WO2008044368A1 - Liquid crystal display - Google Patents

Liquid crystal display Download PDF

Info

Publication number
WO2008044368A1
WO2008044368A1 PCT/JP2007/062298 JP2007062298W WO2008044368A1 WO 2008044368 A1 WO2008044368 A1 WO 2008044368A1 JP 2007062298 W JP2007062298 W JP 2007062298W WO 2008044368 A1 WO2008044368 A1 WO 2008044368A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal display
photodiode
display device
pixels
Prior art date
Application number
PCT/JP2007/062298
Other languages
French (fr)
Japanese (ja)
Inventor
Hiromi Katoh
Christopher Brown
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2008044368A1 publication Critical patent/WO2008044368A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • G02F1/13312Circuits comprising photodetectors for purposes other than feedback
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters

Definitions

  • the present invention relates to a liquid crystal display device including a photodiode that reacts to light incident from the observer side of a display screen.
  • a liquid crystal display device includes a liquid crystal display panel and a knock light that illuminates the liquid crystal display panel from the back.
  • a liquid crystal display panel is configured by sandwiching a liquid crystal layer between an active matrix substrate and a counter substrate.
  • An active matrix substrate is formed by forming a plurality of pixels in a matrix on a glass substrate.
  • one pixel is usually composed of three sub-pixels.
  • Each subpixel is composed of a TFT and a pixel electrode.
  • the counter substrate includes a counter electrode and a color filter on a glass substrate.
  • the color filter has a red (R), green (G), or blue (B) colored layer for each sub-pixel.
  • the voltage applied between each pixel electrode and the counter electrode is adjusted, and the transmittance of the liquid crystal layer is adjusted for each sub-pixel.
  • an image is displayed on the display screen by the illumination light of the backlight transmitted through the liquid crystal layer and the colored layer.
  • a conventional liquid crystal display device has a function of displaying an image. Recently, however, a liquid crystal display device having a function of capturing an image has been proposed (for example, a patent) Refer to Document 1.) o
  • a liquid crystal display device disclosed in Patent Document 1 a plurality of photodiodes are formed in a matrix on an active matrix substrate, and the liquid crystal display panel functions as an area sensor.
  • each photodiode is used as each photodiode.
  • Each PIN diode is formed by using a TFT process and sequentially providing a p-layer, an i-layer, and an n-layer on a silicon film common to the TFT.
  • PIN diode On the knock light side a light shielding film is usually provided to prevent illumination light from the knock light from entering the PIN diode.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2006-3857
  • Patent Document 1 Since an area sensor is constituted by a plurality of photodiodes, each photodiode is arranged in a display area. Therefore, the light incident on the liquid crystal display panel also enters the photodiodes after passing through the counter substrate and the liquid crystal layer. For this reason, in the liquid crystal display device of Patent Document 1, the amount of light that can be detected by each photodiode is reduced, so that the sensitivity of the entire system is lowered.
  • An object of the present invention is to provide a liquid crystal display device that can solve the above-described problems and can improve the sensitivity of the photodiodes arranged in the display region of the active matrix substrate.
  • a liquid crystal display device is a liquid crystal display device comprising an active matrix substrate and a counter substrate provided with a color filter, wherein the active matrix substrate is in a matrix form And a plurality of photodiodes arranged in the display area, each of the plurality of pixels has three sub-pixels, and the color filter is provided for each of the sub-pixels.
  • the photodiode includes a colored layer of red, green, or blue, and the photodiode has a characteristic that sensitivity is increased as the wavelength of incident light is shorter, and a light detection region of the photodiode is in a thickness direction of the liquid crystal display device. It is characterized by being arranged so as to overlap the blue colored layer.
  • the photodiode is arranged in the display area of the active matrix substrate so as to have the highest sensitivity in accordance with its sensitivity characteristic. Therefore, according to the liquid crystal display device of the present invention, In comparison, the sensitivity of the photodiode can be improved.
  • FIG. 1 is a plan view partially showing a configuration of a liquid crystal display device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a cross-section obtained by cutting along cutting line A-- FIG.
  • FIG. 3 is a graph showing the spectral sensitivity of the photodiode shown in FIGS. 1 and 2.
  • the liquid crystal display device is a liquid crystal display device including an active matrix substrate and a counter substrate provided with a color filter, and the active matrix substrate includes a plurality of pixels arranged in a matrix.
  • the photodiode has a characteristic that the sensitivity increases as the wavelength of incident light is shorter, and the photodetection region of the photodiode is in the blue colored layer in the thickness direction of the liquid crystal display device. It arrange
  • the photodiode is formed of a silicon film provided on a base substrate of the active matrix substrate, and the silicon film is formed of polycrystalline silicon or continuous grains.
  • the semiconductor region may be provided, and the intrinsic semiconductor region may be the light detection region.
  • FIG. 1 is a plan view partially showing a configuration of a liquid crystal display device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a cross-section obtained by cutting along the cutting line A—coil in FIG.
  • FIG. 1 mainly shows the structure of a pixel formed on an active matrix substrate.
  • the counter substrate only the outer shape of the color filter is indicated by a one-dot chain line. Further, the interlayer insulating film is not shown in FIG. 1, and hatching is omitted in FIG.
  • the liquid crystal display device in the present embodiment includes the liquid crystal display panel 4 shown in FIG. 2 and a backlight (not shown) that illuminates it from the back.
  • the liquid crystal display panel 4 includes an active matrix substrate 1, a liquid crystal layer 2, and a counter substrate 3, and the liquid crystal layer 2 is sandwiched between two substrates.
  • the liquid crystal display device according to the present embodiment also includes various optical films.
  • the active matrix substrate 1 includes pixels. Although not shown in FIGS. 1 and 2, a plurality of pixels are arranged in a matrix. In the active matrix substrate 1, an area where a plurality of pixels are arranged is a display area. One pixel is composed of three sub-pixels.
