JP2009139460A - Heating member and image heating apparatus provided with the heating member - Google Patents

Heating member and image heating apparatus provided with the heating member Download PDF

Info

Publication number
JP2009139460A
JP2009139460A JP2007313310A JP2007313310A JP2009139460A JP 2009139460 A JP2009139460 A JP 2009139460A JP 2007313310 A JP2007313310 A JP 2007313310A JP 2007313310 A JP2007313310 A JP 2007313310A JP 2009139460 A JP2009139460 A JP 2009139460A
Authority
JP
Japan
Prior art keywords
heat generating
heating
substrate
generating substrate
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007313310A
Other languages
Japanese (ja)
Inventor
Hiroyuki Sakakibara
啓之 榊原
Hiroaki Sakai
宏明 酒井
Atsushi Iwasaki
岩崎  敦志
Yuko Sekihara
祐子 関原
Hidetsugu Saito
秀次 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2007313310A priority Critical patent/JP2009139460A/en
Publication of JP2009139460A publication Critical patent/JP2009139460A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixing For Electrophotography (AREA)
  • Control Of Resistance Heating (AREA)
  • Resistance Heating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce excessive rising of temperature in a region where a recording material is not passed in a heat generating region, and to suppress rising of the temperature around an electrode section of a heat generating substrate. <P>SOLUTION: A heating member is used for an image heating apparatus for heating the image carried on the recording material. The heating member 22 is provided with: a long heat generating substrate 22a for generating heat by being energized; and electrode sections 22d and 22e which are provided on the heat generating substrate in an end section in the longer direction of the heat generating substrate and which supplies power to the heat generating substrate, wherein conductive sections 22f and 22g which are electrically connected with the electrode section and extended from the electrode section to the center in the longitudinal direction of the heat generating substrate, is provided on the heat generating substrate, a heat generating region H2 is provided in a region which is on the side of the center in the longitudinal direction of the heat generating substrate from the conducting section. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電子写真複写機、電子写真プリンタなどの画像形成装置に搭載する加熱定着装置(定着器)に用いれば好適な加熱部材、及びその加熱部材を用いた像加熱装置に関する。   The present invention relates to a heating member suitable for use in a heat fixing device (fixing device) mounted on an image forming apparatus such as an electrophotographic copying machine or an electrophotographic printer, and an image heating device using the heating member.

電子写真式のプリンタや複写機に搭載する像加熱装置(定着器)として、セラミックス製の基板上に発熱抵抗体を有するヒータ、このヒータに接触しつつ移動する可撓性部材、可撓性部材を介してヒータとニップ部を形成する加圧ローラを有するものがある。特許文献1にはこのタイプの定着装置が記載されている。未定着トナー像を担持する記録材は定着器のニップ部で挟持搬送されつつ加熱され、これにより記録材上のトナー像は記録材に加熱定着される。この定着器は、ヒータへの通電を開始し定着可能温度まで昇温するのに要する時間が短いというメリットを有する。従って、この定着器を搭載するプリンタは、プリント指令の入力後、1枚目の画像を出力するまでの時間(FPOT:First Print Out Time)を短くできる。またこのタイプの定着器は、プリント指令を待つ待機中の消費電力が少ないというメリットもある。   As an image heating device (fixing device) mounted on an electrophotographic printer or copying machine, a heater having a heating resistor on a ceramic substrate, a flexible member that moves while contacting the heater, a flexible member Some of them have a pressure roller that forms a nip portion with the heater via the. Patent Document 1 describes this type of fixing device. The recording material carrying the unfixed toner image is heated while being nipped and conveyed by the nip portion of the fixing device, whereby the toner image on the recording material is heated and fixed on the recording material. This fixing device has an advantage that it takes a short time to start energizing the heater and raise the temperature to a fixable temperature. Therefore, a printer equipped with this fixing device can shorten the time (FPOT: First Print Out Time) from when a print command is input until the first image is output. This type of fixing device also has an advantage that power consumption during standby waiting for a print command is small.

ところで、可撓性部材を用いた定着器を搭載するプリンタで小サイズの記録材を大サイズの記録材と同じプリント間隔で連続プリントすると、ヒータの記録材が通過しない領域(非通紙領域)が過度に昇温することが知られている。ヒータの非通紙領域が過昇温すると、ヒータを保持するホルダや加圧ローラが熱により損傷する場合がある。   By the way, when a small-sized recording material is continuously printed at the same print interval as a large-sized recording material with a printer equipped with a fixing device using a flexible member, the area where the recording material of the heater does not pass (non-sheet passing area) Is known to overheat. If the non-sheet passing area of the heater is excessively heated, the holder and the pressure roller that hold the heater may be damaged by heat.

そこで、可撓性部材を用いた定着器を搭載するプリンタは、小サイズの記録材に連続プリントする場合、大サイズの記録材に連続プリントする場合よりもプリント間隔を広げる制御を行いヒータの非通紙領域の過昇温を抑えている。   Therefore, a printer equipped with a fixing device using a flexible member has a control for widening the print interval when continuously printing on a small size recording material, compared with the case of continuously printing on a large size recording material. The excessive temperature rise in the paper passing area is suppressed.

しかしながら、プリント間隔を広げる制御は単位時間当りの出力枚数を減らすものであり、単位時間当りの出力枚数を大サイズの記録材の場合と同等或いは若干少ない程度に抑えることが望まれる。   However, the control for extending the print interval is to reduce the number of output sheets per unit time, and it is desirable to suppress the number of output sheets per unit time to the same level or slightly less than in the case of a large size recording material.

そこで、上述した定着器に用いるヒータとして、温度が上昇するほど抵抗値が下がる特性(NTC=Negative Temperature Coefficient)のものを用いることも考えられている。   In view of this, it has been considered to use a heater (NTC = Negative Temperature Coefficient) whose resistance value decreases as the temperature rises as the heater used in the above-described fixing device.

特許文献2には、通電発熱体として炭化ケイ素(SiC)を主成分とする半円状のロッド部材を用い、この部材の長手方向両端部に金属成形体の給電電極を取り付けるという方法が開示されている。これは、常温から約800℃の温度領域では炭化ケイ素の負の抵抗温度特性(NTC特性)を利用し、非通紙領域が過昇温する非通紙部昇温を抑制するというものである。   Patent Document 2 discloses a method in which a semicircular rod member mainly composed of silicon carbide (SiC) is used as an energization heating element, and a power supply electrode of a metal molded body is attached to both ends in the longitudinal direction of this member. ing. This uses the negative resistance temperature characteristic (NTC characteristic) of silicon carbide in the temperature range from room temperature to about 800 ° C., and suppresses the non-sheet-passing portion temperature rise in which the non-sheet-passing region overheats. .

特許文献3には、窒化アルミ基板に通電発熱体として炭素系発熱体を埋め込み、その炭素系発熱体の両端部に給電用の電極を設けるという方法が開示されている。これも同様に炭素系発熱体の負の抵抗温度特性(NTC特性)を利用し、非通紙領域が過昇温する非通紙部昇温を抑制するというものである。
特開昭63−313182号公報 特開平06−019347号公報 特開2006−134746号公報
Patent Document 3 discloses a method of embedding a carbon-based heating element as an energization heating element in an aluminum nitride substrate and providing power supply electrodes at both ends of the carbon-based heating element. This also uses the negative resistance temperature characteristic (NTC characteristic) of the carbon-based heating element to suppress the temperature increase in the non-sheet passing portion where the temperature increases in the non-sheet passing region.
JP-A-63-313182 JP 06-019347 A JP 2006-134746 A

本発明は上記従来技術を更に発展させたものである。そこで、本発明の目的は、発熱領域の記録材が通過しない領域の過昇温を低減できるとともに発熱基板の電極部周りの昇温を抑えることのできる加熱部材、及びその加熱部材を用いた像加熱装置を提供することにある。   The present invention is a further development of the above prior art. SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a heating member capable of reducing an excessive temperature rise in an area where the recording material in the heat generating area does not pass and suppressing a temperature rise around the electrode portion of the heat generating substrate, and an image using the heating member. It is to provide a heating device.

上記目的を達成するための構成は、記録材に担持されている画像を加熱する像加熱装置に用いられる加熱部材であって、通電により発熱する細長い発熱基板と、前記発熱基板の長手方向端部で前記発熱基板上に設けられ前記発熱基板に給電するための電極部と、を有する加熱部材において、前記電極部と電気的に接続され前記電極部から前記発熱基板の長手方向中心に向かうように延ばした導電部を前記発熱基板上に有し、前記導電部より前記発熱基板の長手方向中心側の領域に発熱領域を有することを特徴とする。   A configuration for achieving the above object is a heating member used in an image heating apparatus that heats an image carried on a recording material, and includes an elongated heating substrate that generates heat when energized, and a longitudinal end portion of the heating substrate In the heating member having an electrode portion provided on the heat generating substrate for supplying power to the heat generating substrate, the heating member is electrically connected to the electrode portion so as to go from the electrode portion toward the longitudinal center of the heat generating substrate. An extended conductive portion is provided on the heat generating substrate, and a heat generating region is provided in a region on the longitudinal center side of the heat generating substrate from the conductive portion.

また、上記目的を達成するための構成は、通電により発熱する細長い発熱基板と前記発熱基板の長手方向端部で前記発熱基板上に設けられ前記発熱基板に給電するための電極部とを有する加熱部材と、前記加熱部材と接触しつつ移動する可撓性部材と、を有し、前記発熱基板の発熱により前記可撓性部材を介して記録材に担持されている画像を加熱する像加熱装置において、前記加熱部材は、前記電極部と電気的に接続され前記電極部から前記発熱基板の長手方向中心に向かうように延ばした導電部を前記発熱基板上に有し、前記導電部より前記発熱基板の長手方向中心側の領域に発熱領域を有することを特徴とする。   Further, a configuration for achieving the above object is a heating having an elongated heat generating substrate that generates heat by energization and an electrode portion that is provided on the heat generating substrate at a longitudinal end portion of the heat generating substrate and supplies power to the heat generating substrate. An image heating apparatus having a member and a flexible member that moves while being in contact with the heating member, and heats an image carried on the recording material via the flexible member by heat generated by the heat generating substrate The heating member has a conductive portion on the heat generating substrate that is electrically connected to the electrode portion and extends from the electrode portion toward the longitudinal center of the heat generating substrate, and the heating member generates the heat from the conductive portion. A heat generating region is provided in a region on the center side in the longitudinal direction of the substrate.

本発明によれば、発熱領域の記録材が通過しない領域の過昇温を低減できるとともに発熱基板の電極部周りの昇温を抑えることのできる加熱部材、及びその加熱部材を用いた像加熱装置を提供できる。   According to the present invention, a heating member that can reduce an excessive temperature rise in an area where the recording material of the heat generation area does not pass and can suppress a temperature rise around the electrode portion of the heat generation substrate, and an image heating apparatus using the heating member Can provide.

本発明を図面に基づいて説明する。   The present invention will be described with reference to the drawings.

[実施例]
(1)画像形成装置例
図1は本発明に係る像加熱装置を加熱定着装置として搭載できる画像形成装置の一例の概略構成模型図である。この画像形成装置は電子写真式のレーザービームプリンタである。
[Example]
(1) Image Forming Apparatus Example FIG. 1 is a schematic configuration model diagram of an example of an image forming apparatus in which the image heating apparatus according to the present invention can be mounted as a heat fixing apparatus. This image forming apparatus is an electrophotographic laser beam printer.

