にかかる実施形態3について説明する。
<Embodiment 3>
Hereinafter, Embodiment 3 according to the present invention will be described.

本実施形態は、画素スイッチング素子31と位置センサ素子32aとを形成する工程における動作が、実施形態2と異なる。この点を除き、本実施形態は、実施形態2と同様である。このため、重複する個所については、説明を省略する。   The present embodiment is different from the second embodiment in the operation in the process of forming the pixel switching element 31 and the position sensor element 32a. Except for this point, the present embodiment is the same as the second embodiment. For this reason, description is abbreviate | omitted about the overlapping part.

図12は、本発明にかかる実施形態3において、画素スイッチング素子31と位置センサ素子32aとを形成する工程を示す断面図である。   FIG. 12 is a cross-sectional view showing a process of forming the pixel switching element 31 and the position sensor element 32a in the third embodiment according to the present invention.

図12においては、図10に示した工程に続いて実施される工程を示しており、図10(a),(b),(c),(d)の実施後に、図12(e),(f),(g)の順にて、画素スイッチング素子31と位置センサ素子32aとを製造する際の各製造工程を示している。本実施形態においては、この製造工程を実施することによって、実施形態2と同様に、図9に示すように、画素スイッチング素子31と位置センサ素子32aと形成する。   In FIG. 12, the process performed after the process shown in FIG. 10 is shown, and after performing FIG. 10 (a), (b), (c), (d), FIG. Each manufacturing process when manufacturing the pixel switching element 31 and the position sensor element 32a in the order of (f) and (g) is shown. In the present embodiment, by performing this manufacturing process, the pixel switching element 31 and the position sensor element 32a are formed as shown in FIG.

各工程について順次説明する。   Each process will be described sequentially.

まず、図10(a),(b)に示すように、実施形態2の場合と同様にして、画素スイッチング素子31のゲート電極45と、位置センサ素子32aのコントロール電極43とを形成後、画素スイッチング素子31のゲート絶縁膜46gと、位置センサ素子32aの絶縁膜46sとを形成する。   First, as shown in FIGS. 10A and 10B, after forming the gate electrode 45 of the pixel switching element 31 and the control electrode 43 of the position sensor element 32 a in the same manner as in the second embodiment, A gate insulating film 46g of the switching element 31 and an insulating film 46s of the position sensor element 32a are formed.

つぎに、図10(c),(d)に示すように、実施形態2の場合と同様にして、多結晶シリコン膜Spを形成後、ストッパー酸化膜Soxを形成する。   Next, as shown in FIGS. 10C and 10D, the stopper oxide film Sox is formed after the polycrystalline silicon film Sp is formed in the same manner as in the second embodiment.

つぎに、図12(e)に示すように、実施形態2と同様にして、ストッパー酸化膜Soxをパターン加工し、第2半導体層47Yを形成する領域に、開口APを形成する。   Next, as shown in FIG. 12E, similarly to the second embodiment, the stopper oxide film Sox is patterned to form an opening AP in a region where the second semiconductor layer 47Y is to be formed.

つぎに、図12(f)に示すように、シリコン・ゲルマニウム半導体層Sgを形成する。   Next, as shown in FIG. 12F, a silicon-germanium semiconductor layer Sg is formed.

ここでは、TFTアレイ基板201の表面にシリコン・ゲルマニウム半導体層Sgを形成することによって、開口AP内にシリコン・ゲルマニウム半導体層Sgを埋め込むと共に、ストッパー酸化膜Soxの表面を被覆させる。   Here, by forming a silicon-germanium semiconductor layer Sg on the surface of the TFT array substrate 201, the silicon-germanium semiconductor layer Sg is embedded in the opening AP and the surface of the stopper oxide film Sox is covered.

具体的には、まず、シラン(SiH),ジシラン(Si),トリシラン(Si)などのようにシリコン元素を含有した分子からなるガスに、GeHのようにゲルマニウム元素を含有した分子からなるガスを混合した混合ガスを用いて、PECVD法にて、アモルファスなSiGe(1−x)膜(図示無し)を成膜する。 Specifically, first, a germanium element such as GeH 4 is used as a gas composed of molecules containing a silicon element such as silane (SiH 4 ), disilane (Si 2 H 6 ), trisilane (Si 3 H 8 ), and the like. An amorphous Si x Ge (1-x) film (not shown) is formed by a PECVD method using a mixed gas in which a gas composed of molecules containing is mixed.

そして、たとえば、エキシマレーザーを用いて、そのアモルファスなSiGe(1−x)膜を多結晶化し、シリコン・ゲルマニウム半導体層Sgを形成する。なお、高速アニール処理(RTA:Rapid Thermal anneal))によって、多結晶化を行ってもよい。 Then, for example, using an excimer laser, the amorphous Si x Ge (1-x) film is polycrystallized to form the silicon-germanium semiconductor layer Sg. Note that polycrystallization may be performed by high-speed annealing (RTA: Rapid Thermal annealing).

つぎに、図12(g)に示すように、画素スイッチング素子31の半導体層48と、位置センサ素子32aの第1半導体層47Xおよび第2半導体層47Yとを形成する。   Next, as shown in FIG. 12G, the semiconductor layer 48 of the pixel switching element 31, and the first semiconductor layer 47X and the second semiconductor layer 47Y of the position sensor element 32a are formed.

ここでは、シリコン・ゲルマニウム半導体層Sgをエッチバックし、ストッパー酸化膜Soxに形成した開口AP内に、そのシリコン・ゲルマニウム半導体47gが埋め込まれた状態にすることによって、位置センサ素子32aの第2半導体層47Yを形成する。   Here, the silicon-germanium semiconductor layer Sg is etched back so that the silicon-germanium semiconductor 47g is embedded in the opening AP formed in the stopper oxide film Sox, thereby the second semiconductor of the position sensor element 32a. Layer 47Y is formed.

そして、上述した画素スイッチング素子31の半導体層48と、位置センサ素子32aの第1半導体層47Xとの形状に対応するように、多結晶シリコン膜Spをパターン加工することによって、画素スイッチング素子31の半導体層48と、位置センサ素子32aの第1半導体層47Xとを形成する。具体的には、ストッパー酸化膜Soxと多結晶シリコン膜Spとを、順次、リソグラフィ技術を用いてパターン加工する。これにより、上述した画素スイッチング素子31の半導体層48と、位置センサ素子32aの第1半導体層47Xとの形状に、多結晶シリコン膜Spがパターン加工される。   Then, the polycrystalline silicon film Sp is patterned so as to correspond to the shapes of the semiconductor layer 48 of the pixel switching element 31 and the first semiconductor layer 47X of the position sensor element 32a. The semiconductor layer 48 and the first semiconductor layer 47X of the position sensor element 32a are formed. Specifically, the stopper oxide film Sox and the polycrystalline silicon film Sp are sequentially patterned using a lithography technique. Thereby, the polycrystalline silicon film Sp is patterned into the shapes of the semiconductor layer 48 of the pixel switching element 31 and the first semiconductor layer 47X of the position sensor element 32a.

つぎに、図9に示すように、画素スイッチング素子31と位置センサ素子32aとを完成させる。   Next, as shown in FIG. 9, the pixel switching element 31 and the position sensor element 32a are completed.

ここでは、実施形態1と同様にして、不純物を各半導体層にドープすることによって、画素スイッチング素子31と位置センサ素子32aとを完成させる。   Here, as in the first embodiment, the pixel switching element 31 and the position sensor element 32a are completed by doping impurities into each semiconductor layer.

その後、図9に示すように、実施形態1と同様にして、液晶パネル200を形成する。   Thereafter, as shown in FIG. 9, a liquid crystal panel 200 is formed in the same manner as in the first embodiment.

以上のように、本実施形態においては、液晶パネル200は、実施形態2と同様な構成にて形成されているので、実施形態2と同様に、位置センサ素子32によって得られた受光データのS/N比を改善することができる。   As described above, in the present embodiment, the liquid crystal panel 200 is formed in the same configuration as in the second embodiment, and therefore, the S of the received light data obtained by the position sensor element 32 is the same as in the second embodiment. / N ratio can be improved.

<実施形態4>
以下より、本発明にかかる実施形態4について説明する。
<Embodiment 4>
Hereinafter, Embodiment 4 according to the present invention will be described.

(液晶パネルの表示領域の構成) (Configuration of LCD panel display area)

本実施形態は、実施形態1と同様な構造であるが(つまり、図3に示した構成と同様)、画素スイッチング素子31の半導体層48の組成と、位置センサ素子32aの半導体層47の組成とが実施形態1と異なる。この点を除き、本実施形態は、実施形態1と同様である。このため、重複する個所については、説明を省略する。   Although the present embodiment has the same structure as that of the first embodiment (that is, the same as the configuration shown in FIG. 3), the composition of the semiconductor layer 48 of the pixel switching element 31 and the composition of the semiconductor layer 47 of the position sensor element 32a. Is different from the first embodiment. Except for this point, the present embodiment is the same as the first embodiment. For this reason, description is abbreviate | omitted about the overlapping part.

