JP2007025474A - Heating device and image forming apparatus - Google Patents

Heating device and image forming apparatus Download PDF

Info

Publication number
JP2007025474A
JP2007025474A JP2005210100A JP2005210100A JP2007025474A JP 2007025474 A JP2007025474 A JP 2007025474A JP 2005210100 A JP2005210100 A JP 2005210100A JP 2005210100 A JP2005210100 A JP 2005210100A JP 2007025474 A JP2007025474 A JP 2007025474A
Authority
JP
Japan
Prior art keywords
heating element
resistance
heating
resistance heating
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005210100A
Other languages
Japanese (ja)
Inventor
Satoru Taniguchi
悟 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005210100A priority Critical patent/JP2007025474A/en
Publication of JP2007025474A publication Critical patent/JP2007025474A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a more reliable heating device capable of preventing temperature rise at a paper non-passing part without lowering the specification of the device with inexpensive and simple constitution, and to provide an image forming apparatus. <P>SOLUTION: The heating device heats a member to be heated by a heating body comprising: a base plate; a resistance heating element formed on the base plate and having negative resistance temperature characteristic; and an electrode feeding power to the resistance heating element. In the heating device, the resistance heating element is divided into three or more parts in a longitudinal direction, and the power is fed to the respective blocks of the divided resistance heating element so that a current may flow in a direction where the member to be heated is conveyed, and the respective blocks of the divided resistance heating element are electrically connected in series. The shape of the resistance heating element seen from a heating surface is a rectangle or a parallelogram and a trapezoid. It is good to take constitution where the resistance of the resistance heating element is made high near a gap between the respective blocks to compensate the lowering of calorific power at the gap part. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、複写機、レーザービームプリンタ等の加熱装置及び該加熱装置を具備した画像形成装置に関する。   The present invention relates to a heating device such as a copying machine or a laser beam printer, and an image forming apparatus including the heating device.

従来、例えば画像の加熱定着等のための記録材の加熱装置には、所定の温度に維持された加熱体としての熱ローラと、前記熱ローラに圧接する加圧体としての加圧ローラとによって形成されるニップ部に被加熱材としての記録材を導入して挟持搬送しつつ加熱する熱ローラ方式が多用されている。   2. Description of the Related Art Conventionally, for example, a recording material heating apparatus for image heating and fixing includes a heat roller as a heating body maintained at a predetermined temperature, and a pressure roller as a pressure body in pressure contact with the heat roller. A heat roller system is often used in which a recording material as a material to be heated is introduced into a nip portion to be formed and heated while being nipped and conveyed.

また、このほかにもフラッシュ加熱方式、オーブン加熱方式、熱板加熱方式等種々の方式、構成のものが知られており、実用されている。   In addition to these, various systems and configurations such as a flash heating system, an oven heating system, and a hot plate heating system are known and in practical use.

最近では、このような方式に代わって、熱源(以下、加熱体と記す)と、加熱体の支持体(ステー)と加熱体に対向圧接しつつ搬送される可撓性部材としての耐熱性フィルム(以下、フィルムと記す)と、フィルムを介して被加熱材としての記録材を加熱体に密着させる加圧体としての加圧ローラを有し、加熱体の熱をフィルムを介して記録材へ付与することで記録材面に形成担持されている未定着画像を記録材面に加熱定着させる方式・構成の画像加熱定着方式の加熱装置(フィルム加熱方式の加熱装置)が考案されている(例えば、特許文献1・2参照)。   Recently, in place of such a system, a heat source (hereinafter, referred to as a heating body), a heating member support (stay), and a heat resistant film as a flexible member that is conveyed while being pressed against the heating body. (Hereinafter referred to as a film) and a pressure roller as a pressure member that causes the recording material as the material to be heated to adhere to the heating body via the film, and heat of the heating body to the recording material via the film An image heating and fixing type heating device (film heating type heating device) has been devised (for example, a film heating type heating device) in which a non-fixed image formed and supported on the recording material surface is heated and fixed on the recording material surface by applying (for example, a film heating method heating device) And Patent Documents 1 and 2).

このフィルム加熱方式の加熱装置において、加熱体としては、いわゆるセラミックヒータが一般的に用いられている。セラミックヒータは、基本的には、セラミックス基板上に抵抗発熱体を形成し、給電により抵抗発熱体を発熱させるものである。加熱体は、加熱体に当接あるいは接着されたサーミスタ等の検温素子で温度検知され、その検知温度を基に所定の温度になるように温度制御している。   In this film heating type heating apparatus, a so-called ceramic heater is generally used as a heating element. The ceramic heater basically forms a resistance heating element on a ceramic substrate and heats the resistance heating element by power feeding. The temperature of the heating element is detected by a temperature measuring element such as a thermistor that is in contact with or bonded to the heating element, and the temperature is controlled to be a predetermined temperature based on the detected temperature.

このようなフィルム加熱方式の加熱装置ないしは画像加熱定着装置においては、加熱体として低熱容量のものを用いることができる。このため、従来の接触加熱方式である熱ローラ方式、ベルト加熱方式等の装置に比べ省電力及びウェイトタイムの短縮化(クイックスタート)が可能になる。
特開平4-44075〜44083号公報 特開平4-204980〜204984号公報
In such a film heating type heating apparatus or image heating and fixing apparatus, a heater having a low heat capacity can be used. For this reason, it is possible to save power and shorten the wait time (quick start) as compared with conventional devices such as a heat roller method and a belt heating method.
JP-A-4-44075-44083 JP-A-4-204980-204984

前述のフィルム加熱方式の加熱装置において、通紙可能な最大サイズの記録材(以下、大サイズ紙と記す)よりもある程度小さな幅の記録材(以下、小サイズ紙と記す)を通紙した場合、温度制御は通紙部に設けられた検温素子の出力に基づいて行われる場合が多く、非通紙部では記録材に熱を奪われないため、非通紙部の温度が通紙部に比べて上昇する。これは、非通紙部昇温と呼ばれる現象である。また、特に小サイズ紙でかつ厚い記録材(厚紙・封筒等)が重送して通紙されてしまうような場合には、通紙部では記録材に大量の熱を奪われるため、加熱体に大量の電力が供給され非通紙部昇温が顕著になる。よって重送枚数が多い場合等には、加熱体・加圧ローラ等の劣化・破損に至る危険性がある。また、非通紙部昇温が大きくなると、小サイズ紙を通紙した直後に大サイズ紙を通紙した場合、端部で高温オフセットが発生する可能性がある。   In the above-mentioned film heating type heating device, when a recording material (hereinafter referred to as small size paper) having a width that is somewhat smaller than the maximum size recording material (hereinafter referred to as large size paper) is passed. In many cases, the temperature control is performed based on the output of the temperature measuring element provided in the sheet passing portion, and the non-sheet passing portion does not take heat away from the recording material. It rises compared. This is a phenomenon called non-sheet passing portion temperature rise. In addition, especially when small recording paper and thick recording materials (thick paper, envelopes, etc.) are multi-fed and passed, a large amount of heat is taken away by the recording material at the paper passing portion. A large amount of electric power is supplied to the non-sheet-passing portion and the temperature rises significantly. Therefore, when the number of double feeds is large, there is a risk that the heating body, the pressure roller and the like are deteriorated or broken. Further, when the temperature rise at the non-sheet passing portion is large, there is a possibility that a high temperature offset may occur at the end when the large size paper is passed immediately after the small size paper is passed.

この非通紙部昇温を防止するために、小サイズ紙が連続して通紙される場合は非通紙部の加熱体・加圧ローラ等の保護のためスループットを下げたり、長手方向の温度分布を均一化するための別部材(例えば、加圧ローラに放熱ローラを当接する)を設けたりする方法が考案され実施されている。しかし、スループットを下げることは画像形成装置のスペックダウンになり、別部材を設けるのはコストアップになる。   In order to prevent the temperature rise of the non-sheet passing portion, when small-size paper is continuously fed, the throughput is reduced to protect the heating body, pressure roller, etc. of the non-sheet passing portion, or in the longitudinal direction. There has been devised and implemented a method of providing another member (for example, contacting the heat-dissipating roller to the pressure roller) for making the temperature distribution uniform. However, reducing the throughput reduces the specifications of the image forming apparatus, and providing a separate member increases the cost.

また、根本的に非通紙部昇温を解決する手段として、特開平6-19347号公報等に開示されているように負の抵抗温度特性(温度が上がると抵抗が下がる特性)を有する抵抗発熱体を基板上に線帯状に形成し、長手方向に給電する加熱体も考案されている。しかし、一般的に負の抵抗温度特性を有する抵抗発熱体は体積抵抗が高く、商用電源で使用できる範囲の抵抗を得ることは通常の抵抗発熱体パターンでは困難である場合が多い。   In addition, as a means for fundamentally solving the temperature rise of the non-sheet passing portion, a resistor having a negative resistance temperature characteristic (characteristic that the resistance decreases as the temperature rises) as disclosed in JP-A-6-19347 There has also been devised a heating element in which a heating element is formed in a line strip shape on a substrate and power is supplied in the longitudinal direction. However, in general, a resistance heating element having a negative resistance temperature characteristic has a high volume resistance, and it is often difficult to obtain a resistance in a range that can be used with a commercial power source with a normal resistance heating element pattern.

本出願に係る発明の目的は、負の抵抗温度特性を有する抵抗発熱体を用いた加熱体において、低コストかつ簡単な構成で、装置のスペックを低下させることなく非通紙部昇温を防止し、より信頼性の高い加熱装置及び画像形成装置を提供することである。   The object of the invention according to the present application is to prevent the temperature rise of the non-sheet passing portion without lowering the specifications of the apparatus with a low cost and simple configuration in a heating element using a resistance heating element having a negative resistance temperature characteristic. It is another object of the present invention to provide a heating device and an image forming apparatus with higher reliability.

上記目的を達成するため、本出願に係る第1の発明は、少なくとも基板と、負の抵抗温度特性を有する抵抗発熱体と、抵抗発熱体に給電する電極とからなる加熱体によって被加熱材を加熱する加熱装置において、抵抗発熱体は長手方向において3個以上の部分に分割されており、分割された抵抗発熱体は被加熱材搬送方向に電流が流れるように給電され、分割された抵抗発熱体は電気的に直列に接続されていることを特徴とする。   In order to achieve the above object, a first invention according to the present application provides a material to be heated by a heating element including at least a substrate, a resistance heating element having negative resistance temperature characteristics, and an electrode that supplies power to the resistance heating element. In a heating device for heating, the resistance heating element is divided into three or more parts in the longitudinal direction, and the divided resistance heating element is fed so that a current flows in the direction of conveying the heated material, and the divided resistance heating element is divided. The bodies are electrically connected in series.

本出願に係る第2の発明は、上述の加熱装置において、抵抗発熱体はグラファイトを含むことを特徴とする。   A second invention according to the present application is characterized in that, in the above-described heating device, the resistance heating element includes graphite.

本出願に係る第3の発明は、上述の加熱装置において、加熱体はセラミックス基板上に抵抗発熱体を形成する構成であることを特徴とする。   A third invention according to the present application is characterized in that, in the above heating apparatus, the heating body is configured to form a resistance heating element on a ceramic substrate.

本出願に係る第4の発明は、上述の加熱装置において、分割された抵抗発熱体の各部分の加熱面から見た形状は平行四辺形あるいは台形であることを特徴とする。   A fourth invention according to the present application is characterized in that, in the above-described heating device, the shape of each portion of the divided resistance heating element viewed from the heating surface is a parallelogram or a trapezoid.

本出願に係る第5の発明は、上述の加熱装置において、抵抗発熱体の長手方向の一部分で、抵抗発熱体の体積抵抗が他の部分と異なる、あるいは抵抗発熱体の厚さが他の部分と異なることを特徴とする。   According to a fifth aspect of the present application, in the above-described heating device, a part of the resistance heating element in the longitudinal direction has a volume resistance of the resistance heating element different from that of the other part, or the resistance heating element has a different thickness. It is characterized by being different.