本実施例に示すプリンタは、像担持体として回転ドラム型の電子写真感光体(以下、感光ドラムと記す)1を有する。感光ドラム1は、OPC・アモルファスSe・アモルファスSi等の感光材料層を、アルミニウムやニッケルなどのシリンダ(ドラム)状の導電性基体の外周面に形成した構成から成る。   The printer shown in this embodiment has a rotating drum type electrophotographic photosensitive member (hereinafter referred to as a photosensitive drum) 1 as an image carrier. The photosensitive drum 1 has a configuration in which a photosensitive material layer such as OPC, amorphous Se, or amorphous Si is formed on the outer peripheral surface of a cylinder (drum) -like conductive substrate such as aluminum or nickel.

感光ドラム1は、矢印aの時計方向に所定の周速度(プロセススピード)にて回転駆動され、その回転過程で感光ドラム1の外周面(表面)が帯電手段としての帯電ローラ2により所定の極性・電位に一様に帯電処理される。その感光ドラム1表面の一様帯電面に対してレーザービームスキャナ3から出力される、画像情報に応じて変調制御(ON/OFF制御)されたレーザービームによる走査露光Lがなされる。これによって、感光ドラム1表面に目的の画像情報に応じた静電潜像が形成される。   The photosensitive drum 1 is rotationally driven in the clockwise direction indicated by an arrow a at a predetermined peripheral speed (process speed). In the rotation process, the outer peripheral surface (surface) of the photosensitive drum 1 has a predetermined polarity by a charging roller 2 as a charging unit.・ Evenly charged to the potential. Scanning exposure L is performed with a laser beam modulated and controlled (ON / OFF control) according to image information output from the laser beam scanner 3 to the uniformly charged surface of the photosensitive drum 1 surface. As a result, an electrostatic latent image corresponding to the target image information is formed on the surface of the photosensitive drum 1.

その潜像が現像手段としての現像装置4によりトナーtを用いることによって現像され可視化される。現像方法としては、ジャンピング現像法、2成分現像法、FEED現像法などが用いられ、イメージ露光と反転現像との組み合わせで用いられることが多い。   The latent image is developed and visualized by using the toner t by the developing device 4 as developing means. As a development method, a jumping development method, a two-component development method, a FEED development method, or the like is used, and is often used in combination with image exposure and reversal development.

一方、給送ローラ8の駆動により給送カセット9内に積載収納されている記録材Pが一枚づつ繰り出されガイド10・レジストローラ11を有するシートパスを通ってレジストローラ11に搬送される。レジストローラ11は、その記録材Pを感光ドラム1表面と転写ローラ5の外周面(表面)との間の転写ニップ部Tに所定の制御タイミングにて給送する。その記録材Pは転写ニップ部TNで挟持搬送され、その搬送過程において転写ローラ5に印加される転写バイアスによって感光ドラム1表面のトナー画像が順次に記録材Pの面に転写されていく。これによって記録材Pは未定着のトナー画像を担持する。   On the other hand, the recording material P stacked and stored in the feeding cassette 9 is driven one by one by driving the feeding roller 8 and conveyed to the registration roller 11 through a sheet path having the guide 10 and the registration roller 11. The registration roller 11 feeds the recording material P to the transfer nip T between the surface of the photosensitive drum 1 and the outer peripheral surface (surface) of the transfer roller 5 at a predetermined control timing. The recording material P is nipped and conveyed by the transfer nip portion TN, and the toner image on the surface of the photosensitive drum 1 is sequentially transferred onto the surface of the recording material P by a transfer bias applied to the transfer roller 5 in the conveyance process. As a result, the recording material P carries an unfixed toner image.

未定着トナー画像を担持した記録材Pは感光ドラム1表面から順次に分離して転写ニップ部Tから排出され、搬送ガイド12を通じて加熱定着装置6のニップ部Nに導入される。その記録材Pは定着装置6のニップ部Nにより熱と圧力を受けることによってトナー画像が記録材Pの面に加熱定着される。   The recording material P carrying the unfixed toner image is sequentially separated from the surface of the photosensitive drum 1, discharged from the transfer nip T, and introduced into the nip N of the heat fixing device 6 through the conveyance guide 12. The recording material P is heated and fixed on the surface of the recording material P by receiving heat and pressure from the nip portion N of the fixing device 6.

定着装置6を出た記録材Pは搬送ローラ13・ガイド14・排紙ローラ15を有するシートパスを通って、排出トレイ16にプリントアウトされる。   The recording material P that has exited the fixing device 6 passes through a sheet path having a conveying roller 13, a guide 14, and a paper discharge roller 15, and is printed out on a paper discharge tray 16.

また、記録材分離後の感光ドラム1表面はクリーニング手段としてのクリーニング装置7により転写残りトナー等の付着汚染物の除去処理を受けて清浄面化され、繰り返して作像に供される。   Further, the surface of the photosensitive drum 1 after separation of the recording material is cleaned by a cleaning device 7 as a cleaning means to remove adhered contaminants such as transfer residual toner, and is repeatedly used for image formation.

以上が本実施例のプリンタの画像形成動作(プリント動作)である。   The above is the image forming operation (printing operation) of the printer of this embodiment.

給送カセット9は給送カセット9の内部にサイズの異なる各種記録材Pを積載収容するための移動可能な規制ガイド(不図示)を有し、その規制ガイドを記録材Pのサイズに応じて変位させその記録材Pを給送カセット5内に積載収容する。これにより、サイズの異なる各種記録材Pを給送カセット9から中央搬送基準で送り出すことができる。ここで、中央搬送基準とは記録材Pの面において記録材Pの搬送方向と直交する幅方向の端面間の略中心を基準として記録材Pを搬送する搬送形態をいう。   The feeding cassette 9 has a movable regulation guide (not shown) for loading and storing various types of recording materials P of different sizes in the feeding cassette 9, and the regulation guide is used according to the size of the recording material P. The recording material P is displaced and stored in the feeding cassette 5. Accordingly, various types of recording materials P having different sizes can be sent out from the feeding cassette 9 on the basis of the central conveyance reference. Here, the central conveyance reference refers to a conveyance mode in which the recording material P is conveyed on the basis of the approximate center between the end surfaces in the width direction orthogonal to the conveyance direction of the recording material P on the surface of the recording material P.

本実施例のプリンタは、A4縦及びLTR縦サイズ紙対応のプリンタであって、プリントスピードが50枚/分である。   The printer of this embodiment is a printer compatible with A4 portrait and LTR portrait paper, and the print speed is 50 sheets / minute.

(2)定着装置6
以下の説明において、定着装置及び定着装置を構成する部材に関し、長手方向とは記録材の面において記録材搬送方向と直交する方向である。短手方向とは記録材の面において記録材搬送方向と平行な方向である。幅とは短手方向の寸法である。また、記録材に関し、幅方向とは記録材の面において記録材搬送方向と直交する方向である。また幅方向とは定着装置及び定着装置を構成する部材の長手方向でもある。長手幅とは記録材の幅方向の寸法である。
(2) Fixing device 6
In the following description, regarding the fixing device and the members constituting the fixing device, the longitudinal direction is a direction orthogonal to the recording material conveyance direction on the surface of the recording material. The short side direction is a direction parallel to the recording material conveyance direction on the surface of the recording material. The width is a dimension in the short direction. Regarding the recording material, the width direction is a direction orthogonal to the recording material conveyance direction on the surface of the recording material. The width direction is also the longitudinal direction of the fixing device and the members constituting the fixing device. The longitudinal width is a dimension in the width direction of the recording material.

図2は定着装置6の一例の横断面構成模型図である。図3は定着装置6の縦断面構成模型図である。図4は定着装置6を記録材導入側から見た図である。この定着装置6は、フィルム加熱方式の定着装置である。   FIG. 2 is a cross-sectional configuration model diagram of an example of the fixing device 6. FIG. 3 is a vertical cross-sectional configuration model diagram of the fixing device 6. FIG. 4 is a view of the fixing device 6 as viewed from the recording material introduction side. The fixing device 6 is a film heating type fixing device.

21は長手方向に延びる横長のフィルムガイド部材(ステイ)である。フィルムガイド部材21は横断面略半円弧状の樋型に形成してある。22はフィルムガイド部材21の下面の短手方向中央部に長手方向に沿って設けられている溝21a内に収容保持させた横長の加熱部材(以下、加熱体と記す)である。23は長手方向に延びる横長の可撓性部材(可撓性スリーブ)である。可撓性部材23は、加熱体22を保持させたフィルムガイド部材21にルーズに外嵌させたエンドレスベルト状(円筒状)の耐熱性フィルム(以下、フィルムと記す)である。   Reference numeral 21 denotes a horizontally long film guide member (stay) extending in the longitudinal direction. The film guide member 21 is formed in a saddle shape having a substantially semicircular cross section. Reference numeral 22 denotes a horizontally long heating member (hereinafter referred to as a heating body) accommodated and held in a groove 21a provided along the longitudinal direction at the center in the short direction of the lower surface of the film guide member 21. Reference numeral 23 denotes a horizontally long flexible member (flexible sleeve) extending in the longitudinal direction. The flexible member 23 is an endless belt-like (cylindrical) heat-resistant film (hereinafter referred to as a film) that is loosely fitted on the film guide member 21 that holds the heating body 22.

24は長手方向に沿って延びる加圧部材としての弾性加圧ローラ(以下、加圧ローラと記す)である。加圧ローラ24は、芯金24aと、その芯金24aの外周に設けられている弾性層24bと、その弾性層24bの外周に設けられている離型層24c等を有している。この加圧ローラ24は、フィルム23を挟んで加熱体22の有する表面保護層22hに加圧されている。加圧ローラ24の加熱体22への加圧は加圧バネ等の加圧手段(不図示)を用いて行われる。そして加圧ローラ24は、その加圧手段による加圧により弾性層24bを弾性変形させることによって、加圧ローラ24の外周面(表面)とフィルム23の外周面(表面)との間に所定幅のニップ部(定着ニップ部)Nを形成している。この加圧ローラ24は、芯金24aの長手端部に設けられている駆動ギアGがモータ等の駆動源Mにより回転駆動されることによって所定の周速度(プロセススピード)で矢印bの反時計方向に回転される。   Reference numeral 24 denotes an elastic pressure roller (hereinafter referred to as a pressure roller) as a pressure member extending along the longitudinal direction. The pressure roller 24 includes a metal core 24a, an elastic layer 24b provided on the outer periphery of the metal core 24a, a release layer 24c provided on the outer periphery of the elastic layer 24b, and the like. The pressure roller 24 is pressed against the surface protective layer 22 h of the heating body 22 with the film 23 interposed therebetween. Pressurization of the heating roller 22 by the pressure roller 24 is performed using a pressure means (not shown) such as a pressure spring. The pressure roller 24 elastically deforms the elastic layer 24b by the pressure applied by the pressure means, thereby providing a predetermined width between the outer peripheral surface (surface) of the pressure roller 24 and the outer peripheral surface (surface) of the film 23. Nip portion (fixing nip portion) N is formed. The pressure roller 24 is counterclockwise indicated by an arrow b at a predetermined peripheral speed (process speed) when a driving gear G provided at the longitudinal end of the cored bar 24a is rotated by a driving source M such as a motor. Rotated in the direction.