本実施形態においては、画素スイッチング素子31の半導体層48は、実施形態1と異なり、シリコン(Si)とゲルマニウム(Ge)とを含む半導体層ではなく、ゲルマニウム(Ge)を含まない、シリコン半導体層として形成されている。   In this embodiment, unlike the first embodiment, the semiconductor layer 48 of the pixel switching element 31 is not a semiconductor layer containing silicon (Si) and germanium (Ge), but a silicon semiconductor layer containing no germanium (Ge). It is formed as.

そして、画素スイッチング素子31の半導体層48は、実施形態1と同様に、ゲート電極45に対応するようにチャネル形成領域が形成されると共に、そのチャネル領域を挟むように一対のソース・ドレイン領域48A,48Bが形成されている。   In the semiconductor layer 48 of the pixel switching element 31, a channel formation region is formed so as to correspond to the gate electrode 45, and a pair of source / drain regions 48 </ b> A is interposed so as to sandwich the channel region, as in the first embodiment. , 48B are formed.

一方で、位置センサ素子32aの半導体層47は、画素スイッチング素子31の半導体層48と同様に、シリコン半導体層として形成されているが、i層47iに対応する部分が、シリコン半導体よりもバンドギャップが狭くなるように形成されている。詳細については後述するが、本実施形態においては、この半導体層47においてi層47iに対応する部分が、ゲルマニウム(Ge)を含むように形成されている。   On the other hand, the semiconductor layer 47 of the position sensor element 32a is formed as a silicon semiconductor layer similarly to the semiconductor layer 48 of the pixel switching element 31, but the portion corresponding to the i layer 47i has a band gap larger than that of the silicon semiconductor. Is formed to be narrow. Although details will be described later, in this embodiment, a portion of the semiconductor layer 47 corresponding to the i layer 47i is formed to contain germanium (Ge).

(製造方法)
以下より、本実施形態の液晶表示装置100の製造方法において、画素スイッチング素子31と位置センサ素子32aとを形成する工程について説明する。
(Production method)
Hereinafter, a process of forming the pixel switching element 31 and the position sensor element 32a in the method for manufacturing the liquid crystal display device 100 of the present embodiment will be described.

図13と図14は、本発明にかかる実施形態4において、画素スイッチング素子31と位置センサ素子32aとを形成する工程を示す断面図である。   FIGS. 13 and 14 are cross-sectional views showing a process of forming the pixel switching element 31 and the position sensor element 32a in the fourth embodiment according to the present invention.

図13と図14とにおいては、(a),(b),(c),(d),(e),(f),(g),(h)の順にて、画素スイッチング素子31と位置センサ素子32aとを製造する際の各製造工程を示しており、この製造工程を実施することによって、図3に示すように、画素スイッチング素子31と位置センサ素子32aと形成する。   13 and 14, the pixel switching element 31 and the position are arranged in the order of (a), (b), (c), (d), (e), (f), (g), (h). Each manufacturing process when manufacturing the sensor element 32a is shown. By performing this manufacturing process, the pixel switching element 31 and the position sensor element 32a are formed as shown in FIG.

各工程について順次説明する。   Each process will be described sequentially.

まず、図13(a)に示すように、実施形態2の場合と同様にして、画素スイッチング素子31のゲート電極45と、位置センサ素子32aのコントロール電極43とを形成後、図13(b)に示すように、画素スイッチング素子31のゲート絶縁膜46gと、位置センサ素子32aの絶縁膜46sとを形成するように、絶縁層46を設ける。   First, as shown in FIG. 13A, after forming the gate electrode 45 of the pixel switching element 31 and the control electrode 43 of the position sensor element 32a in the same manner as in the second embodiment, FIG. As shown, the insulating layer 46 is provided so as to form the gate insulating film 46g of the pixel switching element 31 and the insulating film 46s of the position sensor element 32a.

つぎに、図13(c)に示すように、アモルファスシリコン膜Saを形成する。   Next, as shown in FIG. 13C, an amorphous silicon film Sa is formed.

ここでは、絶縁層46を被覆するように、TFTアレイ基板201の表面にアモルファスシリコン膜Saを形成する。   Here, an amorphous silicon film Sa is formed on the surface of the TFT array substrate 201 so as to cover the insulating layer 46.

具体的には、シラン(SiH),ジシラン(Si),トリシラン(Si)などのようにシリコン元素を含有した分子からなるガスを用いて、PECVD法にて、アモルファスシリコン膜Saを成膜する。 Specifically, amorphous silicon is formed by PECVD using a gas composed of molecules containing silicon elements such as silane (SiH 4 ), disilane (Si 2 H 6 ), trisilane (Si 3 H 8 ), and the like. A film Sa is formed.

つぎに、図13(d)に示すように、フォトレジスト膜R1を形成する。   Next, as shown in FIG. 13D, a photoresist film R1 is formed.

ここでは、アモルファスシリコン膜Saを被覆するように、TFTアレイ基板201の表面に、フォトレジスト膜R1を形成する。   Here, a photoresist film R1 is formed on the surface of the TFT array substrate 201 so as to cover the amorphous silicon film Sa.

つぎに、図14(e)に示すように、フォトレジスト膜R1をパターン加工する。   Next, as shown in FIG. 14E, the photoresist film R1 is patterned.

ここでは、フォトレジスト膜R1において、上述したi層47iに対応する領域に、開口APを形成するように、リソグラフィ技術によって、フォトレジスト膜R1をパターン加工する。   Here, in the photoresist film R1, the photoresist film R1 is patterned by a lithography technique so as to form an opening AP in a region corresponding to the i layer 47i described above.

つぎに、図14(f)に示すように、アモルファスシリコン膜Saに対してイオン注入を実施する。   Next, as shown in FIG. 14F, ion implantation is performed on the amorphous silicon film Sa.

ここでは、イオン注入法によって、ゲルマニウム(Ge)イオンをアモルファスシリコン膜Saに注入する。   Here, germanium (Ge) ions are implanted into the amorphous silicon film Sa by ion implantation.

つぎに、図14(g)に示すように、アモルファスシリコン膜Saを多結晶化し、多結晶シリコン膜Spを形成する。   Next, as shown in FIG. 14G, the amorphous silicon film Sa is polycrystallized to form a polycrystalline silicon film Sp.

ここでは、フォトレジスト膜R1を除去した後に、エキシマレーザーを用いて、アモルファスシリコン膜Saを多結晶化することによって、多結晶シリコン膜Spを形成する。   Here, after removing the photoresist film R1, the amorphous silicon film Sa is polycrystallized using an excimer laser to form the polycrystalline silicon film Sp.

つぎに、図14(h)に示すように、画素スイッチング素子31の半導体層48と、位置センサ素子32aの半導体層47とを形成する。   Next, as shown in FIG. 14H, the semiconductor layer 48 of the pixel switching element 31 and the semiconductor layer 47 of the position sensor element 32a are formed.

ここでは、上述した画素スイッチング素子31の半導体層48と、位置センサ素子32aの半導体層47との形状に対応するように、多結晶シリコン膜Spをフォトリソグラフィ技術でパターン加工することによって、画素スイッチング素子31の半導体層48と、位置センサ素子32aの半導体層47とを形成する。   Here, pixel switching is performed by patterning the polycrystalline silicon film Sp by photolithography so as to correspond to the shapes of the semiconductor layer 48 of the pixel switching element 31 and the semiconductor layer 47 of the position sensor element 32a. A semiconductor layer 48 of the element 31 and a semiconductor layer 47 of the position sensor element 32a are formed.

つぎに、図3に示すように、画素スイッチング素子31と位置センサ素子32aとを完成させる。   Next, as shown in FIG. 3, the pixel switching element 31 and the position sensor element 32a are completed.

ここでは、実施形態1と同様にして、不純物を各半導体層にドープすることによって、画素スイッチング素子31と位置センサ素子32aとを完成させる。   Here, as in the first embodiment, the pixel switching element 31 and the position sensor element 32a are completed by doping impurities into each semiconductor layer.

その後、図3に示すように、実施形態1と同様にして、液晶パネル200を形成する。   Thereafter, as shown in FIG. 3, the liquid crystal panel 200 is formed in the same manner as in the first embodiment.

以上のように、本実施形態においては、位置センサ素子32aは、光を受光して受光データを生成する半導体層47が、ゲルマニウムを含み、画素スイッチング素子31の半導体層48よりもバンドギャップが狭くなるように形成されている。このため、本実施形態は、高感度に受光データを生成することができると共に、画素スイッチング素子31においてリーク電流が生ずることを防止することができる。   As described above, in the present embodiment, in the position sensor element 32a, the semiconductor layer 47 that receives light and generates received light data contains germanium, and the band gap is narrower than the semiconductor layer 48 of the pixel switching element 31. It is formed to become. For this reason, this embodiment can generate light reception data with high sensitivity, and can prevent a leak current from occurring in the pixel switching element 31.

<実施形態5>
以下より、本発明にかかる実施形態5について説明する。
<Embodiment 5>
The fifth embodiment according to the present invention will be described below.

本実施形態は、画素スイッチング素子31と位置センサ素子32aとを形成する工程における動作が、実施形態4と異なる。この点を除き、本実施形態は、実施形態4と同様である。このため、重複する個所については、説明を省略する。   The present embodiment is different from the fourth embodiment in the operation in the process of forming the pixel switching element 31 and the position sensor element 32a. Except for this point, the present embodiment is the same as the fourth embodiment. For this reason, description is abbreviate | omitted about the overlapping part.

図15と図16は、本発明にかかる実施形態5において、画素スイッチング素子31と位置センサ素子32aとを形成する工程を示す断面図である。   FIGS. 15 and 16 are cross-sectional views showing the steps of forming the pixel switching element 31 and the position sensor element 32a in the fifth embodiment of the present invention.

図15と図16とにおいては、(a),(b),(c),(d),(e),(f),(g),(h)の順にて、画素スイッチング素子31と位置センサ素子32aとを製造する際の各製造工程を示しており、この製造工程を実施することによって、図3に示すように、画素スイッチング素子31と位置センサ素子32aと形成する。   15 and 16, the pixel switching element 31 and the position are arranged in the order of (a), (b), (c), (d), (e), (f), (g), (h). Each manufacturing process when manufacturing the sensor element 32a is shown. By performing this manufacturing process, the pixel switching element 31 and the position sensor element 32a are formed as shown in FIG.

各工程について順次説明する。   Each process will be described sequentially.

まず、図15(a)に示すように、実施形態4の場合と同様にして、画素スイッチング素子31のゲート電極45と、位置センサ素子32aのコントロール電極43とを形成後、図15(b)に示すように、画素スイッチング素子31のゲート絶縁膜46gと、位置センサ素子32aの絶縁膜46sとを形成するように、絶縁層46を設ける。   First, as shown in FIG. 15A, after forming the gate electrode 45 of the pixel switching element 31 and the control electrode 43 of the position sensor element 32a in the same manner as in the case of the fourth embodiment, FIG. As shown, the insulating layer 46 is provided so as to form the gate insulating film 46g of the pixel switching element 31 and the insulating film 46s of the position sensor element 32a.

つぎに、図15(c)に示すように、多結晶シリコン膜Spを形成する。   Next, as shown in FIG. 15C, a polycrystalline silicon film Sp is formed.

ここでは、絶縁層46を被覆するように、TFTアレイ基板201の表面に多結晶シリコン膜Spを形成する。   Here, a polycrystalline silicon film Sp is formed on the surface of the TFT array substrate 201 so as to cover the insulating layer 46.

具体的には、シラン(SiH),ジシラン(Si),トリシラン(Si)などのようにシリコン元素を含有した分子からなるガスを用いて、PECVD法にて、アモルファスシリコン膜(図示無し)を成膜する。そして、その後、エキシマレーザーを用いて、そのアモルファスシリコン膜を多結晶化し、多結晶シリコン膜Spを形成する。 Specifically, amorphous silicon is formed by PECVD using a gas composed of molecules containing silicon elements such as silane (SiH 4 ), disilane (Si 2 H 6 ), trisilane (Si 3 H 8 ), and the like. A film (not shown) is formed. Then, using an excimer laser, the amorphous silicon film is polycrystallized to form a polycrystal silicon film Sp.

つぎに、図15(d)に示すように、ストッパー酸化膜Soxを形成する。   Next, as shown in FIG. 15D, a stopper oxide film Sox is formed.

ここでは、多結晶シリコン膜Spを被覆するように、TFTアレイ基板201の表面に、ストッパー酸化膜Soxを形成する。たとえば、CVD法によってシリコン酸化膜(SiO)を多結晶シリコン膜Sp上に成膜することによって、ストッパー酸化膜Soxを形成する。 Here, a stopper oxide film Sox is formed on the surface of the TFT array substrate 201 so as to cover the polycrystalline silicon film Sp. For example, the stopper oxide film Sox is formed by forming a silicon oxide film (SiO 2 ) on the polycrystalline silicon film Sp by the CVD method.

つぎに、図15(e)に示すように、フォトレジスト膜R1を形成する。   Next, as shown in FIG. 15E, a photoresist film R1 is formed.

ここでは、ストッパー酸化膜Soxを被覆するように、TFTアレイ基板201の表面に、フォトレジスト膜R1を形成する。   Here, a photoresist film R1 is formed on the surface of the TFT array substrate 201 so as to cover the stopper oxide film Sox.

つぎに、図16(f)に示すように、フォトレジスト膜R1をパターン加工する。   Next, as shown in FIG. 16F, the photoresist film R1 is patterned.

ここでは、フォトレジスト膜R1においてi層47iに対応する領域に開口APを形成するように、リソグラフィ技術によって、フォトレジスト膜R1をパターン加工する。   Here, the photoresist film R1 is patterned by a lithography technique so as to form an opening AP in a region corresponding to the i layer 47i in the photoresist film R1.

つぎに、図16(g)に示すように、多結晶シリコン膜Spに対してイオン注入を実施する。   Next, as shown in FIG. 16G, ion implantation is performed on the polycrystalline silicon film Sp.

ここでは、イオン注入法によって、ゲルマニウム(Ge)イオンを多結晶シリコン膜Spに注入する。   Here, germanium (Ge) ions are implanted into the polycrystalline silicon film Sp by ion implantation.

そして、たとえば、高速アニール処理によって、ゲルマニウム(Ge)イオンが注入された多結晶シリコン膜Spを熱処理する。これにより、多結晶シリコン膜Spにおいてゲルマニウム(Ge)イオンが注入された部分を、多結晶のシリコン・ゲルマニウム半導体のi層47iとして形成する。シリコン・ゲルマニウム半導体は、シリコン半導体に比べて、低温で結晶化されるため、高速アニール処理で高い結晶性の半導体膜にすることができる。ただし、エキシマレーザーを用いて、結晶化を実施してもよい。   Then, for example, the polycrystalline silicon film Sp into which germanium (Ge) ions are implanted is heat-treated by high-speed annealing. As a result, a portion of the polycrystalline silicon film Sp into which germanium (Ge) ions are implanted is formed as an i layer 47 i of a polycrystalline silicon-germanium semiconductor. Since a silicon-germanium semiconductor is crystallized at a lower temperature than a silicon semiconductor, a high crystalline semiconductor film can be formed by high-speed annealing. However, crystallization may be performed using an excimer laser.

つぎに、図16(h)に示すように、画素スイッチング素子31の半導体層48と、位置センサ素子32aの半導体層47とを形成する。   Next, as shown in FIG. 16H, the semiconductor layer 48 of the pixel switching element 31 and the semiconductor layer 47 of the position sensor element 32a are formed.

ここでは、上述した画素スイッチング素子31の半導体層48と、位置センサ素子32aの半導体層47との形状に対応するように、多結晶シリコン膜Spとストッパー酸化膜Soxとをフォトリソグラフィ技術でパターン加工する。これにより、画素スイッチング素子31の半導体層48と、位置センサ素子32aの半導体層47とを形成する。   Here, the polycrystalline silicon film Sp and the stopper oxide film Sox are patterned by a photolithography technique so as to correspond to the shapes of the semiconductor layer 48 of the pixel switching element 31 and the semiconductor layer 47 of the position sensor element 32a. To do. Thereby, the semiconductor layer 48 of the pixel switching element 31 and the semiconductor layer 47 of the position sensor element 32a are formed.

つぎに、図3に示すように、画素スイッチング素子31と位置センサ素子32aとを完成させる。   Next, as shown in FIG. 3, the pixel switching element 31 and the position sensor element 32a are completed.

ここでは、実施形態4と同様にして、不純物を各半導体層にドープすることによって、画素スイッチング素子31と位置センサ素子32aとを完成させる。   Here, as in the fourth embodiment, the pixel switching element 31 and the position sensor element 32a are completed by doping impurities into each semiconductor layer.

その後、図3に示すように、実施形態4と同様にして、液晶パネル200を形成する。なお、図3においては、上記のストッパー酸化膜Soxは層間絶縁膜49として機能するので図示を省略している。   Thereafter, as shown in FIG. 3, a liquid crystal panel 200 is formed in the same manner as in the fourth embodiment. In FIG. 3, since the stopper oxide film Sox functions as the interlayer insulating film 49, the illustration is omitted.

以上のように、本実施形態においては、実施形態4と同様に、位置センサ素子32aは、光を受光して受光データを生成する半導体層47が、ゲルマニウムを含み、画素スイッチング素子31の半導体層48よりもバンドギャップが狭くなるように形成されている。このため、本実施形態は、高感度に受光データを生成することができると共に、画素スイッチング素子31においてリーク電流が生ずることを防止することができる。   As described above, in the present embodiment, as in the fourth embodiment, in the position sensor element 32a, the semiconductor layer 47 that receives light and generates light reception data contains germanium, and the semiconductor layer of the pixel switching element 31 The band gap is narrower than 48. For this reason, this embodiment can generate light reception data with high sensitivity, and can prevent a leak current from occurring in the pixel switching element 31.

<実施形態6>
以下より、本発明にかかる実施形態6について説明する。
<Embodiment 6>
The sixth embodiment according to the present invention will be described below.

(液晶パネルの表示領域の構成)
図17は、本発明にかかる実施形態6において、液晶パネル200における表示領域PAに設けられた画素Pの概略を模式的に示す断面図である。図17は、前述の図3と同様に、図4においてX1−X2部分に対応する部分を示している。
(Configuration of LCD panel display area)
FIG. 17 is a cross-sectional view schematically showing an outline of the pixel P provided in the display area PA in the liquid crystal panel 200 in Embodiment 6 according to the present invention. FIG. 17 shows a portion corresponding to the X1-X2 portion in FIG. 4 as in FIG.

本実施形態においては、図17に示すように、位置センサ素子32aの半導体層47の構成が、実施形態2と異なる。この点を除き、本実施形態は、実施形態1と同様である。このため、重複する個所については、説明を省略する。   In the present embodiment, as shown in FIG. 17, the configuration of the semiconductor layer 47 of the position sensor element 32a is different from that of the second embodiment. Except for this point, the present embodiment is the same as the first embodiment. For this reason, description is abbreviate | omitted about the overlapping part.

位置センサ素子32aの半導体層47は、実施形態2と同様に、コントロール電極43に対応する部分がi層47iとして形成され、さらに、そのi層47iを挟むように、p層47pとn層47nとが形成されている。   As in the second embodiment, the semiconductor layer 47 of the position sensor element 32a has a portion corresponding to the control electrode 43 formed as an i layer 47i, and a p layer 47p and an n layer 47n so as to sandwich the i layer 47i. And are formed.

また、本実施形態における位置センサ素子32aの半導体層47は、図17に示すように、実施形態2と同様に、第1半導体層47Xと、第2半導体層47Yとを含んでいる。   Further, as shown in FIG. 17, the semiconductor layer 47 of the position sensor element 32a in the present embodiment includes a first semiconductor layer 47X and a second semiconductor layer 47Y, as in the second embodiment.

この位置センサ素子32aの半導体層47において、第1半導体層47Xは、実施形態2と同様に、絶縁膜46上に形成されており、コントロール電極43に対応する部分にi層47iが設けられ、そのi層47iを挟むように、p層47pとn層47nとが形成されている。そして、第1半導体層47Xは、画素スイッチング素子31の半導体層48と同様に、ゲルマニウム(Ge)を含まない、シリコン半導体として形成されている。つまり、第1半導体層47Xは、画素スイッチング素子31の半導体層48とバンドギャップが互いに同じになるように形成されている。   In the semiconductor layer 47 of the position sensor element 32a, the first semiconductor layer 47X is formed on the insulating film 46 as in the second embodiment, and an i layer 47i is provided in a portion corresponding to the control electrode 43, A p layer 47p and an n layer 47n are formed so as to sandwich the i layer 47i. The first semiconductor layer 47X is formed as a silicon semiconductor not containing germanium (Ge), like the semiconductor layer 48 of the pixel switching element 31. That is, the first semiconductor layer 47X is formed so that the band gap is the same as that of the semiconductor layer 48 of the pixel switching element 31.

位置センサ素子32aの半導体層47において、第2半導体層47Yは、図17に示すように、実施形態2と同様に、第1半導体層47X上に形成されている。つまり、第2半導体層47Yは、図17に示すように、第1半導体層47Xよりも対向基板202の側に位置するように、第1半導体層47X上に積層されており、画素スイッチング素子31の半導体層48よりも、対向基板202の側に位置するように形成されている。   In the semiconductor layer 47 of the position sensor element 32a, as shown in FIG. 17, the second semiconductor layer 47Y is formed on the first semiconductor layer 47X as in the second embodiment. That is, as shown in FIG. 17, the second semiconductor layer 47Y is stacked on the first semiconductor layer 47X so as to be positioned closer to the counter substrate 202 than the first semiconductor layer 47X. The semiconductor layer 48 is formed so as to be located on the counter substrate 202 side.

本実施形態においては、第2半導体層47Yは、図17に示すように、実施形態2と異なり、第1半導体層47Xと同じ形状になるようにパターン加工されている。   In the present embodiment, as shown in FIG. 17, the second semiconductor layer 47Y is patterned so as to have the same shape as the first semiconductor layer 47X, unlike the second embodiment.

そして、図9に示すように、第2半導体層47Yは、コントロール電極43に対応する部分にi層47iが設けられ、そのi層47iを挟むように、p層47pとn層47nとが形成されている。また、第2半導体層47Yは、画素スイッチング素子31の半導体層48、および、上記の第1半導体層47Xよりもバンドギャップが狭くなるように形成されている。具体的には、第2半導体層47Yは、シリコン(Si)とゲルマニウム(Ge)とを含むように形成されている。たとえば、SiGe(1−x)の組成式において、0.6<x<1の関係になるように、第2半導体層47Yが形成されている。 As shown in FIG. 9, the second semiconductor layer 47Y is provided with an i layer 47i in a portion corresponding to the control electrode 43, and a p layer 47p and an n layer 47n are formed so as to sandwich the i layer 47i. Has been. The second semiconductor layer 47Y is formed so that the band gap is narrower than the semiconductor layer 48 of the pixel switching element 31 and the first semiconductor layer 47X. Specifically, the second semiconductor layer 47Y is formed to include silicon (Si) and germanium (Ge). For example, in the composition formula of Si x Ge (1-x) , the second semiconductor layer 47Y is formed so as to have a relationship of 0.6 <x <1.

(製造方法)
以下より、本実施形態の液晶表示装置100の製造方法において、画素スイッチング素子31と位置センサ素子32aとを形成する工程について説明する。
(Production method)
Hereinafter, a process of forming the pixel switching element 31 and the position sensor element 32a in the method for manufacturing the liquid crystal display device 100 of the present embodiment will be described.

図18と図19は、本発明にかかる実施形態6において、画素スイッチング素子31と位置センサ素子32aとを形成する工程を示す断面図である。   18 and 19 are cross-sectional views showing the steps of forming the pixel switching element 31 and the position sensor element 32a in the sixth embodiment of the invention.

図18と図19とにおいては、(a),(b),(c),(d),(e),(f),の順にて、画素スイッチング素子31と位置センサ素子32aとを製造する際の各製造工程を示しており、この製造工程を実施することによって、図17に示すように、画素スイッチング素子31と位置センサ素子32aと形成する。   18 and 19, the pixel switching element 31 and the position sensor element 32a are manufactured in the order of (a), (b), (c), (d), (e), and (f). Each manufacturing process is shown, and by performing this manufacturing process, the pixel switching element 31 and the position sensor element 32a are formed as shown in FIG.

各工程について順次説明する。   Each process will be described sequentially.

まず、図18(a)に示すように、実施形態2の場合と同様にして、画素スイッチング素子31のゲート電極45と、位置センサ素子32aのコントロール電極43とを形成する。つぎに、図18(b)に示すように、実施形態2の場合と同様にして、画素スイッチング素子31のゲート絶縁膜46gと、位置センサ素子32aの絶縁膜46sとを形成する。   First, as shown in FIG. 18A, the gate electrode 45 of the pixel switching element 31 and the control electrode 43 of the position sensor element 32a are formed in the same manner as in the second embodiment. Next, as shown in FIG. 18B, similarly to the second embodiment, a gate insulating film 46g of the pixel switching element 31 and an insulating film 46s of the position sensor element 32a are formed.

つぎに、図18(c)に示すように、アモルファスシリコン膜Saを形成する。   Next, as shown in FIG. 18C, an amorphous silicon film Sa is formed.