本出願に係る第6の発明は、少なくとも加熱体と、一面を加熱体と接触摺動し他面を被加熱材と接触する可撓性部材と、可撓性部材を介して被加熱材を加熱体に密着させる加圧体とを有し、加熱体と加圧体により形成されるニップ部で可撓性部材と被加熱材を一緒に挟持搬送して被加熱材を加熱する加熱装置において、該加熱装置が上述の加熱装置の構成であることを特徴とする。   According to a sixth aspect of the present application, at least a heating body, a flexible member that contacts and slides one surface with the heating body, and the other surface contacts the heated material, and the heated material via the flexible member. In a heating apparatus that includes a pressure member that is in close contact with a heating body, and that heats the material to be heated by sandwiching and transporting the flexible member and the material to be heated in a nip formed by the heating body and the pressure body The heating device has the above-described configuration of the heating device.

本出願に係る第7の発明は、記録材上に画像を形成する像形成手段と、該記録材上の画像を加熱する像加熱手段とを有する画像形成装置において、像加熱手段として上述の加熱装置を備えたことを特徴とする。   According to a seventh aspect of the present application, there is provided an image forming apparatus including an image forming unit that forms an image on a recording material and an image heating unit that heats the image on the recording material. A device is provided.

上記構成からなる加熱装置及び画像形成装置を用いることによって、低コストかつ簡単な構成で装置のスペックを低下させることなく非通紙部昇温を防止することができ、より信頼性の高い加熱装置及び画像形成装置を提供することが可能になる。   By using the heating device and the image forming apparatus having the above-described configuration, it is possible to prevent the temperature rise of the non-sheet passing portion without lowering the specifications of the device with a low cost and simple configuration, and a more reliable heating device. In addition, an image forming apparatus can be provided.

(実施例1)
以下、図面を参照し本発明の第1の実施例を説明する。
Example 1
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.

(1)画像形成装置例
図5は本実施例に従う画像形成装置例の概略構成図である。本実施例の画像形成装置は、転写式電子写真プロセス利用のレーザービームプリンタである。本実施例の画像形成装置は最大通紙幅をA4サイズ(紙幅:210mm)とする。
(1) Image Forming Apparatus Example FIG. 5 is a schematic configuration diagram of an image forming apparatus example according to the present embodiment. The image forming apparatus of this embodiment is a laser beam printer using a transfer type electrophotographic process. In the image forming apparatus of this embodiment, the maximum sheet passing width is A4 size (paper width: 210 mm).

101は像担持体としての電子写真感光体ドラムであり、矢示の反時計方向に所定の周速度(プロセススピード)をもって回転駆動される。   Reference numeral 101 denotes an electrophotographic photosensitive drum as an image carrier, which is rotationally driven in a counterclockwise direction indicated by an arrow with a predetermined peripheral speed (process speed).

102は接触帯電ローラ等の帯電手段であり、この帯電手段により感光体ドラム101の面が所定の極性・電位に一様に帯電処理(一次帯電)される。   Reference numeral 102 denotes charging means such as a contact charging roller, and the surface of the photosensitive drum 101 is uniformly charged (primarily charged) to a predetermined polarity and potential by the charging means.

103は画像露光手段としてのレーザービームスキャナであり、不図示のイメージスキャナ・コンピュータ等の外部機器から入力する目的の画像情報の時系列電気デジタル画素信号に対応してオン/オフ変調したレーザー光を出力して、感光体ドラム101の帯電処理面を走査露光(照射)する。この走査露光により感光体ドラム101面の露光明部の電荷が除電されて感光体ドラム101面に目的の画像情報に対応した静電潜像が形成される。   Reference numeral 103 denotes a laser beam scanner as an image exposure means, which is a laser beam that is on / off modulated in response to time-series electric digital pixel signals of target image information input from an external device such as an image scanner / computer (not shown). Then, scanning exposure (irradiation) is performed on the charged surface of the photosensitive drum 101. By this scanning exposure, the charge in the exposed bright portion of the surface of the photosensitive drum 101 is removed, and an electrostatic latent image corresponding to the target image information is formed on the surface of the photosensitive drum 101.

104は現像装置であり、現像スリーブから感光体ドラム101面に現像剤(トナー)が供給されて感光体ドラム101面の静電潜像が可転写像であるトナー像として順次に現像される。レーザービームプリンタの場合、一般的に、静電潜像の露光明部にトナーを付着させて現像する反転現像方式が用いられる。   A developing device 104 supplies developer (toner) to the surface of the photosensitive drum 101 from the developing sleeve, and the electrostatic latent image on the surface of the photosensitive drum 101 is sequentially developed as a toner image which is a transferable image. In the case of a laser beam printer, generally, a reversal development method is used in which toner is attached to an exposed bright portion of an electrostatic latent image for development.

109は給紙カセットであり、記録材Pを積載収納させてある。給紙スタート信号に基づいて給紙ローラ108が駆動されて給紙カセット109内の記録材Pが一枚ずつ分離給紙され、搬送ローラ110、レジストローラ111等を含むシートパス112を通って、感光体ドラム101と接触型・回転型の転写部材としての転写ローラ106との当接ニップ部である転写部位に所定のタイミングで導入される。すなわち、感光体ドラム101上のトナー像の先端部が転写部位に到達したとき、記録材Pの先端部もちょうど転写部位に到達するタイミングとなるようにレジストローラ111で記録材Pの搬送が制御される。   Reference numeral 109 denotes a paper feed cassette on which the recording material P is loaded and stored. Based on the paper feed start signal, the paper feed roller 108 is driven and the recording material P in the paper feed cassette 109 is separated and fed one by one, and passes through a sheet path 112 including a transport roller 110, a registration roller 111, and the like. The photosensitive drum 101 is introduced at a predetermined timing into a transfer portion that is a contact nip portion between the photosensitive drum 101 and a transfer roller 106 as a contact / rotary transfer member. That is, when the leading edge of the toner image on the photosensitive drum 101 reaches the transfer site, the conveyance of the recording material P is controlled by the registration roller 111 so that the timing of the leading edge of the recording material P also reaches the transfer site. Is done.

転写部位に導入された記録材Pはこの転写部位を挟持搬送され、その間、転写ローラ106には不図示の転写バイアス印加電源から所定に制御された転写電圧(転写バイアス)が印加される。この転写部材としての転写ローラ106及び転写電圧制御については後述する。転写ローラ106にはトナーと逆極性の転写バイアスが印加されることで転写部位において感光体ドラム101面側のトナー像が記録材Pの表面に静電的に転写される。   The recording material P introduced into the transfer portion is nipped and conveyed between the transfer portions, and a transfer voltage (transfer bias) controlled in a predetermined manner is applied to the transfer roller 106 from a transfer bias application power source (not shown). The transfer roller 106 serving as the transfer member and transfer voltage control will be described later. A transfer bias having a polarity opposite to that of the toner is applied to the transfer roller 106, whereby the toner image on the surface of the photosensitive drum 101 is electrostatically transferred onto the surface of the recording material P at the transfer portion.

転写部位においてトナー像の転写を受けた記録材Pは感光体ドラム101面から分離されてシートパス113を通って加熱装置107へ搬送導入され、トナー像の加熱・加圧定着処理を受ける。   The recording material P that has received the transfer of the toner image at the transfer portion is separated from the surface of the photosensitive drum 101 and is conveyed and introduced to the heating device 107 through the sheet path 113, where the toner image is subjected to heating and pressure fixing processing.

一方、記録材分離後(記録材Pに対するトナー像転写後)の感光体ドラム101面はクリーニング装置105で転写残トナーや紙粉等の除去を受けて清浄面化され、繰り返して作像に供される。   On the other hand, the surface of the photosensitive drum 101 after separation of the recording material (after transfer of the toner image to the recording material P) is cleaned by the cleaning device 105 after removal of transfer residual toner, paper dust, and the like, and is repeatedly used for image formation. Is done.

加熱装置107を通った記録材Pは、シートパス114を通って排紙口から排紙トレイ115上に排出される。   The recording material P that has passed through the heating device 107 passes through the sheet path 114 and is discharged from the discharge outlet onto the discharge tray 115.

接触型・回転型の転写部材としての転写ローラ106は、一般にSUS、Fe等の芯金上にカーボン、イオン導電性フィラー等で1×106 〜1×1010Ω程度の抵抗に調整された半導電性のスポンジ弾性層を形成した弾性スポンジローラが用いられる。本実施例では、芯金の外回りに同心一体に、NBRゴムと界面活性剤等を反応させ、導電性を有する弾性層をローラ状に成形具備させてなるイオン導電系の転写ローラを用いた。抵抗値は1×108 〜5×108Ωの範囲のものを用いた。 The transfer roller 106 as a contact type / rotary type transfer member is generally adjusted to a resistance of about 1 × 10 6 to 1 × 10 10 Ω with carbon, ion conductive filler, etc. on a core metal such as SUS or Fe. An elastic sponge roller having a semiconductive sponge elastic layer is used. In this embodiment, an ion conductive transfer roller is used in which NBR rubber and a surfactant are reacted concentrically and integrally around the outer periphery of the metal core, and a conductive elastic layer is formed in a roller shape. Resistance values in the range of 1 × 10 8 to 5 × 10 8 Ω were used.

転写ローラの抵抗は雰囲気環境の温湿度に応じて変動しやすいことが知られており、この転写ローラの抵抗変動は転写不良や紙跡などの発生を招来する。そこで、転写ローラの抵抗変動に起因する転写不良や紙跡などの発生を防止するために、転写ローラの抵抗値を測定し、その抵抗値測定結果に応じて転写ローラに印加する転写電圧を適正に制御する「印加転写電圧制御」が採択される。   It is known that the resistance of the transfer roller is likely to fluctuate according to the temperature and humidity of the ambient environment, and the fluctuation of the resistance of the transfer roller causes a transfer defect or paper trace. Therefore, in order to prevent the occurrence of transfer defects and paper marks due to resistance fluctuations of the transfer roller, the resistance value of the transfer roller is measured, and the transfer voltage applied to the transfer roller is appropriately set according to the resistance value measurement result. “Applied transfer voltage control” is used.

そのような印加転写電圧制御例として特開平2-123385号公報に開示されるATVC制御(Active Transfer Voltage Control)がある。ATVC制御は、転写時、転写ローラに印加する転写バイアスを最適化する手段であり、転写不良、紙跡の発生を防止したものである。上記転写バイアスは、画像形成装置の前回転行程中に転写ローラから感光体ドラムに所望の定電流バイアスを印加し、その時のバイアス値から転写ローラの抵抗を検知し、印字行程の転写時に、その抵抗値に応じた転写バイアスを転写ローラに印加する。本実施例においても、上記のATVC制御を用いた。   An example of such applied transfer voltage control is ATVC control (Active Transfer Voltage Control) disclosed in Japanese Patent Laid-Open No. 2-123385. The ATVC control is a means for optimizing the transfer bias applied to the transfer roller at the time of transfer, and prevents the occurrence of transfer failure and paper trace. The transfer bias applies a desired constant current bias from the transfer roller to the photosensitive drum during the pre-rotation stroke of the image forming apparatus, detects the resistance of the transfer roller from the bias value at that time, and transfers the print stroke during the transfer stroke. A transfer bias corresponding to the resistance value is applied to the transfer roller. Also in this embodiment, the above ATVC control is used.

(2)加熱装置107
次に、本実施例における加熱装置107について説明する。図4は本実施例のフィルム加熱方式の加熱装置の概略構成図である。この装置は特開平4-44075〜44083号公報、同4-204980〜204984号公報等に開示のテンションレスタイプの装置である。
(2) Heating device 107
Next, the heating device 107 in the present embodiment will be described. FIG. 4 is a schematic configuration diagram of a film heating type heating apparatus according to the present embodiment. This apparatus is a tensionless type apparatus disclosed in Japanese Patent Laid-Open Nos. 4-44075 to 44083 and 4-204980 to 204984.

このテンションレスタイプのフィルム加熱方式の加熱装置は、耐熱性フィルムとしてエンドレスベルト状もしくは円筒状のものを用い、該フィルムの周長の少なくとも一部は常にテンションフリー(テンションが加わらない状態)とし、フィルムは加圧部材の回転駆動力で回転駆動するようにした装置である。   This tensionless type film heating type heating device uses an endless belt-shaped or cylindrical heat-resistant film, and at least part of the circumference of the film is always tension-free (in a state where no tension is applied), The film is a device that is rotationally driven by the rotational driving force of the pressure member.