フィルムガイド部材21は、例えば、PPS(ポリフェニレンサルファイト)やLCP(液晶ポリマー)等の耐熱性樹脂の成形品である。   The film guide member 21 is a molded product of a heat resistant resin such as PPS (polyphenylene sulfite) or LCP (liquid crystal polymer).

加熱体22は、基板自体が通電により発熱するよう抵抗調整されたセラミックス抵抗発熱体を主体とする全体に低熱容量のヒータである。この加熱体22は、図5の(a)、(b)に示されるように、通電により発熱する細長い発熱基板22を有する。そしてこの発熱基板22aの表面(加圧ローラ24側の面(フィルム摺動面))に表面保護層(絶縁層)22hを有している。表面保護層22hは発熱基板22a表面においてフィルム23の内周面(内面)と接触する領域を覆うように設けられている。   The heating element 22 is a heater having a low heat capacity as a whole mainly composed of a ceramic resistance heating element whose resistance is adjusted so that the substrate itself generates heat when energized. As shown in FIGS. 5A and 5B, the heating body 22 has an elongated heat generating substrate 22 that generates heat when energized. A surface protective layer (insulating layer) 22h is provided on the surface of the heat generating substrate 22a (the surface on the pressure roller 24 side (film sliding surface)). The surface protective layer 22h is provided so as to cover a region in contact with the inner peripheral surface (inner surface) of the film 23 on the surface of the heat generating substrate 22a.

発熱基板22aの裏面(加圧ローラ24と反対側の面(非フィルム摺動面))には、サーミスタ等の検温素子(温度検知手段)22iが設けられている。その検温素子22iは、加熱体22の記録材Pが通過する領域(通紙領域(以下、通紙部と記す))に配置されている。この加熱体22は電力供給によって発熱基板22aが迅速に昇温する。そしてその発熱基板22aの温度を検温素子22iが検出する。その検温素子22iの出力信号(温度検知信号)を制御手段としてのMPU31(図5(a)参照)が取り込む。MPU31はその出力信号に基づいて所定の給電回路(不図示)を制御し加熱体22の温度を所定の定着温度(目標温度)に維持する。   On the back surface (surface opposite to the pressure roller 24 (non-film sliding surface)) of the heat generating substrate 22a, a temperature detecting element (temperature detecting means) 22i such as a thermistor is provided. The temperature measuring element 22i is arranged in a region (a paper passing region (hereinafter referred to as a paper passing portion)) through which the recording material P of the heating body 22 passes. The heating substrate 22 quickly heats up the heat generating substrate 22a by supplying power. The temperature detecting element 22i detects the temperature of the heat generating substrate 22a. The MPU 31 (see FIG. 5A) as a control means takes in the output signal (temperature detection signal) of the temperature measuring element 22i. The MPU 31 controls a predetermined power supply circuit (not shown) based on the output signal to maintain the temperature of the heating element 22 at a predetermined fixing temperature (target temperature).

フィルム23は、熱容量を小さくして装置のクイックスタート性を向上させるために、膜厚を総厚100μm以下、好ましくは60μm以下20μm以上とした単層フィルム、或いはベースフィルムの表面に離型層をコーティングした複合層フィルムである。単層フィルム、或いはベースフィルムの形態はエンドレスベルト状(円筒状)である。単層フィルムの材料としては、耐熱性・離型性・強度・耐久性等のあるPTFE(ポリテトラフルオロエチレン)・PFA(テトラフルオロエチレン−パーフルオロアルキルビニルエーテル)・PPS等が用いられる。ベースフィルムの材料としては、ポリイミド・ポリアミドイミド・PEEK(ポリエーテルエーテルケトン)・PES(ポリエーテルスルホン)等が用いられる。離型層の材料としては、PTFE・PFA・FEP(テトラフルオロエチレン−パーフルオロアルキルビニルエーテル)等が用いられる。   The film 23 is a single layer film having a total thickness of 100 μm or less, preferably 60 μm or less and 20 μm or more, or a release layer on the surface of the base film in order to reduce the heat capacity and improve the quick start property of the apparatus. It is a coated composite layer film. The form of the single layer film or the base film is an endless belt shape (cylindrical shape). As a material for the single layer film, PTFE (polytetrafluoroethylene), PFA (tetrafluoroethylene-perfluoroalkyl vinyl ether), PPS, etc. having heat resistance, releasability, strength, durability and the like are used. As a material for the base film, polyimide, polyamideimide, PEEK (polyetheretherketone), PES (polyethersulfone), or the like is used. As a material for the release layer, PTFE / PFA / FEP (tetrafluoroethylene-perfluoroalkyl vinyl ether) or the like is used.

加圧ローラ24は、鉄やアルミニウム等の材料により作製された丸軸状の芯金24aと、その芯金24aの外周に設けられた弾性層24bと、その弾性層24bの外周に設けられた離型層24c等からなる。弾性層24bはシリコーンゴム或いはフッ素ゴムなど一般的な耐熱性ゴム弾性材料を用いる事が出来る。どちらの材料も、定着装置6で使用した場合に充分な耐熱性・耐久性を有し、かつ、好ましい弾性(軟らかさ)を有している。従って、シリコーンゴム或いはフッ素ゴムはゴム弾性層24bの主たる材料として好適である。シリコーンゴムとしては、例えば、ジメチルポリシロキサンを、ビニル基とケイ素結合水素基との付加反応によりゴム架橋化して得る付加反応型ジメチルシリコーンゴムが代表的な例として例示できる。フッ素ゴムとしては、ビニリデンフルオライドとヘキサフルオロプロピレンの二元共重合体をベースポリマーとし、パーオキサイドによるラジカル反応によりゴム架橋化して得る二元のラジカル反応型フッ素ゴムが代表的な例として例示できる。その他、ビニリデンフルオライドとヘキサフルオロプロピレンとテトラフルオロエチレンの三元共重合体をベースポリマーとし、パーオキサイドによるラジカル反応によりゴム架橋化して得る三元のラジカル反応型フッ素ゴムが代表的な例として例示できる。   The pressure roller 24 is provided with a round shaft-shaped metal core 24a made of a material such as iron or aluminum, an elastic layer 24b provided on the outer periphery of the metal core 24a, and an outer periphery of the elastic layer 24b. It consists of a release layer 24c and the like. For the elastic layer 24b, a general heat-resistant rubber elastic material such as silicone rubber or fluorine rubber can be used. Both materials have sufficient heat resistance and durability when used in the fixing device 6 and have favorable elasticity (softness). Accordingly, silicone rubber or fluororubber is suitable as the main material of the rubber elastic layer 24b. A typical example of the silicone rubber is an addition reaction type dimethyl silicone rubber obtained by crosslinking a dimethylpolysiloxane with an addition reaction between a vinyl group and a silicon-bonded hydrogen group. A typical example of the fluororubber is a binary radical-reactive fluororubber obtained by crosslinking a rubber by a radical reaction with peroxide using a binary copolymer of vinylidene fluoride and hexafluoropropylene as a base polymer. . A typical example is a ternary radical-reactive fluororubber obtained by crosslinking a rubber by radical reaction with peroxide using a terpolymer of vinylidene fluoride, hexafluoropropylene and tetrafluoroethylene as a base polymer. it can.

離型層24cは弾性層24b上にPFAチューブを被せることにより形成しても良いし、フッ素ゴムまたは、PTFE、PFA、FEPなどのフッ素樹脂を弾性層上にコーティングすることによって形成しても良い。なお、離型層24cの厚さは加圧ローラ24に充分な離型性を付与することができる厚さであれば特に限定されないが、好ましくは20〜100μmである。   The release layer 24c may be formed by covering the elastic layer 24b with a PFA tube, or may be formed by coating a fluorine resin such as fluororubber or PTFE, PFA, FEP on the elastic layer. . The thickness of the release layer 24c is not particularly limited as long as it can provide the release roller 24 with sufficient release properties, but is preferably 20 to 100 μm.

さらに、弾性層24bと離型層24cの間には接着、通電等の目的によりプライマー層や接着層が形成されていても良い。   Furthermore, a primer layer or an adhesive layer may be formed between the elastic layer 24b and the release layer 24c for the purpose of adhesion, energization, and the like.

フィルム23は、少なくとも画像形成実行時に加圧ローラ24が矢印bの反時計方向に回転されることにより、加圧ローラ24の回転に従動する。つまり、加圧ローラ24が回転すると、ニップ部Nにおいて加圧ローラ24表面とフィルム23表面との摩擦力でフィルム23に回転力が作用する。フィルム23が回転している際には、フィルム23はフィルム23内面がニップ部Nにおいて加熱体22の表面保護層22hに接触して摺動する。この場合、フィルム23内面と加熱体22の表面保護層22hとの摺動抵抗を低減するために両者間に耐熱性グリス等の潤滑剤を介在させるとよい。   The film 23 is driven by the rotation of the pressure roller 24 at least when the pressure roller 24 is rotated counterclockwise as indicated by the arrow b at the time of image formation. That is, when the pressure roller 24 rotates, a rotational force acts on the film 23 by the frictional force between the surface of the pressure roller 24 and the surface of the film 23 at the nip portion N. When the film 23 is rotating, the film 23 slides with the inner surface of the film 23 in contact with the surface protective layer 22 h of the heating body 22 at the nip portion N. In this case, in order to reduce the sliding resistance between the inner surface of the film 23 and the surface protective layer 22h of the heating body 22, a lubricant such as heat resistant grease may be interposed therebetween.

そして、加圧ローラ24の回転によりフィルム23が回転され、かつ加熱体22が所定の定着温度に立ち上がって温調された状態において、未定着トナー画像(像)tを担持した記録材Pがニップ部Nに導入される。その記録材Pはニップ部Nでフィルム23表面と加圧ローラ24表面とにより挟持搬送される。その搬送過程においてトナー画像tには加熱体22の熱がフィルム23を介して付与されるとともにニップ部Nのニップ圧が付与される。これによって、トナー画像tは記録材Pの面に加熱定着される。ニップ部Nを出た記録材Pはフィルム23表面から分離されて搬送され、定着装置6から排出される。   Then, the recording material P carrying the unfixed toner image (image) t is nipped in the state where the film 23 is rotated by the rotation of the pressure roller 24 and the heating body 22 rises to a predetermined fixing temperature and is temperature-controlled. Part N is introduced. The recording material P is nipped and conveyed at the nip portion N by the surface of the film 23 and the surface of the pressure roller 24. During the conveyance process, the heat of the heating body 22 is applied to the toner image t through the film 23 and the nip pressure of the nip portion N is applied. As a result, the toner image t is heated and fixed on the surface of the recording material P. The recording material P exiting the nip portion N is separated from the surface of the film 23 and conveyed, and is discharged from the fixing device 6.

また、回転するフィルム23にはニップ部N以外には実質的にテンションが作用しないこと、定着装置6の簡略化等の理由で、フィルム寄り移動規制手段としてフィルム23の端部を受け止めるだけのフランジ部材(不図示)のみを配設している。   Further, a flange that only receives the end portion of the film 23 as a film displacement movement restricting means because the tension is not substantially applied to the rotating film 23 other than the nip portion N and the fixing device 6 is simplified. Only members (not shown) are provided.