  • FIG. 1 illustrates only three sub-pixels 5a to 5c.
  • each of the sub-pixels 5 a to 5 c includes an active element 7 and a transparent electrode 8.
  • the active element 7 is a thin film transistor (TFT).
  • the transparent electrode 8 is a pixel electrode formed of ITO or the like.
  • the active element 7 includes a silicon film 11 in which a source region and a drain region are formed, and a gate electrode 9.
  • the silicon film 11 is formed of continuous grain boundary crystalline silicon (CGS) because of its excellent charge transfer speed.
  • the gate electrode 9 is integrally formed with the gate line 10 arranged along the horizontal direction of the screen.
  • a source electrode 12 is connected to the source region, and a drain electrode 14 is connected to the drain region.
  • the source electrode 12 is formed integrally with the source wiring 13 arranged along the vertical direction of the screen.
  • the drain electrode 14 is connected to the transparent electrode 8.
  • 15 indicates a wiring for a storage capacitor
  • 16 indicates a region where the storage capacitor is formed.
  • the active matrix substrate 1 includes a photodiode 20 in the display region.
  • Figures 1 and 2 show only a single photodiode 20. In practice, however, the active matrix substrate 1 is provided with a photodiode 20 for each pixel.
  • the plurality of photodiodes 20 arranged for each pixel function as an area sensor.
  • the photodiode 20 is a PIN diode having a lateral structure.
  • the photodiode 20 includes a silicon film provided on a glass substrate 26 that serves as a base substrate of the active matrix substrate 1.
  • the silicon film constituting the photodiode 20 is formed at the same time using the process of forming the active element 7. For this reason, the photodiode 20 is also formed of continuous grain boundary crystalline silicon (CGS) excellent in charge transfer speed.
  • the silicon film is provided with a p-type semiconductor region (p layer) 21, an intrinsic semiconductor region (transition) 22 and an n-type semiconductor region (n layer) 23 in this order along the plane direction.
  • the i layer 22 is a light detection region.
  • the i layer 22 may be a region that is electrically more neutral than the adjacent p layer 21 and n layer 23.
  • the i layer 22 is preferably a region that does not contain any impurities, or a region where the conduction electron density and hole density are equal to each other.
  • reference numeral 28 denotes an insulating film formed on the glass substrate 26, and the photodiode 20 is formed thereon.
  • a light-shielding film 27 is formed of a conductive metal material below the photodiode 20 in order to prevent illumination light from a knock light (not shown) from entering the photodiode 20.
  • the photodiode 20 is covered with interlayer insulating films 29 and 30.
  • Reference numeral 24 denotes a wiring connected to the p-layer 21
  • reference numeral 25 denotes a wiring connected to the n-layer 23.
  • the counter substrate 3 includes a color filter having a plurality of colored layers.
  • the colored layer is provided for each subpixel.
  • FIG. 1 only the colored layers 6 a to 6 c corresponding to the sub-pixels 5 a to 5 c among the many colored layers are illustrated.
  • the colored layers 6a to 6c overlap the transparent electrodes 8 of the corresponding sub-pixels on the surface of the glass substrate 31 serving as the base substrate of the counter substrate 3 in the thickness direction of the liquid crystal display device. Is formed. Further, a black matrix for light shielding is provided between adjacent colored layers. Tas 32 is provided. A transparent counter electrode 33 is formed so as to cover all the colored layers.
  • the liquid crystal display device in the present embodiment has a display function and an imaging function as in the case of the conventional liquid crystal display device, but in accordance with the sensitivity characteristics of the photodiode 20, It differs from the conventional liquid crystal display device in that 20 arrangements are made. This point will be described with reference to FIG.
  • FIG. 3 is a graph showing the spectral sensitivity of the photodiode shown in FIGS.
  • the silicon film constituting the photodiode 20 is a continuous grain boundary crystalline silicon.
  • the photodiode 20 formed of continuous grain boundary crystalline silicon has a characteristic that the sensitivity increases as the wavelength of incident light is shorter. That is, the photodiode 20 has a characteristic that it is easy to react to blue light having a short wavelength, has a long wavelength, is difficult to react to red light, and has characteristics.
  • the photodiode 20 is arranged so as to overlap the blue (B) colored layer 6a in the thickness direction of the semiconductor device.
  • the sensitivity of the photodiode can be improved as compared with the conventional case.
  • the colored layer 6b is a red (R) colored layer
  • the colored layer 6c is a green (G) colored layer.
  • the formation of the silicon film of continuous grain boundary crystalline silicon can be performed, for example, by the following steps. First, an oxide silicon film and an amorphous silicon film are sequentially formed on the interlayer insulating film 28 shown in FIG. Next, a nickel thin film serving as a catalyst for promoting crystallization is formed on the surface of the amorphous silicon film. Next, the nickel thin film and the amorphous silicon film are reacted by annealing to form a crystalline silicon layer at the interface between them. Thereafter, the unreacted nickel film and the silicon-nickel layer are removed by etching or the like. Next, annealing is performed on the remaining silicon film to advance crystallization, so that a silicon film formed of continuous grain boundary crystalline silicon is obtained. Thereafter, by forming a photoresist and performing etching, the shape of the silicon film is changed to a predetermined shape, and various ion implantations are performed, thereby completing the photodiode 20.
  • the photodiode 20 is a silicon film of continuous grain boundary crystalline silicon. It is not limited to what was formed by.
  • the photodiode 20 only needs to have a characteristic that the sensitivity increases as the wavelength of incident light is shorter. Therefore, the photodiode 20 may be formed of, for example, polycrystalline silicon. This is because polycrystalline silicon has characteristics similar to those of the continuous grain boundary crystalline silicon shown in FIG.
  • Formation of a silicon film from polycrystalline silicon can be performed, for example, as follows.
  • an amorphous silicon silicon film is formed. Then, the amorphous silicon film is dehydrogenated by, for example, heating at 500 ° C. for 2 hours, and annealing is performed to crystallize the amorphous silicon film. As a result, a polycrystalline silicon film is obtained.
  • a known laser annealing method for example, a method of irradiating an amorphous silicon film with a laser beam with an excimer laser can be mentioned.
  • the liquid crystal display device according to the present invention can have industrial applicability.