1はステーであり、加熱体保持部材兼フィルムガイド部材としての耐熱性・剛性部材である。3は加熱体としてのセラミックヒータであり、上記のステー1の下面にステー長手に沿って配設して保持させてある。2はエンドレス(円筒状)の耐熱性フィルムであり、加熱体3を含むフィルムガイド部材であるステー1に外嵌させてある。このエンドレスの耐熱性フィルム2の内周長と加熱体3を含むステー1の外周長はフィルム2の方を例えば3mm程度大きくしてあり、従ってフィルム2は周長に余裕を持って外嵌している。   Reference numeral 1 denotes a stay, which is a heat resistant and rigid member as a heating body holding member and a film guide member. Reference numeral 3 denotes a ceramic heater as a heating body, which is disposed and held on the lower surface of the stay 1 along the length of the stay. Reference numeral 2 denotes an endless (cylindrical) heat-resistant film that is externally fitted to a stay 1 that is a film guide member including a heating element 3. The inner peripheral length of the endless heat-resistant film 2 and the outer peripheral length of the stay 1 including the heating element 3 are about 3 mm larger than that of the film 2, so that the film 2 is fitted with a margin in the peripheral length. ing.

ステー1はポリイミド、ポリアミドイミド、PEEK、PPS、液晶ポリマー等の高耐熱性樹脂や、これらの樹脂とセラミックス、金属、ガラス等との複合材料等で構成できる。本実施例では液晶ポリマーを用いた。   The stay 1 can be composed of a high heat resistant resin such as polyimide, polyamideimide, PEEK, PPS, liquid crystal polymer, or a composite material of these resins and ceramics, metal, glass, or the like. In this example, a liquid crystal polymer was used.

フィルム2は熱容量を小さくしてクイックスタート性を向上させるために、フィルム膜厚は100μm以下、好ましくは50μm以下20μm以上の耐熱性のあるPTFE、PFA、FEP等の単層フィルム、或いはポリイミド、ポリアミドイミド、PEEK、PES、PPS等のフィルムの外周表面にPTFE、PFA、FEP等をコーティングした複合層フィルムを使用できる。本実施例では膜厚約50μmのポリイミドフィルムの外周表面にPTFEをコーティングしたものを用いた。フィルム2の外径は18mmとした。   Film 2 has a film thickness of 100 μm or less, preferably 50 μm or less and 20 μm or more, heat resistant single layer film such as PTFE, PFA, FEP, polyimide, polyamide, etc. in order to reduce heat capacity and improve quick start performance A composite layer film in which PTFE, PFA, FEP or the like is coated on the outer peripheral surface of a film such as imide, PEEK, PES, or PPS can be used. In this embodiment, a polyimide film having a film thickness of about 50 μm coated with PTFE on the outer peripheral surface was used. The outer diameter of the film 2 was 18 mm.

4は加熱体3との間にフィルム2を挟んで圧接ニップ部(定着ニップ部)Nを形成し、かつフィルム2を回転駆動させるフィルム外面接触駆動手段としての加圧ローラである。この加圧ローラ4は芯金4aと弾性体層4bと最外層の離形層4cからなり、不図示の軸受け手段・付勢手段により所定の押圧力をもってフィルム2を挟ませて加熱体3の表面に圧接させて配設してある。本実施例では、芯金4aはアルミ芯金を、弾性体層4bはシリコーンゴムを、離形層4cは厚さ約30μmのPFAのチューブを用いた。加圧ローラ4の外径は20mm、弾性体層4bの厚さは3mmとした。   Reference numeral 4 denotes a pressure roller as a film outer surface contact driving means for forming a pressure nip portion (fixing nip portion) N with the film 2 sandwiched between the heating member 3 and rotating the film 2. The pressure roller 4 is composed of a cored bar 4a, an elastic layer 4b, and an outermost release layer 4c. The film 2 is sandwiched by a bearing means / biasing means (not shown) with a predetermined pressing force. It is disposed in pressure contact with the surface. In this embodiment, the core metal 4a is an aluminum core, the elastic layer 4b is silicone rubber, and the release layer 4c is a PFA tube having a thickness of about 30 μm. The outer diameter of the pressure roller 4 was 20 mm, and the thickness of the elastic layer 4b was 3 mm.

この加圧ローラ4は駆動系Mにより矢印の時計方向に所定の周速度で回転駆動される。この加圧ローラ4の回転駆動により、圧接ニップ部Nにおける該加圧ローラとフィルム外面との摩擦力でフィルム2に回転力が作用して、フィルム2はその内面側が定着ニップ部Nにおいて加熱体3の表面に密着して摺動しながらステー1の外回りを矢印の反時計方向に加圧ローラ4の回転周速度とほぼ同じ周速度で従動回転状態になる。   The pressure roller 4 is rotationally driven by the drive system M in a clockwise direction indicated by an arrow at a predetermined peripheral speed. By the rotational driving of the pressure roller 4, a rotational force acts on the film 2 by the frictional force between the pressure roller and the film outer surface at the pressure nip portion N, and the film 2 has a heating body at the fixing nip portion N on the inner surface side. 3, while being in close contact with the surface of 3, the outer periphery of the stay 1 is driven counterclockwise in the counterclockwise direction indicated by the arrow at a rotational speed substantially equal to the rotational speed of the pressure roller 4.

(3)加熱体3
次に、本実施例における加熱体3について説明する。図2は本実施例における加熱体3の正面図及び通電制御を行う回路を表す図である。また、図3は本実施例における加熱体3の断面図である。
(3) Heating body 3
Next, the heating body 3 in the present embodiment will be described. FIG. 2 is a diagram illustrating a front view of the heating body 3 and a circuit for performing energization control in this embodiment. Moreover, FIG. 3 is sectional drawing of the heating body 3 in a present Example.

加熱体3は被加熱材としての記録材Pの搬送方向aに対して直角方向を長手とする細長の耐熱性・絶縁性・良熱伝導性の基板7、該基板の表面(フィルム摺動面)側に形成具備させた抵抗発熱体6、この抵抗発熱体を形成した加熱体表面を保護させた耐熱性オーバーコート層8、抵抗発熱体6の長手端部の給電用電極9・10等からなる全体に低熱容量の加熱体である。   The heating element 3 is an elongated heat-resistant / insulating / good heat-conductive substrate 7 whose longitudinal direction is a direction perpendicular to the conveying direction a of the recording material P as a material to be heated, the surface of the substrate (film sliding surface) ) The resistance heating element 6 formed on the side, the heat-resistant overcoat layer 8 that protects the surface of the heating element on which the resistance heating element is formed, and the power supply electrodes 9 and 10 at the longitudinal end of the resistance heating element 6. This is a heating element with a low heat capacity.

本実施例の抵抗発熱体6は、グラファイト・ガラス粉末(無機結着剤)・有機結着剤を混練して調合したペーストをスクリーン印刷により、基板7上に形成して得たものである。抵抗発熱体6の形状・特性については後述する。   The resistance heating element 6 of this example is obtained by forming a paste prepared by kneading graphite, glass powder (inorganic binder), and organic binder on the substrate 7 by screen printing. The shape and characteristics of the resistance heating element 6 will be described later.

7は耐熱性・絶縁性を有する加熱体基板であり、例えば、アルミナや窒化アルミニウム等のセラミックス材料が用いられる。本実施例では幅6mm・長さ270mm・厚さ1mmのアルミナ基板を使用している。   Reference numeral 7 denotes a heating body substrate having heat resistance and insulation, and for example, a ceramic material such as alumina or aluminum nitride is used. In this embodiment, an alumina substrate having a width of 6 mm, a length of 270 mm, and a thickness of 1 mm is used.

8は、抵抗発熱体6のオーバーコート層であり、抵抗発熱体6と加熱体3表面との電気的な絶縁性とフィルム2の摺動性とを確保することが主な目的である。本実施例では、オーバーコート層8として厚さ約50μmの耐熱性ガラス層を用いた。   8 is an overcoat layer of the resistance heating element 6, and its main purpose is to ensure electrical insulation between the resistance heating element 6 and the surface of the heating element 3 and the slidability of the film 2. In this example, a heat-resistant glass layer having a thickness of about 50 μm was used as the overcoat layer 8.

給電用電極9・10と導電パターン14は銀のスクリーン印刷パターンを用いた。給電用電極9・10と導電パターン14は抵抗発熱体6に給電する目的で設けられているので、抵抗は抵抗発熱体6に対して十分低くしている。   The power supply electrodes 9 and 10 and the conductive pattern 14 were silver screen printing patterns. Since the power supply electrodes 9 and 10 and the conductive pattern 14 are provided for the purpose of supplying power to the resistance heating element 6, the resistance is sufficiently lower than that of the resistance heating element 6.

図2には加熱体3の裏面(非フィルム摺動面)も示している。5は加熱体の温度を検知するために設けられた検温素子である。本実施例では、検温素子として加熱体3から分離した外部当接型のサーミスタを用いている。この外部当接型サーミスタ5は、例えば支持体上に断熱層を設けその上にチップサーミスタの素子を固定し、素子を下側(加熱体裏面側)に向けて所定の加圧力により加熱体裏面に当接するような構成をとる。本実施例では、支持体として高耐熱性の液晶ポリマーを、断熱層としてセラミックスペーパーを積層したものを用いた。外部当接型サーミスタ5は最小通紙域内に設けられており、CPU11に通じている。   FIG. 2 also shows the back surface (non-film sliding surface) of the heating element 3. Reference numeral 5 denotes a temperature measuring element provided for detecting the temperature of the heating body. In this embodiment, an external contact type thermistor separated from the heating body 3 is used as the temperature measuring element. The external contact type thermistor 5 is provided with a heat insulating layer on a support, for example, and an element of the chip thermistor is fixed on the support, and the element is directed downward (on the back side of the heating body) with a predetermined pressurizing force. It is configured so as to abut. In this example, a highly heat-resistant liquid crystal polymer was used as the support, and ceramic paper was laminated as the heat insulating layer. The external contact type thermistor 5 is provided in the minimum sheet passing area and communicates with the CPU 11.

この加熱体3をオーバーコート層8を形成具備させた表面側を下向きに露呈させてステー1の下面側に保持させて固定配設してある。以上の構成をとることにより、加熱体全体を熱ローラ方式に比べて低熱容量にすることができ、クイックスタートが可能になる。   The heating body 3 is fixedly disposed by exposing the surface side on which the overcoat layer 8 is formed and holding it on the lower surface side of the stay 1. By adopting the above configuration, the entire heating element can be reduced in heat capacity as compared with the heat roller system, and a quick start becomes possible.

加熱体3は、抵抗発熱体6の長手端部の給電用電極9・10に対する給電により抵抗発熱体6が長手全長にわたって発熱することで昇温する。その昇温が検温素子5で検知され、検温素子5の出力をA/D変換しCPU11に取り込み、その情報に基づいてトライアック12により抵抗発熱体に通電する電力を位相、波数制御等により制御して、加熱体3の温度制御がなされる。即ち検温素子5の検知温度が所定の設定温度より低いと加熱体3が昇温するように、設定温度より高いと降温するように通電を制御することで、加熱体3は定着時一定温度に保たれる。なお、本実施例では位相制御により出力を0〜100%まで5%刻みの21段階で変化させている。出力100%は加熱体3に全通電したときの出力を示す。   The heating element 3 rises in temperature when the resistance heating element 6 generates heat over the entire length by feeding power to the feeding electrodes 9 and 10 at the longitudinal end of the resistance heating element 6. The temperature rise is detected by the temperature sensing element 5, the output of the temperature sensing element 5 is A / D converted and taken into the CPU 11, and the electric power supplied to the resistance heating element by the triac 12 is controlled by phase, wave number control, etc. based on the information. Thus, the temperature of the heating element 3 is controlled. In other words, the heating body 3 is kept at a constant temperature during fixing by controlling energization so that the heating body 3 is heated when the temperature detected by the temperature detecting element 5 is lower than a predetermined set temperature, and is lowered when the temperature is higher than the set temperature. Kept. In this embodiment, the output is changed in 21 steps from 5 to 100% from 0 to 100% by phase control. The output 100% indicates the output when the heater 3 is fully energized.