(3)加熱体22
次に、加熱体22の構成、材料及び製造方法等を説明する。
(3) Heating body 22
Next, the configuration, material, manufacturing method, and the like of the heating body 22 will be described.

図5において、(a)は加熱体22の一例の説明図であって、加熱体22の裏面側の構成模型図である。(b)は(a)の加熱体22の表面側の構成模型図である。(c)は(b)の加熱体22の長手方向中央のA−A面の断面図である。(d)は(b)の加熱体22の給電用電極部22dと給電用コネクタ25との関係を表すB−B面の断面図である。   In FIG. 5, (a) is an explanatory diagram of an example of the heating body 22, and is a structural model diagram on the back side of the heating body 22. (B) is a structural model figure of the surface side of the heating body 22 of (a). (C) is sectional drawing of the AA surface of the center of the longitudinal direction of the heating body 22 of (b). (D) is sectional drawing of the BB surface showing the relationship between the electrode part 22d for electric power feeding of the heating body 22 of (b), and the connector 25 for electric power feeding.

加熱体22は、通電により発熱する細長い発熱基板22aを有する。この発熱基板22aは、耐熱性と所定の電気伝導性を有するセラミック抵抗発熱体からなっている。発熱基板22aの長手方向端部の裏面上(発熱基板上)には、発熱基板22aに給電するための給電用電極部22d,22eと、その給電用電極部22d,22eとそれぞれ電気的に接続されている導電部としての導電パターン22f,22gと、が設けられている。22hは絶縁層としての表面保護層である。表面保護層22hは発熱基板22aの表面において少なくとも一部、即ち発熱基板22aの表面においてフィルム23内面と接触する領域を覆うように設けてある。つまり、発熱基板22aは発熱基板22a表面が表面保護層22hによって少なくとも一部が覆われている。表面保護層22hは、発熱基板22a表面においてフィルム23内面と接触する領域だけでなく、発熱基板22a表面の全領域に設けてもよい。   The heating body 22 has an elongated heat generating substrate 22a that generates heat when energized. The heat generating substrate 22a is made of a ceramic resistance heating element having heat resistance and predetermined electrical conductivity. On the back surface (on the heat generating substrate) of the longitudinal end portion of the heat generating substrate 22a, the power supplying electrode portions 22d and 22e for supplying power to the heat generating substrate 22a and the power supplying electrode portions 22d and 22e are electrically connected respectively. Conductive patterns 22f and 22g are provided as conductive portions. 22h is a surface protective layer as an insulating layer. The surface protective layer 22h is provided so as to cover at least a part of the surface of the heat generating substrate 22a, that is, a region in contact with the inner surface of the film 23 on the surface of the heat generating substrate 22a. That is, the surface of the heat generating substrate 22a is at least partially covered with the surface protective layer 22h. The surface protective layer 22h may be provided not only in the region in contact with the inner surface of the film 23 on the surface of the heat generating substrate 22a but also in the entire region of the surface of the heat generating substrate 22a.

発熱基板22aの長手方向の一端部に設けられている給電用電極部22dには、発熱基板22aの裏面上で導電パターン22fが電気的に接続されその給電用電極部22dから発熱基板22aの長手方向中心Cに向かうように延びている。また、発熱基板22aの長手方向の他端部に設けられている給電用電極部22eには、発熱基板22aの裏面上で導電パターン22gが電気的に接続されその給電用電極部22eから発熱基板22aの長手方向中心Cに向かうように延びている。この導電パターン22f,22gは発熱基板22aの長手方向中心Cに対して対称となる形状に形成してある。導電パターン22f,22gは、それぞれ、発熱基板22aの短手方向において給電用電極部22d,22eの略中央から発熱基板22aの長手方向中心Cに向けて延びる部分22f1,22e1を有する。そしてその部分22f1,22e1の先端に、発熱基板22aの短手方向において部分22f1,22e1から給電用電極部22d,22eの幅を超えて発熱基板22aの短手方向端部の内側近傍まで延びる部分22f2,22e2を有する。これらの部分22f1,22e1,22f2,22e2は何れも給電用電極部22d,22eの幅よりも幅の狭い線状に形成してある。   A conductive pattern 22f is electrically connected on the back surface of the heat generating substrate 22a to the power supply electrode portion 22d provided at one end in the longitudinal direction of the heat generating substrate 22a, and the length of the heat generating substrate 22a is extended from the power supplying electrode portion 22d. It extends to the direction center C. In addition, a conductive pattern 22g is electrically connected to the power supply electrode portion 22e provided at the other end in the longitudinal direction of the heat generating substrate 22a on the back surface of the heat generating substrate 22a, and the heat generating substrate is connected to the power supply electrode portion 22e. It extends toward the longitudinal center C of 22a. The conductive patterns 22f and 22g are formed in a shape symmetrical with respect to the longitudinal center C of the heat generating substrate 22a. The conductive patterns 22f and 22g respectively have portions 22f1 and 22e1 extending from the approximate center of the power supply electrode portions 22d and 22e toward the longitudinal center C of the heat generating substrate 22a in the short direction of the heat generating substrate 22a. A portion extending from the portion 22f1, 22e1 to the inside of the short-side end of the heat generating substrate 22a from the portion 22f1, 22e1 in the short direction of the heat generating substrate 22a at the tip of the portion 22f1, 22e1 22f2 and 22e2. These portions 22f1, 22e1, 22f2, and 22e2 are all formed in a linear shape that is narrower than the width of the power feeding electrode portions 22d and 22e.

ここで、給電用電極部22d,22e、導電パターン22f,22g及び通電により発熱する発熱基板22aの発熱領域について更に詳しく説明する。   Here, the power supply electrode portions 22d and 22e, the conductive patterns 22f and 22g, and the heat generation region of the heat generation substrate 22a that generates heat by energization will be described in more detail.

図6の(a)は従来の加熱体(加熱部材)の裏面側を表わす構成模型図である。(b)は本実施例の加熱体22の裏面側を表わす構成模型図である。従来の加熱体において本実施例の加熱体22と共通する部材・部分には同じ符号を付している。   FIG. 6A is a structural model diagram showing the back side of a conventional heating body (heating member). (B) is a structural model figure showing the back surface side of the heating body 22 of a present Example. In the conventional heating body, the same code | symbol is attached | subjected to the member and part which are common with the heating body 22 of a present Example.

図6(a)に示す従来例の加熱体22のように、通電により発熱する発熱基板22aと給電用電極部22d,22eのみの構成の場合、発熱基板22aの通電による発熱領域は電極部22d,22e間のH1の領域となる。この従来例の加熱体22は、本実施例の加熱体22のような導電パターン22f,22gを有していない点を除いて、本実施例の加熱体22と同じ構成としてある。   In the case of the configuration of only the heat generating substrate 22a that generates heat by energization and the power supply electrode portions 22d and 22e as in the heating element 22 of the conventional example shown in FIG. , 22e. The heating body 22 of this conventional example has the same configuration as the heating body 22 of this embodiment, except that it does not have the conductive patterns 22f and 22g like the heating body 22 of this embodiment.

一方、図6の(b)に示す本実施例の加熱体22のように、発熱基板22aと給電用電極部22d,22eと導電パターン22f,22gとを有する構成の場合、発熱基板22aの通電による発熱領域は導電パターン22f,22g間のH2の領域となる。つまり、導電パターン22f,22gより発熱基板22aの長手方向中心側の領域H2が発熱領域となる。以後、発熱領域を発熱部と称す。   On the other hand, in the case of the configuration having the heat generating substrate 22a, the power supply electrode portions 22d and 22e, and the conductive patterns 22f and 22g as in the heating body 22 of this embodiment shown in FIG. 6B, the heat generating substrate 22a is energized. The heat generation region due to is an H2 region between the conductive patterns 22f and 22g. That is, the region H2 on the longitudinal center side of the heat generating substrate 22a from the conductive patterns 22f and 22g becomes the heat generating region. Hereinafter, the heat generation region is referred to as a heat generation portion.

これは導電パターン22f,22gの体積抵抗率(比抵抗)と、発熱基板22aの体積抵抗率(比抵抗)の関係により発熱基板22aの発熱部がH2の領域となるかそれよりも長くなるかが決まってくる。導電パターン22f,22gの体積抵抗率が十分に低い場合は図6(b)に示すように発熱部を導電パターン22f,22g間(H2領域)とすることができる。この発熱部H2を形成できることが本実施例の加熱体23の特徴的な点である。   This is whether the heat generating portion of the heat generating substrate 22a becomes the H2 region or longer depending on the relationship between the volume resistivity (specific resistance) of the conductive patterns 22f and 22g and the volume resistivity (specific resistance) of the heat generating substrate 22a. Will be decided. When the volume resistivity of the conductive patterns 22f and 22g is sufficiently low, the heating portion can be located between the conductive patterns 22f and 22g (H2 region) as shown in FIG. A characteristic point of the heating body 23 of the present embodiment is that the heat generating portion H2 can be formed.

図6(b)にて示される加熱体22は、給電回路から給電用コネクタ25を通じて通電電極部22d,22eに電力が供給され、導電パターン22f,22gを介して発熱部H2に電流が流れることによって発熱部H2が迅速に昇温する。そしてその発熱部H2の温度が発熱基板22a裏面の発熱部H2の長手方向中央に設けられている検温素子22i(図5(a)参照)により検知される。その検温素子22iの出力信号をMPU31(図5(a)参照)が取り込みその出力信号に基づいて所定の給電回路(不図示)を制御することによって加熱体22は所定の定着温度(目標温度)を維持する。   In the heating element 22 shown in FIG. 6B, power is supplied from the power supply circuit to the energizing electrode portions 22d and 22e through the power supply connector 25, and current flows to the heat generating portion H2 through the conductive patterns 22f and 22g. As a result, the temperature of the heat generating portion H2 rises quickly. The temperature of the heat generating portion H2 is detected by a temperature measuring element 22i (see FIG. 5A) provided at the center in the longitudinal direction of the heat generating portion H2 on the back surface of the heat generating substrate 22a. The MPU 31 (see FIG. 5A) takes in the output signal of the temperature measuring element 22i and controls a predetermined power supply circuit (not shown) based on the output signal, whereby the heating body 22 has a predetermined fixing temperature (target temperature). To maintain.