Abstract

Disclosed is a liquid crystal display wherein sensitivity of a photodiode arranged within a display region of an active matrix substrate is improved. The liquid crystal display comprises an active matrix substrate (1) and a counter substrate (3) provided with a color filter. The active matrix substrate (1) comprises a plurality of pixels arranged in matrix, and a plurality of photodiodes (20) arranged within the display region. Each pixel has three sub-pixels (5a-5c). The color filter has a red, green or blue colored layer corresponding to each sub-pixel. The photodiodes (20) have such a characteristic that the sensitivity increases as the wavelength of an incident light is shorter. In addition, each photodiode (20) is so arranged that its light sensing region (a layer i (22)) overlaps a blue colored layer (6a) in the thickness direction of the liquid crystal display.

Description

液晶表示装置  Liquid crystal display
技術分野  Technical field
[0001] 本発明は、表示画面の観察者側から入射した光に反応するフォトダイオードを備え た液晶表示装置に関する。  The present invention relates to a liquid crystal display device including a photodiode that reacts to light incident from the observer side of a display screen.
背景技術  Background art
[0002] 近年、液晶表示装置は、省電力、薄型、軽量といった特徴から、コンピュータ、携帯 電話、 PDA、ゲーム機の表示装置として広く採用されている。一般に、液晶表示装 置は、液晶表示パネルと、それを背面から照明するノ ックライトとを備えている。液晶 表示パネルは、アクティブマトリクス基板と対向基板とで液晶層を挟み込んで構成さ れている。  In recent years, liquid crystal display devices have been widely used as display devices for computers, mobile phones, PDAs, and game machines because of their power saving, thinness, and light weight. In general, a liquid crystal display device includes a liquid crystal display panel and a knock light that illuminates the liquid crystal display panel from the back. A liquid crystal display panel is configured by sandwiching a liquid crystal layer between an active matrix substrate and a counter substrate.
[0003] アクティブマトリクス基板は、ガラス基板上に複数の画素をマトリクス状に形成して構 成されている。また、カラー表示が行われる場合は、通常、 1画素は、 3つのサブ画素 によって構成されている。各サブ画素は、 TFTと画素電極とで構成されている。更に 、対向基板は、ガラス基板上に対向電極とカラーフィルタとを備えている。カラーフィ ルタは、サブ画素毎に、赤色 (R)、緑色 (G)又は青色 (B)の着色層を有している。  [0003] An active matrix substrate is formed by forming a plurality of pixels in a matrix on a glass substrate. When color display is performed, one pixel is usually composed of three sub-pixels. Each subpixel is composed of a TFT and a pixel electrode. Furthermore, the counter substrate includes a counter electrode and a color filter on a glass substrate. The color filter has a red (R), green (G), or blue (B) colored layer for each sub-pixel.
[0004] この液晶表示装置においては、各画素電極と対向電極との間に印加される電圧が 調整され、サブ画素毎に液晶層の透過率が調整される。この結果、液晶層及び着色 層を透過したバックライトの照明光により、表示画面上に画像が表示される。  In this liquid crystal display device, the voltage applied between each pixel electrode and the counter electrode is adjusted, and the transmittance of the liquid crystal layer is adjusted for each sub-pixel. As a result, an image is displayed on the display screen by the illumination light of the backlight transmitted through the liquid crystal layer and the colored layer.
[0005] このように、従来からの液晶表示装置は、画像を表示する機能を備えて 、るが、近 年、画像の取り込み機能をも備えた液晶表示装置が提案されている (例えば、特許 文献 1参照。 ) o特許文献 1に開示の液晶表示装置では、アクティブマトリクス基板上 に、複数のフォトダイオードがマトリクス状に形成されており、液晶表示パネルがエリア センサとして機能する。  As described above, a conventional liquid crystal display device has a function of displaying an image. Recently, however, a liquid crystal display device having a function of capturing an image has been proposed (for example, a patent) Refer to Document 1.) o In the liquid crystal display device disclosed in Patent Document 1, a plurality of photodiodes are formed in a matrix on an active matrix substrate, and the liquid crystal display panel functions as an area sensor.
[0006] また、特許文献 1にお 、て、各フォトダイオードとして、ラテラル構造の PINダイォー ドが用いられている。各 PINダイオードは、 TFTのプロセスを利用して、 TFTと共通 のシリコン膜に、 p層、 i層、 n層を順に設けて形成されている。また、 PINダイオードの ノ ックライト側には、通常、ノ ックライトからの照明光が PINダイオードに入射するのを 阻止するため、遮光膜が設けられている。 [0006] Further, in Patent Document 1, a laterally structured PIN diode is used as each photodiode. Each PIN diode is formed by using a TFT process and sequentially providing a p-layer, an i-layer, and an n-layer on a silicon film common to the TFT. Also, PIN diode On the knock light side, a light shielding film is usually provided to prevent illumination light from the knock light from entering the PIN diode.
特許文献 1:特開 2006— 3857号公報  Patent Document 1: Japanese Unexamined Patent Publication No. 2006-3857
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] ところで、特許文献 1にお 、ては、複数個のフォトダイオードによってエリアセンサが 構成されるため、各フォトダイオードは、表示領域内に配置される。よって、観察者側 力も液晶表示パネルに入射した光は、対向基板及び液晶層を通過した後、各フォト ダイオードに入射する。このため、特許文献 1の液晶表示装置においては、各フォト ダイオードで検出できる光量が低下するため、システム全体として感度が低下すると いう問題がある。 [0007] By the way, in Patent Document 1, since an area sensor is constituted by a plurality of photodiodes, each photodiode is arranged in a display area. Therefore, the light incident on the liquid crystal display panel also enters the photodiodes after passing through the counter substrate and the liquid crystal layer. For this reason, in the liquid crystal display device of Patent Document 1, the amount of light that can be detected by each photodiode is reduced, so that the sensitivity of the entire system is lowered.
[0008] 本発明の目的は、上記問題を解消し、アクティブマトリクス基板の表示領域内に配 置されたフォトダイオードの感度の向上を図り得る液晶表示装置を提供することにあ る。  An object of the present invention is to provide a liquid crystal display device that can solve the above-described problems and can improve the sensitivity of the photodiodes arranged in the display region of the active matrix substrate.
課題を解決するための手段  Means for solving the problem