加熱体3の温度が所定に立ち上がり、かつ加圧ローラ4の回転によるフィルム2の回転周速度が定常化した状態において、フィルム2を挟んで加熱体3と加圧ローラ4とで形成される圧接ニップ部Nに被加熱材としての画像定着すべき記録材Pが転写部位より導入される。そして、記録材Pがフィルム2と一緒に圧接ニップ部Nを挟持搬送されることにより加熱体3の熱がフィルム2を介して記録材Pに付与され記録材P上の未定着顕画像(トナー画像)Tが記録材P面に加熱定着される。圧接ニップ部Nを通った記録材Pはフィルム2の面から分離されて搬送される。   Pressure contact formed by the heating body 3 and the pressure roller 4 with the film 2 sandwiched in a state where the temperature of the heating body 3 rises to a predetermined level and the rotational peripheral speed of the film 2 is stabilized by the rotation of the pressure roller 4 A recording material P to be image-fixed as a heated material is introduced into the nip portion N from the transfer portion. Then, when the recording material P is nipped and conveyed together with the film 2 through the pressure nip N, the heat of the heating body 3 is applied to the recording material P through the film 2 and an unfixed visible image (toner on the recording material P). Image) T is heat-fixed on the surface P of the recording material. The recording material P that has passed through the pressure nip N is separated from the surface of the film 2 and conveyed.

以下に本実施例の加熱体3の製法を述べる。まず、アルミナ基板上に給電用電極9・10と導電パターン14を同時にスクリーン印刷し、乾燥後、800℃程度の焼成温度で焼成する。次に前述のグラファイトペーストをスクリーン印刷し、乾燥・焼成する。グラファイトは700℃程度で表面酸化が始まるので、焼成温度は約600℃とした。その後、オーバーコート層8をスクリーン印刷により形成し、乾燥・焼成する。グラファイトの耐熱性に考慮して、オーバーコート層8の材料は400〜500℃で焼成可能なガラスを選択した。   Below, the manufacturing method of the heating body 3 of a present Example is described. First, the power supply electrodes 9 and 10 and the conductive pattern 14 are simultaneously screen-printed on an alumina substrate, dried, and then fired at a firing temperature of about 800 ° C. Next, the above graphite paste is screen-printed, dried and fired. Since the surface oxidation of graphite begins at about 700 ° C, the firing temperature was set to about 600 ° C. Thereafter, the overcoat layer 8 is formed by screen printing, dried and fired. In consideration of the heat resistance of graphite, a glass that can be fired at 400 to 500 ° C. was selected as the material of the overcoat layer 8.

次に、本実施例の抵抗発熱体6の形状・特性について詳細に説明する。図1は本実施例における加熱体3の正面図である。図1においては、簡単のためオーバーコート層8を省略している。   Next, the shape and characteristics of the resistance heating element 6 of this embodiment will be described in detail. FIG. 1 is a front view of a heating body 3 in the present embodiment. In FIG. 1, the overcoat layer 8 is omitted for simplicity.

本実施例では、抵抗発熱体6を4分割している。分割された抵抗発熱体6の長手方向の距離aは55mm・幅方向の距離dは2.6mmとし、4つとも同じ形状とした。よって、抵抗発熱体6の全長は220mmとなる。抵抗発熱体6の厚さは約10μmとした。分割された抵抗発熱体6同士の隙間の距離bは0.5mmとした。導電パターン14の幅c及び導電パターン間距離cも0.5mmとした。基板端から導電パターン14までの距離eは0.7mmとした。距離b・c・eは、製造上可能な最小の値としている。   In this embodiment, the resistance heating element 6 is divided into four. The distance a in the longitudinal direction of the divided resistance heating element 6 is 55 mm, the distance d in the width direction is 2.6 mm, and all four have the same shape. Therefore, the total length of the resistance heating element 6 is 220 mm. The thickness of the resistance heating element 6 was about 10 μm. The distance b between the divided resistance heating elements 6 was set to 0.5 mm. The width c of the conductive pattern 14 and the distance c between the conductive patterns were also set to 0.5 mm. The distance e from the substrate edge to the conductive pattern 14 was 0.7 mm. The distances b, c, and e are the minimum values that can be manufactured.

給電用電極9・10に給電されると、電流Iは抵抗発熱体6・導電パターン14を図1に示す矢印方向に流れる。つまり、分割された抵抗発熱体6においては、記録材Pの搬送方向に給電され(以下、搬送方向給電と記す)、電流Iは基板7の幅方向に流れる。そして、搬送方向給電の各抵抗発熱体が電気的に直列に接続されている。本実施例では、給電用電極9・10は基板端部の同じ側(図1において右側)に設けているが、基板7の両端部に配置してもよい。   When power is supplied to the power supply electrodes 9 and 10, the current I flows through the resistance heating element 6 and the conductive pattern 14 in the direction of the arrow shown in FIG. That is, in the divided resistance heating element 6, power is supplied in the conveyance direction of the recording material P (hereinafter referred to as conveyance direction power supply), and the current I flows in the width direction of the substrate 7. And each resistance heating element of conveyance direction electric power feeding is electrically connected in series. In the present embodiment, the power supply electrodes 9 and 10 are provided on the same side of the substrate end (on the right side in FIG. 1), but may be disposed on both ends of the substrate 7.

従来の抵抗発熱体は銀パラジウム(Ag/Pd)等の金属を主体としたペーストで形成されているのが一般的であり、正の抵抗温度特性(温度が上がると抵抗が上がる PTC特性)を示す。一方、本実施例で抵抗発熱体として用いているグラファイトは、ある温度を境にその温度以下では負の抵抗温度特性(温度が上がると抵抗が下がる NTC特性)を、その温度以上ではPTC特性を示す性質があり、その変曲点温度は700℃程度である。   Conventional resistance heating elements are generally made of a paste mainly composed of metal such as silver palladium (Ag / Pd), and have positive resistance temperature characteristics (PTC characteristics that increase resistance as temperature rises). Show. On the other hand, the graphite used as a resistance heating element in this example has a negative resistance temperature characteristic (NTC characteristic that the resistance decreases as the temperature rises) below that temperature, and a PTC characteristic above that temperature. The inflection point temperature is about 700 ° C.

加熱体3の最高到達温度は200〜300℃程度であるので、本実施例の抵抗発熱体6は、加熱装置107の実使用時においてはNTC特性を示す。本実施例の抵抗発熱体6の抵抗変化率は-1000ppm/℃程度(25℃から200℃までの抵抗変化率 以下の抵抗変化率の値も同様)とした。ちなみに、従来の加熱体に用いられている銀パラジウムペーストの抵抗変化率は0〜1000ppm/℃程度である。   Since the maximum temperature reached by the heating element 3 is about 200 to 300 ° C., the resistance heating element 6 of this embodiment exhibits NTC characteristics when the heating device 107 is actually used. The resistance change rate of the resistance heating element 6 of this example was about -1000 ppm / ° C. (the resistance change rate from 25 ° C. to 200 ° C. is equal to or less than the resistance change rate). Incidentally, the resistance change rate of the silver palladium paste used in the conventional heating body is about 0 to 1000 ppm / ° C.

本実施例では、抵抗発熱体6の常温のシート抵抗は約100Ω/sq(厚さ10μm)であり、抵抗発熱体6の常温における総抵抗(給電用電極9・10間の抵抗)は19Ωとした。   In this embodiment, the resistance heating element 6 has a sheet resistance at room temperature of about 100Ω / sq (thickness 10 μm), and the resistance heating element 6 has a total resistance (resistance between the feeding electrodes 9 and 10) of 19Ω at room temperature. did.

本実施例との比較のために、従来例の加熱体について説明する。図6は従来例の加熱体の正面図である。15は従来例の抵抗発熱体であり、銀パラジウム・ガラス粉末(無機結着剤)・有機結着剤を混練して調合したペーストを、アルミナ基板7上にスクリーン印刷により、幅2.6mm・長さ220mm・厚さ約10μmの線帯状に形成して得たものである(発熱体幅・全長・厚さは本実施例と同じ)。従来例の抵抗発熱体15は、常温のシート抵抗が約0.2Ω/sq(厚さ10μm)であるものを用いた。総抵抗は、本実施例と同じく、常温で19Ωとした。従来例の抵抗発熱体15の抵抗変化率は500ppm/℃程度とした。抵抗発熱体15の材料としては、銀パラジウム以外にRuO2、Ta2N等の電気抵抗材料を用いても良い。 For comparison with the present embodiment, a conventional heating element will be described. FIG. 6 is a front view of a conventional heating element. 15 is a resistance heating element of a conventional example, and a paste prepared by kneading silver palladium, glass powder (inorganic binder), and organic binder is 2.6 mm wide and long by screen printing on an alumina substrate 7. It was obtained by forming a wire strip having a thickness of 220 mm and a thickness of about 10 μm (the heating element width, total length, and thickness are the same as in this example). As the resistance heating element 15 of the conventional example, one having a sheet resistance at room temperature of about 0.2Ω / sq (thickness 10 μm) was used. The total resistance was 19Ω at room temperature, as in this example. The resistance change rate of the resistance heating element 15 of the conventional example was about 500 ppm / ° C. As a material of the resistance heating element 15, an electric resistance material such as RuO 2 or Ta 2 N may be used in addition to silver palladium.

抵抗発熱体15の材料・形状及び導電パターン14の形状以外の加熱体構成は本実施例と同じとした。オーバーコート層も本実施例と同じものを用いたが、図6では省略している。   The structure of the heating element other than the material and shape of the resistance heating element 15 and the shape of the conductive pattern 14 was the same as in this example. The same overcoat layer as in this example was used, but is omitted in FIG.

従来例の抵抗発熱体15は長手方向に給電され、電流iは図6に示す長手方向に流れる。従来の加熱体では、従来例のように長手方向に給電するタイプが一般的である。   The resistance heating element 15 of the conventional example is fed in the longitudinal direction, and the current i flows in the longitudinal direction shown in FIG. In the conventional heating body, a type in which power is supplied in the longitudinal direction as in the conventional example is common.

従来例の加熱体を備えた加熱装置に小サイズ紙を通紙すると、前述した非通紙部昇温が発生する。従来例の加熱体を本実施例で説明した加熱装置に搭載した場合を考え、以下、非通紙部昇温についてモデル図を用いて説明する。   When small-size paper is passed through a heating device having a conventional heating element, the above-described temperature increase in the non-sheet passing portion occurs. Considering the case where the heating body of the conventional example is mounted on the heating apparatus described in the present embodiment, the non-sheet passing portion temperature rise will be described below using a model diagram.

図7は従来例の抵抗発熱体15のモデル図である。ここでは、抵抗発熱体15を長さa(=55mm)に4分割して考え、中央部の2つの部分の抵抗をそれぞれr1、端部の2つの部分の抵抗をそれぞれr2とする(中央部と端部の温度が同じであればr1=r2)。2(r1+r2)が総抵抗になり、常温では19Ωである。抵抗発熱体15に流れる電流をiとすると、中央部の1ブロックの発熱量q1はi2・r1であり、端部の1ブロック発熱量q2はi2・r2である。 FIG. 7 is a model diagram of a resistance heating element 15 of a conventional example. Here, the resistance heating element 15 is considered to be divided into four parts of length a (= 55 mm), the resistance of the two parts at the center is r1, and the resistance of the two parts at the end is r2. And r1 = r2) if the end temperature is the same. 2 (r1 + r2) is the total resistance, which is 19Ω at room temperature. Assuming that the current flowing through the resistance heating element 15 is i, the calorific value q1 of one block at the center is i 2 · r1, and the calorific value q2 of one block at the end is i 2 · r2.

簡単のため、幅2a(=110mm)の小サイズ紙が通紙された場合を考えると、中央部の抵抗がr1の部分は通紙部に、端部の抵抗がr2の部分は非通紙部になる。加熱体の温度制御は通紙部に設けられた検温素子5で行われるので、小サイズ紙に熱を奪われる通紙部に比べて、小サイズ紙に熱を奪われない非通紙部の温度は上昇する。従来例の抵抗発熱体15はPTC特性であるため、小サイズ紙通紙時はr1<r2となる。電流iは通紙部・非通紙部で同じであるためq1<q2となり、非通紙部の発熱量は中央部の発熱量よりも大きくなる。   For simplicity, consider the case where small-size paper with a width of 2a (= 110mm) is passed. When the center resistance is r1, the part with resistance r1 is the paper passing part, and when the edge resistance is r2, the part is non-paper passing. Become a part. Since the temperature control of the heating body is performed by the temperature detecting element 5 provided in the paper passing portion, the non-paper passing portion in which the heat is not taken away by the small size paper compared to the paper passing portion where the heat is taken away by the small size paper. The temperature rises. Since the resistance heating element 15 of the conventional example has PTC characteristics, r1 <r2 when small-size paper is passed. Since the current i is the same in the sheet passing portion and the non-sheet passing portion, q1 <q2, and the heat generation amount in the non-sheet passing portion is larger than the heat generation amount in the central portion.