給電用コネクタ25は、金属からなる給電用接点25aとLCP(液晶ポリマー)などの耐熱性樹脂からなるモールド部25bよりなる(図5(d)参照)。発熱部H2の非通紙部(発熱部H2の記録材Pが通過しない領域(非通紙領域))は画像定着に本来必要ない部分であることから温度を下げておくほうが良い。また、定着装置6の信頼性の面からモールド部25bの温度を下げておくことが非常に重要である。これは、発熱部H2の非通紙部の温度が過昇温すること(非通紙部昇温)に伴ってモールド部25bの温度も上昇し、モールド部25bの耐熱温度を超えると樹脂の溶融、破壊などの不具合が生じてしまうからである。本実施例ではモールド部25bの材料として耐熱温度250℃のLCPを用いている。   The power feeding connector 25 includes a power feeding contact 25a made of metal and a mold portion 25b made of a heat resistant resin such as LCP (liquid crystal polymer) (see FIG. 5D). Since the non-sheet passing portion of the heat generating portion H2 (the region where the recording material P of the heat generating portion H2 does not pass (non-sheet passing region)) is a portion that is not originally required for image fixing, the temperature should be lowered. Further, it is very important to lower the temperature of the mold part 25b from the viewpoint of the reliability of the fixing device 6. This is because when the temperature of the non-sheet passing portion of the heat generating portion H2 is excessively raised (non-sheet passing portion temperature rising), the temperature of the mold portion 25b also rises and exceeds the heat resistance temperature of the mold portion 25b. This is because problems such as melting and destruction occur. In this embodiment, LCP having a heat resistant temperature of 250 ° C. is used as the material of the mold part 25b.

発熱基板22aを構成する材料としては、炭化ケイ素質(SiC)、ランタンクロマイト質(LaCrO)、炭素(C)質等の非金属発熱体の中でも常温から300℃の範囲で抵抗温度係数が負特性を示すものが好ましい。その中でも酸化などの影響が少ない、或いは工業的な入手容易性より炭化ケイ素質(SiC)が好適である。本実施例の発熱基板22aは炭化ケイ素発熱体である。 Among the non-metallic heating elements such as silicon carbide (SiC), lanthanum chromite (LaCrO 3 ), carbon (C), etc., the material constituting the heating substrate 22a has a negative resistance temperature coefficient in the range of room temperature to 300 ° C. Those exhibiting characteristics are preferred. Of these, silicon carbide (SiC) is preferred because it is less affected by oxidation and the like, or industrially available. The heat generating substrate 22a of this embodiment is a silicon carbide heat generating element.

一般に炭化ケイ素(SiC)は通電発熱による温度上昇に伴って800℃以下の温度域では比抵抗が急激に低下する(NTC特性)。この理由は、炭化ケイ素(SiC)は半導体であるため不純物準位から伝導体へ励起できる伝導電子の数が温度上昇に伴って増大するためであると言われている。   In general, the resistivity of silicon carbide (SiC) rapidly decreases in the temperature range of 800 ° C. or less as the temperature rises due to current generation (NTC characteristics). This reason is said to be because silicon carbide (SiC) is a semiconductor, so that the number of conduction electrons that can be excited from the impurity level to the conductor increases as the temperature rises.

ここで上記したNTC特性の非通紙部昇温への効果について詳述するためモデル図を用いて説明する。   Here, in order to explain in detail the effect of the above NTC characteristics on the temperature increase of the non-sheet passing portion, a description will be given using a model diagram.

図7は加熱体22(図6(b))の発熱部H2における通紙部(記録材Pが通過する領域(通紙領域))と非通紙部の発熱量を説明するためのモデル図である。ここでは、発熱部H2を長さa(=55mm)に4分割して考え、発熱部H2において長手方向中央部2箇所の抵抗をそれぞれr1、長手方向端部2箇所の抵抗をそれぞれr2とする(長手方向中央部と長手方向端部の温度が同じであればr1=r2)。2(r1+r2)が総抵抗である。発熱部H2に流れる電流をiとすると、長手方向中央部の1ブロックの発熱量q1はi×r1であり、長手方向端部の1ブロック発熱量q2はi×r2である。 FIG. 7 is a model diagram for explaining the heat generation amount of the sheet passing portion (the region through which the recording material P passes (paper passing region)) and the non-sheet passing portion in the heating portion H2 of the heating body 22 (FIG. 6B). It is. Here, the heat generating part H2 is considered to be divided into four parts of length a (= 55 mm), and in the heat generating part H2, the resistance at the two central parts in the longitudinal direction is r1, and the resistance at the two longitudinal end parts is r2. (If the temperature at the longitudinal center and the longitudinal end are the same, r1 = r2). 2 (r1 + r2) is the total resistance. Assuming that the current flowing through the heat generating portion H2 is i, the heat generation amount q1 of one block at the central portion in the longitudinal direction is i 2 × r1, and the heat generation amount q2 at one end in the longitudinal direction is i 2 × r2.

簡単のため、長手幅2a(=110mm)の小サイズ紙がニップ部Nに通紙(導入)された場合を考えると、長手方向中央部の抵抗がr1の部分は通紙部に、長手方向端部の抵抗がr2の部分は非通紙部になる。加熱体22の温度制御は通紙部に設けられている検温素子22iで行われるので、小サイズ紙に熱を奪われる通紙部に比べて、小サイズ紙に熱を奪われない非通紙部の温度は上昇する。本実施例の発熱基板22aは実使用温度域(250℃以下)ではNTC特性であるため、小サイズ紙通紙時はr1>r2となる。電流iは通紙部と非通紙部で同じであるためq1>q2となり、非通紙部の発熱量は長手方向中央部の通紙部の発熱量よりも小さくなり非通紙部昇温を抑えることが可能となる。   For the sake of simplicity, considering a case where a small size paper having a longitudinal width 2a (= 110 mm) is passed (introduced) into the nip portion N, the portion having a resistance r1 at the central portion in the longitudinal direction is passed through the paper passing portion. The portion where the end resistance is r2 is a non-sheet passing portion. Since the temperature control of the heating body 22 is performed by the temperature measuring element 22i provided in the paper passing portion, the non-paper passing which does not take heat away from the small size paper compared to the paper passing portion where heat is taken away from the small size paper. The temperature of the part rises. Since the heat generating substrate 22a of the present embodiment has NTC characteristics in the actual use temperature range (250 ° C. or lower), r1> r2 when small-size paper is passed. Since the current i is the same in the sheet passing portion and the non-sheet passing portion, q1> q2, and the heat generation amount in the non-sheet passing portion is smaller than the heat generation amount in the sheet passing portion in the central portion in the longitudinal direction. Can be suppressed.

次に加熱体22の製造法について説明する。   Next, the manufacturing method of the heating body 22 will be described.

発熱基板22aの材料である炭化ケイ素(SiC)発熱体(以下、炭化ケイ素質(SiC)発熱体と称す)の焼結法としては以下に挙げる方法が良く知られている。例えば、微粉状の炭化ケイ素(SiC)に焼結助剤を添加して常圧下で加熱焼結する常圧焼結法が知られている。また、炭化ケイ素(SiC)、炭素(C)、有機バインダーからなる混合物を成形して高温下で溶融シリコン(Si)と接触させ、二次的に炭化ケイ素(SiC)に添加させて得る反応焼結法が知られている。また、微粉状の炭化ケイ素(SiC)を成形して2000℃以上の温度で焼結する再結晶法が知られている。その他、型に入った炭化ケイ素(SiC)粉末をヒータで加熱し、同時に上下から加圧するホットプレス法、ガス圧を用いて等方圧加圧下で焼結させるHIP法が知られている。   The following methods are well known as sintering methods for a silicon carbide (SiC) heating element (hereinafter referred to as a silicon carbide (SiC) heating element) which is a material of the heating substrate 22a. For example, a normal pressure sintering method is known in which a sintering aid is added to fine powdered silicon carbide (SiC) and heated and sintered under normal pressure. Also, a reaction firing obtained by forming a mixture of silicon carbide (SiC), carbon (C), and an organic binder, bringing the mixture into contact with molten silicon (Si) at a high temperature, and then adding it to silicon carbide (SiC) secondarily. The law is known. Also known is a recrystallization method in which fine powder silicon carbide (SiC) is molded and sintered at a temperature of 2000 ° C. or higher. In addition, there are known a hot press method in which silicon carbide (SiC) powder in a mold is heated with a heater and simultaneously pressed from above and below, and an HIP method in which sintering is performed under isotropic pressure using a gas pressure.

炭化ケイ素(SiC)原料としては平均粒径5μm以下の炭化ケイ素(SiC)粉末を使用するのが好ましい。平均粒径が5μmを超えると、焼結の駆動力が十分に得られず、気孔率の小さい焼結体が得難くなる。好ましくは、平均粒径2μm以下の炭化ケイ素(SiC)粉末を原料とするのが良い。   As the silicon carbide (SiC) raw material, it is preferable to use silicon carbide (SiC) powder having an average particle size of 5 μm or less. When the average particle diameter exceeds 5 μm, a sufficient driving force for sintering cannot be obtained, and it becomes difficult to obtain a sintered body having a low porosity. Preferably, silicon carbide (SiC) powder having an average particle size of 2 μm or less is used as a raw material.

この炭化ケイ素(SiC)粉末を焼結助財と混合し、得られた混合粉末を成形して成形体となる。焼結助剤としては、例えば、B、BC、BNなどのB化合物およびカーボンブラックなどの炭素源を使用することができる。焼結性を向上させるためにAl、Al、AlなどのAl化合物を微量添加しても良い。つぎに常圧焼結法にて説明すれば、成形体を窒素ガス雰囲気化で2100〜2300℃の温度に加熱焼成する。加熱により緻密化と窒素の固溶が同時に進行し、気孔率が小さく良好な導電性を備えた炭化ケイ素(SiC)焼結体が得られる。 This silicon carbide (SiC) powder is mixed with a sintering aid, and the resulting mixed powder is molded into a molded body. As the sintering aid, for example, B compounds such as B, B 4 C, and BN and carbon sources such as carbon black can be used. In order to improve the sinterability, a small amount of Al compound such as Al, Al 4 C 3 , Al 2 O 3 may be added. Next, if it demonstrates with a normal pressure sintering method, a molded object will be heat-fired to the temperature of 2100-2300 degreeC by nitrogen gas atmosphere. By heating, densification and solid solution of nitrogen proceed simultaneously, and a silicon carbide (SiC) sintered body having a small porosity and good conductivity can be obtained.

ホウ素(B)と炭素(C)を焼結助剤として加える常圧焼結法においては、一般に、1950℃前後に焼結収縮のピークがある。しかし、焼成時の加熱雰囲気中に窒素ガスが存在すると、炭化ケイ素(SiC)の焼結性が低下して焼結収縮のピークが高温側に移行するため緻密な炭化ケイ素焼結体を得るには2100℃以上の温度で焼成を行わなければならない。加熱温度が2300℃を超えると炭化ケイ素(SiC)の昇華が始まり、また極端な抵抗増加が生じやすくなる。   In the atmospheric pressure sintering method in which boron (B) and carbon (C) are added as sintering aids, there is generally a peak of sintering shrinkage around 1950 ° C. However, if nitrogen gas is present in the heating atmosphere during firing, the sinterability of silicon carbide (SiC) decreases and the peak of sintering shrinkage shifts to the high temperature side, so a dense silicon carbide sintered body is obtained. Must be fired at a temperature of 2100 ° C. or higher. When the heating temperature exceeds 2300 ° C., sublimation of silicon carbide (SiC) starts and an extreme increase in resistance tends to occur.