[0009] 上記目的を達成するために本発明における液晶表示装置は、アクティブマトリクス 基板と、カラーフィルタが設けられた対向基板とを備える液晶表示装置であって、前 記アクティブマトリクス基板は、マトリクス状に配置された複数の画素と、表示領域内 に配置された複数のフォトダイオードとを備え、前記複数の画素は、それぞれ 3つの サブ画素を有し、前記カラーフィルタは、前記サブ画素毎に、赤色、緑色又は青色の 着色層を備え、前記フォトダイオードは、入射光の波長が短いほど感度が増加する 特性を有し、且つ、前記フォトダイオードの光検出領域が当該液晶表示装置の厚み 方向にお 、て青色の前記着色層に重なるように、配置されて 、ることを特徴とする。 発明の効果 In order to achieve the above object, a liquid crystal display device according to the present invention is a liquid crystal display device comprising an active matrix substrate and a counter substrate provided with a color filter, wherein the active matrix substrate is in a matrix form And a plurality of photodiodes arranged in the display area, each of the plurality of pixels has three sub-pixels, and the color filter is provided for each of the sub-pixels. The photodiode includes a colored layer of red, green, or blue, and the photodiode has a characteristic that sensitivity is increased as the wavelength of incident light is shorter, and a light detection region of the photodiode is in a thickness direction of the liquid crystal display device. It is characterized by being arranged so as to overlap the blue colored layer. The invention's effect
[0010] 以上のように、本発明における液晶表示装置では、フォトダイオードは、アクティブ マトリクス基板の表示領域内において、その感度特性に合わせて、最も感度が高くな るように配置されている。このため、本発明における液晶表示装置によれば、従来に 比べて、フォトダイオードの感度の向上を図ることができる。 [0010] As described above, in the liquid crystal display device according to the present invention, the photodiode is arranged in the display area of the active matrix substrate so as to have the highest sensitivity in accordance with its sensitivity characteristic. Therefore, according to the liquid crystal display device of the present invention, In comparison, the sensitivity of the photodiode can be improved.
図面の簡単な説明  Brief Description of Drawings
[0011] [図 1]図 1は、本発明の実施の形態における液晶表示装置の構成を部分的に示す平 面図である。  FIG. 1 is a plan view partially showing a configuration of a liquid crystal display device according to an embodiment of the present invention.
[図 2]図 2は、図 1中の切断線 A— ΑΊこ沿って切断して得られた断面を示す断面図で ある。  [FIG. 2] FIG. 2 is a cross-sectional view showing a cross-section obtained by cutting along cutting line A-- FIG.
[図 3]図 3は、図 1及び図 2に示したフォトダイオードの分光感度を示すグラフである。 発明を実施するための最良の形態  FIG. 3 is a graph showing the spectral sensitivity of the photodiode shown in FIGS. 1 and 2. BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 本発明における液晶表示装置は、アクティブマトリクス基板と、カラーフィルタが設け られた対向基板とを備える液晶表示装置であって、前記アクティブマトリクス基板は、 マトリクス状に配置された複数の画素と、表示領域内に配置された複数のフォトダイ オードとを備え、前記複数の画素は、それぞれ 3つのサブ画素を有し、前記カラーフ ィルタは、前記サブ画素毎に、赤色、緑色又は青色の着色層を備え、前記フォトダイ オードは、入射光の波長が短いほど感度が増加する特性を有し、且つ、前記フォトダ ィオードの光検出領域が当該液晶表示装置の厚み方向において青色の前記着色 層に重なるように、配置されていることを特徴とする。  The liquid crystal display device according to the present invention is a liquid crystal display device including an active matrix substrate and a counter substrate provided with a color filter, and the active matrix substrate includes a plurality of pixels arranged in a matrix. A plurality of photodiodes arranged in a display area, each of the plurality of pixels having three sub-pixels, and the color filter is colored red, green, or blue for each of the sub-pixels. The photodiode has a characteristic that the sensitivity increases as the wavelength of incident light is shorter, and the photodetection region of the photodiode is in the blue colored layer in the thickness direction of the liquid crystal display device. It arrange | positions so that it may overlap.
[0013] また、上記本発明における液晶表示装置は、前記フォトダイオードが、前記ァクティ ブマトリクス基板のベース基板上に設けられたシリコン膜によって形成され、前記シリ コン膜は、多結晶シリコンまたは連続粒界結晶シリコンによって形成され、且つ、前記 シリコン膜の面方向に沿って順に設けられた、第 1導電型の半導体領域、真性半導 体領域、及び前記第 1導電型と逆の第 2導電型の半導体領域を備え、前記真性半導 体領域が、前記光検出領域となる態様であっても良い。  In the liquid crystal display device according to the present invention, the photodiode is formed of a silicon film provided on a base substrate of the active matrix substrate, and the silicon film is formed of polycrystalline silicon or continuous grains. A first conductivity type semiconductor region, an intrinsic semiconductor region, and a second conductivity type opposite to the first conductivity type, which are formed of field crystal silicon and provided in order along the surface direction of the silicon film. The semiconductor region may be provided, and the intrinsic semiconductor region may be the light detection region.
[0014] (実施の形態 1)  [0014] (Embodiment 1)
以下、本発明の実施の形態における液晶表示装置について、図 1及び図 2を参照 しながら説明する。図 1は、本発明の実施の形態における液晶表示装置の構成を部 分的に示す平面図である。図 2は、図 1中の切断線 A— ΑΊこ沿って切断して得られ た断面を示す断面図である。  Hereinafter, a liquid crystal display device according to an embodiment of the present invention will be described with reference to FIG. 1 and FIG. FIG. 1 is a plan view partially showing a configuration of a liquid crystal display device according to an embodiment of the present invention. FIG. 2 is a cross-sectional view showing a cross-section obtained by cutting along the cutting line A—coil in FIG.
[0015] なお、図 1は、アクティブマトリクス基板に形成された画素の構造を主に示しており、 対向基板については、カラーフィルタの外形のみを一点鎖線で示している。また、層 間絶縁膜は、図 1においては記載を省略しており、図 2においてはハッチングを省略 して示している。 FIG. 1 mainly shows the structure of a pixel formed on an active matrix substrate. For the counter substrate, only the outer shape of the color filter is indicated by a one-dot chain line. Further, the interlayer insulating film is not shown in FIG. 1, and hatching is omitted in FIG.
[0016] 本実施の形態における液晶表示装置は、図 2に示す液晶表示パネル 4と、それを 背面から照明するバックライト(図示せず)とを備えている。図 1及び図 2に示すように 、液晶表示パネル 4は、アクティブマトリクス基板 1と、液晶層 2と、対向基板 3とを備え 、二つの基板間に液晶層 2を挟み込んで形成されている。図示していないが、本実 施の形態における液晶表示装置は、その他に各種の光学フィルムも備えている。  The liquid crystal display device in the present embodiment includes the liquid crystal display panel 4 shown in FIG. 2 and a backlight (not shown) that illuminates it from the back. As shown in FIGS. 1 and 2, the liquid crystal display panel 4 includes an active matrix substrate 1, a liquid crystal layer 2, and a counter substrate 3, and the liquid crystal layer 2 is sandwiched between two substrates. Although not shown, the liquid crystal display device according to the present embodiment also includes various optical films.