本実施例の加熱体3についても、同様にモデル図を用いて考えてみる。図8は本実施例の抵抗発熱体6のモデル図である。4分割された抵抗発熱体6の抵抗を、中央部をR1・端部をR2とする(中央部と端部の温度が同じであればR1=R2)。2(R1+R2)が総抵抗になり、常温では19Ωである。つまり、温度が全て等しければr1=r2=R1=R2である。抵抗発熱体6に流れる電流をIとすると、中央部の1ブロックの発熱量Q1はI2・R1であり、端部の1ブロックの発熱量Q2はI2・R2である。 Similarly, the heating element 3 of this embodiment will be considered using a model diagram. FIG. 8 is a model diagram of the resistance heating element 6 of this embodiment. The resistance of the resistance heating element 6 divided into four is R1 at the center and R2 at the end (R1 = R2 if the temperature at the center and the end is the same). 2 (R1 + R2) is the total resistance, which is 19Ω at room temperature. That is, if all the temperatures are equal, r1 = r2 = R1 = R2. Assuming that the current flowing through the resistance heating element 6 is I, the calorific value Q1 of one block at the center is I 2 · R1, and the calorific value Q2 of one block at the end is I 2 · R2.

従来例の加熱体の場合と同様に、幅2a(=110mm)の小サイズ紙が通紙された場合を考えると、中央部の抵抗がR1の部分は通紙部に、端部の抵抗がR2の部分は非通紙部になる。本実施例の加熱体でも従来例の加熱体の場合と同じく、小サイズ紙を通紙すると通紙部よりも非通紙部の温度が高くなる。本実施例の抵抗発熱体6はNTC特性であるため、小サイズ紙通紙時はR1>R2となる。電流Iは通紙部・非通紙部で同じであるためQ1>Q2となり、本実施例の場合は、非通紙部の発熱量は中央部の発熱量よりも小さくなる。   As in the case of the heating element in the conventional example, when a small-size paper having a width of 2a (= 110 mm) is passed, the resistance at the center is R1 and the resistance at the end is the resistance. The R2 part is a non-paper passing part. In the heating body of this embodiment, as in the case of the heating body of the conventional example, when small-size paper is passed, the temperature of the non-paper passing portion becomes higher than that of the paper passing portion. Since the resistance heating element 6 of this embodiment has NTC characteristics, R1> R2 when small-size paper is passed. Since the current I is the same in the sheet passing portion and the non-sheet passing portion, Q1> Q2, and in this embodiment, the heat generation amount in the non-sheet passing portion is smaller than the heat generation amount in the central portion.

従来例と本実施例の加熱体の定着性は発熱体幅が同じ2.6mmであるのでほぼ同等である。よって、同じ小サイズ紙を通紙したときの通紙部の発熱量(=定着性)はほぼ同等、すなわちq1=Q1となる。故に、同じ小サイズ紙を通紙したときの非通紙部の発熱量はq2>Q2となり、本実施例の方が従来例よりも非通紙部昇温が小さくなることが分かる。   The fixing properties of the heating elements of the conventional example and the present example are almost equal because the heating element width is the same 2.6 mm. Therefore, the heat generation amount (= fixability) of the sheet passing portion when the same small size sheet is passed is substantially equal, that is, q1 = Q1. Therefore, the calorific value of the non-sheet passing portion when the same small size sheet is passed becomes q2> Q2, and it can be seen that the temperature rise in the non-sheet passing portion is smaller in this embodiment than in the conventional example.

グラファイトペーストはNTC特性を示す材料の中ではシート抵抗が低い方であるが、銀パラジウム等の金属ペーストに比べるとシート抵抗は大きい。よって、グラファイトペーストで従来例の加熱体のように長手方向に給電する抵抗発熱体パターンを形成すると、総抵抗が非常に大きくなり加熱体として用いることができない(例えば、本実施例のシート抵抗のグラファイトペーストで、図6の従来例のパターンを厚さ約10μmで形成すると、総抵抗は約8500Ωになってしまう)。これはグラファイト以外のNTC特性を示す材料にも言えることである。   Graphite paste has a lower sheet resistance among materials exhibiting NTC characteristics, but has a higher sheet resistance than metal pastes such as silver palladium. Therefore, if a resistance heating element pattern that feeds in the longitudinal direction is formed with graphite paste as in the conventional heating element, the total resistance becomes very large and cannot be used as a heating element (for example, the sheet resistance of this embodiment). If the pattern of the conventional example of FIG. 6 is formed with a thickness of about 10 μm using graphite paste, the total resistance will be about 8500Ω. This is also true for materials exhibiting NTC characteristics other than graphite.

長手方向給電で総抵抗を小さくするには、抵抗発熱体を厚くすることも考えられるが、本実施例のシート抵抗のグラファイトペーストを用いて図6のパターンを形成し総抵抗を19Ω程度にするには、厚さを4mm程度にする必要があり、スクリーン印刷が困難になる上に、仮に印刷できたとしても、グラファイトは強度があまり強くないため、常に加圧ローラで加圧された状態では耐久性に難がある場合が多い。   In order to reduce the total resistance by feeding in the longitudinal direction, it may be possible to increase the thickness of the resistance heating element. However, the sheet resistance graphite paste of this embodiment is used to form the pattern shown in FIG. In addition, it is necessary to make the thickness about 4 mm, and screen printing becomes difficult, and even if it can be printed, the strength of graphite is not so strong, so it is always in a state where it is pressurized with a pressure roller There are many cases where durability is difficult.

また、長手方向給電の構成で、薄層で総抵抗も小さくするには、グラファイトペーストに抵抗の低い別の材料を混ぜることも考えられる。総抵抗を十分小さくするには、抵抗の低い材料として金属が考えられるが、金属はPTC特性を有しているため、グラファイトのNTC特性が打ち消されてしまい、非通紙部昇温防止の効果も低減する。   Further, in order to reduce the total resistance with a thin layer in the configuration of feeding in the longitudinal direction, it is conceivable to mix another material having low resistance with the graphite paste. In order to make the total resistance sufficiently small, metal is considered as a low resistance material. However, since the metal has PTC characteristics, the NTC characteristics of graphite are canceled out, and the effect of preventing the temperature rise of the non-sheet passing part Is also reduced.

結局、グラファイト等のNTC特性の抵抗発熱体を用いて長手方向に給電するタイプの加熱体を形成しようとすると、加熱体として問題があったり、非通紙部昇温防止の効果が得られなかったりする。よって、基板を複雑な形状にして総抵抗を小さくする等の工夫が必須となり、簡単な構成で非通紙部昇温を防止することはできない。   After all, when trying to form a heating element that feeds in the longitudinal direction using a resistance heating element of NTC characteristics such as graphite, there is a problem as a heating element, or the effect of preventing the temperature rise of the non-sheet passing portion is not obtained. Or Therefore, a device such as making the substrate in a complicated shape and reducing the total resistance is essential, and the temperature rise of the non-sheet passing portion cannot be prevented with a simple configuration.

一方、特開2000-58232号公報に開示されているようにPTC特性を有する抵抗発熱体に搬送方向給電を行い、非通紙部昇温を防止する構成も考案されている。しかし、PTC特性の抵抗発熱体は金属等の抵抗の低いものが一般的であり、搬送方向給電の構成にすると総抵抗が低くなりすぎて加熱体としての実現が難しい。   On the other hand, as disclosed in Japanese Patent Application Laid-Open No. 2000-58232, a configuration has also been devised in which a resistance heating element having PTC characteristics is fed in the conveyance direction to prevent the temperature rise of the non-sheet passing portion. However, a resistance heating element having a PTC characteristic is generally a metal having a low resistance such as a metal, and if it is configured to feed in the conveyance direction, the total resistance becomes too low to be realized as a heating element.

つまり、非通紙部昇温防止の観点においては、NTC特性の抵抗発熱体は長手方向給電が有効だが、総抵抗が大きくなりすぎ、PTC特性の抵抗発熱体は搬送方向給電が有効だが総抵抗が小さくなりすぎるという課題が存在する。本発明はこの課題を解決するものであり、シート抵抗の高いNTC特性の抵抗発熱体で総抵抗を小さくするために搬送方向給電とし、そのままでは非通紙部昇温防止ができないので、分割して直列に接続するというものである。搬送方向給電の構成で非通紙部昇温を防止するには、分割なしの構成(特開2000-58232号公報に開示の構成)あるいは2分割して直列に接続した構成では、前述したようにPTC特性が有効だが、3分割以上で直列に接続した構成では本実施例で説明したようにNTC特性が有効になる。よって、本実施例のように4分割でなくても、抵抗発熱体のシート抵抗・発熱体幅・厚さに合わせて、所望の総抵抗が得られるように3分割以上で分割数を変えても良い。   In other words, from the standpoint of preventing the temperature rise at the non-sheet-passing section, the longitudinal heating is effective for the NTC resistance heating element, but the total resistance becomes too large, and the PTC resistance heating element is effective for feeding in the conveyance direction but the total resistance. There is a problem that becomes too small. The present invention solves this problem. It is a resistance heating element with high sheet resistance and NTC characteristics, and power feeding in the conveyance direction is used to reduce the total resistance. Are connected in series. In order to prevent the temperature rise of the non-sheet passing portion in the conveyance direction power supply configuration, as described above, the configuration without division (the configuration disclosed in Japanese Patent Laid-Open No. 2000-58232) or the configuration divided in two and connected in series Although the PTC characteristic is effective, the NTC characteristic becomes effective as described in the present embodiment in the configuration in which the PTC characteristic is connected in series with three or more divisions. Therefore, even if it is not divided into four as in this embodiment, the number of divisions is changed in three or more divisions so as to obtain a desired total resistance in accordance with the sheet resistance, heating element width, and thickness of the resistance heating element. Also good.

なお、本実施例では、簡単のために、紙端と抵抗発熱体6の隙間(長さbの部分)とが一致している小サイズ紙を例に挙げて非通紙部昇温防止の効果を説明したが、紙端と隙間が一致していない紙幅の小サイズ紙においても、非通紙部昇温は低減できる。その場合、紙端が通過する1ブロック内で考えるとPTC特性が有利になるが、抵抗発熱体の長手全体で考えるとやはりNTC特性が有利になる。   In this embodiment, for the sake of simplicity, an example of small-size paper in which the gap between the edge of the paper and the resistance heating element 6 (the portion of length b) coincides is taken as an example to prevent the temperature rise of the non-sheet passing portion. Although the effect has been described, the temperature rise of the non-sheet passing portion can be reduced even in a small size paper having a paper width whose gap does not coincide with the paper edge. In that case, the PTC characteristics are advantageous when considered within one block through which the paper edge passes, but the NTC characteristics are still advantageous when considered over the entire length of the resistance heating element.

以下に本実施例の加熱体と従来例の加熱体との比較を示す。本実施例と従来例で加熱体以外の加熱装置・画像形成装置の構成は同じとし、加熱装置が十分室温(25℃)になじんだ状態からハガキサイズの記録材を連続で100枚通紙したときの、非通紙部の最高温度(加熱体裏面を熱電対で測定)を比較した。定着温度は200℃とした。入力電圧は100Vとし、画像形成装置のプロセススピードは120mm/sec.とした。結果を表1に示す。   Below, the heating body of a present Example and the comparison of the heating body of a prior art example are shown. In this example and the conventional example, the configuration of the heating device / image forming apparatus other than the heating body is the same, and 100 postcard-sized recording materials are continuously fed from the state where the heating device is sufficiently adapted to room temperature (25 ° C.). At that time, the maximum temperature of the non-sheet passing portion (measured on the back surface of the heating body with a thermocouple) was compared. The fixing temperature was 200 ° C. The input voltage was 100 V, and the process speed of the image forming apparatus was 120 mm / sec. The results are shown in Table 1.

Figure 2007025474
表1に示すように、従来例に比べて大幅に(約50℃)非通紙部温度を下げることができた。
Figure 2007025474
As shown in Table 1, the temperature of the non-sheet passing portion could be lowered significantly (about 50 ° C.) compared to the conventional example.