炭化ケイ素質(SiC)発熱体を成形して発熱基板22aが形成される。そして、給電用電極部22d,22eと導電パターン22f,22gは、銀(Ag)、白金(Pt)、金(Au)などを主体とする導電ペーストを用いて発熱基板22aの長手方向両端部に形成される。即ち、上記導電ペーストの良伝導体膜をスクリーン印刷法にて約5μmから100μmの厚みで発熱基板22aへと形成している。給電用電極部22d,22eと導電パターン22f,22gは、上記導電ペーストに限られず銀・白金(Ag・Pt)合金、銀・パラジウム(Ag・Pd)合金などを主体とする導電ペースト用いてもよい。この後上記塗布膜を乾燥し、焼成炉中で焼成ピーク温度が約850℃で約10分間(焼成炉経過時間は約40分)焼成する。給電用電極部22d,22eと導電パターン22f,22gは発熱基板22aの発熱部H2に給電する目的で設けられているので、抵抗は発熱基板22aに対して十分低い。この給電用電極部22d,22eと導電パターン22f,22gは発熱基板22aの表面側、裏面側のどちらに形成してもよく、必要に応じて適宜選択すればよい。また、所望の厚みを得るために重ね塗りをすることも何ら問題無い。   A silicon carbide (SiC) heating element is molded to form the heating substrate 22a. The power supply electrode portions 22d and 22e and the conductive patterns 22f and 22g are formed at both longitudinal ends of the heat generating substrate 22a using a conductive paste mainly composed of silver (Ag), platinum (Pt), gold (Au), and the like. It is formed. That is, the good conductive film of the conductive paste is formed on the heat generating substrate 22a with a thickness of about 5 μm to 100 μm by screen printing. The power supply electrode portions 22d and 22e and the conductive patterns 22f and 22g are not limited to the conductive paste, but may be a conductive paste mainly composed of silver / platinum (Ag / Pt) alloy, silver / palladium (Ag / Pd) alloy, or the like. Good. Thereafter, the coating film is dried and baked in a baking furnace at a baking peak temperature of about 850 ° C. for about 10 minutes (baking furnace elapsed time is about 40 minutes). Since the power supply electrode portions 22d and 22e and the conductive patterns 22f and 22g are provided for supplying power to the heat generating portion H2 of the heat generating substrate 22a, the resistance is sufficiently lower than that of the heat generating substrate 22a. The power supply electrode portions 22d and 22e and the conductive patterns 22f and 22g may be formed on either the front surface side or the back surface side of the heat generating substrate 22a, and may be appropriately selected as necessary. Moreover, there is no problem in overcoating to obtain a desired thickness.

表面保護層22hは、発熱基板22aのオーバーコート層であり、発熱基板22aとの電気的な絶縁性とフィルム23の摺動性とを確保することが主な目的である。このオーバーコート層22hは定着装置6の構成に応じて加熱体22に具備させるか否かは適宜選択すればよい。また、オーバーコート層22hで発熱基板22aを全て覆う構成、発熱基板22aの一面(表面、或いは両面)を覆うだけの構成についても必要に応じて適宜選択すればよい。   The surface protective layer 22h is an overcoat layer of the heat generating substrate 22a, and its main purpose is to ensure electrical insulation with the heat generating substrate 22a and slidability of the film 23. Whether or not the overcoat layer 22h is provided in the heating body 22 according to the configuration of the fixing device 6 may be appropriately selected. Moreover, what is necessary is just to select suitably the structure which covers all the heat generating boards 22a with the overcoat layer 22h, and the structure which only covers one surface (surface or both surfaces) of the heat generating board 22a as needed.

オーバーコート層22hは、ガラスペーストを発熱基板22aの所定の表面部分に隙間無く連続して塗膜を形成する。ガラスペーストとして、例えば酸化ケイ素(SiO)を主成分とした酸化ケイ素(SiO)−酸化亜鉛(ZnO)−酸化アルミニウム(Al)系のガラス粉末と、エチルセルロール(有機結着剤)とともに有機溶剤で混練することで得られる。そして、この塗布膜を乾燥した後、焼成炉中で焼成ピーク温度が約850℃で約10分間(焼成炉経過時間は約40分)焼成して、厚さ15μmから100μmのガラス質のオーバーコート層22hを得る。オーバーコート層22hは、オーバーコート層22hとして必要な厚みに応じて適宜重ねて塗ることは何ら問題無い。 The overcoat layer 22h continuously forms a coating film on the predetermined surface portion of the heat generating substrate 22a without any gap. As the glass paste, for example, silicon oxide silicon oxide as a main component (SiO 2) (SiO 2) - zinc oxide (ZnO) - aluminum oxide (Al 2 O 3) based glass powder, ethylcellulose (organic binder And kneading with an organic solvent. And after drying this coating film, it is fired in a firing furnace at a firing peak temperature of about 850 ° C. for about 10 minutes (baking furnace elapsed time is about 40 minutes), and a glassy overcoat having a thickness of 15 μm to 100 μm. Layer 22h is obtained. There is no problem in applying the overcoat layer 22h as appropriate in accordance with the thickness required for the overcoat layer 22h.

発熱基板22aの構成材料及び製造方法は上述のものに限られない。例えば、炭化ケイ素(SiC)質発熱体として下記イ)、ロ)、ハ)に示す商品名の材料を適宜必要な形状に加工した成形品などを入手しても良い。   The constituent material and manufacturing method of the heat generating substrate 22a are not limited to those described above. For example, as a silicon carbide (SiC) heating element, a molded product obtained by processing a material having a trade name shown in the following a), b), c) into a necessary shape may be obtained.

イ):(株)ブリヂストン社製、商品名:ピュアベータ−R
体積抵抗率:四探針法で約1×10-1Ω・cm(25℃環境)
抵抗温度係数:室温(25℃)付近〜225℃の範囲で約−3000ppm/℃
ロ):(株)ブリヂストン社製、商品名:ピュアベータ−R改良品
体積抵抗率:四探針法で約1×10-2Ω・cm(25℃環境)
抵抗温度係数:室温(25℃)付近〜225℃の範囲で約−3000ppm/℃
つまり、発熱材料部分の構成材料であるピュアベータ−Rの抵抗温度係数は室温(25℃)付近から200℃の範囲において負である。ここで、本実施例における抵抗温度係数について説明する。抵抗温度係数は、その導電基板部22aの長辺方向端部間抵抗値について、25℃環境における抵抗値R1、炉内225℃環境における抵抗値R2を計測し、単位温度変化当りの抵抗変化率を以下の式で算出した値である。
A): Made by Bridgestone Corporation, trade name: Pure Beta-R
Volume resistivity: About 1 × 10 -1 Ω · cm (25 ° C environment) by four-probe method
Resistance temperature coefficient: about −3000 ppm / ° C. in the range of room temperature (25 ° C.) to 225 ° C.
B): manufactured by Bridgestone Corporation, product name: Pure Beta-R modified product, volume resistivity: about 1 × 10 −2 Ω · cm (25 ° C. environment) by the four-probe method
Resistance temperature coefficient: about −3000 ppm / ° C. in the range of room temperature (25 ° C.) to 225 ° C.
That is, the resistance temperature coefficient of Pure Beta-R, which is a constituent material of the heat generating material portion, is negative in the range from about room temperature (25 ° C.) to 200 ° C. Here, the temperature coefficient of resistance in the present embodiment will be described. For the resistance temperature coefficient, the resistance value R1 in the 25 ° C. environment and the resistance value R2 in the furnace 225 ° C. environment are measured for the resistance value between the long side ends of the conductive substrate portion 22a, and the resistance change rate per unit temperature change Is a value calculated by the following equation.

(R2−R1)/R1/(225℃−25℃)×10 [ppm/℃]
ハ):東海高熱工業(株)社製、商品名:エレマ
体積抵抗率:約1×10-1Ω・cm
抵抗温度係数:室温(25℃)付近〜225℃の範囲で約−1500ppm/℃
ここで、定着装置(定着器)に用いる加熱体22として利用できる炭化ケイ素(SiC)質発熱体の体積抵抗率は3×10-1Ω・cm以下に抑えることが好ましい。それ以上の体積抵抗率であると発熱基板22aの短手方向長さを非常に長く、或いは発熱基板22aの厚みを厚いものにする必要がある。または、発熱基板22aの寸法を標準的なものにするならば発熱基板22aが発熱しないといった不具合が生じる。
(R2-R1) / R1 / (225 ° C.-25 ° C.) × 10 6 [ppm / ° C.]
C): Tokai Koetsu Kogyo Co., Ltd., trade name: Elema Volume resistivity: about 1 × 10 −1 Ω · cm
Resistance temperature coefficient: about −1500 ppm / ° C. in the range of room temperature (25 ° C.) to 225 ° C.
Here, the volume resistivity of the silicon carbide (SiC) -based heating element that can be used as the heating element 22 used in the fixing device (fixing device) is preferably suppressed to 3 × 10 −1 Ω · cm or less. If the volume resistivity is higher than that, it is necessary to make the length of the heat generating substrate 22a short in the short direction or to increase the thickness of the heat generating substrate 22a. Alternatively, if the dimensions of the heat generating substrate 22a are made standard, there arises a problem that the heat generating substrate 22a does not generate heat.

一方、体積抵抗率の下限側としては、発熱基板22aのサイズによるが、体積抵抗率が低すぎて発熱しないといったことに留意する必要がある。上述したブリヂストン社製ピュアベータ−R改良品の体積抵抗率1×10-2Ω・cm品では後述する基板サイズにおいて発熱することを確認しており何ら問題無い。 On the other hand, as the lower limit side of the volume resistivity, it should be noted that although the volume resistivity is too low, the volume resistivity is too low to generate heat. The above-mentioned volume resistivity of 1 × 10 −2 Ω · cm of the Bridgestone pure beta-R improved product has been confirmed to generate heat at the substrate size described later, and there is no problem.

上記体積抵抗率の範囲において、導電パターン22f,22gの体積抵抗率を好ましくは1×10-4Ω・cm以下にすることで発熱基板22aの発熱領域を導電パターン22f,22g間(発熱部H2)にすることが可能となる。更に好ましくは導電パターン22f,22gの体積抵抗率は1×10-5Ω・cm以下である。 In the volume resistivity range, the volume resistivity of the conductive patterns 22f and 22g is preferably 1 × 10 −4 Ω · cm or less, so that the heat generation region of the heat generating substrate 22a is located between the conductive patterns 22f and 22g (heat generating portion H2 ). More preferably, the volume resistivity of the conductive patterns 22f and 22g is 1 × 10 −5 Ω · cm or less.

(4)評価
次に、本実施例1の加熱体22の形状・特性について更に詳細に説明する。
(4) Evaluation Next, the shape and characteristics of the heating body 22 of the first embodiment will be described in more detail.

下記の実施例1、実施例2及び比較例のように構成した加熱体を用いて、本実施例の加熱体22の効果を確認した。実施例1、実施例2及び比較例に示す加熱体において、本実施例の加熱体22と共通する部材・部分には同じ符号を付している。   The effects of the heating element 22 of this example were confirmed using the heating elements configured as in Example 1, Example 2 and Comparative Example below. In the heating body shown in Example 1, Example 2, and the comparative example, the same code | symbol is attached | subjected to the member and part which are common in the heating body 22 of a present Example.