[0017] また、図 1に示すように、アクティブマトリクス基板 1は、画素を備えている。図 1及び 図 2には、図示していないが、画素は、マトリクス状に複数個配置されている。ァクティ ブマトリクス基板 1においては、複数の画素が配置された領域が表示領域となる。ま た、一つの画素は、三つのサブ画素によって構成されている。  Further, as shown in FIG. 1, the active matrix substrate 1 includes pixels. Although not shown in FIGS. 1 and 2, a plurality of pixels are arranged in a matrix. In the active matrix substrate 1, an area where a plurality of pixels are arranged is a display area. One pixel is composed of three sub-pixels.
[0018] 図 1は、三つのサブ画素 5a〜5cのみを図示して!/、る。図 1に示すように、サブ画素 5a〜5cそれぞれは、アクティブ素子 7と、透明電極 8とを備えている。アクティブ素子 7は薄膜トランジスタ(TFT: Thin Film Transistor)である。透明電極 8は、 ITO等で形 成された画素電極である。  [0018] FIG. 1 illustrates only three sub-pixels 5a to 5c. As shown in FIG. 1, each of the sub-pixels 5 a to 5 c includes an active element 7 and a transparent electrode 8. The active element 7 is a thin film transistor (TFT). The transparent electrode 8 is a pixel electrode formed of ITO or the like.
[0019] また、本実施の形態にお!、ては、アクティブ素子 7は、ソース領域及びドレイン領域 が形成されたシリコン膜 11と、ゲート電極 9とを備えている。シリコン膜 11は、電荷の 移動速度の点で優れていることから、連続粒界結晶シリコン (CGS)によって形成さ れている。  In the present embodiment, the active element 7 includes a silicon film 11 in which a source region and a drain region are formed, and a gate electrode 9. The silicon film 11 is formed of continuous grain boundary crystalline silicon (CGS) because of its excellent charge transfer speed.
[0020] ゲート電極 9は、画面の水平方向に沿って配置されたゲート線 10と一体的に形成さ れている。また、ソース領域にはソース電極 12が接続され、ドレイン領域にはドレイン 電極 14が接続されている。ソース電極 12は、画面の垂直方向に沿って配置されたソ ース配線 13と一体的に形成されている。ドレイン電極 14は、透明電極 8に接続され ている。図 1において、 15は蓄積容量用の配線を示し、 16は蓄積容量が形成される 領域を示している。  [0020] The gate electrode 9 is integrally formed with the gate line 10 arranged along the horizontal direction of the screen. A source electrode 12 is connected to the source region, and a drain electrode 14 is connected to the drain region. The source electrode 12 is formed integrally with the source wiring 13 arranged along the vertical direction of the screen. The drain electrode 14 is connected to the transparent electrode 8. In FIG. 1, 15 indicates a wiring for a storage capacitor, and 16 indicates a region where the storage capacitor is formed.
[0021] また、図 1及び図 2に示すように、アクティブマトリクス基板 1は、表示領域内にフォト ダイオード 20を備えている。図 1及び図 2には、単一のフォトダイオード 20しか図示さ れていないが、実際は、アクティブマトリクス基板 1には、一つの画素毎に、フォトダイ オード 20が配置されている。画素毎に配置された複数のフォトダイオード 20は、エリ ァセンサとして機能する。 Further, as shown in FIGS. 1 and 2, the active matrix substrate 1 includes a photodiode 20 in the display region. Figures 1 and 2 show only a single photodiode 20. In practice, however, the active matrix substrate 1 is provided with a photodiode 20 for each pixel. The plurality of photodiodes 20 arranged for each pixel function as an area sensor.
[0022] 図 2に示すように、本実施の形態において、フォトダイオード 20は、ラテラル構造を 備えた PINダイオードである。フォトダイオード 20は、アクティブマトリクス基板 1のべ ース基板となるガラス基板 26に設けられたシリコン膜を備えている。  As shown in FIG. 2, in the present embodiment, the photodiode 20 is a PIN diode having a lateral structure. The photodiode 20 includes a silicon film provided on a glass substrate 26 that serves as a base substrate of the active matrix substrate 1.
[0023] フォトダイオード 20を構成するシリコン膜は、アクティブ素子 7の形成工程を利用し て、これと同時に形成される。このため、フォトダイオード 20も、電荷の移動速度に優 れた連続粒界結晶シリコン (CGS)によって形成されている。また、シリコン膜には、 面方向に沿って順に、 p型の半導体領域 (p層) 21、真性半導体領域 (遷) 22及び n 型の半導体領域 (n層) 23が設けられている。  The silicon film constituting the photodiode 20 is formed at the same time using the process of forming the active element 7. For this reason, the photodiode 20 is also formed of continuous grain boundary crystalline silicon (CGS) excellent in charge transfer speed. The silicon film is provided with a p-type semiconductor region (p layer) 21, an intrinsic semiconductor region (transition) 22 and an n-type semiconductor region (n layer) 23 in this order along the plane direction.
[0024] フォトダイオード 20においては、 i層 22が光検出領域となる。本実施の形態におい て、 i層 22は、隣接する p層 21及び n層 23に比べて電気的に中性に近い領域であれ ば良い。 i層 22は、不純物を全く含まない領域や、伝導電子密度と正孔密度とが等し V、領域であるのが好まし 、。  In the photodiode 20, the i layer 22 is a light detection region. In the present embodiment, the i layer 22 may be a region that is electrically more neutral than the adjacent p layer 21 and n layer 23. The i layer 22 is preferably a region that does not contain any impurities, or a region where the conduction electron density and hole density are equal to each other.
[0025] なお、図 2において、 28は、ガラス基板 26上に形成された絶縁膜であり、フォトダイ オード 20は、この上に形成されている。また、フォトダイオード 20の下層には、ノ ック ライト(図示せず)からの照明光がフォトダイオード 20に入射するのを阻止するため、 導電性の金属材料によって遮光膜 27が形成されている。更に、フォトダイオード 20 は、層間絶縁膜 29及び 30によって被覆されている。 24は p層 21に接続された配線 を示し、 25は n層 23に接続された配線を示している。  In FIG. 2, reference numeral 28 denotes an insulating film formed on the glass substrate 26, and the photodiode 20 is formed thereon. In addition, a light-shielding film 27 is formed of a conductive metal material below the photodiode 20 in order to prevent illumination light from a knock light (not shown) from entering the photodiode 20. . Further, the photodiode 20 is covered with interlayer insulating films 29 and 30. Reference numeral 24 denotes a wiring connected to the p-layer 21, and reference numeral 25 denotes a wiring connected to the n-layer 23.
[0026] また、図 1及び図 2に示すように、対向基板 3は、複数の着色層を有するカラーフィ ルタを備えている。着色層は、サブ画素毎に設けられている。図 1では、多数ある着 色層のうち、サブ画素 5a〜5cそれぞれに対応する着色層 6a〜6cのみが図示されて いる。  Further, as shown in FIGS. 1 and 2, the counter substrate 3 includes a color filter having a plurality of colored layers. The colored layer is provided for each subpixel. In FIG. 1, only the colored layers 6 a to 6 c corresponding to the sub-pixels 5 a to 5 c among the many colored layers are illustrated.
[0027] 具体的には、着色層 6a〜6cは、対向基板 3のベース基板となるガラス基板 31の面 上に、液晶表示装置の厚み方向において、対応するサブ画素の透明電極 8に重なる ようにして形成されている。更に、隣接する着色層の間には、遮光用のブラックマトリ タス 32が設けられている。また、全ての着色層を覆うようにして、透明の対向電極 33 が形成されている。 Specifically, the colored layers 6a to 6c overlap the transparent electrodes 8 of the corresponding sub-pixels on the surface of the glass substrate 31 serving as the base substrate of the counter substrate 3 in the thickness direction of the liquid crystal display device. Is formed. Further, a black matrix for light shielding is provided between adjacent colored layers. Tas 32 is provided. A transparent counter electrode 33 is formed so as to cover all the colored layers.