次にハガキサイズで坪量が157g/m2の厚紙を強制的に重送させて通紙し、何枚重送させると加熱装置の劣化・破損に至るかを試験した。定着温度・入力電圧・プロセススピード非通紙部昇温を測定したときと同条件とした。試験結果を表2に示す。 Next, a cardboard-sized cardboard having a basis weight of 157 g / m 2 was forcibly fed and passed, and how many sheets were fed would cause deterioration or breakage of the heating device. The conditions were the same as when the fixing temperature, input voltage, and process speed non-sheet passing temperature rise were measured. The test results are shown in Table 2.

Figure 2007025474
表2に示すように、従来例の加熱体は、非通紙部昇温により基板に発生する熱応力によって、4または5重送で破損に至り、ステー・フィルム・加圧ローラ表層の非通紙部に劣化が認められた。一方、本実施例の加熱体は、2回とも10重送まで重送枚数を増やしていったが破損せず、ステー・フィルム・加圧ローラにも劣化は認められなかった。この結果からも本実施例の加熱体を用いることによって、非通紙部昇温が大幅に低減できていることが分かる。
Figure 2007025474
As shown in Table 2, the heating element of the conventional example is damaged by four or five double feeds due to the thermal stress generated in the substrate due to the temperature rise of the non-sheet passing portion, and the stay, film, and pressure roller surface layer are not passed. Deterioration was observed in the paper. On the other hand, the heating body of this example increased the number of double feeds up to 10 double feeds in both cases, but was not damaged, and no deterioration was observed in the stay, film, or pressure roller. From this result, it can be seen that by using the heating element of this example, the temperature rise of the non-sheet passing portion can be significantly reduced.

(実施例2)
本実施例では、実施例1で述べた分割された抵抗発熱体の隙間部分の形状を変更したものについて説明する。実施例1と異なっているのは抵抗発熱体のパターン形状のみであり、それ以外の加熱体・加熱装置・画像形成装置の構成は実施例1と同じである。図9に本実施例の加熱体の正面図を示す。
(Example 2)
In the present embodiment, a description will be given of a modified shape of the gap portion of the divided resistance heating element described in the first embodiment. The only difference from the first embodiment is the pattern shape of the resistance heating element, and the other configurations of the heating element, heating device, and image forming apparatus are the same as those of the first embodiment. FIG. 9 shows a front view of the heating body of the present embodiment.

本実施例の抵抗発熱体6は、実施例1と同じくグラファイト・ガラス粉末(無機結着剤)・有機結着剤を混練して調合したペーストをスクリーン印刷により、基板7上に形成して得たものである。抵抗発熱体6は実施例1と同一のものを用いた。基板7・給電用電極9・10・導電パターン14・オーバーコート層8も実施例1と同じものを用いている。図9においては、簡単のためオーバーコート層8を省略している。   The resistance heating element 6 of this example is obtained by forming a paste prepared by kneading graphite, glass powder (inorganic binder), and organic binder on the substrate 7 by screen printing, as in Example 1. It is a thing. The same resistance heating element 6 as in Example 1 was used. The substrate 7, the power supply electrodes 9, 10, the conductive pattern 14, and the overcoat layer 8 are the same as those in the first embodiment. In FIG. 9, the overcoat layer 8 is omitted for simplicity.

本実施例の抵抗発熱体パターンは実施例1と同じく、4分割された各ブロックを搬送方向に給電し直列に接続している。a〜eの各距離も実施例1と同じ値としている。抵抗発熱体6の常温における総抵抗(給電用電極9・10間の抵抗)も実施例1と同じく19Ωとした。   As in the first embodiment, the resistance heating element pattern of the present embodiment feeds the four divided blocks in the transport direction and connects them in series. The distances a to e are also set to the same values as in the first embodiment. The total resistance of the resistance heating element 6 at normal temperature (resistance between the power feeding electrodes 9 and 10) was also 19Ω as in the first embodiment.

実施例1は抵抗発熱体6の各ブロックが長方形であり、距離bの隙間部分の形状も長方形になっている。よって、記録材Pが加熱装置を通過する際、全く抵抗発熱体6が存在しない領域を通過する部分が生じてしまい、その部分で定着性が他の部分よりも悪化する可能性がある。全体的に定着性に余裕のある構成であれば、この悪化分は通常問題になることはないが、坪量の大きい紙や表面性の悪い紙等を低温環境等で通紙された場合、問題が顕在化する可能性がある。   In Example 1, each block of the resistance heating element 6 is rectangular, and the shape of the gap portion at the distance b is also rectangular. Therefore, when the recording material P passes through the heating device, there is a portion that passes through a region where the resistance heating element 6 does not exist at all, and there is a possibility that the fixing property is deteriorated as compared with other portions. If the overall structure has a sufficient fixability, this deterioration will not normally be a problem, but if paper with a large basis weight or paper with poor surface properties is passed in a low-temperature environment, Problems may become apparent.

本実施例はこの隙間部分の定着性悪化を低減する目的のため、図9に示すように、抵抗発熱体6の各ブロックを両端2ブロックは台形に、中央2ブロックは平行四辺形にして、距離bの隙間部分の形状を平行四辺形にしている。隙間部分を平行四辺形にし、距離bを製造上可能な範囲で小さくする(b=0.5mm)ことにより、記録材Pが加熱装置を通過する際、全く抵抗発熱体6が存在しない領域を通過することがなくなる。もちろん、本実施例でも隙間部分の定着性はそれ以外の部分に対しては劣るが、実施例1よりは差は少ない。   In this embodiment, for the purpose of reducing the deterioration of the fixability of the gap portion, as shown in FIG. 9, each block of the resistance heating element 6 has a trapezoidal shape with 2 blocks at both ends, and the central 2 blocks have a parallelogram shape. The shape of the gap portion at the distance b is a parallelogram. By making the gap part a parallelogram and making the distance b as small as possible (b = 0.5 mm), when the recording material P passes through the heating device, it passes through a region where no resistance heating element 6 exists. There is no longer to do. Of course, in this embodiment, the fixability of the gap portion is inferior to that of the other portions, but the difference is smaller than that of the first embodiment.

本実施例の抵抗発熱体パターンにおいて、隙間部分の発熱量がそれ以外の部分の発熱量に対してどの程度であるかを計算してみた。図10は本実施例の抵抗発熱体パターンの隙間部分の拡大図である。抵抗発熱体の隙間部分の形状は、図10の発熱体幅d・隙間の距離b・角度θで決まる。隙間がない領域では、電流は記録材Pの搬送方向aと平行に流れると考えられる。ここで、3角形ABDの領域では、電流は斜めに流れる(例えば点Cから電流は線分CAを通り点Aへ流れる)と仮定する。線分BAの抵抗をR0とおくと、線分CAの抵抗はR(x)は   In the resistance heating element pattern of the present embodiment, it was calculated how much the amount of heat generated in the gap portion was with respect to the amount of heat generated in the other portions. FIG. 10 is an enlarged view of a gap portion of the resistance heating element pattern of this embodiment. The shape of the gap portion of the resistance heating element is determined by the heating element width d, the gap distance b, and the angle θ in FIG. It is considered that the current flows in parallel with the conveyance direction a of the recording material P in a region where there is no gap. Here, in the region of the triangular ABD, it is assumed that the current flows obliquely (for example, the current flows from the point C through the line segment CA to the point A). If the resistance of line segment BA is R0, the resistance of line segment CA is R (x)

Figure 2007025474
となる(線分BC間の距離をxとおいている)。よって、線分BAを電流が流れることによって発生する発熱量をQ0とおくと、線分CAで発生する発熱量Q(x)は
Figure 2007025474
(Distance between line segments BC is set to x). Therefore, if the calorific value generated by the current flowing through the line segment BA is Q0, the calorific value Q (x) generated in the line segment CA is

Figure 2007025474
となる(導電パターン14の体積抵抗は抵抗発熱体6の体積抵抗に比べて十分小さいので、導電パターン14における電圧降下は無視し、BA間にかかる電圧とCA間にかかる電圧は同じであるとしている)。
Figure 2007025474
(The volume resistance of the conductive pattern 14 is sufficiently smaller than the volume resistance of the resistance heating element 6. Therefore, the voltage drop in the conductive pattern 14 is ignored, and the voltage applied between BA and CA is the same. )

3角形ABDの領域で発生する総発熱量はQ(x)をx=0からx=d/tanθ(線分BD間の距離)まで積分した値と考えられる。よって、3角形ABDの領域で発生する総発熱量をP(θ)とすると、   The total amount of heat generated in the triangular ABD region is considered to be a value obtained by integrating Q (x) from x = 0 to x = d / tan θ (distance between line segments BD). Therefore, if the total heat generated in the triangular ABD region is P (θ),

Figure 2007025474
となる。この積分はx=dtanαとおくことで求めることができ、
Figure 2007025474
It becomes. This integral can be obtained by setting x = dtanα,

Figure 2007025474
となる。
Figure 2007025474
It becomes.

隙間がある部分の発熱量は3角形ABDが2個分だから2P(θ)であり、隙間がある部分とない部分の発熱量の比率はP(θ)の積分区間の距離d/tanθ・隙間の距離bを考慮すると、   The amount of heat generated in the part with a gap is 2P (θ) because there are two triangular ABDs, and the ratio of the amount of heat generated in the part with and without the gap is the distance d / tanθ · gap in the integral interval of P (θ) Considering the distance b of

Figure 2007025474
となり、発熱体幅d・隙間の距離b・角度θで決まる変数となる。
Figure 2007025474
Thus, the variable is determined by the heating element width d, the gap distance b, and the angle θ.

図11に角度θと発熱比との関係を示す。図11の縦軸の発熱比は隙間がない部分の発熱量を100%としたときの隙間がある部分の発熱量(%)を示す。図11の4本の曲線は、隙間の距離bは0.5mmで固定し、発熱体幅dを本実施例の2.6mmと2/3/4mmと変えた場合の発熱比を、それぞれ式(1)に従って計算したものである。図11を見て分かるように、発熱比の曲線はある角度θで最大値を持つ。各発熱体幅において、発熱比の最大値とそのときの角度θをまとめると表3のようになる。   FIG. 11 shows the relationship between the angle θ and the heat generation ratio. The heat generation ratio on the vertical axis in FIG. 11 indicates the heat generation amount (%) in a portion with a gap when the heat generation amount in a portion without a gap is 100%. The four curves in FIG. 11 indicate the heat generation ratios when the gap distance b is fixed at 0.5 mm and the heating element width d is changed to 2.6 mm and 2/3/4 mm in this embodiment, respectively (1 ). As can be seen from FIG. 11, the curve of the heat generation ratio has a maximum value at a certain angle θ. Table 3 summarizes the maximum value of the heat generation ratio and the angle θ at that time in each heating element width.

Figure 2007025474
表3に示す通り、発熱体幅dが大きくなるほど、発熱比の最大値とそのときの角度θは大きくなる傾向にある。また、今回の計算では隙間の距離bは固定したが、式(1)を見ても分かるように、隙間の距離bが小さいほど発熱比が大きくなるので、製造上可能な範囲でbを小さくした方が良いのはそこからも明らかである。
Figure 2007025474
As shown in Table 3, the maximum value of the heat generation ratio and the angle θ at that time tend to increase as the heating element width d increases. In this calculation, the gap distance b is fixed, but as can be seen from equation (1), the heat generation ratio increases as the gap distance b decreases. It is clear from there that it is better to do this.

本実施例では、発熱体幅dは2.6mmとしたので、角度θは、計算上最も発熱比が大きく隙間部分の定着性の良い55°としている。また、本実施例の加熱装置を用いて、角度θと隙間部分の定着性の関係を検討した結果、やはり角度θは55°付近が最も隙間部分の定着性が良く、隙間がない部分との差は実施例1よりも小さいという結果が得られた。   In this embodiment, since the heating element width d is 2.6 mm, the angle θ is set to 55 °, which has the largest heat generation ratio in calculation and good fixability in the gap portion. In addition, as a result of examining the relationship between the angle θ and the fixability of the gap portion using the heating device of the present embodiment, the angle θ is 55 °, and the fixability of the gap portion is the best, and there is no gap portion. The result that the difference was smaller than Example 1 was obtained.