実施例1
図8は実施例1に係る加熱体22の説明図である。図8の(a)は発熱基板22aの構成と発熱基板22a裏面に設けた給電用電極部22d,22e及び導電パターン22f,22gを表わす図、(b)は発熱基板22a表面に設けたオーバーコート層22hを表わす図である。
Example 1
FIG. 8 is an explanatory diagram of the heating body 22 according to the first embodiment. 8A is a diagram showing the configuration of the heat generating substrate 22a and the power supply electrode portions 22d and 22e and the conductive patterns 22f and 22g provided on the back surface of the heat generating substrate 22a, and FIG. 8B is an overcoat provided on the surface of the heat generating substrate 22a. It is a figure showing the layer 22h.

実施例1に示す加熱体22では、発熱基板22aとして、上述したブリヂストン社製ピュアベータ−R改良品を用い、幅5mm・長さ270mm・厚さ0.5mmに成形したものを用いた。   In the heating body 22 shown in Example 1, as the heating substrate 22a, the above-described Pure Beta-R improved product manufactured by Bridgestone Co., Ltd. and formed into a width of 5 mm, a length of 270 mm, and a thickness of 0.5 mm was used.

発熱基板22aの裏面(非フィルム摺動面)には、銀(Ag)を用いて給電用電極部22d,22eと導電パターン22f,22gを10μmの厚みで成形した。このとき導電パターン22f,22g間に形成される発熱部H2の長さは220mmとした。そして、発熱基板22aの表面(フィルム摺動面)にはオーバーコート層22hを50μmの厚みで成形した。なお、以下に説明する実施例2の加熱体及び比較例の加熱体においても通電用電極部、導電パターン、オーバーコート層の厚みは本実施例の加熱体と同じとする。   On the back surface (non-film sliding surface) of the heat generating substrate 22a, the power supply electrode portions 22d and 22e and the conductive patterns 22f and 22g were formed with a thickness of 10 μm using silver (Ag). At this time, the length of the heat generating portion H2 formed between the conductive patterns 22f and 22g was 220 mm. An overcoat layer 22h was formed to a thickness of 50 μm on the surface (film sliding surface) of the heat generating substrate 22a. In addition, also in the heating body of Example 2 and the heating body of the comparative example which will be described below, the thickness of the energizing electrode portion, the conductive pattern, and the overcoat layer is the same as that of the heating body of this embodiment.

実施例2
図9は実施例2に係る加熱体22の説明図である。図9の(a)は発熱基板22aの構成と発熱基板22a裏面に設けた給電用電極部22d,22e及び導電パターン22j,22kを表わす図、(b)は発熱基板22a表面に設けたオーバーコート層22hを表わす図である。
Example 2
FIG. 9 is an explanatory diagram of the heating body 22 according to the second embodiment. 9A is a diagram showing the configuration of the heat generating substrate 22a and the power supply electrode portions 22d and 22e and the conductive patterns 22j and 22k provided on the back surface of the heat generating substrate 22a, and FIG. 9B is an overcoat provided on the surface of the heat generating substrate 22a. It is a figure showing the layer 22h.

実施例2に示す加熱体22では、導電パターン22j,22kの形状を変更した以外は実施例1の加熱体22と同じ構成としている。導電パターン22jは、給電用電極部22dの略中央から発熱基板22aの長手方向中心に向けて延びる部分22j1を有する。そしてその部分22j1の先端にこの部分22j1よりも幅の広いα1部分とα2部分とを有する部分22j2を形成したものである。導電パターン22kは、給電用電極部22eの略中央から発熱基板22aの長手方向中心に向けて延びる部分22k1を有する。そしてその部分22k1の先端にこの部分22k1よりも幅の広いβ1部分とβ2部分とを有する部分22k2を形成したものである。導電パターン22j,22k間に形成される発熱部H2の長さは220mmである。ここで導電パターン22jのα1部分からは導電パターン22kのβ1へと電流が流れ、導電パターン22jのα2部分からは導電パターン22kのβ2へと電流が流れる。この場合、発熱基板22aの短手方向においては発熱基板端部(基板の短手方向端部)での発熱量が高い。一般的に発熱基板端部は放熱現象により温度ダレが生じるが、本実施例2の加熱体22の構成は発熱基板22aの短手方向での温度勾配が少なく、発熱基板22aの短手方向において熱的ストレスが少ないといった利点がある。   The heating body 22 shown in the second embodiment has the same configuration as the heating body 22 of the first embodiment except that the shapes of the conductive patterns 22j and 22k are changed. The conductive pattern 22j has a portion 22j1 extending from the approximate center of the power supply electrode portion 22d toward the longitudinal center of the heat generating substrate 22a. A portion 22j2 having an α1 portion and an α2 portion wider than the portion 22j1 is formed at the tip of the portion 22j1. The conductive pattern 22k has a portion 22k1 extending from the approximate center of the power supply electrode portion 22e toward the longitudinal center of the heat generating substrate 22a. And the part 22k2 which has (beta) 1 part and (beta) 2 part wider than this part 22k1 in the front-end | tip of the part 22k1 is formed. The length of the heat generating part H2 formed between the conductive patterns 22j and 22k is 220 mm. Here, a current flows from the α1 portion of the conductive pattern 22j to β1 of the conductive pattern 22k, and a current flows from the α2 portion of the conductive pattern 22j to β2 of the conductive pattern 22k. In this case, the amount of heat generated at the end of the heat generating substrate (the end of the substrate in the short direction) is high in the short direction of the heat generating substrate 22a. In general, the heat generating substrate end is subject to temperature sag due to a heat dissipation phenomenon, but the structure of the heating body 22 of the second embodiment has a small temperature gradient in the short direction of the heat generating substrate 22a, and in the short direction of the heat generating substrate 22a. There is an advantage that there is little thermal stress.

比較例
図10は比較例に係る加熱体22の説明図である。図10の(a)は発熱基板22aの構成と発熱基板22a裏面に設けた給電用電極部22d,22eを表わす図、(b)は発熱基板22a表面に設けたオーバーコート層22hを表わす図である。
Comparative Example FIG. 10 is an explanatory diagram of a heating body 22 according to a comparative example. FIG. 10A is a diagram showing the configuration of the heat generating substrate 22a and the feeding electrode portions 22d and 22e provided on the back surface of the heat generating substrate 22a, and FIG. 10B is a diagram showing the overcoat layer 22h provided on the surface of the heat generating substrate 22a. is there.

比較例に示す加熱体22では、導電パターンが無い以外は実施例1の加熱体22と同じ構成とした。給電用電極部22d,22e間に形成される発熱部H2の長さは248mmである。   The heating body 22 shown in the comparative example has the same configuration as the heating body 22 of Example 1 except that there is no conductive pattern. The length of the heat generating portion H2 formed between the power feeding electrode portions 22d and 22e is 248 mm.

実施例1、実施例2、比較例の各加熱体22について、コネクタ部温度(給電コネクタモールド部温度)を比較した。その各加熱体22を搭載する定着装置は同じ構成としてある。また、その定着装置を搭載する画像形成装置(プリンタ)も同じ構成としてある。そして画像形成装置において、定着装置が十分室温(25℃)になじんだ状態からA4サイズの記録材(坪量128g/mm)を連続で200枚通紙したときの、給電用コネクタ25の接点部25aと接触する給電コネクタモールド部25bの温度を測定した。入力電圧は120Vとし、定着温度は200℃とした。結果を表1に示す。 About each heating body 22 of Example 1, Example 2, and a comparative example, connector part temperature (power supply connector mold part temperature) was compared. The fixing device on which each heating body 22 is mounted has the same configuration. An image forming apparatus (printer) on which the fixing device is mounted has the same configuration. In the image forming apparatus, the contact point of the power supply connector 25 when 200 sheets of A4 size recording material (basis weight 128 g / mm 2 ) are continuously fed from the state in which the fixing device is sufficiently adapted to room temperature (25 ° C.). The temperature of the power supply connector mold part 25b in contact with the part 25a was measured. The input voltage was 120V and the fixing temperature was 200 ° C. The results are shown in Table 1.

図11は実施例1の加熱体22の発熱部H2とA4サイズの記録材の非通紙部の説明図である。図12は実施例2の加熱体22の発熱部H2とA4サイズの記録材の非通紙部の説明図である。図13は比較例の加熱体22の発熱部H2とA4サイズの記録材の非通紙部の説明図である。   FIG. 11 is an explanatory diagram of the heat generating portion H2 of the heating body 22 and the non-sheet passing portion of the A4 size recording material in the first embodiment. FIG. 12 is an explanatory diagram of the heat generating portion H2 of the heating body 22 and the non-sheet passing portion of the A4 size recording material in the second embodiment. FIG. 13 is an explanatory diagram of the heat generating portion H2 of the heating body 22 of the comparative example and the non-sheet passing portion of the A4 size recording material.

表1に示すように、実施例1の加熱体22は、給電コネクタモールド部25bの温度を実使用上何ら問題無い175℃という温度に抑えることができた。これは次の理由に因るものと考えられる。発熱基板22aの長手方向においてA4サイズの記録材の長手幅210mmに対して炭化ケイ素(SiC)質発熱体22aの発熱部H2のはみ出し量(非通紙部)L1が片側5mmであることである(図11参照)。   As shown in Table 1, the heating body 22 of Example 1 was able to suppress the temperature of the power supply connector mold portion 25b to a temperature of 175 ° C., which is no problem in actual use. This is thought to be due to the following reasons. The protrusion amount (non-sheet passing portion) L1 of the heat generating portion H2 of the silicon carbide (SiC) heating element 22a is 5 mm on one side with respect to the longitudinal width 210 mm of the A4 size recording material in the longitudinal direction of the heat generating substrate 22a. (See FIG. 11).

実施例2の加熱体22は、炭化ケイ素質発熱体22aの発熱部H2のはみ出し量が片側5mmであることは実施例1の加熱体22と同じである(図12参照)。   The heating body 22 of the second embodiment is the same as the heating body 22 of the first embodiment in that the amount of protrusion of the heating portion H2 of the silicon carbide heating element 22a is 5 mm on one side (see FIG. 12).

この実施例2の加熱体22は、給電用電極部22d,22eとこの給電用電極部22d,22eに接続されている導電パターン22j,22kとの間において発熱基板22aの短手方向の発熱エリアが実施例1の加熱体22に比べて少なくなっている。そのため、実施例2の加熱体22は、給電コネクタモールド部25bの温度が実施例1の加熱体22のそれよりも低くなったと考えられる。   In the heating body 22 of the second embodiment, the heat generation area in the short direction of the heat generation substrate 22a is provided between the power supply electrode portions 22d and 22e and the conductive patterns 22j and 22k connected to the power supply electrode portions 22d and 22e. However, it is less than the heating body 22 of the first embodiment. For this reason, in the heating body 22 of Example 2, it is considered that the temperature of the power supply connector mold portion 25b is lower than that of the heating body 22 of Example 1.

比較例の加熱体22は、図13に示すように、発熱基板22aの発熱部H2のはみ出し量L2が片側19mmである。つまり、発熱基板22aの長手方向端部の縁から1mm内側の位置に給電用電極部22d,22eを長さ5mm・幅5mmで形成することによって、発熱部H2のはみ出し量(非通紙部)L2を片側19mmとしている。従って、給電用電極部22d,22e間に形成される発熱部H2の長さは248mmである。   As shown in FIG. 13, in the heating body 22 of the comparative example, the protruding amount L2 of the heat generating portion H2 of the heat generating substrate 22a is 19 mm on one side. In other words, by forming the feeding electrode portions 22d and 22e with a length of 5 mm and a width of 5 mm at a position 1 mm inside from the edge of the longitudinal end portion of the heat generating substrate 22a, the amount of protrusion of the heat generating portion H2 (non-sheet passing portion) L2 is 19 mm on one side. Therefore, the length of the heat generating portion H2 formed between the power feeding electrode portions 22d and 22e is 248 mm.

また、コネクタ部25と発熱基板22aの発熱部H2が接している。   Further, the connector portion 25 and the heat generating portion H2 of the heat generating substrate 22a are in contact with each other.

上記の発熱部H2のはみ出し量L2が片側19mmであること、コネクタ部25と発熱基板22aの発熱部H2が接していること、の2つの理由によって、給電コネクタモールド部25bの温度は262℃と非常に高い温度になっていた。コネクタ部25のモールド部25bは耐熱温度(250℃)を超えていたため一部変形が見られた。   The temperature of the power supply connector mold portion 25b is 262 ° C. for two reasons: the protrusion amount L2 of the heat generating portion H2 is 19 mm on one side, and the connector portion 25 and the heat generating portion H2 of the heat generating substrate 22a are in contact with each other. The temperature was very high. Since the mold part 25b of the connector part 25 exceeded the heat resistance temperature (250 ° C.), some deformation was observed.

以上のように、本実施例の加熱体22は、NTC特性を示す細長い発熱基板22a上に給電用電極部22d,22eと導電パターン22f,22gとを設けて発熱部H2を形成している。これにより、NTC特性の利点を生かして発熱部H2の記録材が通過しない領域の過昇温(非通紙部昇温)を抑えることができる。また、発熱基板22a上に給電用電極部22d,22e、導電パターン22f,22gを設けたため、給電用電極部22d,22eを発熱部H2から離間させることが可能となり、発熱基板22aの給電用電極部22d,22e周りの昇温を抑えることができる。   As described above, in the heating body 22 of this embodiment, the heat generating portion H2 is formed by providing the power supply electrode portions 22d and 22e and the conductive patterns 22f and 22g on the elongated heat generating substrate 22a exhibiting the NTC characteristics. Accordingly, it is possible to suppress an excessive temperature rise (non-sheet passing portion temperature rise) in a region where the recording material of the heat generating portion H2 does not pass by taking advantage of the NTC characteristics. Further, since the power supply electrode portions 22d and 22e and the conductive patterns 22f and 22g are provided on the heat generating substrate 22a, the power supply electrode portions 22d and 22e can be separated from the heat generating portion H2, and the power supply electrode of the heat generating substrate 22a can be separated. The temperature rise around the portions 22d and 22e can be suppressed.

[その他]
1)実施例の定着装置は記録材の搬送を中央搬送基準で行なうプリンタに限られず記録材の搬送を片側搬送基準で行なうプリンタに搭載してもよい。ここで、片側搬送基準とは記録材Pの幅方向の一方の端面を基準として記録材Pを搬送する搬送形態をいう。
[Other]
1) The fixing device of the embodiment is not limited to the printer that transports the recording material on the basis of the central transport, and may be mounted on a printer that transports the recording material on the basis of the one-side transport. Here, the one-side conveyance reference refers to a conveyance form in which the recording material P is conveyed with reference to one end surface in the width direction of the recording material P.

2)本発明の像加熱装置は実施例の加熱定着装置に限られず、画像を担持した記録材を加熱してつや等の表面性を改質する像加熱装置、仮定着する像加熱装置など、広く画像を担持した記録材を加熱処理する手段・装置として使用することができる。   2) The image heating apparatus of the present invention is not limited to the heat-fixing apparatus of the embodiment, and is widely used such as an image heating apparatus that heats a recording material carrying an image to improve the surface properties such as gloss, and an image heating apparatus that is supposed to be worn. It can be used as a means / device for heat-treating a recording material carrying an image.

画像形成装置の一例の概略構成模型図Schematic model diagram of an example of an image forming apparatus 定着装置の一例の横断面構成模型図Cross-sectional configuration model diagram of an example of a fixing device 定着装置の縦断面構成模型図Vertical cross-section configuration model diagram of fixing device 定着装置を記録材導入側から見た図View of fixing device from recording material introduction side 加熱体の一例の説明図Illustration of an example of a heating element 従来の加熱体の発熱領域(発熱部)と本実施例の加熱体の発熱領域(発熱部)の説明図Explanatory drawing of the heat_generation | fever area | region (heat-generation part) of the conventional heating body and the heat_generation | fever area | region (heat-generation part) of the heating body of a present Example 加熱体の発熱部における通紙部と非通紙部の発熱量を説明するためのモデル図Model diagram for explaining the heat generation amount of the paper passing part and the non-paper passing part in the heating part of the heating element 実施例1に係る加熱体の説明図Explanatory drawing of the heating body which concerns on Example 1. 実施例2に係る加熱体の説明図Explanatory drawing of the heating body which concerns on Example 2. 比較例に係る加熱体の説明図Explanatory drawing of the heating body which concerns on a comparative example 実施例1に係る加熱体の発熱部と非通紙部の説明図Explanatory drawing of the heat_generation | fever part of a heating body which concerns on Example 1, and a non-sheet passing part 実施例2に係る加熱体の発熱部と非通紙部の説明図Explanatory drawing of the heat_generation | fever part of a heating body which concerns on Example 2, and a non-sheet passing part 比較例に係る加熱体の発熱部と非通紙部の説明図Explanatory drawing of the heat_generation | fever part and non-sheet passing part of the heating body which concerns on a comparative example

符号の説明Explanation of symbols

22‥加熱体、22a‥発熱基板、22d,22e‥給電用電極部、22f,22g‥導電パターン、23‥耐熱性フィルム、H2‥発熱領域、P‥記録材、N‥ニップ、t‥未定着トナー画像 22: Heating element, 22a: Heat generating substrate, 22d, 22e: Feeding electrode, 22f, 22g: Conductive pattern, 23: Heat resistant film, H2: Heat generating area, P: Recording material, N: Nip, t: Unfixed Toner image

Claims (6)

記録材に担持されている画像を加熱する像加熱装置に用いられる加熱部材であって、通電により発熱する細長い発熱基板と、前記発熱基板の長手方向端部で前記発熱基板上に設けられ前記発熱基板に給電するための電極部と、を有する加熱部材において、
前記電極部と電気的に接続され前記電極部から前記発熱基板の長手方向中心に向かうように延ばした導電部を前記発熱基板上に有し、前記導電部より前記発熱基板の長手方向中心側の領域に発熱領域を有することを特徴とする加熱部材。
A heating member used in an image heating apparatus that heats an image carried on a recording material, the elongated heating substrate generating heat when energized, and the heat generation provided on the heating substrate at a longitudinal end of the heating substrate In a heating member having an electrode part for supplying power to the substrate,
A conductive portion electrically connected to the electrode portion and extending from the electrode portion toward the longitudinal center of the heat generating substrate is provided on the heat generating substrate, and is located closer to the longitudinal center side of the heat generating substrate than the conductive portion. A heating member having a heat generating region in the region.
前記発熱基板はセラミック抵抗発熱体であることを特徴とする請求項1に記載の加熱部材。   The heating member according to claim 1, wherein the heating substrate is a ceramic resistance heating element. 前記発熱基板の抵抗温度係数は室温から200℃の範囲において負であることを特徴とする請求項1に記載の加熱部材。   The heating member according to claim 1, wherein the temperature coefficient of resistance of the heat generating substrate is negative in a range of room temperature to 200 ° C. 前記発熱基板は炭化ケイ素発熱体であることを特徴とする請求項1に記載の加熱部材。   The heating member according to claim 1, wherein the heating substrate is a silicon carbide heating element. 前記発熱基板は絶縁層によって少なくとも一部が覆われていることを特徴とする請求項1から請求項4のいずれかに記載の加熱部材。   The heating member according to claim 1, wherein at least a part of the heat generating substrate is covered with an insulating layer. 通電により発熱する細長い発熱基板と前記発熱基板の長手方向端部で前記発熱基板上に設けられ前記発熱基板に給電するための電極部とを有する加熱部材と、前記加熱部材と接触しつつ移動する可撓性部材と、を有し、前記発熱基板の発熱により前記可撓性部材を介して記録材に担持されている画像を加熱する像加熱装置において、
前記加熱部材は、前記電極部と電気的に接続され前記電極部から前記発熱基板の長手方向中心に向かうように延ばした導電部を前記発熱基板上に有し、前記導電部より前記発熱基板の長手方向中心側の領域に発熱領域を有することを特徴とする像加熱装置。
A heating member having an elongated heating substrate that generates heat when energized, an electrode portion provided on the heating substrate at a longitudinal end portion of the heating substrate for supplying power to the heating substrate, and moves while being in contact with the heating member An image heating apparatus that heats an image carried on a recording material via the flexible member by heat generation of the heat generating substrate,
The heating member has a conductive portion on the heat generating substrate that is electrically connected to the electrode portion and extends from the electrode portion toward the longitudinal center of the heat generating substrate. An image heating apparatus having a heat generation area in a central area in the longitudinal direction.
JP2007313310A 2007-12-04 2007-12-04 Heating member and image heating apparatus provided with the heating member Pending JP2009139460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007313310A JP2009139460A (en) 2007-12-04 2007-12-04 Heating member and image heating apparatus provided with the heating member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007313310A JP2009139460A (en) 2007-12-04 2007-12-04 Heating member and image heating apparatus provided with the heating member

Publications (1)

Publication Number Publication Date
JP2009139460A true JP2009139460A (en) 2009-06-25

Family

ID=40870156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007313310A Pending JP2009139460A (en) 2007-12-04 2007-12-04 Heating member and image heating apparatus provided with the heating member

Country Status (1)

Country Link
JP (1) JP2009139460A (en)

Similar Documents

Publication Publication Date Title
JP5253240B2 (en) Image heating apparatus and heater used in the image heating apparatus
JP4599176B2 (en) Image heating apparatus and heater used in the apparatus
JP5241144B2 (en) Fixing device
JP6436812B2 (en) Fixing device
JP2006154802A (en) Image heating device and heater for use therein
JP2007025474A (en) Heating device and image forming apparatus
JP6289188B2 (en) Fixing device
JP2016024321A (en) Fixation device
US10884366B2 (en) Heater, fixing device, and image forming apparatus
US10996595B2 (en) Heater and fixing device
JP2009053507A (en) Fixing device
JP2017181531A (en) Image heating device and image forming apparatus
JP6866109B2 (en) Fixing device and image forming device
JP4810117B2 (en) Image forming apparatus
JP2009064658A (en) Heating member, and image heating device having heating member
JP2008076857A (en) Heating device and image forming apparatus
JP6415044B2 (en) Image forming apparatus
JP2003084603A (en) Thermal fixing device
JP2017142471A (en) Heating body, method for manufacturing heating body, and image heating device including heating body
JP2011145455A (en) Image heating device
JP4208587B2 (en) Fixing device
JP2003241549A (en) Image heating apparatus
JP2012083606A (en) Heating body, image heating device, and image forming apparatus
JP2009139460A (en) Heating member and image heating apparatus provided with the heating member
JP2011048203A (en) Heating member, fixing device, and image forming apparatus including the fixing device