[0028] このように、本実施の形態における液晶表示装置は、従来の液晶表示装置と同様 に、表示機能と撮像機能とを備えているが、フォトダイオード 20の感度特性に合わせ て、フォトダイオード 20の配置が行われている点で、従来の液晶表示装置と異なって いる。この点について図 3を用いて説明する。図 3は、図 1及び図 2に示したフォトダイ オードの分光感度を示すグラフである。  As described above, the liquid crystal display device in the present embodiment has a display function and an imaging function as in the case of the conventional liquid crystal display device, but in accordance with the sensitivity characteristics of the photodiode 20, It differs from the conventional liquid crystal display device in that 20 arrangements are made. This point will be described with reference to FIG. FIG. 3 is a graph showing the spectral sensitivity of the photodiode shown in FIGS.
[0029] 上述したように、フォトダイオード 20を構成するシリコン膜は、連続粒界結晶シリコン  [0029] As described above, the silicon film constituting the photodiode 20 is a continuous grain boundary crystalline silicon.
(CGS)によって形成されている。よって、図 3に示すように、連続粒界結晶シリコンに よって形成されたフォトダイオード 20は、入射光の波長が短!、ほど感度が増加する 特性を有している。即ち、フォトダイオード 20は、波長の短い青色光には反応し易い 力 波長の長 、赤色光には反応し難 、特性を有して 、る。  (CGS). Therefore, as shown in FIG. 3, the photodiode 20 formed of continuous grain boundary crystalline silicon has a characteristic that the sensitivity increases as the wavelength of incident light is shorter. That is, the photodiode 20 has a characteristic that it is easy to react to blue light having a short wavelength, has a long wavelength, is difficult to react to red light, and has characteristics.
[0030] このため、図 1及び図 2に示すように、フォトダイオード 20は、半導体装置の厚み方 向において、青色 (B)の着色層 6aに重なるように配置されている。この結果、本実施 の形態における液晶表示装置によれば、従来に比べて、フォトダイオードにおける感 度の向上を図ることができる。なお、着色層 6bは赤色 (R)の着色層、着色層 6cは緑 色 (G)の着色層である。  For this reason, as shown in FIGS. 1 and 2, the photodiode 20 is arranged so as to overlap the blue (B) colored layer 6a in the thickness direction of the semiconductor device. As a result, according to the liquid crystal display device of the present embodiment, the sensitivity of the photodiode can be improved as compared with the conventional case. The colored layer 6b is a red (R) colored layer, and the colored layer 6c is a green (G) colored layer.
[0031] また、連続粒界結晶シリコンのシリコン膜の形成は、例えば、以下の工程によって行 うことができる。先ず、図 2に示した層間絶縁膜 28の上に酸ィ匕シリコン膜とァモルファ スシリコン膜とを順に成膜する。次に、アモルファスシリコン膜の表層に、結晶化促進 の触媒となるニッケル薄膜を形成する。次に、ァニールによって、ニッケル薄膜とァモ ルファスシリコン膜とを反応させ、これらの界面に結晶シリコン層を形成する。その後、 エッチング等によって、未反応のニッケル膜と珪ィ匕ニッケルの層を除去する。次に、 残ったシリコン膜にァニールを行って結晶化を進展させると、連続粒界結晶シリコン によって形成されたシリコン膜が得られる。その後、フォトレジストの形成及びエツチン グの実施により、シリコン膜の形状が所定の形状とされ、更に、種々のイオン注入が 実施され、フォトダイオード 20が完成する。  [0031] The formation of the silicon film of continuous grain boundary crystalline silicon can be performed, for example, by the following steps. First, an oxide silicon film and an amorphous silicon film are sequentially formed on the interlayer insulating film 28 shown in FIG. Next, a nickel thin film serving as a catalyst for promoting crystallization is formed on the surface of the amorphous silicon film. Next, the nickel thin film and the amorphous silicon film are reacted by annealing to form a crystalline silicon layer at the interface between them. Thereafter, the unreacted nickel film and the silicon-nickel layer are removed by etching or the like. Next, annealing is performed on the remaining silicon film to advance crystallization, so that a silicon film formed of continuous grain boundary crystalline silicon is obtained. Thereafter, by forming a photoresist and performing etching, the shape of the silicon film is changed to a predetermined shape, and various ion implantations are performed, thereby completing the photodiode 20.
[0032] なお、本発明において、フォトダイオード 20は、連続粒界結晶シリコンのシリコン膜 によって形成されたものに限定されることはない。フォトダイオード 20は、入射光の波 長が短いほど感度が増加する特性を有するものであれば良い。よって、フォトダイォ ード 20は、例えば、多結晶シリコンによって形成されたものであっても良い。多結晶 シリコンも、図 3に示した連続粒界結晶シリコンの特性と同様の特性を備えているから である。 In the present invention, the photodiode 20 is a silicon film of continuous grain boundary crystalline silicon. It is not limited to what was formed by. The photodiode 20 only needs to have a characteristic that the sensitivity increases as the wavelength of incident light is shorter. Therefore, the photodiode 20 may be formed of, for example, polycrystalline silicon. This is because polycrystalline silicon has characteristics similar to those of the continuous grain boundary crystalline silicon shown in FIG.
[0033] 多結晶シリコンによるシリコン膜の形成は、例えば、次のようにして行うことができる。  [0033] Formation of a silicon film from polycrystalline silicon can be performed, for example, as follows.
先ず、非晶質シリコンのシリコン膜を形成する。そして、この非晶質シリコンのシリコン 膜に対して、例えば 500°Cで 2時間加熱する等して脱水素化を行い、更に、ァニール を実施して、これを結晶化させる。この結果、多結晶シリコンのシリコン膜が得られる。 ァニールの方法としては、公知のレーザァニール法、例えば、非晶質シリコン膜にェ キシマレーザによってレーザビームを照射する方法が挙げられる。  First, an amorphous silicon silicon film is formed. Then, the amorphous silicon film is dehydrogenated by, for example, heating at 500 ° C. for 2 hours, and annealing is performed to crystallize the amorphous silicon film. As a result, a polycrystalline silicon film is obtained. As the annealing method, a known laser annealing method, for example, a method of irradiating an amorphous silicon film with a laser beam with an excimer laser can be mentioned.
産業上の利用可能性  Industrial applicability
[0034] 以上のように、本発明によれば、表示画面の観察者側から入射した光に反応するフ オトダイオードを備えた液晶表示装置において、フォトダイオードの感度の向上を図 ることができる。このことから、本発明における液晶表示装置は、産業上の利用可能 性を有し得るものである。 As described above, according to the present invention, it is possible to improve the sensitivity of the photodiode in the liquid crystal display device including the photodiode that reacts to the light incident from the observer side of the display screen. . Thus, the liquid crystal display device according to the present invention can have industrial applicability.