発熱体幅は加熱装置によって異なる(基板幅・ニップ幅との関係等によって決まる)ので、その装置の発熱体幅dと隙間の距離bに合わせて、最も発熱比が大きくなる角度θを選択することが望ましい。   Since the heating element width varies depending on the heating device (determined by the relationship between the substrate width and the nip width, etc.), the angle θ at which the heating ratio is maximized is selected according to the heating element width d and the gap distance b of the device. It is desirable.

また、本実施例の加熱体においても、実施例1の加熱体と同じメカニズムで非通紙部昇温低減の効果はあるのは言うまでもない。更に、本実施例では、抵抗発熱体を分割する上で必須となる隙間部分における定着性の悪化を実施例1よりも小さくできるという利点もある。   Further, it goes without saying that the heating body of the present embodiment also has the effect of reducing the temperature rise of the non-sheet passing portion by the same mechanism as that of the heating body of the first embodiment. Further, the present embodiment also has an advantage that the deterioration of the fixing property in the gap portion essential for dividing the resistance heating element can be made smaller than that of the first embodiment.

(実施例3)
本実施例では、実施例2で述べた抵抗発熱体の隙間部分の定着性悪化を更に低減する構成について説明する。実施例1・2と異なっているのは抵抗発熱体のパターン形状のみであり、それ以外の加熱体・加熱装置・画像形成装置の構成は実施例1・2と同じである。図12に本実施例の加熱体の正面図を示す。
(Example 3)
In the present embodiment, a configuration for further reducing the deterioration of the fixability in the gap portion of the resistance heating element described in the second embodiment will be described. The only difference from the first and second embodiments is the pattern shape of the resistance heating element, and the other configurations of the heating element, heating device, and image forming apparatus are the same as those of the first and second embodiments. The front view of the heating body of a present Example is shown in FIG.

本実施例の抵抗発熱体16は、実施例1・2と同じくグラファイト・ガラス粉末(無機結着剤)・有機結着剤を混練して調合したペーストをスクリーン印刷により、基板7上に形成して得たものである。基板7・給電用電極9・10・導電パターン14・オーバーコート層8も実施例1・2と同じものを用いている。図12においては、簡単のためオーバーコート層8を省略している。   The resistance heating element 16 of this example is formed on the substrate 7 by screen printing a paste prepared by kneading graphite, glass powder (inorganic binder), and organic binder as in Examples 1 and 2. It was obtained. The substrate 7, the feeding electrodes 9, 10, the conductive pattern 14, and the overcoat layer 8 are the same as those in the first and second embodiments. In FIG. 12, the overcoat layer 8 is omitted for simplicity.

本実施例の抵抗発熱体16では、図12の縦線部分(長方形の領域)と斜線部分(3角形の領域)とで抵抗発熱体のシート抵抗を変えている。抵抗発熱体のシート抵抗を変えている以外は、実施例2と全く同形状のパターンであり、a〜eの各距離も実施例1・2と同じ値としている。抵抗発熱体16の常温における総抵抗(給電用電極9・10間の抵抗)も実施例1・2と同じく19Ωとした。   In the resistance heating element 16 of this embodiment, the sheet resistance of the resistance heating element is changed between the vertical line portion (rectangular region) and the shaded portion (triangular region) in FIG. Except for changing the sheet resistance of the resistance heating element, the pattern is exactly the same as in Example 2, and the distances a to e are also set to the same values as in Examples 1 and 2. The total resistance of the resistance heating element 16 at normal temperature (resistance between the power feeding electrodes 9 and 10) was also 19Ω as in Examples 1 and 2.

実施例2では、角度θは55°としたので、表3に従い隙間部分の発熱量は隙間のない部分の82.0%となる。本実施例ではこの発熱量低下を完全になくすために、斜線部分のシート抵抗を縦線部分のシート抵抗の1.22倍(=1/0.82)とし、(1)式で計算した発熱比を100%とした(本実施例でも角度θは55°である)。具体的には、縦線部分のシート抵抗を実施例1・2と同じく約100Ω/sq(厚さ10μm)、斜線部分のシート抵抗を約122Ω/sq(厚さ10μm)としている。実際に、本実施例の加熱装置を用いて、隙間がある部分と隙間がない部分の定着性を比較した結果、同等の定着性を示した。   In Example 2, since the angle θ is 55 °, the amount of heat generated in the gap portion is 82.0% of the portion without the gap according to Table 3. In this embodiment, in order to completely eliminate this decrease in the heat generation amount, the sheet resistance of the shaded portion is set to 1.22 times (= 1 / 0.82) of the sheet resistance of the vertical line portion, and the heat generation ratio calculated by the equation (1) is 100%. (In this embodiment, the angle θ is 55 °). Specifically, the sheet resistance of the vertical line portion is about 100 Ω / sq (thickness 10 μm) as in the first and second embodiments, and the sheet resistance of the hatched portion is about 122 Ω / sq (thickness 10 μm). Actually, as a result of comparing the fixability of the portion having a gap and the portion having no gap using the heating device of this example, the same fixability was shown.

本実施例の抵抗発熱体構成で角度θを変えた場合、斜線部分のシート抵抗を縦線部分のシート抵抗の何倍(=抵抗比fとする)にすれば発熱比が100%になるかは、(1)式を基に求めることができる。角度θと抵抗比fとの関係を図13に示す。図13の曲線は図11の曲線と大小が逆になっており、角度θが55°のとき、抵抗比fは最小値1.22をとる。   When the angle θ is changed in the resistance heating element configuration of this embodiment, how many times the sheet resistance of the shaded portion is set to the sheet resistance of the vertical portion (= resistance ratio f), the heat generation ratio becomes 100% Can be obtained based on equation (1). The relationship between the angle θ and the resistance ratio f is shown in FIG. The curve in FIG. 13 is opposite to the curve in FIG. 11, and when the angle θ is 55 °, the resistance ratio f takes a minimum value of 1.22.

本実施例の加熱体においても、実施例1・2の加熱体と同じメカニズムで、実施例1・2と同等の非通紙部昇温低減の効果はある。更に、本実施例では、抵抗発熱体を分割する上で必須となる隙間部分における定着性の悪化を完全になくし、定着性が悪い条件においても長手方向で均一な定着性を確保することができるという点で、実施例1・2より優れている。   Also in the heating body of the present embodiment, the same mechanism as that of the heating bodies of Embodiments 1 and 2 has the same effect of reducing the temperature rise of the non-sheet passing portion as in Embodiments 1 and 2. Furthermore, in this embodiment, it is possible to completely eliminate the deterioration of the fixing property in the gap portion which is essential for dividing the resistance heating element, and to ensure a uniform fixing property in the longitudinal direction even under a condition where the fixing property is poor. In this respect, it is superior to the first and second embodiments.

なお、本実施例では、隙間部分の発熱量低下を補うために、隙間部分近傍の抵抗発熱体のシート抵抗を上げたが、隙間部分近傍の抵抗発熱体を薄くすることで抵抗アップを実現してもよい。本実施例の構成では、斜線部分の厚さを縦線部分の82.0%とすることで、発熱量を同等にすることができる。   In this embodiment, the sheet resistance of the resistance heating element in the vicinity of the gap is increased to compensate for the decrease in the heat generation amount in the gap, but the resistance is increased by making the resistance heating element in the vicinity of the gap thinner. May be. In the configuration of the present embodiment, the amount of heat generation can be made equal by setting the thickness of the hatched portion to 82.0% of the vertical line portion.

実施例1における加熱体の正面図Front view of the heating element in Example 1 実施例1における加熱体の正面図と給電制御系の説明図Front view of heating body and explanatory diagram of power supply control system in Embodiment 1 実施例1における加熱体の断面図Sectional drawing of the heating body in Example 1 本発明における加熱装置の要部を示す概略構成図The schematic block diagram which shows the principal part of the heating apparatus in this invention 本発明における画像形成装置の要部を示す概略構成図1 is a schematic configuration diagram showing a main part of an image forming apparatus according to the present invention. 従来例における加熱体の正面図Front view of heating element in conventional example 従来例における抵抗発熱体のモデル図Model of resistance heating element in the conventional example 実施例1における抵抗発熱体のモデル図Model diagram of resistance heating element in Example 1 実施例2における加熱体の正面図The front view of the heating body in Example 2 実施例2における抵抗発熱体の拡大図The enlarged view of the resistance heating element in Example 2 角度θと発熱比との関係を示す図Diagram showing the relationship between angle θ and heat generation ratio 実施例3における加熱体の正面図Front view of the heating body in Example 3 角度θと抵抗比fとの関係を示す図Diagram showing the relationship between angle θ and resistance ratio f

符号の説明Explanation of symbols

1 ステー
2 フィルム
3 加熱体(ヒータ)
4 加圧ローラ
5 検温素子(外部当接型サーミスタ)
6 実施例1・2の抵抗発熱体
7 加熱体基板
8 オーバーコート層
9・10 給電用電極
11 CPU
12 トライアック
13 AC電源
14 導電パターン
15 従来例の抵抗発熱体
16 実施例3の抵抗発熱体
N ニップ部
P 記録材
T トナー
a 記録材搬送方向
1 stay 2 film 3 heating element (heater)
4 Pressure roller 5 Temperature sensor (external contact type thermistor)
6 Resistance heating elements of Examples 1 and 2 7 Heating substrate 8 Overcoat layer 9 · 10 Power supply electrode 11 CPU
12 Triac 13 AC Power Supply 14 Conductive Pattern 15 Resistance Heating Element of Conventional Example 16 Resistance Heating Element of Example 3
N Nip part
P Recording material
T toner
a Recording material conveyance direction

Claims (7)

少なくとも基板と、負の抵抗温度特性を有する抵抗発熱体と、抵抗発熱体に給電する電極とからなる加熱体によって被加熱材を加熱する加熱装置において、抵抗発熱体は長手方向において3個以上の部分に分割されており、分割された抵抗発熱体は被加熱材搬送方向に電流が流れるように給電され、分割された抵抗発熱体は電気的に直列に接続されていることを特徴とする加熱装置。   In a heating apparatus that heats a material to be heated by a heating element including at least a substrate, a resistance heating element having negative resistance temperature characteristics, and an electrode that supplies power to the resistance heating element, the resistance heating element includes three or more resistance heating elements in the longitudinal direction. Heating is divided into parts, and the divided resistance heating elements are fed so that current flows in the direction of conveying the heated material, and the divided resistance heating elements are electrically connected in series apparatus. 請求項1記載の加熱装置において、抵抗発熱体はグラファイトを含むことを特徴とする加熱装置。   2. The heating device according to claim 1, wherein the resistance heating element includes graphite. 請求項1・2記載の加熱装置において、加熱体はセラミックス基板上に抵抗発熱体を形成する構成であることを特徴とする加熱装置。   3. The heating apparatus according to claim 1, wherein the heating body is configured to form a resistance heating element on a ceramic substrate. 請求項1から3に記載の加熱装置において、分割された抵抗発熱体の各部分の加熱面から見た形状は平行四辺形あるいは台形であることを特徴とする加熱装置。   4. The heating device according to claim 1, wherein the shape of each portion of the divided resistance heating element viewed from the heating surface is a parallelogram or a trapezoid. 請求項1から4に記載の加熱装置において、抵抗発熱体の長手方向の一部分で、抵抗発熱体の体積抵抗が他の部分と異なる、あるいは抵抗発熱体の厚さが他の部分と異なることを特徴とする加熱装置。   5. The heating device according to claim 1, wherein, in a part of the resistance heating element in a longitudinal direction, the volume resistance of the resistance heating element is different from that of the other part, or the thickness of the resistance heating element is different from that of the other part. Heating device characterized. 少なくとも加熱体と、一面を加熱体と接触摺動し他面を被加熱材と接触する可撓性部材と、可撓性部材を介して被加熱材を加熱体に密着させる加圧体とを有し、加熱体と加圧体により形成されるニップ部で可撓性部材と被加熱材を一緒に挟持搬送して被加熱材を加熱する加熱装置において、該加熱装置が請求項1から5の何れか1項に記載の構成であることを特徴とする加熱装置。   At least a heating body, a flexible member that contacts and slides one surface with the heating body and the other surface contacts the heated material, and a pressurizing body that causes the heated material to closely contact the heated body via the flexible member. And a heating device that heats the heated material by sandwiching and conveying the flexible member and the heated material at a nip formed by the heated body and the pressure body. A heating apparatus having the structure described in any one of the above. 記録材上に画像を形成する像形成手段と、該記録材上の画像を加熱する像加熱手段とを有する画像形成装置において、像加熱手段として請求項1から6の何れか1項に記載の加熱装置を備えたことを特徴とする画像形成装置。   7. An image forming apparatus comprising: an image forming unit that forms an image on a recording material; and an image heating unit that heats an image on the recording material. An image forming apparatus comprising a heating device.
JP2005210100A 2005-07-20 2005-07-20 Heating device and image forming apparatus Withdrawn JP2007025474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005210100A JP2007025474A (en) 2005-07-20 2005-07-20 Heating device and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005210100A JP2007025474A (en) 2005-07-20 2005-07-20 Heating device and image forming apparatus