ここでは、絶縁層46を被覆するように、TFTアレイ基板201の表面にアモルファスシリコン膜Saを形成する。   Here, an amorphous silicon film Sa is formed on the surface of the TFT array substrate 201 so as to cover the insulating layer 46.

具体的には、シラン(SiH),ジシラン(Si),トリシラン(Si)などのようにシリコン元素を含有した分子からなるガスを用いて、PECVD法にて、アモルファスシリコン膜Saを成膜する。 Specifically, amorphous silicon is formed by PECVD using a gas composed of molecules containing silicon elements such as silane (SiH 4 ), disilane (Si 2 H 6 ), trisilane (Si 3 H 8 ), and the like. A film Sa is formed.

つぎに、図19(d)に示すように、シリコン・ゲルマニウム半導体層Sgを形成する。   Next, as shown in FIG. 19D, a silicon-germanium semiconductor layer Sg is formed.

ここでは、アモルファスシリコン膜Saを被覆するように、TFTアレイ基板201にシリコン・ゲルマニウム半導体層Sgを形成する。   Here, a silicon-germanium semiconductor layer Sg is formed on the TFT array substrate 201 so as to cover the amorphous silicon film Sa.

具体的には、シラン(SiH),ジシラン(Si),トリシラン(Si)などのようにシリコン元素を含有した分子からなるガスに、GeHのようにゲルマニウム元素を含有した分子からなるガスを混合した混合ガスを用いて、PECVD法にて、アモルファスなシリコン・ゲルマニウム半導体層Sg(SiGe(1−x)膜)を形成する。 Specifically, a gas composed of molecules containing a silicon element such as silane (SiH 4 ), disilane (Si 2 H 6 ), trisilane (Si 3 H 8 ), etc. contains a germanium element such as GeH 4. An amorphous silicon-germanium semiconductor layer Sg (Si x Ge (1-x) film) is formed by PECVD using a mixed gas obtained by mixing the gases composed of the molecules.

つぎに、図19(e)に示すように、シリコン・ゲルマニウム半導体層Sgをパターン加工する。   Next, as shown in FIG. 19E, the silicon-germanium semiconductor layer Sg is patterned.

ここでは、位置センサ素子32aの第2半導体層47Yを形成する領域以外の領域に形成されたシリコン・ゲルマニウム半導体層Sgを除去し、位置センサ素子32aの第2半導体層47Yを形成する領域のみに残るように、フォトリソグラフィ技術によって、シリコン・ゲルマニウム半導体層Sgをパターン加工する。   Here, the silicon-germanium semiconductor layer Sg formed in a region other than the region where the second semiconductor layer 47Y of the position sensor element 32a is formed is removed, and only in the region where the second semiconductor layer 47Y of the position sensor element 32a is formed. The silicon-germanium semiconductor layer Sg is patterned by photolithography so as to remain.

つぎに、図19(f)に示すように、画素スイッチング素子31の半導体層48と、位置センサ素子32aの半導体層47とを形成する。   Next, as shown in FIG. 19F, a semiconductor layer 48 of the pixel switching element 31 and a semiconductor layer 47 of the position sensor element 32a are formed.

ここでは、エキシマレーザを用いて、アモルファスのシリコン・ゲルマニウム半導体層Sgと、アモルファスシリコン膜Saとを結晶化した後に、パターン加工を実施することによって、画素スイッチング素子31の半導体層48と、位置センサ素子32aの半導体層47とを形成する。   Here, after excimer laser is used to crystallize the amorphous silicon-germanium semiconductor layer Sg and the amorphous silicon film Sa, pattern processing is performed to thereby form the semiconductor layer 48 of the pixel switching element 31 and the position sensor. The semiconductor layer 47 of the element 32a is formed.

具体的には、上述した画素スイッチング素子31の半導体層48と、位置センサ素子32aの第1半導体層47Xとの形状に対応するように、多結晶シリコン膜Spをパターン加工する。これにより、画素スイッチング素子31の半導体層48と、位置センサ素子32aの半導体層47とを形成する   Specifically, the polycrystalline silicon film Sp is patterned so as to correspond to the shapes of the semiconductor layer 48 of the pixel switching element 31 and the first semiconductor layer 47X of the position sensor element 32a. Thereby, the semiconductor layer 48 of the pixel switching element 31 and the semiconductor layer 47 of the position sensor element 32a are formed.

つぎに、図9に示すように、画素スイッチング素子31と位置センサ素子32aとを完成させる。   Next, as shown in FIG. 9, the pixel switching element 31 and the position sensor element 32a are completed.

ここでは、実施形態2と同様にして、不純物を各半導体層にドープすることによって、画素スイッチング素子31と位置センサ素子32aとを完成させる。   Here, as in the second embodiment, the pixel switching element 31 and the position sensor element 32a are completed by doping impurities into each semiconductor layer.

その後、図9に示すように、実施形態2と同様にして、液晶パネル200を形成する。   Thereafter, as shown in FIG. 9, a liquid crystal panel 200 is formed in the same manner as in the second embodiment.

以上のように、本実施形態においては、実施形態2と同様に、位置センサ素子32aは、光を受光して受光データを生成する半導体層47が、第1半導体層47Xと第2半導体層47Yとを含む。そして、第1半導体層47Xは、画素スイッチング素子31の半導体層48とバンドギャップが互いに同じになるように形成されている。このため、同一工程にて形成可能であるので、効率的に製造することができる。また、第2半導体層47Yは、画素スイッチング素子31の半導体層48よりもバンドギャップが狭くなるように形成されている。そして、さらに、第2半導体層47Yは、第1半導体層47Xよりも液晶パネル200の正面側に位置するように、第1半導体層47Xの上に積層されている。このため、高感度に受光データを生成することができると共に、画素スイッチング素子31においてリーク電流が生ずることを防止することができる。   As described above, in the present embodiment, as in the second embodiment, the position sensor element 32a includes the first semiconductor layer 47X and the second semiconductor layer 47Y in which the semiconductor layer 47 that receives light and generates received light data. Including. The first semiconductor layer 47X is formed to have the same band gap as that of the semiconductor layer 48 of the pixel switching element 31. For this reason, since it can form in the same process, it can manufacture efficiently. The second semiconductor layer 47Y is formed so that the band gap is narrower than the semiconductor layer 48 of the pixel switching element 31. Further, the second semiconductor layer 47Y is stacked on the first semiconductor layer 47X so as to be positioned on the front side of the liquid crystal panel 200 with respect to the first semiconductor layer 47X. For this reason, it is possible to generate received light data with high sensitivity and to prevent a leak current from being generated in the pixel switching element 31.

したがって、本実施形態は、実施形態2と同様に、位置センサ素子32によって得られた受光データのS/N比を改善することができる。   Therefore, this embodiment can improve the S / N ratio of the received light data obtained by the position sensor element 32 as in the second embodiment.

なお、本発明の実施に際しては、上記した実施の形態に限定されるものではなく、種々の変形形態を採用することができる。   In implementing the present invention, the present invention is not limited to the above-described embodiment, and various modifications can be employed.

たとえば、本実施形態においては、画素スイッチング素子31を、ボトムゲート型の薄膜トランジスタとして構成する場合について説明したが、これに限定されない。   For example, in the present embodiment, the case where the pixel switching element 31 is configured as a bottom-gate thin film transistor has been described. However, the present invention is not limited to this.

図20は、本発明にかかる実施形態において、画素スイッチング素子31の構成の変形形態を示す断面図である。   FIG. 20 is a cross-sectional view showing a modification of the configuration of the pixel switching element 31 in the embodiment according to the invention.

図20に示すように、たとえば、トップゲート型のTFTを、画素スイッチング素子31として形成してもよい。また、この他に、デュアルゲート構造になるように、この位置センサ素子32aを形成してもよい。   As shown in FIG. 20, for example, a top gate type TFT may be formed as the pixel switching element 31. In addition, the position sensor element 32a may be formed to have a dual gate structure.

また、本実施形態においては、複数の画素Pに対応するように複数の位置センサ素子32aを設ける場合について示したが、これに限定されない。たとえば、複数の画素Pに対して1つの位置センサ素子32aを設けてもよく、逆に、1つの画素Pに対して複数の位置センサ素子32aを設けてもよい。   In the present embodiment, the case where the plurality of position sensor elements 32a are provided so as to correspond to the plurality of pixels P has been described, but the present invention is not limited to this. For example, one position sensor element 32a may be provided for a plurality of pixels P, and conversely, a plurality of position sensor elements 32a may be provided for one pixel P.

また、本実施形態の液晶表示装置100は、さまざまな電子機器の部品として適用することができる。   In addition, the liquid crystal display device 100 of the present embodiment can be applied as a component of various electronic devices.

図21から図25は、本発明にかかる実施形態の液晶表示装置100を適用した電子機器を示す図である。   21 to 25 are diagrams showing electronic apparatuses to which the liquid crystal display device 100 according to the embodiment of the present invention is applied.

図21に示すように、テレビジョン放送を受信し表示するテレビにおいて、その受信した画像を表示画面に表示すると共に、オペレータの操作指令が入力される表示装置として液晶表示装置100を適用することができる。   As shown in FIG. 21, in a television that receives and displays a television broadcast, the received image is displayed on a display screen, and the liquid crystal display device 100 is applied as a display device to which an operator's operation command is input. it can.

また、図22に示すように、デジタルスチルカメラにおいて、その撮像画像などの画像を表示画面に表示すると共に、オペレータの操作指令が入力される表示装置として液晶表示装置100を適用することができる。   Further, as shown in FIG. 22, in the digital still camera, the liquid crystal display device 100 can be applied as a display device that displays an image such as a captured image on a display screen and receives an operator's operation command.

また、図23に示すように、ノート型パーソナルコンピュータにおいて、操作画像などを表示画面に表示すると共に、オペレータの操作指令が入力される表示装置として液晶表示装置100を適用することができる。   As shown in FIG. 23, in a notebook personal computer, the liquid crystal display device 100 can be applied as a display device that displays an operation image or the like on a display screen and receives an operator's operation command.

また、図24に示すように、携帯電話端末において、操作画像などを表示画面に表示すると共に、オペレータの操作指令が入力される表示装置として液晶表示装置100を適用することができる。   In addition, as shown in FIG. 24, in a mobile phone terminal, the liquid crystal display device 100 can be applied as a display device that displays an operation image or the like on a display screen and receives an operator's operation command.

また、図25に示すように、ビデオカメラにおいて、操作画像などを表示画面に表示すると共に、オペレータの操作指令が入力される表示装置として液晶表示装置100を適用することができる。   As shown in FIG. 25, in the video camera, the liquid crystal display device 100 can be applied as a display device that displays an operation image or the like on a display screen and receives an operation command from an operator.

この他に、本実施形態においては、位置センサ素子32aについて、受光素子であるPINセンサを設けた場合について説明したが、これに限定されない。たとえば、PDN構造のフォトダイオードを含む、PDNセンサを、位置センサ素子32aとして形成しても同様な効果を奏することができる。また、この他に、たとえば、位置センサ素子32aとしてフォトトランジスタを形成してもよい。   In addition, in this embodiment, the case where the PIN sensor which is a light receiving element is provided as the position sensor element 32a has been described, but the present invention is not limited to this. For example, even if a PDN sensor including a photodiode having a PDN structure is formed as the position sensor element 32a, the same effect can be obtained. In addition, for example, a phototransistor may be formed as the position sensor element 32a.

また、本実施形態においては、位置センサ素子32aをボトムゲート構造になるように形成した場合について説明したが、これに限定されない。たとえば、トップゲート構造になるように、この位置センサ素子32aを形成してもよい。また、デュアルゲート構造になるように、この位置センサ素子32aを形成してもよい。   In the present embodiment, the case where the position sensor element 32a is formed to have a bottom gate structure has been described, but the present invention is not limited to this. For example, the position sensor element 32a may be formed to have a top gate structure. Further, the position sensor element 32a may be formed so as to have a dual gate structure.

また、本実施形態においては、赤フィルタ層21Rと緑フィルタ層21Gと青フィルタ層21Bとのそれぞれをストライプ形状とし、それぞれを水平方向xに並ぶように形成すると共に、赤フィルタ層21Rと緑フィルタ層21Gと青フィルタ層21Bとに並ぶように、受光領域SAを赤フィルタ層21Rの隣に形成しているが(図4参照)、これに限定されない。たとえば、赤フィルタ層21Rと緑フィルタ層21Gと青フィルタ層21Bと受光領域SAとを一組とし、その赤フィルタ層21Rと緑フィルタ層21Gと青フィルタ層21Bと受光領域SAとを、2×2のマトリクス状に配置しても良い。   Further, in the present embodiment, each of the red filter layer 21R, the green filter layer 21G, and the blue filter layer 21B is formed in a stripe shape so as to be aligned in the horizontal direction x, and the red filter layer 21R and the green filter are formed. Although the light receiving area SA is formed adjacent to the red filter layer 21R so as to be aligned with the layer 21G and the blue filter layer 21B (see FIG. 4), the present invention is not limited to this. For example, the red filter layer 21R, the green filter layer 21G, the blue filter layer 21B, and the light receiving area SA are set as one set, and the red filter layer 21R, the green filter layer 21G, the blue filter layer 21B, and the light receiving area SA are 2 × It may be arranged in a matrix of two.

また、IPS(In−Plane−Swiching)、FFS(Field Fringe Switching)方式など、さまざまな方式の液晶パネルに適用可能である。さらに、有機EL表示素子、電子ペーパーなどの他の表示装置においても、適用可能である。   In addition, the present invention can be applied to various types of liquid crystal panels such as IPS (In-Plane-Switching) and FFS (Field Fringe Switching). Furthermore, the present invention can also be applied to other display devices such as organic EL display elements and electronic paper.

なお、上記の実施形態において、液晶表示装置100は、本発明の表示装置に相当する。また、上記の実施形態において、液晶パネル200は、本発明の表示パネルに相当する。また、上記の実施形態において、TFTアレイ基板201は、本発明の第1基板に相当する。また、上記の実施形態において、対向基板202は、本発明の第2基板に相当する。また、上記の実施形態において、液晶層203は、本発明の液晶層に相当する。また、上記の実施形態において、バックライト300は、本発明の照明部に相当する。また、上記の実施形態において、表示領域PAは、本発明の表示領域に相当する。また、上記の実施形態において、画素スイッチング素子31は、本発明の画素スイッチング素子に相当する。また、上記の実施形態において、位置センサ素子32aは、本発明の受光素子に相当する。また、上記の実施形態において、半導体層47は、本発明の半導体層に相当する。また、上記の実施形態において、第1半導体層47Xは、本発明の第1の半導体層に相当する。また、上記の実施形態において、第2半導体層47Yは、本発明の第2の半導体層に相当する。また、上記の実施形態において、半導体層48は、本発明の半導体層に相当する。   In the above embodiment, the liquid crystal display device 100 corresponds to the display device of the present invention. In the above embodiment, the liquid crystal panel 200 corresponds to the display panel of the present invention. In the above embodiment, the TFT array substrate 201 corresponds to the first substrate of the present invention. In the above embodiment, the counter substrate 202 corresponds to the second substrate of the present invention. In the above embodiment, the liquid crystal layer 203 corresponds to the liquid crystal layer of the present invention. Moreover, in said embodiment, the backlight 300 is corresponded to the illumination part of this invention. In the above embodiment, the display area PA corresponds to the display area of the present invention. In the above embodiment, the pixel switching element 31 corresponds to the pixel switching element of the present invention. In the above embodiment, the position sensor element 32a corresponds to the light receiving element of the present invention. In the above embodiment, the semiconductor layer 47 corresponds to the semiconductor layer of the present invention. In the above embodiment, the first semiconductor layer 47X corresponds to the first semiconductor layer of the present invention. In the above embodiment, the second semiconductor layer 47Y corresponds to the second semiconductor layer of the present invention. In the above embodiment, the semiconductor layer 48 corresponds to the semiconductor layer of the present invention.

図1は、本発明にかかる実施形態1において、液晶表示装置100の構成を示す断面図である。FIG. 1 is a cross-sectional view showing a configuration of a liquid crystal display device 100 according to Embodiment 1 of the present invention. 図2は、本発明にかかる実施形態1において、液晶パネル200を示す平面図である。FIG. 2 is a plan view showing the liquid crystal panel 200 in Embodiment 1 according to the present invention. 図3は、本発明の実施形態1において、液晶パネル200における表示領域PAに設けられた画素Pの概略を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing an outline of the pixel P provided in the display area PA in the liquid crystal panel 200 in Embodiment 1 of the present invention. 図4は、本発明の実施形態1において、液晶パネル200の表示領域PAに設けられた画素Pの概略を模式的に示す平面図である。FIG. 4 is a plan view schematically showing an outline of the pixel P provided in the display area PA of the liquid crystal panel 200 in the first embodiment of the present invention. 図5は、本発明にかかる実施形態1において、画素スイッチング素子31と位置センサ素子32aとを形成する工程を示す断面図である。FIG. 5 is a cross-sectional view showing a process of forming the pixel switching element 31 and the position sensor element 32a in the first embodiment according to the present invention. 図6は、本発明に係る実施形態1において、被検知体が液晶パネル200の表示領域PAに接触もしくは移動された位置を検出する際の様子を模式的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing a state where the detected object detects a position in contact with or moved to the display area PA of the liquid crystal panel 200 in the first embodiment of the present invention. 図7は、本発明にかかる実施形態1において、半導体層の組成と、その半導体層の吸収係数とを示す図である。FIG. 7 is a diagram showing the composition of the semiconductor layer and the absorption coefficient of the semiconductor layer in the first embodiment according to the present invention. 図8は、本発明にかかる実施形態1において、シリコン半導体層中におけるゲルマニウム(Ge)の含有率(mol%)と、エネルギーギャップ(eV)との関係を示す図である。FIG. 8 is a diagram showing the relationship between the germanium (Ge) content (mol%) in the silicon semiconductor layer and the energy gap (eV) in the first embodiment according to the present invention. 図9は、本発明にかかる実施形態2において、液晶パネル200における表示領域PAに設けられた画素Pの概略を模式的に示す断面図である。FIG. 9 is a cross-sectional view schematically showing an outline of the pixel P provided in the display area PA in the liquid crystal panel 200 in the second embodiment of the invention. 図10は、本発明にかかる実施形態2において、画素スイッチング素子31と位置センサ素子32aとを形成する工程を示す断面図である。FIG. 10 is a cross-sectional view showing a process of forming the pixel switching element 31 and the position sensor element 32a in the second embodiment according to the present invention. 図11は、本発明にかかる実施形態2において、画素スイッチング素子31と位置センサ素子32aとを形成する工程を示す断面図である。FIG. 11 is a cross-sectional view showing a process of forming the pixel switching element 31 and the position sensor element 32a in the second embodiment according to the present invention. 図12は、本発明にかかる実施形態3において、画素スイッチング素子31と位置センサ素子32aとを形成する工程を示す断面図である。FIG. 12 is a cross-sectional view showing a process of forming the pixel switching element 31 and the position sensor element 32a in the third embodiment according to the present invention. 図13は、本発明にかかる実施形態4において、画素スイッチング素子31と位置センサ素子32aとを形成する工程を示す断面図である。FIG. 13 is a cross-sectional view showing a process of forming the pixel switching element 31 and the position sensor element 32a in the fourth embodiment according to the present invention. 図14は、本発明にかかる実施形態4において、画素スイッチング素子31と位置センサ素子32aとを形成する工程を示す断面図である。FIG. 14 is a cross-sectional view showing a process of forming the pixel switching element 31 and the position sensor element 32a in the fourth embodiment according to the invention. 図15は、本発明にかかる実施形態5において、画素スイッチング素子31と位置センサ素子32aとを形成する工程を示す断面図である。FIG. 15 is a cross-sectional view showing a process of forming the pixel switching element 31 and the position sensor element 32a in the fifth embodiment of the present invention. 図16は、本発明にかかる実施形態5において、画素スイッチング素子31と位置センサ素子32aとを形成する工程を示す断面図である。FIG. 16 is a cross-sectional view showing a process of forming the pixel switching element 31 and the position sensor element 32a in the fifth embodiment of the present invention. 図17は、本発明にかかる実施形態6において、液晶パネル200における表示領域PAに設けられた画素Pの概略を模式的に示す断面図である。FIG. 17 is a cross-sectional view schematically showing an outline of the pixel P provided in the display area PA in the liquid crystal panel 200 in Embodiment 6 according to the present invention. 図18は、本発明にかかる実施形態6において、画素スイッチング素子31と位置センサ素子32aとを形成する工程を示す断面図である。FIG. 18 is a cross-sectional view showing a process of forming the pixel switching element 31 and the position sensor element 32a in the sixth embodiment of the invention. 図19は、本発明にかかる実施形態6において、画素スイッチング素子31と位置センサ素子32aとを形成する工程を示す断面図である。FIG. 19 is a cross-sectional view illustrating a process of forming the pixel switching element 31 and the position sensor element 32a in the sixth embodiment according to the invention. 図20は、本発明にかかる実施形態において、画素スイッチング素子31の構成の変形形態を示す断面図である。FIG. 20 is a cross-sectional view showing a modification of the configuration of the pixel switching element 31 in the embodiment according to the invention. 図21は、本発明にかかる実施形態の液晶表示装置100を適用した電子機器を示す図である。FIG. 21 is a diagram showing an electronic apparatus to which the liquid crystal display device 100 according to the embodiment of the present invention is applied. 図22は、本発明にかかる実施形態の液晶表示装置100を適用した電子機器を示す図である。FIG. 22 is a diagram showing an electronic apparatus to which the liquid crystal display device 100 according to the embodiment of the present invention is applied. 図23は、本発明にかかる実施形態の液晶表示装置100を適用した電子機器を示す図である。FIG. 23 is a diagram illustrating an electronic apparatus to which the liquid crystal display device 100 according to the embodiment of the present invention is applied. 図24は、本発明にかかる実施形態の液晶表示装置100を適用した電子機器を示す図である。FIG. 24 is a diagram showing an electronic apparatus to which the liquid crystal display device 100 according to the embodiment of the present invention is applied. 図25は、本発明にかかる実施形態の液晶表示装置100を適用した電子機器を示す図である。FIG. 25 is a diagram showing an electronic apparatus to which the liquid crystal display device 100 according to the embodiment of the present invention is applied.

符号の説明Explanation of symbols

100:液晶表示装置(表示装置)、200:液晶パネル(表示パネル)、201:TFTアレイ基板(第1基板)、202:対向基板(第2基板)、203:液晶層(液晶層)、300:バックライト(照明部)、400:データ処理部、PA:表示領域(表示領域)、CA:周辺領域、21:カラーフィルタ層、21K:ブラックマトリクス層、22:平坦化膜、23:対向電極、31:画素スイッチング素子(画素スイッチング素子)、32a:位置センサ素子(受光素子)、43:コントロール電極、45:ゲート電極、46s:絶縁膜、46g:ゲート絶縁膜、47:半導体層(半導体層)、第47X:1半導体層(第1の半導体層)、47Y:第2半導体層(第2の半導体層)、48:半導体層(半導体層) 100: liquid crystal display device (display device), 200: liquid crystal panel (display panel), 201: TFT array substrate (first substrate), 202: counter substrate (second substrate), 203: liquid crystal layer (liquid crystal layer), 300 : Backlight (illumination unit), 400: Data processing unit, PA: Display region (display region), CA: Peripheral region, 21: Color filter layer, 21K: Black matrix layer, 22: Planarization film, 23: Counter electrode , 31: pixel switching element (pixel switching element), 32a: position sensor element (light receiving element), 43: control electrode, 45: gate electrode, 46s: insulating film, 46g: gate insulating film, 47: semiconductor layer (semiconductor layer) ), 47X: 1 semiconductor layer (first semiconductor layer), 47Y: second semiconductor layer (second semiconductor layer), 48: semiconductor layer (semiconductor layer)

Claims (12)

画素が複数配置された表示領域に受光素子が複数形成されている表示パネルと、前記表示パネルの一方の面の側から照明光を出射する照明部とを具備し、前記表示パネルの他方の面の側において前記照明光が被検知体によって反射された反射光を前記受光素子が受光することにより、前記表示領域における被検知体の位置を検出する表示装置であって、
前記照明部は、
可視光線と赤外線とを前記照明光として出射するように構成されており、
前記受光素子は、
シリコン半導体よりもバンドギャップが狭い半導体層
を含み、当該半導体層において前記反射光を受光するように構成されている
表示装置。
A display panel in which a plurality of light receiving elements are formed in a display region in which a plurality of pixels are arranged; and an illumination unit that emits illumination light from one surface side of the display panel, and the other surface of the display panel The light receiving element receives the reflected light reflected by the detected object on the side of the illumination light, and the display device detects the position of the detected object in the display region,
The illumination unit is
It is configured to emit visible light and infrared light as the illumination light,
The light receiving element is
A display device comprising: a semiconductor layer having a narrower band gap than a silicon semiconductor, wherein the semiconductor layer receives the reflected light.
前記表示パネルは、
前記画素をスイッチングする画素スイッチング素子
を有し、
前記画素スイッチング素子は、
チャネル領域が設けられた半導体層
を有する薄膜トランジスタであり、
前記受光素子の半導体層と、前記画素スイッチング素子の半導体層とのそれぞれは、バンドギャップが互いに同じになるように形成されている、
請求項1に記載の表示装置。
The display panel is
A pixel switching element for switching the pixel,
The pixel switching element is
A thin film transistor having a semiconductor layer provided with a channel region;
Each of the semiconductor layer of the light receiving element and the semiconductor layer of the pixel switching element is formed to have the same band gap.
The display device according to claim 1.
前記受光素子の半導体層は、シリコンとゲルマニウムとを含む、
請求項2に記載の表示装置。
The semiconductor layer of the light receiving element includes silicon and germanium.
The display device according to claim 2.
前記表示パネルは、
第1基板と、
前記第1基板から間隔を隔てて対面している第2基板と、
前記第1基板と前記第2基板との間にて挟持されている液晶層と
を含む液晶パネルであり、
前記照明部は、前記第1基板の側から前記第2基板の側へ前記照明光を出射するように配置されており、
前記受光素子と前記画素スイッチング素子とのそれぞれは、前記第1基板に形成されている、
請求項3に記載の表示装置。
The display panel is
A first substrate;
A second substrate facing away from the first substrate;
A liquid crystal panel comprising: a liquid crystal layer sandwiched between the first substrate and the second substrate;
The illumination unit is arranged to emit the illumination light from the first substrate side to the second substrate side,
Each of the light receiving element and the pixel switching element is formed on the first substrate.
The display device according to claim 3.
前記表示パネルは、
前記画素をスイッチングする画素スイッチング素子
を有し、
前記画素スイッチング素子は、
チャネル領域が設けられた半導体層
を有する薄膜トランジスタであり、
前記受光素子の半導体層は、前記画素スイッチング素子の半導体層よりもバンドギャップが狭くなるように形成されている、
請求項1に記載の表示装置。
The display panel is
A pixel switching element for switching the pixel,
The pixel switching element is
A thin film transistor having a semiconductor layer provided with a channel region;
The semiconductor layer of the light receiving element is formed so that the band gap is narrower than the semiconductor layer of the pixel switching element.
The display device according to claim 1.
前記受光素子の半導体層は、少なくとも、シリコンとゲルマニウムとを含む、
請求項5に記載の表示装置。
The semiconductor layer of the light receiving element includes at least silicon and germanium.
The display device according to claim 5.
前記表示パネルは、
第1基板と、
前記第1基板から間隔を隔てて対面している第2基板と、
前記第1基板と前記第2基板との間にて挟持されている液晶層と
を含む液晶パネルであり、
前記照明部は、前記第1基板の側から前記第2基板の側へ前記照明光を出射するように配置されており、
前記受光素子と前記画素スイッチング素子とのそれぞれは、前記第1基板に形成されている、
請求項6に記載の表示装置。
The display panel is
A first substrate;
A second substrate facing away from the first substrate;
A liquid crystal panel comprising: a liquid crystal layer sandwiched between the first substrate and the second substrate;
The illumination unit is arranged to emit the illumination light from the first substrate side to the second substrate side,
Each of the light receiving element and the pixel switching element is formed on the first substrate.
The display device according to claim 6.
前記表示パネルは、
前記画素をスイッチングする画素スイッチング素子
を有し、
前記画素スイッチング素子は、
チャネル領域が設けられた半導体層
を有する薄膜トランジスタであり、
前記受光素子は、
前記画素スイッチング素子の半導体層とバンドギャップが互いに同じ第1の半導体層と、
前記画素スイッチング素子の半導体層よりもバンドギャップが狭い第2の半導体層と
を含み、前記第2の半導体層が前記第1の半導体層よりも前記表示パネルの一方の面の側に位置するように、前記第1の半導体層上に積層されている、
請求項1に記載の表示装置。
The display panel is
A pixel switching element for switching the pixel,
The pixel switching element is
A thin film transistor having a semiconductor layer provided with a channel region;
The light receiving element is
A first semiconductor layer having the same band gap as the semiconductor layer of the pixel switching element;
A second semiconductor layer having a narrower band gap than the semiconductor layer of the pixel switching element, and the second semiconductor layer is positioned closer to one surface of the display panel than the first semiconductor layer Are stacked on the first semiconductor layer,
The display device according to claim 1.
前記第2の半導体層は、前記画素スイッチング素子の半導体層よりも前記表示パネルの一方の面の側に位置するように形成されている、
請求項8に記載の表示装置。
The second semiconductor layer is formed so as to be positioned closer to one surface of the display panel than the semiconductor layer of the pixel switching element.
The display device according to claim 8.
前記受光素子の半導体層は、少なくとも、シリコンとゲルマニウムとを含む、
請求項9に記載の表示装置。
The semiconductor layer of the light receiving element includes at least silicon and germanium.
The display device according to claim 9.
前記表示パネルは、
第1基板と、
前記第1基板から間隔を隔てて対面している第2基板と、
前記第1基板と前記第2基板との間にて挟持されている液晶層と
を含む液晶パネルであり、
前記照明部は、前記第1基板の側から前記第2基板の側へ前記照明光を出射するように配置されており、
前記受光素子と前記画素スイッチング素子とのそれぞれは、前記第1基板に形成されている、
請求項10に記載の表示装置。
The display panel is
A first substrate;
A second substrate facing away from the first substrate;
A liquid crystal panel comprising: a liquid crystal layer sandwiched between the first substrate and the second substrate;
The illumination unit is arranged to emit the illumination light from the first substrate side to the second substrate side,
Each of the light receiving element and the pixel switching element is formed on the first substrate.
The display device according to claim 10.
画素が複数配置される表示領域に、受光素子が複数形成される表示パネルを含み、一方の面の側から前記表示領域へ、可視光線と赤外線とを含む照明光が出射され、当該表示パネルの他方の面の側において前記照明光が被検知体によって反射された反射光を、前記受光素子が受光する表示装置の製造方法において、
前記受光素子において前記反射光を受光する半導体層を、シリコン半導体よりもバンドギャップが狭くなるように形成する、
表示装置の製造方法。
A display area in which a plurality of pixels are arranged includes a display panel in which a plurality of light receiving elements are formed, and illumination light including visible light and infrared rays is emitted from one side to the display area. In the manufacturing method of the display device in which the light receiving element receives the reflected light reflected by the detection object on the other surface side,
Forming a semiconductor layer that receives the reflected light in the light receiving element so that a band gap is narrower than a silicon semiconductor;
Manufacturing method of display device.
JP2007314912A 2007-12-05 2007-12-05 Display device and its manufacturing method Pending JP2009139565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007314912A JP2009139565A (en) 2007-12-05 2007-12-05 Display device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007314912A JP2009139565A (en) 2007-12-05 2007-12-05 Display device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2009139565A true JP2009139565A (en) 2009-06-25

Family

ID=40870243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007314912A Pending JP2009139565A (en) 2007-12-05 2007-12-05 Display device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2009139565A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011065057A1 (en) * 2009-11-27 2011-06-03 シャープ株式会社 Photodiode and manufacturing method for same, substrate for display panel, and display device
WO2011102030A1 (en) * 2010-02-18 2011-08-25 シャープ株式会社 Active matrix substrate, glass substrate, liquid crystal panel and liquid crystal display device
KR101750990B1 (en) * 2010-10-04 2017-07-12 삼성디스플레이 주식회사 Display apparatus and method of driving the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011065057A1 (en) * 2009-11-27 2011-06-03 シャープ株式会社 Photodiode and manufacturing method for same, substrate for display panel, and display device
WO2011102030A1 (en) * 2010-02-18 2011-08-25 シャープ株式会社 Active matrix substrate, glass substrate, liquid crystal panel and liquid crystal display device
KR101750990B1 (en) * 2010-10-04 2017-07-12 삼성디스플레이 주식회사 Display apparatus and method of driving the same

Similar Documents

Publication Publication Date Title
JP5301240B2 (en) Display device
US8368068B2 (en) Display with photo sensor and manufacturing method thereof
KR101471221B1 (en) Display device and method for manufacturing display device
CN101285975B (en) Light sensing unit and pixel structure possessing the light sensing unit and liquid crystal display panel
US8125580B2 (en) Liquid crystal display apparatus
JP5137680B2 (en) Liquid crystal display
EP2560207A1 (en) Semiconductor device
WO2011065057A1 (en) Photodiode and manufacturing method for same, substrate for display panel, and display device
WO2008044370A1 (en) Liquid crystal display
TWI463230B (en) Liquid crystal display device and a method of manufacturing the same
WO2008044368A1 (en) Liquid crystal display
JP2008122659A (en) Liquid crystal display, manufacturing method of liquid crystal display, and electronic device
TW201502900A (en) Multifunctional display
US8581253B2 (en) Display substrate and method of manufacturing the same
JP2006030889A (en) Liquid crystal display device
JP2009229502A (en) Display device and manufacturing method thereof
JP2009139565A (en) Display device and its manufacturing method
JP2009151033A (en) Display device
JP2009222910A (en) Display device
JP4946424B2 (en) Liquid crystal device and electronic device
JP5856826B2 (en) Display device
JP4251622B2 (en) Liquid crystal display
JP2007206625A (en) Display device
JP2005107383A (en) Liquid crystal display device
JP2009134041A (en) Display device