Claims

請求の範囲 The scope of the claims
[1] アクティブマトリクス基板と、カラーフィルタが設けられた対向基板とを備える液晶表 示装置であって、  [1] A liquid crystal display device comprising an active matrix substrate and a counter substrate provided with a color filter,
前記アクティブマトリクス基板は、マトリクス状に配置された複数の画素と、表示領域 内に配置された複数のフォトダイオードとを備え、  The active matrix substrate includes a plurality of pixels arranged in a matrix and a plurality of photodiodes arranged in a display region,
前記複数の画素は、それぞれ 3つのサブ画素を有し、  Each of the plurality of pixels has three sub-pixels,
前記カラーフィルタは、前記サブ画素毎に、赤色、緑色又は青色の着色層を備え、 前記フォトダイオードは、入射光の波長が短いほど感度が増加する特性を有し、且 つ、前記フォトダイオードの光検出領域が当該液晶表示装置の厚み方向において青 色の前記着色層に重なるように、配置されて!ヽることを特徴とする液晶表示装置。  The color filter includes a red, green, or blue colored layer for each of the sub-pixels, and the photodiode has a characteristic that sensitivity is increased as the wavelength of incident light is shorter, and Arranged so that the photodetection area overlaps the blue colored layer in the thickness direction of the liquid crystal display device! A liquid crystal display device characterized by squeezing.
[2] 前記フォトダイオードが、前記アクティブマトリクス基板のベース基板上に設けられ たシリコン膜によって形成され、 [2] The photodiode is formed of a silicon film provided on a base substrate of the active matrix substrate,
前記シリコン膜は、多結晶シリコンまたは連続粒界結晶シリコンによって形成され、 且つ、前記シリコン膜の面方向に沿って順に設けられた、第 1導電型の半導体領域、 真性半導体領域、及び前記第 1導電型と逆の第 2導電型の半導体領域を備え、 前記真性半導体領域が、前記光検出領域となる請求項 1に記載の液晶表示装置。  The silicon film is formed of polycrystalline silicon or continuous grain boundary crystal silicon, and is provided in order along the surface direction of the silicon film, a first conductivity type semiconductor region, an intrinsic semiconductor region, and the first 2. The liquid crystal display device according to claim 1, further comprising a semiconductor region of a second conductivity type opposite to the conductivity type, wherein the intrinsic semiconductor region becomes the photodetection region.
PCT/JP2007/062298 2006-10-11 2007-06-19 Liquid crystal display WO2008044368A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-277837 2006-10-11
JP2006277837 2006-10-11

Publications (1)

Publication Number Publication Date
WO2008044368A1 true WO2008044368A1 (en) 2008-04-17

Family

ID=39282578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/062298 WO2008044368A1 (en) 2006-10-11 2007-06-19 Liquid crystal display

Country Status (1)

Country Link
WO (1) WO2008044368A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010041489A1 (en) * 2008-10-09 2010-04-15 シャープ株式会社 Photodiode, photodiode-equipped display device, and fabrication method therefore
EP2214150A1 (en) * 2007-11-29 2010-08-04 Sharp Kabushiki Kaisha Image display device
US7773139B2 (en) 2004-04-16 2010-08-10 Apple Inc. Image sensor with photosensitive thin film transistors
US7830461B2 (en) 2002-05-23 2010-11-09 Apple Inc. Light sensitive display
US7872641B2 (en) 2002-02-20 2011-01-18 Apple Inc. Light sensitive display
US8207946B2 (en) 2003-02-20 2012-06-26 Apple Inc. Light sensitive display
US8441422B2 (en) 2002-02-20 2013-05-14 Apple Inc. Light sensitive display with object detection calibration
US8638320B2 (en) 2011-06-22 2014-01-28 Apple Inc. Stylus orientation detection
US8928635B2 (en) 2011-06-22 2015-01-06 Apple Inc. Active stylus
US9176604B2 (en) 2012-07-27 2015-11-03 Apple Inc. Stylus device
US9310923B2 (en) 2010-12-03 2016-04-12 Apple Inc. Input device for touch sensitive devices
US9329703B2 (en) 2011-06-22 2016-05-03 Apple Inc. Intelligent stylus
US9557845B2 (en) 2012-07-27 2017-01-31 Apple Inc. Input device for and method of communication with capacitive devices through frequency variation
US9652090B2 (en) 2012-07-27 2017-05-16 Apple Inc. Device for digital communication through capacitive coupling
US9939935B2 (en) 2013-07-31 2018-04-10 Apple Inc. Scan engine for touch controller architecture
US10048775B2 (en) 2013-03-14 2018-08-14 Apple Inc. Stylus detection and demodulation
US10061450B2 (en) 2014-12-04 2018-08-28 Apple Inc. Coarse scan and targeted active mode scan for touch
US10474277B2 (en) 2016-05-31 2019-11-12 Apple Inc. Position-based stylus communication