Publications (1)

Publication Number Publication Date
JP2007025474A true JP2007025474A (en) 2007-02-01

Family

ID=37786293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005210100A Withdrawn JP2007025474A (en) 2005-07-20 2005-07-20 Heating device and image forming apparatus

Country Status (1)

Country Link
JP (1) JP2007025474A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009075380A1 (en) * 2007-12-13 2009-06-18 Canon Kabushiki Kaisha Image heating device, and heater for use in the image heating device
JP2009244867A (en) * 2008-03-14 2009-10-22 Canon Inc Image heating apparatus and heater used for the image heating apparatus
WO2011030440A1 (en) 2009-09-11 2011-03-17 キヤノン株式会社 Heater and image heating device equipped with heater
JP2011129483A (en) * 2009-12-21 2011-06-30 Canon Inc Heater and image heating device loading this heater
WO2011078063A1 (en) * 2009-12-21 2011-06-30 Canon Kabushiki Kaisha Heater and image heating apparatus including same
JP2011128567A (en) * 2009-12-21 2011-06-30 Canon Inc Image forming apparatus
JP2012069281A (en) * 2010-09-21 2012-04-05 Denso Corp Heating device
WO2012120866A1 (en) * 2011-03-10 2012-09-13 Canon Kabushiki Kaisha Heater and image heating device including the same
WO2012120867A1 (en) * 2011-03-10 2012-09-13 Canon Kabushiki Kaisha Heater and image heating device having same heater
JP2012252127A (en) * 2011-06-02 2012-12-20 Canon Inc Heating body and image heating device
JP2014134819A (en) * 2014-04-03 2014-07-24 Canon Inc Heater and image heating device equipped with heater
JP2015180971A (en) * 2015-07-09 2015-10-15 キヤノン株式会社 Heater and image heating device equipped with heater
JP2015194626A (en) * 2014-03-31 2015-11-05 京セラドキュメントソリューションズ株式会社 Heater and image forming apparatus
JP2015200735A (en) * 2014-04-07 2015-11-12 コニカミノルタ株式会社 image forming apparatus
EP3001254A1 (en) * 2014-09-24 2016-03-30 Toshiba TEC Kabushiki Kaisha Fixing device and image forming apparatus
EP3001253A1 (en) * 2014-09-24 2016-03-30 Toshiba TEC Kabushiki Kaisha Fixing device and image forming apparatus
JP2016164826A (en) * 2015-03-06 2016-09-08 東芝ライテック株式会社 Heater and image forming device
CN106292229A (en) * 2015-06-29 2017-01-04 富士施乐株式会社 Heat-generating units, fixation unit and image processing system
JP2019032458A (en) * 2017-08-09 2019-02-28 京セラドキュメントソリューションズ株式会社 Fixing device, image forming apparatus, and heater device
US10455644B2 (en) 2015-02-06 2019-10-22 Canon Kabushiki Kaisha Fixing device and heater used in fixing device
JP2021033025A (en) * 2019-08-22 2021-03-01 富士ゼロックス株式会社 Fixation device and image formation apparatus

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009075380A1 (en) * 2007-12-13 2009-06-18 Canon Kabushiki Kaisha Image heating device, and heater for use in the image heating device
JP2009145568A (en) * 2007-12-13 2009-07-02 Canon Inc Heater and image heating device having the same
US7873293B2 (en) 2007-12-13 2011-01-18 Canon Kabushiki Kaisha Image heating apparatus and heater for use in image heating apparatus
JP2009244867A (en) * 2008-03-14 2009-10-22 Canon Inc Image heating apparatus and heater used for the image heating apparatus
US8471178B2 (en) 2008-03-14 2013-06-25 Canon Kabushiki Kaisha Image heating apparatus and heater used for the image heating apparatus
KR101382052B1 (en) * 2009-09-11 2014-04-04 캐논 가부시끼가이샤 Heater and image heating device equipped with heater
US9445457B2 (en) 2009-09-11 2016-09-13 Canon Kabushiki Kaisha Heater and image heating apparatus including the same
JP5518080B2 (en) * 2009-09-11 2014-06-11 キヤノン株式会社 Heater and image heating apparatus equipped with the heater
US8552342B2 (en) 2009-09-11 2013-10-08 Canon Kabushiki Kaisha Heater and image heating apparatus including the same
WO2011030440A1 (en) 2009-09-11 2011-03-17 キヤノン株式会社 Heater and image heating device equipped with heater
KR101454525B1 (en) 2009-12-21 2014-10-23 캐논 가부시끼가이샤 Heater and image heating apparatus including same
US8642927B2 (en) 2009-12-21 2014-02-04 Canon Kabushiki Kaisha Heater and image heating apparatus having the heater installed therein
KR101427560B1 (en) 2009-12-21 2014-08-07 캐논 가부시끼가이샤 Heater and image heating apparatus having the heater installed therein
CN102667638B (en) * 2009-12-21 2015-09-02 佳能株式会社 Well heater and the image heater built with well heater
JP2011129483A (en) * 2009-12-21 2011-06-30 Canon Inc Heater and image heating device loading this heater
JP2011151003A (en) * 2009-12-21 2011-08-04 Canon Inc Heater and image heating device installing this heater
WO2011078062A1 (en) * 2009-12-21 2011-06-30 Canon Kabushiki Kaisha Heater and image heating apparatus having the heater installed therein
CN102667638A (en) * 2009-12-21 2012-09-12 佳能株式会社 Heater and image heating apparatus having the heater installed therein
WO2011078063A1 (en) * 2009-12-21 2011-06-30 Canon Kabushiki Kaisha Heater and image heating apparatus including same
US8698046B2 (en) 2009-12-21 2014-04-15 Canon Kabushiki Kaisha Heater and image heating apparatus including same
JP2011128567A (en) * 2009-12-21 2011-06-30 Canon Inc Image forming apparatus
US8884192B2 (en) 2009-12-21 2014-11-11 Canon Kabushiki Kaisha Heater and image heating apparatus having the heater installed therein
KR101427494B1 (en) 2009-12-21 2014-08-07 캐논 가부시끼가이샤 Heater and image heating apparatus having the heater installed therein
JP2012069281A (en) * 2010-09-21 2012-04-05 Denso Corp Heating device
US9098033B2 (en) 2011-03-10 2015-08-04 Canon Kabushiki Kaisha Heater and image heating device having same heater
WO2012120866A1 (en) * 2011-03-10 2012-09-13 Canon Kabushiki Kaisha Heater and image heating device including the same
US9098034B2 (en) 2011-03-10 2015-08-04 Canon Kabushiki Kaisha Heater and image heating device including the same
WO2012120867A1 (en) * 2011-03-10 2012-09-13 Canon Kabushiki Kaisha Heater and image heating device having same heater
JP2012252127A (en) * 2011-06-02 2012-12-20 Canon Inc Heating body and image heating device
JP2015194626A (en) * 2014-03-31 2015-11-05 京セラドキュメントソリューションズ株式会社 Heater and image forming apparatus
JP2014134819A (en) * 2014-04-03 2014-07-24 Canon Inc Heater and image heating device equipped with heater
JP2015200735A (en) * 2014-04-07 2015-11-12 コニカミノルタ株式会社 image forming apparatus
CN105446101B (en) * 2014-09-24 2018-08-21 东芝泰格有限公司 Fixing device and image forming apparatus
US10197959B2 (en) 2014-09-24 2019-02-05 Toshiba Tec Kabushiki Kaisha Fixing device and image forming apparatus
CN105446100A (en) * 2014-09-24 2016-03-30 东芝泰格有限公司 Fixing device and image forming apparatus
CN105446101A (en) * 2014-09-24 2016-03-30 东芝泰格有限公司 Fixing device and image forming apparatus
JP2016065914A (en) * 2014-09-24 2016-04-28 東芝テック株式会社 Fixation device and image forming apparatus
CN108196435B (en) * 2014-09-24 2021-09-21 东芝泰格有限公司 Fixing device and image forming apparatus
EP3001254A1 (en) * 2014-09-24 2016-03-30 Toshiba TEC Kabushiki Kaisha Fixing device and image forming apparatus
US11754951B2 (en) 2014-09-24 2023-09-12 Toshiba Tec Kabushiki Kaisha Fixing device and image forming apparatus
US9804544B2 (en) 2014-09-24 2017-10-31 Toshiba Tec Kabushiki Kaisha Fixing device and image forming apparatus
US9804545B2 (en) 2014-09-24 2017-10-31 Toshiba Tec Kabushiki Kaisha Fixing device and image forming apparatus
CN108196435A (en) * 2014-09-24 2018-06-22 东芝泰格有限公司 Fixing device and image forming apparatus
US10955782B2 (en) 2014-09-24 2021-03-23 Toshiba Tec Kabushiki Kaisha Fixing device and image forming apparatus
US10067450B2 (en) 2014-09-24 2018-09-04 Toshiba Tec Kabushiki Kaisha Fixing device and image forming apparatus
EP3001253A1 (en) * 2014-09-24 2016-03-30 Toshiba TEC Kabushiki Kaisha Fixing device and image forming apparatus
US11294314B2 (en) 2014-09-24 2022-04-05 Toshiba Tec Kabushiki Kaisha Fixing device and image forming apparatus
US10698350B2 (en) 2014-09-24 2020-06-30 Toshiba Tec Kabushiki Kaisha Fixing device and image forming apparatus
US10455644B2 (en) 2015-02-06 2019-10-22 Canon Kabushiki Kaisha Fixing device and heater used in fixing device
JP2016164826A (en) * 2015-03-06 2016-09-08 東芝ライテック株式会社 Heater and image forming device
CN106292229A (en) * 2015-06-29 2017-01-04 富士施乐株式会社 Heat-generating units, fixation unit and image processing system
JP2015180971A (en) * 2015-07-09 2015-10-15 キヤノン株式会社 Heater and image heating device equipped with heater
JP2019032458A (en) * 2017-08-09 2019-02-28 京セラドキュメントソリューションズ株式会社 Fixing device, image forming apparatus, and heater device
JP2021033025A (en) * 2019-08-22 2021-03-01 富士ゼロックス株式会社 Fixation device and image formation apparatus
JP7367386B2 (en) 2019-08-22 2023-10-24 富士フイルムビジネスイノベーション株式会社 Fixing device and image forming device

Similar Documents

Publication Publication Date Title
JP2007025474A (en) Heating device and image forming apparatus
JP5253240B2 (en) Image heating apparatus and heater used in the image heating apparatus
JP4599176B2 (en) Image heating apparatus and heater used in the apparatus
JP6436812B2 (en) Fixing device
US20160234882A1 (en) Fixing device and heater used in fixing device
JP2005209493A (en) Heating device and image forming device
JP2009053507A (en) Fixing device
JP2009053507A5 (en)
JP2013011649A (en) Image heating device
JP2009192993A (en) Heating device and image forming apparatus
JP2002236426A (en) Fixing device and image forming apparatus
JP4208587B2 (en) Fixing device
JP6415044B2 (en) Image forming apparatus
JP2012083606A (en) Heating body, image heating device, and image forming apparatus
JP2008123709A (en) Heating body, fixing device, and image forming device
JP2012189808A (en) Heater and image heating device comprising heater
JP2008139778A (en) Heating device and image forming apparatus
JP2009186752A (en) Image forming apparatus
JP2008076857A (en) Heating device and image forming apparatus
JP2019174767A (en) Heater and fixing device
JP5213664B2 (en) Image forming apparatus
JP2011081160A (en) Heating device and image forming apparatus
JP2003297533A (en) Heating device and image forming apparatus
JP2006011033A (en) Image forming apparatus
JP2008152957A (en) Heating device and image forming device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081007