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005134809A (en) * 2003-10-31 2005-05-26 Toshiba Matsushita Display Technology Co Ltd Display device
WO2006104212A1 (en) * 2005-03-29 2006-10-05 Sharp Kabushiki Kaisha Active matrix substrate, and display device and electronic device provided with such active matrix substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005134809A (en) * 2003-10-31 2005-05-26 Toshiba Matsushita Display Technology Co Ltd Display device
WO2006104212A1 (en) * 2005-03-29 2006-10-05 Sharp Kabushiki Kaisha Active matrix substrate, and display device and electronic device provided with such active matrix substrate

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11073926B2 (en) 2002-02-20 2021-07-27 Apple Inc. Light sensitive display
US8441422B2 (en) 2002-02-20 2013-05-14 Apple Inc. Light sensitive display with object detection calibration
US9411470B2 (en) 2002-02-20 2016-08-09 Apple Inc. Light sensitive display with multiple data set object detection
US9134851B2 (en) 2002-02-20 2015-09-15 Apple Inc. Light sensitive display
US9971456B2 (en) 2002-02-20 2018-05-15 Apple Inc. Light sensitive display with switchable detection modes for detecting a fingerprint
US7872641B2 (en) 2002-02-20 2011-01-18 Apple Inc. Light sensitive display
US8570449B2 (en) 2002-02-20 2013-10-29 Apple Inc. Light sensitive display with pressure sensor
US7880733B2 (en) 2002-05-23 2011-02-01 Apple Inc. Light sensitive display
US9354735B2 (en) 2002-05-23 2016-05-31 Apple Inc. Light sensitive display
US8044930B2 (en) 2002-05-23 2011-10-25 Apple Inc. Light sensitive display
US7852417B2 (en) 2002-05-23 2010-12-14 Apple Inc. Light sensitive display
US7830461B2 (en) 2002-05-23 2010-11-09 Apple Inc. Light sensitive display
US7880819B2 (en) 2002-05-23 2011-02-01 Apple Inc. Light sensitive display
US8207946B2 (en) 2003-02-20 2012-06-26 Apple Inc. Light sensitive display
US8289429B2 (en) 2004-04-16 2012-10-16 Apple Inc. Image sensor with photosensitive thin film transistors and dark current compensation
US7773139B2 (en) 2004-04-16 2010-08-10 Apple Inc. Image sensor with photosensitive thin film transistors
EP2214150A1 (en) * 2007-11-29 2010-08-04 Sharp Kabushiki Kaisha Image display device
US8248395B2 (en) 2007-11-29 2012-08-21 Sharp Kabushiki Kaisha Image display device
EP2214150A4 (en) * 2007-11-29 2011-02-23 Sharp Kk Image display device
WO2010041489A1 (en) * 2008-10-09 2010-04-15 シャープ株式会社 Photodiode, photodiode-equipped display device, and fabrication method therefore
US9310923B2 (en) 2010-12-03 2016-04-12 Apple Inc. Input device for touch sensitive devices
US9329703B2 (en) 2011-06-22 2016-05-03 Apple Inc. Intelligent stylus
US9519361B2 (en) 2011-06-22 2016-12-13 Apple Inc. Active stylus
US9921684B2 (en) 2011-06-22 2018-03-20 Apple Inc. Intelligent stylus
US8638320B2 (en) 2011-06-22 2014-01-28 Apple Inc. Stylus orientation detection
US8928635B2 (en) 2011-06-22 2015-01-06 Apple Inc. Active stylus
US9176604B2 (en) 2012-07-27 2015-11-03 Apple Inc. Stylus device
US9557845B2 (en) 2012-07-27 2017-01-31 Apple Inc. Input device for and method of communication with capacitive devices through frequency variation
US9582105B2 (en) 2012-07-27 2017-02-28 Apple Inc. Input device for touch sensitive devices
US9652090B2 (en) 2012-07-27 2017-05-16 Apple Inc. Device for digital communication through capacitive coupling
US10048775B2 (en) 2013-03-14 2018-08-14 Apple Inc. Stylus detection and demodulation
US10067580B2 (en) 2013-07-31 2018-09-04 Apple Inc. Active stylus for use with touch controller architecture
US10845901B2 (en) 2013-07-31 2020-11-24 Apple Inc. Touch controller architecture
US9939935B2 (en) 2013-07-31 2018-04-10 Apple Inc. Scan engine for touch controller architecture
US11687192B2 (en) 2013-07-31 2023-06-27 Apple Inc. Touch controller architecture
US10061450B2 (en) 2014-12-04 2018-08-28 Apple Inc. Coarse scan and targeted active mode scan for touch
US10061449B2 (en) 2014-12-04 2018-08-28 Apple Inc. Coarse scan and targeted active mode scan for touch and stylus
US10067618B2 (en) 2014-12-04 2018-09-04 Apple Inc. Coarse scan and targeted active mode scan for touch
US10664113B2 (en) 2014-12-04 2020-05-26 Apple Inc. Coarse scan and targeted active mode scan for touch and stylus
US10474277B2 (en) 2016-05-31 2019-11-12 Apple Inc. Position-based stylus communication

Similar Documents

Publication Publication Date Title
WO2008044368A1 (en) Liquid crystal display
WO2008044370A1 (en) Liquid crystal display
JP4854745B2 (en) Liquid crystal display
JP5512800B2 (en) Semiconductor device
US8164719B2 (en) Liquid crystal display device
US8766337B2 (en) Semiconductor device and method for manufacturing the same
WO2011065057A1 (en) Photodiode and manufacturing method for same, substrate for display panel, and display device
US20120146028A1 (en) Photosensor, semiconductor device, and liquid crystal panel
EP2154731B1 (en) Photodetector and display device provided with same
KR20050022358A (en) Display device and photoelectric conversion device
KR20130110490A (en) Array subtrate and method for fabricating the same
WO2011021472A1 (en) Optical sensor, semiconductor device, and liquid crystal panel
CN110678983B (en) Array substrate, display apparatus and method of manufacturing array substrate
US8415678B2 (en) Semiconductor device and display device
US20150303307A1 (en) Semiconductor device and display device
JP4621801B2 (en) Image display device
US20120319978A1 (en) Display device
US8681279B2 (en) Optical sensor, semiconductor device, and liquid crystal panel
US20130083258A1 (en) Display device equipped with touch sensor
JP4251622B2 (en) Liquid crystal display
JP5329938B2 (en) Image display device with built-in sensor
JP2005107383A (en) Liquid crystal display device
JP2009139565A (en) Display device and its manufacturing method
JPH0895086A (en) Active matrix panel for liquid crystal display element and manufacture thereof
JP2007047506A (en) Liquid crystal display device and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07745509

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07745509

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP