JP2012069281A - Heating device - Google Patents

Heating device Download PDF

Info

Publication number
JP2012069281A
JP2012069281A JP2010211017A JP2010211017A JP2012069281A JP 2012069281 A JP2012069281 A JP 2012069281A JP 2010211017 A JP2010211017 A JP 2010211017A JP 2010211017 A JP2010211017 A JP 2010211017A JP 2012069281 A JP2012069281 A JP 2012069281A
Authority
JP
Japan
Prior art keywords
electrode
heating
resistance member
pair
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010211017A
Other languages
Japanese (ja)
Inventor
Takashi Yamada
貴史 山田
Takashi Koyama
貴志 小山
Yuichi Sakagami
祐一 坂上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010211017A priority Critical patent/JP2012069281A/en
Publication of JP2012069281A publication Critical patent/JP2012069281A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a heating device capable of raising a temperature of a heated object to a constant temperature without increasing an electric resistance of a resistance member having negative temperature resistance characteristics and regardless of distribution of the temperature and heat release of the heated object.SOLUTION: A heating device for heating a storage battery 2 which is the heated object comprises a resistance member 110 which has the negative temperature resistance characteristics and generates heat by energization and a pair of electrode members 111 and 112 for supplying current to the resistance member 110. The resistance member 110 has a plurality of energization parts in which current from the pair of electrode members 111 and 112 flows. The plurality of energization parts are electrically connected in series via the pair of electrode members 111 and 112. The pair of electrode members 111 and 112 are disposed so as to sandwich the resistance member 110 from a direction orthogonal to a heating surface 110a so that current flows in the direction (thickness direction) orthogonal to the heating surface 110a facing the heated object in the resistance member 110.

Description

本発明は、被加熱対象を加熱する加熱装置に関する。   The present invention relates to a heating device that heats an object to be heated.

従来、通電により発熱する抵抗体を用いて、被加熱対象を加熱する加熱装置が種々提案されている。例えば、特許文献1では、記録材に画像を加熱定着させる加熱装置が提案されている。   Conventionally, various heating devices for heating an object to be heated using a resistor that generates heat when energized have been proposed. For example, Patent Document 1 proposes a heating device that heats and fixes an image on a recording material.

この特許文献1に記載の加熱装置は、基板、温度の上昇に伴って電気抵抗が小さくなる特性(負の温度抵抗特性)を有する抵抗体、抵抗体に給電する電極から構成されており、抵抗体における被加熱対象に対向する加熱面を3個以上の部分に分割し、分割された抵抗体を電気的に直列に接続する構成としている。そして、抵抗体に流れる電流が、抵抗体における被加熱対象に対向する加熱面に沿って流れるように構成している。このような構成の加熱装置では、被加熱対象に温度や放熱(熱伝達率)に分布(バラツキ)が生じたとしても、被加熱対象全体を一定の温度に昇温させることが可能となる。   The heating device described in Patent Document 1 includes a substrate, a resistor having a characteristic that the electrical resistance decreases as the temperature rises (negative temperature resistance characteristic), and an electrode that feeds the resistor. The heating surface of the body facing the object to be heated is divided into three or more parts, and the divided resistors are electrically connected in series. And it is comprised so that the electric current which flows into a resistor may flow along the heating surface which opposes the to-be-heated object in a resistor. In the heating device having such a configuration, even if a distribution (variation) in temperature or heat dissipation (heat transfer coefficient) occurs in the object to be heated, the entire object to be heated can be raised to a certain temperature.

特開2007−25474号公報JP 2007-25474 A

ところで、特許文献1では、分割された抵抗体を電気的に直列に接続する構成としているので、各部位に同一の電流が流れる。この際、厚みの薄い抵抗体(例えば、10μm)における加熱面に沿って電流が流れるため、加熱面に直交する方向(厚み方向)の断面積(抵抗体における通電面積)が小さくなり、抵抗体の電気抵抗が大きくなってしまう。特に、温度の上昇によって抵抗値が低下する温度抵抗特性(負の温度抵抗特性)を有する抵抗体は、他の抵抗体に比較して体積抵抗が大きく、抵抗体の熱によって被加熱対象を適切に加熱することが困難となるといった問題がある。   By the way, in patent document 1, since it is set as the structure which connects the divided resistor electrically in series, the same electric current flows into each location. At this time, since a current flows along the heating surface of the thin resistor (for example, 10 μm), the cross-sectional area (energization area in the resistor) in the direction (thickness direction) orthogonal to the heating surface is reduced, and the resistor The electrical resistance of will increase. In particular, a resistor having a temperature resistance characteristic (negative temperature resistance characteristic) in which the resistance value decreases as the temperature rises has a larger volume resistance than other resistors, and the object to be heated is appropriate due to the heat of the resistor. However, there is a problem that it becomes difficult to heat.

本発明は上記点に鑑みて、負の温度抵抗特性を有する抵抗部材の電気抵抗を増大させることなく、被加熱対象の温度や放熱の分布によらず、被加熱対象を一定の温度に昇温させることが可能な加熱装置を提供することを目的とする。   In view of the above points, the present invention increases the temperature of a heated object to a constant temperature without increasing the electrical resistance of a resistance member having negative temperature resistance characteristics, regardless of the temperature of the heated object or the distribution of heat dissipation. It is an object of the present invention to provide a heating device that can be used.

上記目的を達成するため、請求項1に記載の発明では、被加熱対象を加熱する加熱装置であって、負の温度抵抗特性を有し、通電により発熱する抵抗部材(110)と、抵抗部材(110)に電流を供給するための一対の電極部材(111、112)と、を備え、抵抗部材(110)は、一対の電極部材(111、112)からの電流が流れる複数の通電部を有し、一対の電極部材(111、112)を介して複数の通電部が電気的に直列に接続されており、一対の電極部材(111、112)は、抵抗部材(110)における被加熱対象と対向する加熱面(110a)に直交する方向に電流が流れるように、加熱面(110a)に直交する方向から抵抗部材(110)を挟み込むように配置されていることを特徴とする。   In order to achieve the above object, according to the first aspect of the present invention, there is provided a heating device for heating an object to be heated, which has a negative temperature resistance characteristic and generates heat by energization, and a resistance member A pair of electrode members (111, 112) for supplying current to (110), and the resistance member (110) includes a plurality of current-carrying portions through which current from the pair of electrode members (111, 112) flows. A plurality of current-carrying parts are electrically connected in series via a pair of electrode members (111, 112), and the pair of electrode members (111, 112) are to be heated in the resistance member (110) It is characterized by being arranged so that the resistance member (110) is sandwiched from a direction orthogonal to the heating surface (110a) so that a current flows in a direction orthogonal to the heating surface (110a) opposite to the heating surface.

また、請求項2に記載の発明では、被加熱対象を加熱する加熱装置であって、負の温度抵抗特性を有し、通電により発熱する抵抗部材(110)と、抵抗部材(110)に電流を供給するための一対の電極部材(111、112)と、を備え、抵抗部材(110)は、一対の電極部材(111、112)からの電流が流れる複数の通電部を有し、一対の電極部材(111、112)を介して複数の通電部が電気的に直列に接続されており、一対の電極部材(111、112)は、少なくとも一方の電極部材(111)における他方の電極部材(112)と対向する対向面に通電部が一体に形成され、抵抗部材(110)における被加熱対象と対向する加熱面(110a)に直交する方向に電流が流れるように、加熱面(110a)に直交する方向に向かい合って配置されていることを特徴とする。   According to the second aspect of the present invention, there is provided a heating device for heating an object to be heated, which has a negative temperature resistance characteristic and generates heat by energization, and the resistance member (110) has an electric current. A pair of electrode members (111, 112), and a resistance member (110) having a plurality of current-carrying portions through which current from the pair of electrode members (111, 112) flows, A plurality of current-carrying parts are electrically connected in series via the electrode members (111, 112), and the pair of electrode members (111, 112) is the other electrode member (111) of at least one of the electrode members (111). 112) is formed integrally on the facing surface facing the heating surface (110a) so that a current flows in a direction perpendicular to the heating surface (110a) facing the object to be heated in the resistance member (110). Orthogonal Characterized in that it is disposed opposite the direction.

また、請求項3に記載の発明では、被加熱対象を加熱する加熱装置であって、負の温度抵抗特性を有し、通電により発熱する抵抗部材(110)と、抵抗部材(110)に電流を供給するための一対の電極部材(111、112)と、を備え、抵抗部材(110)は、抵抗部材(110)は、一対の電極部材(111、112)からの電流が流れる複数の通電部を有し、一対の電極部材(111、112)を介して複数の通電部が電気的に直列に接続される共に、抵抗部材(110)における被加熱対象と対向する加熱面(110a)に直交する方向に電流が流れるように、一対の電極部材(111、112)のうち、加熱面(110a)に一方の電極部材(111)が一体に形成されると共に、加熱面(110a)と反対側の面に他方の電極部材(112)が一体に形成されていることを特徴とする。   According to a third aspect of the present invention, there is provided a heating device for heating an object to be heated, which has a negative temperature resistance characteristic and generates heat by energization, and the resistance member (110) has an electric current. A pair of electrode members (111, 112) for supplying a current, and the resistance member (110) is a plurality of energizations through which the current from the pair of electrode members (111, 112) flows. A heating surface (110a) facing the object to be heated in the resistance member (110), and a plurality of current-carrying portions are electrically connected in series via a pair of electrode members (111, 112). Of the pair of electrode members (111, 112), one electrode member (111) is integrally formed on the heating surface (110a) and opposite to the heating surface (110a) so that an electric current flows in the orthogonal direction. On the side surface Member (112) is characterized in that it is formed integrally.

これら請求項1ないし3に記載の発明によると、負の温度抵抗特性を有する抵抗部材(110)により被加熱対象を加熱する構成としているので、被加熱対象における温度が低い箇所に対向する通電部の加熱面(110a)の電気抵抗を高くし、温度が高い箇所に対向する通電部の加熱面(110a)の電気抵抗を低くすることができる。   According to the inventions according to the first to third aspects, since the heating target is heated by the resistance member (110) having negative temperature resistance characteristics, the energization unit facing the portion where the temperature of the heating target is low It is possible to increase the electrical resistance of the heating surface (110a) and to lower the electrical resistance of the heating surface (110a) of the energizing part facing the portion having a high temperature.

そして、抵抗部材(110)における複数の通電部を電気的に直列に接続することによって、各通電部に同等の電流が流れるようにしているため、被加熱対象における温度が高い箇所に対向する通電部の加熱面(110a)での発熱量を少なくし、逆に温度が低い箇所に対向する通電部の加熱面(110a)での発熱量を多くすることができる。これにより、被加熱対象の温度や放熱の分布によらず、被加熱対象を一定の温度に昇温させることができる。   And since it is made for the equivalent electric current to flow through each electricity supply part by electrically connecting the several electricity supply part in a resistance member (110) in series, it supplies with electricity facing the location where the temperature in a to-be-heated object is high It is possible to reduce the amount of heat generated on the heating surface (110a) of the part, and conversely increase the amount of heat generated on the heating surface (110a) of the energizing part facing the portion having a low temperature. Thereby, regardless of the temperature of the object to be heated and the distribution of heat dissipation, the object to be heated can be raised to a certain temperature.

加えて、抵抗部材(110)には、一対の電極部材(111、112)を介して供給された電流が、被加熱対象と対向する加熱面(110a)に直交する方向(厚み方向)に流れるので、厚みが薄く加熱面(110a)における厚み方向の断面積が小さい抵抗部材(110)であっても、抵抗部材(110)の通電面積を充分に確保することができる。   In addition, the current supplied through the pair of electrode members (111, 112) flows to the resistance member (110) in a direction (thickness direction) orthogonal to the heating surface (110a) facing the object to be heated. Therefore, even if the resistance member (110) has a small thickness and a small cross-sectional area in the thickness direction on the heating surface (110a), a sufficiently large energization area of the resistance member (110) can be secured.

従って、本発明によれば、負の温度抵抗特性を有する抵抗部材(110)の電気抵抗を増大させることなく、被加熱対象の温度や放熱の分布によらず、被加熱対象を一定の温度に昇温させることが可能となる。   Therefore, according to the present invention, without increasing the electrical resistance of the resistance member (110) having negative temperature resistance characteristics, the heated object is kept at a constant temperature regardless of the temperature of the heated object and the distribution of heat dissipation. It is possible to raise the temperature.

具体的には、請求項4に記載の発明のように、請求項1ないし3のいずれか1つに記載の加熱装置において、一対の電極部材(111、112)における一方の電極部材(111)は、所定の間隔をあけて分割された複数の第1分割電極部(111a)で構成され、一対の電極部材(111、112)における他方の電極部材(112)は、所定の間隔をあけて分割された複数の第2分割電極部(112a)で構成され、第1分割電極部(111a)は、加熱面(110a)に直交する方向から見たときに、抵抗部材(110)を介して対向する第2分割電極部(112a)と重合するように配置されていることを特徴とする。   Specifically, as in the invention according to claim 4, in the heating device according to any one of claims 1 to 3, one electrode member (111) of the pair of electrode members (111, 112). Is composed of a plurality of first divided electrode portions (111a) divided at a predetermined interval, and the other electrode member (112) of the pair of electrode members (111, 112) is spaced at a predetermined interval. The first divided electrode portion (111a) is formed of a plurality of divided second divided electrode portions (112a) through the resistance member (110) when viewed from a direction orthogonal to the heating surface (110a). It arrange | positions so that it may superimpose with the 2nd division | segmentation electrode part (112a) which opposes, It is characterized by the above-mentioned.

また、請求項5に記載の発明のように、請求項4に記載の加熱装置において、複数の第1分割電極部(111a)および複数の第2分割電極部(112a)それぞれは、一部の電極部が他の電極部間の配置間隔と異なる構成とすることができる。   Further, as in the invention described in claim 5, in the heating device according to claim 4, each of the plurality of first divided electrode portions (111a) and the plurality of second divided electrode portions (112a) It can be set as the structure from which the electrode part differs from the arrangement | positioning space | interval between other electrode parts.

また、請求項6に記載の発明のように、請求項4または5に記載の加熱装置において、複数の第1分割電極部(111a)および複数の第2分割電極部(112a)それぞれは、一部の電極部の通電面積が、他の電極部の通電面積と異なる構成とすることができる。   Further, as in the invention according to claim 6, in the heating device according to claim 4 or 5, each of the plurality of first divided electrode portions (111a) and the plurality of second divided electrode portions (112a) includes one The current-carrying area of the electrode part may be different from the current-carrying areas of the other electrode parts.

また、請求項7に記載の発明では、請求項4ないし6のいずれか1つに記載の加熱装置において、抵抗部材(110)は、一つの抵抗体で構成されており、複数の通電部は、加熱面(110a)に直交する方向から見たときに、第1分割電極部(111a)と第2分割電極部(112a)とが重合する部位で構成されていることを特徴とする。これによると、加熱装置の部品点数の増大を抑制することができ、加熱装置の簡素化を図ることができる。   Moreover, in invention of Claim 7, in the heating apparatus as described in any one of Claim 4 thru | or 6, the resistance member (110) is comprised by one resistor, and several electricity supply parts are The first divided electrode portion (111a) and the second divided electrode portion (112a) are configured to overlap with each other when viewed from a direction orthogonal to the heating surface (110a). According to this, the increase in the number of parts of the heating device can be suppressed, and the heating device can be simplified.

ここで、抵抗部材(110)を一つの抵抗体で構成する場合、加熱装置の簡素化を図ることができるものの、抵抗体の大きさの増大に伴って、抵抗部材(110)の加熱面(110a)における温度抵抗特性、比熱、熱伝導率等の材料特性、および厚みや表面粗さ等にばらつきが生じてしまう虞がある。   Here, when the resistance member (110) is constituted by a single resistor, the heating device can be simplified, but as the size of the resistor increases, the heating surface of the resistance member (110) ( 110a) may have variations in temperature resistance characteristics, material characteristics such as specific heat and thermal conductivity, and thickness and surface roughness.

このため、請求項8に記載の発明では、請求項1ないし6のいずれか1つに記載の加熱装置において、抵抗部材(110)は、加熱面(110a)に直交する方向から見たときに、第1分割電極部(111a)と第2分割電極部(112a)とが重合する位置に配置された複数の抵抗体で構成されており、複数の通電部は、複数の抵抗体(110b)で構成されていることを特徴とする。これによると、抵抗部材(110)を複数の抵抗体(110b)にて構成するので、抵抗部材(110)を1つの抵抗体で構成する場合に比較して、部品点数が増えるものの、抵抗部材(110)における温度抵抗特性、比熱、熱伝導率等の材料特性、および厚みや表面粗さ等の均一化を図ることが可能となる。   For this reason, in the invention according to claim 8, in the heating device according to any one of claims 1 to 6, the resistance member (110) is viewed from a direction perpendicular to the heating surface (110a). The first divided electrode part (111a) and the second divided electrode part (112a) are composed of a plurality of resistors arranged at positions where the first divided electrode part (111a) and the second divided electrode part (112a) are superposed. It is characterized by comprising. According to this, since the resistance member (110) is constituted by a plurality of resistors (110b), the number of parts is increased as compared with the case where the resistance member (110) is constituted by one resistor, but the resistance member. It becomes possible to achieve uniform temperature characteristics, material characteristics such as specific heat and thermal conductivity, and thickness and surface roughness in (110).

また、請求項9に記載の発明のように、請求項8に記載の加熱装置において、複数の抵抗体(110b)は、一部の抵抗体の体積抵抗が他の抵抗体の体積抵抗と異なる構成としてもよい。   In addition, as in the ninth aspect of the invention, in the heating device according to the eighth aspect, the plurality of resistors (110b) have a volume resistance of some of the resistors different from that of the other resistors. It is good also as a structure.

また、請求項10に記載の発明のように、請求項8または9に記載の加熱装置において、複数の抵抗体(110b)は、一部の抵抗体の温度抵抗特性が他の抵抗体の温度抵抗特性と異なる構成としてもよい。   Further, as in the invention described in claim 10, in the heating device according to claim 8 or 9, in the plurality of resistors (110b), the temperature resistance characteristics of some resistors are the temperatures of other resistors. It is good also as a structure different from a resistance characteristic.

また、請求項11に記載の発明のように、請求項8ないし10のいずれか1つに記載の加熱装置において、複数の抵抗体(110b)は、一部の抵抗体が、他の抵抗体間の配置間隔と異なる構成としてもよい。   Further, as in the invention described in claim 11, in the heating device according to any one of claims 8 to 10, a plurality of resistors (110b) are configured such that some of the resistors are other resistors. It is good also as a structure different from the arrangement | positioning space | interval between.

また、請求項12に記載の発明のように、請求項8ないし11のいずれか1つに記載の加熱装置において、複数の抵抗体(110b)は、一部の抵抗体の通電面積が他の抵抗体の通電面積と異なる構成としてもよい。   Further, as in the invention described in claim 12, in the heating device described in any one of claims 8 to 11, the plurality of resistors (110b) have a current-carrying area of some resistors other than It is good also as a structure different from the electricity supply area of a resistor.

また、請求項13に記載の発明のように、請求項8ないし12のいずれか1つに記載の加熱装置において、複数の抵抗体(110b)は、一部の抵抗体の加熱面(110a)に直交する方向の厚みが他の抵抗体の加熱面(110a)に直交する方向の厚みと異なる構成としてもよい。   Further, as in the invention described in claim 13, in the heating device according to any one of claims 8 to 12, the plurality of resistors (110b) are a heating surface (110a) of a part of the resistors. It is good also as a structure from which the thickness of the direction orthogonal to is different from the thickness of the direction orthogonal to the heating surface (110a) of another resistor.

また、請求項14に記載の発明では、請求項1ないし13のいずれか1つに記載の加熱装置において、被加熱対象は、充放電可能な複数の電池セル(20)を有して構成される蓄電手段(2)であり、複数の通電部は、電池セル(20)に対応する位置に設けられていることを特徴とする。   In the invention according to claim 14, in the heating device according to any one of claims 1 to 13, the object to be heated is configured to have a plurality of chargeable / dischargeable battery cells (20). The plurality of energization sections are provided at positions corresponding to the battery cells (20).

これによると、各電池セル(20)に対応して通電部が設けられるので、各電池セル(20)を均一な温度に昇温させることが可能となる。   According to this, since an energization part is provided corresponding to each battery cell (20), it becomes possible to raise each battery cell (20) to uniform temperature.

また、請求項15に記載の発明では、請求項1ないし14のいずれか1つに記載の加熱装置において、一対の電極部材(111、112)に所定の周波数の交流電流を印加する交流印加手段(15)を備えることを特徴とする。   Further, in the invention described in claim 15, in the heating device described in any one of claims 1 to 14, an AC applying means for applying an AC current having a predetermined frequency to the pair of electrode members (111, 112). (15).

これによると、加熱装置の内部に直流電流の流れを阻害するコンデンサ成分が存在する場合であっても、適切に電流を流すことが可能となる。   According to this, even if there is a capacitor component that inhibits the flow of a direct current inside the heating device, it is possible to allow the current to flow appropriately.

また、請求項16に記載の発明では、請求項15のいずれか1つに記載の加熱装置において、交流印加手段(15)にて印加する交流電流の周波数を制御する周波数制御手段(15a)を備えることを特徴とする。   Further, in the invention according to claim 16, in the heating device according to any one of claims 15, the frequency control means (15a) for controlling the frequency of the alternating current applied by the alternating current application means (15). It is characterized by providing.

これによると、周波数制御手段(15a)により、一対の電極部材(111、112)に印加する交流電流の周波数を制御することができるので、抵抗部材(110)の加熱面(110a)における温度分布の均一化を図ることが可能となる。   According to this, since the frequency of the alternating current applied to the pair of electrode members (111, 112) can be controlled by the frequency control means (15a), the temperature distribution on the heating surface (110a) of the resistance member (110). Can be made uniform.

なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each means described in this column and the claim shows the correspondence with the specific means as described in embodiment mentioned later.

第1実施形態の加熱装置の概略構成図である。It is a schematic block diagram of the heating apparatus of 1st Embodiment. 第1実施形態の加熱装置の模式的な斜視図である。It is a typical perspective view of the heating device of a 1st embodiment. 第1実施形態の加熱部の分解斜視図である。It is a disassembled perspective view of the heating part of 1st Embodiment. 抵抗体の温度抵抗特性を説明する説明図である。It is explanatory drawing explaining the temperature resistance characteristic of a resistor. 第1実施形態の加熱部の厚み方向の断面図である。It is sectional drawing of the thickness direction of the heating part of 1st Embodiment. 第1実施形態に係る加熱部の配置形態の変形例を示す要部斜視図である。It is a principal part perspective view which shows the modification of the arrangement | positioning form of the heating part which concerns on 1st Embodiment. 第2実施形態の加熱部の分解斜視図である。It is a disassembled perspective view of the heating part of 2nd Embodiment. 第2実施形態の加熱部の厚み方向の断面図である。It is sectional drawing of the thickness direction of the heating part of 2nd Embodiment. 第2実施形態の加熱部の構造および従来の加熱部の構造における抵抗値の比較結果を説明する説明図である。It is explanatory drawing explaining the comparison result of the resistance value in the structure of the heating part of 2nd Embodiment, and the structure of the conventional heating part. 第3実施形態の加熱部の分解斜視図である。It is a disassembled perspective view of the heating part of 3rd Embodiment. 第4実施形態の加熱部の分解斜視図である。It is a disassembled perspective view of the heating part of 4th Embodiment. 第4実施形態の加熱部の厚み方向の断面図である。It is sectional drawing of the thickness direction of the heating part of 4th Embodiment. 第4実施形態の加熱部の変形例を説明する説明図である。It is explanatory drawing explaining the modification of the heating part of 4th Embodiment. 第5実施形態の加熱部の斜視図である。It is a perspective view of the heating part of 5th Embodiment. 第5実施形態の加熱部の厚み方向の断面図である。It is sectional drawing of the thickness direction of the heating part of 5th Embodiment. 抵抗体と電極部材との接触抵抗を説明する説明図である。It is explanatory drawing explaining the contact resistance of a resistor and an electrode member. 図16の等価回路を示す回路図である。It is a circuit diagram which shows the equivalent circuit of FIG. 第6実施形態の加熱装置の模式的な斜視図である。It is a typical perspective view of the heating apparatus of 6th Embodiment. 他の実施形態に係る加熱装置の概略構成図である。It is a schematic block diagram of the heating apparatus which concerns on other embodiment.

以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, the same or equivalent parts are denoted by the same reference numerals in the drawings.

(第1実施形態)
以下、本発明の第1実施形態について図1〜図6に基づいて説明する。図1は、本実施形態の加熱装置1の概略構成図であり、図2は、本実施形態の加熱装置の模式的な斜視図である。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a schematic configuration diagram of a heating device 1 of the present embodiment, and FIG. 2 is a schematic perspective view of the heating device of the present embodiment.

本実施形態の加熱装置1は、電気自動車に搭載される走行用電動モータ(図示略)等を駆動する蓄電池2(蓄電手段)を被加熱対象としており、蓄電池2を加熱する加熱手段を構成している。   The heating device 1 of the present embodiment uses a storage battery 2 (power storage means) that drives an electric motor (not shown) for driving mounted on an electric vehicle as a target to be heated, and constitutes a heating means for heating the storage battery 2. ing.

図1、図2に示すように、蓄電池2は、充放電可能な二次電池で構成され、走行用電動モータ等の電気負荷3に電力を供給するものであり、例えば、リチウムイオン電池、ニッケル水素電池、鉛蓄電池等を用いることができる。   As shown in FIGS. 1 and 2, the storage battery 2 is constituted by a chargeable / dischargeable secondary battery, and supplies power to an electric load 3 such as an electric motor for traveling. For example, a lithium ion battery, nickel A hydrogen battery, a lead storage battery, or the like can be used.

本実施形態の蓄電池2は、基本単位となる複数の電池セル20が、互いの端子電極21に設けられたバスバー22を介して電気的に直列接続されており、組電池として機能する。なお、蓄電池2は、自身の温度低下によって内部抵抗が増加する特性を有しており、温度低下に伴って電池の充放電性能が低下する。   In the storage battery 2 of the present embodiment, a plurality of battery cells 20 serving as basic units are electrically connected in series via bus bars 22 provided on the terminal electrodes 21 of each other, and function as an assembled battery. In addition, the storage battery 2 has the characteristic that internal resistance increases with its own temperature fall, and the charge / discharge performance of a battery falls with a temperature fall.

加熱装置1は、蓄電池2の外周縁における端面(底面)に熱的に接触して配置された加熱部11、加熱部11に直流電流を供給する直流電源12、加熱部11への通電状態を切替える通電状態切替部13、通電状態切替部13を制御する制御部14等を有して構成されている。なお、後述するように、本実施形態の抵抗部材110は負の温度抵抗特性を有するため、抵抗部材110の温度上昇に伴い抵抗値が減少して電流が上昇する虞があるので、直流電源の最大電流に制限を設けるか、もしくは一定の電流に設定された直流電源を用いる方がより好ましい。   The heating device 1 includes a heating unit 11 disposed in thermal contact with an end surface (bottom surface) of the outer peripheral edge of the storage battery 2, a direct current power source 12 that supplies a direct current to the heating unit 11, and an energization state of the heating unit 11. An energization state switching unit 13 for switching and a control unit 14 for controlling the energization state switching unit 13 are included. As will be described later, since the resistance member 110 according to the present embodiment has a negative temperature resistance characteristic, the resistance value may decrease and the current may increase as the temperature of the resistance member 110 increases. It is more preferable to limit the maximum current or use a DC power supply set to a constant current.

図3は、本実施形態の加熱部11の分解斜視図である。図3に示すように、本実施形態の加熱部11は、板状部材であって、抵抗部材110、一対の電極部材111、給電用電極113、114、一対の絶縁部材(絶縁体)115、116等で構成されている。   FIG. 3 is an exploded perspective view of the heating unit 11 of the present embodiment. As shown in FIG. 3, the heating unit 11 of the present embodiment is a plate-shaped member, and includes a resistance member 110, a pair of electrode members 111, power supply electrodes 113 and 114, a pair of insulating members (insulators) 115, 116 and the like.

抵抗部材110は、温度上昇に伴って抵抗値が低下する温度抵抗特性(負の温度抵抗特性)を有すると共に、一対の電極部材111を介して通電されることで発熱する抵抗体で構成されている。   The resistance member 110 has a temperature resistance characteristic (negative temperature resistance characteristic) in which the resistance value decreases as the temperature rises, and is configured by a resistor that generates heat when energized through the pair of electrode members 111. Yes.

具体的には、本実施形態の抵抗部材110は、厚みが薄い一枚のフィルム状の抵抗体で構成され、被加熱対象である蓄電池2と対向する対向面が蓄電池2を加熱する加熱面110aとなっている。また、本実施形態の抵抗部材110は、遷移金属酸化物により構成される半導体で構成されており、例えば、図4(a)に示す温度抵抗特性を有するNTCサーミスタ(Negative Temperature Coefficient thermistor)や、図4(b)に示す温度抵抗特性を有するCTRサーミスタ(Critical Temperature Coefficient thermistor)を採用することができる。   Specifically, the resistance member 110 of the present embodiment is composed of a single thin film-like resistor, and a heating surface 110a where the facing surface facing the storage battery 2 to be heated heats the storage battery 2. It has become. In addition, the resistance member 110 of the present embodiment is made of a semiconductor composed of a transition metal oxide. For example, an NTC thermistor (Negative Temperature Coefficient thermistor) having a temperature resistance characteristic shown in FIG. A CTR thermistor (Critical Temperature Coefficient thermistor) having temperature resistance characteristics shown in FIG. 4B can be employed.

一対の電極部材111、112は、抵抗部材110における加熱面110aと直交する方向、すなわち加熱部11の厚み方向に電流が流れるように、加熱面110aに直交する方向から抵抗部材110を挟み込むように配置されている。   The pair of electrode members 111 and 112 sandwich the resistance member 110 from the direction orthogonal to the heating surface 110a so that current flows in the direction orthogonal to the heating surface 110a of the resistance member 110, that is, the thickness direction of the heating unit 11. Has been placed.

一対の電極部材111、112のうち、抵抗部材110の加熱面110aに対向する第1電極部材111は、所定の間隔をあけて分割された複数の第1分割電極部111aで構成されている。なお、各第1分割電極部111aは、互いに電気的に絶縁された状態で、抵抗部材110の加熱面110aに対向する位置に配置された第1絶縁部材115に一体に設けられている。   Of the pair of electrode members 111 and 112, the first electrode member 111 facing the heating surface 110a of the resistance member 110 is configured by a plurality of first divided electrode portions 111a divided at a predetermined interval. In addition, each 1st division | segmentation electrode part 111a is integrally provided in the 1st insulating member 115 arrange | positioned in the position facing the heating surface 110a of the resistance member 110 in the state electrically insulated mutually.

また、一対の電極部材111のうち、抵抗部材110の加熱面110aと反対側の面に対向する第2電極部材112は、所定の間隔をあけて分割された複数の第2分割電極部112aで構成されている。なお、各第2分割電極部112aは、互いに電気的に絶縁された状態で、抵抗部材110の加熱面110aと反対側の面に対向する位置に配置された第2絶縁部材116に一体に設けられている。   The second electrode member 112 facing the surface opposite to the heating surface 110a of the resistance member 110 of the pair of electrode members 111 is a plurality of second divided electrode portions 112a divided at a predetermined interval. It is configured. Each of the second divided electrode portions 112a is provided integrally with the second insulating member 116 disposed at a position facing the surface opposite to the heating surface 110a of the resistance member 110 while being electrically insulated from each other. It has been.

各第1分割電極部111aそれぞれは、抵抗部材110の加熱面110aに直交する方向から見たときに、抵抗部材110を介して対向する第2分割電極部112aに重合するように配置されている。また、第1分割電極部111aにおける中心位置と第2分割電極部112aにおける中心位置とが、抵抗部材110の加熱面110aに直交する方向に重ならないように互い違いに配置されている。   Each of the first divided electrode portions 111a is disposed so as to overlap with the second divided electrode portion 112a facing each other through the resistance member 110 when viewed from the direction orthogonal to the heating surface 110a of the resistance member 110. . Further, the center positions of the first divided electrode portions 111a and the center positions of the second divided electrode portions 112a are alternately arranged so as not to overlap in the direction orthogonal to the heating surface 110a of the resistance member 110.

例えば、図3中「A」で示す第1分割電極部111aは、抵抗部材110の加熱面110aに直交する方向から見たときに、抵抗部材110を介して対向する図3中「B」および「C」で示す第2分割電極部112aに重合するように配置されている。   For example, the first divided electrode portion 111a indicated by “A” in FIG. 3 is opposed to “B” in FIG. 3 facing the resistance member 110 when viewed from the direction orthogonal to the heating surface 110a of the resistance member 110. It arrange | positions so that it may superimpose on the 2nd division | segmentation electrode part 112a shown by "C".

ここで、抵抗部材110を加熱面110aに直交する方向から見たときに、抵抗部材110における一対の電極部材111、112それぞれに重合する部位(一対の電極部材111、112で挟み込まれる部位)が、一対の電極部材111、112からの電流が流れる「複数の通電部」を構成している。「複数の通電部」は、第1分割電極部111aおよび第2分割電極部112aそれぞれの間に構成され、各電極部111a、112aを介して電気的に直列に接続されている。このため、各通電部には、同等の電流が流れることとなる。なお、抵抗部材110における各通電部は、蓄電池2の各電池セル20に対応する位置に設けられている。   Here, when the resistance member 110 is viewed from a direction orthogonal to the heating surface 110a, there are portions that overlap with the pair of electrode members 111 and 112 in the resistance member 110 (portions sandwiched between the pair of electrode members 111 and 112). , “A plurality of current-carrying portions” through which currents from the pair of electrode members 111 and 112 flow are configured. The “plurality of energization units” are configured between the first divided electrode unit 111a and the second divided electrode unit 112a, and are electrically connected in series via the electrode units 111a and 112a. For this reason, an equivalent current flows through each energization part. In addition, each energization part in the resistance member 110 is provided in the position corresponding to each battery cell 20 of the storage battery 2.

また、本実施形態の給電用電極113、114は、抵抗体110bの長手方向端部における幅方向に位置する一対の第1分割電極111aにそれぞれ接続されている。   In addition, the power supply electrodes 113 and 114 of the present embodiment are connected to a pair of first divided electrodes 111a positioned in the width direction at the longitudinal end portion of the resistor 110b, respectively.

図1に戻り、制御部14は、CPU、ROM、RAM等を含む周知のマイクロコンピュータとその周辺回路から構成され、そのROM内に記憶された制御プログラムに基づいて各種演算、処理を行い、出力側に接続された各種制御機器の作動を制御する。なお、出力側に接続される各種制御機器としては、通電状態切替部13等がある。   Returning to FIG. 1, the control unit 14 is composed of a known microcomputer including a CPU, ROM, RAM, and its peripheral circuits, and performs various calculations and processing based on a control program stored in the ROM, and outputs the result. Controls the operation of various control devices connected to the side. Note that various control devices connected to the output side include an energization state switching unit 13 and the like.

また、制御部14の入力側には、蓄電池2の電池温度を検出する電池温度検出手段を構成する電池温度センサ2a等が接続されており、制御部14には、電池温度センサ2a等の検出信号が入力される。   Further, a battery temperature sensor 2a or the like constituting battery temperature detection means for detecting the battery temperature of the storage battery 2 is connected to the input side of the control unit 14, and the control unit 14 detects the battery temperature sensor 2a or the like. A signal is input.

次に、加熱装置1の作動について説明する。加熱装置1の制御部14は、電池温度センサ2aに検出信号を監視し、電池温度センサ2aで検出した電池温度が、予め設定された基準温度以下となった場合に、加熱部11に電力を供給するように通電状態切替部13を制御する。なお、基準温度は、蓄電池2の充放電性能が低下する状態と推定される温度の下限温度(例えば、15℃)に設定することができる。   Next, the operation of the heating device 1 will be described. The control unit 14 of the heating apparatus 1 monitors the detection signal to the battery temperature sensor 2a, and when the battery temperature detected by the battery temperature sensor 2a is equal to or lower than a preset reference temperature, the heating unit 11 is supplied with power. The energization state switching unit 13 is controlled so as to be supplied. In addition, reference temperature can be set to the minimum temperature (for example, 15 degreeC) of the temperature estimated that the charging / discharging performance of the storage battery 2 falls.

これによると、蓄電池2の温度が低下した場合には、直流電源12から加熱部11に電力供給されて、加熱部11における抵抗部材110に電流が流れ、抵抗部材110の温度が上昇する。これにより、抵抗部材110のジュール損(発熱)によって蓄電池2が加熱されて昇温する。なお、本実施形態の抵抗部材110は、温度が低下した際に抵抗値が上昇する負の温度抵抗特性を有する抵抗体で構成しているので、抵抗値が上昇した抵抗部材110によって蓄電池2を充分に加熱することができる。   According to this, when the temperature of the storage battery 2 decreases, electric power is supplied from the DC power source 12 to the heating unit 11, current flows through the resistance member 110 in the heating unit 11, and the temperature of the resistance member 110 increases. Thereby, the storage battery 2 is heated by the Joule loss (heat generation) of the resistance member 110 and the temperature rises. In addition, since the resistance member 110 of this embodiment is comprised by the resistor which has a negative temperature resistance characteristic that resistance value rises when temperature falls, the storage battery 2 is comprised by the resistance member 110 with which resistance value rose. It can be heated sufficiently.

ここで、本実施形態の加熱部11に流れる電流経路について図5に基づいて説明する。図5は、加熱部11の厚み方向の断面図である。なお、図5には、形式的に蓄電池2も図示している。   Here, a current path flowing through the heating unit 11 of the present embodiment will be described with reference to FIG. FIG. 5 is a cross-sectional view of the heating unit 11 in the thickness direction. In addition, in FIG. 5, the storage battery 2 is also illustrated formally.

図5に示すように、直流電源12から給電用電極113を介して第1分割電極部111aに供給された直流電流は、第1分割電極部111aから抵抗部材110を介して第2分割電極部112aへと流れ、第2分割電極部112aから抵抗部材110を介して第1分割電極部111aへと流れる。なお、加熱部11に流れる電流経路は、図5の太線矢印で示すように、加熱部11の厚み方向の断面を見たときに、蛇行状に曲折した経路となっている。   As shown in FIG. 5, the DC current supplied from the DC power supply 12 to the first divided electrode portion 111a via the power supply electrode 113 is supplied from the first divided electrode portion 111a via the resistance member 110 to the second divided electrode portion 111a. 112a, and flows from the second divided electrode portion 112a to the first divided electrode portion 111a via the resistance member 110. The current path flowing through the heating unit 11 is a path that is bent in a meandering manner when the cross section in the thickness direction of the heating unit 11 is viewed, as indicated by a thick arrow in FIG.

この際、抵抗部材110には、抵抗部材110の加熱面110aに直交する方向、すなわち加熱部11の厚み方向に電流が流れる。このため、厚みが薄く、加熱面110aにおける厚み方向の断面積が小さい抵抗部材110を用いたとしても、抵抗部材110における加熱面110aの面方向の断面積が大きくすることで、抵抗部材110の通電面積を充分に確保することができる。   At this time, a current flows through the resistance member 110 in a direction perpendicular to the heating surface 110 a of the resistance member 110, that is, in the thickness direction of the heating unit 11. For this reason, even if the resistance member 110 having a small thickness and a small cross-sectional area in the thickness direction on the heating surface 110a is used, the cross-sectional area in the surface direction of the heating surface 110a in the resistance member 110 is increased. A sufficiently large energizing area can be secured.

以上説明した、本実施形態の構成によると、負の温度抵抗特性を有する抵抗部材110により被加熱対象である蓄電池2を加熱する構成としているので、蓄電池2における温度が低い電池セル20に対向する通電部の加熱面110aの電気抵抗を高くし、温度が高い箇所に対向する通電部の加熱面110aの電気抵抗を低くすることができる。   According to the configuration of the present embodiment described above, since the storage battery 2 to be heated is heated by the resistance member 110 having a negative temperature resistance characteristic, the storage battery 2 faces the battery cell 20 having a low temperature. It is possible to increase the electrical resistance of the heating surface 110a of the energization unit and to decrease the electrical resistance of the heating surface 110a of the energization unit facing the portion having a high temperature.

そして、抵抗部材110における複数の通電部を電気的に直列に接続することによって、各通電部に同等の電流が流れるようにしているため、蓄電池2における温度が高い電池セル20に対向する通電部の加熱面110aでの発熱量を少なくし、逆に温度が低い電池セル20に対向する通電部の加熱面110aでの発熱量を多くすることができる。これにより、蓄電池2における各電池セル20の温度や放熱の分布によらず、蓄電池2全体を一定の温度に昇温させることができる。   And since it is made for the equivalent electric current to flow into each electricity supply part by electrically connecting the several electricity supply part in the resistance member 110 in series, the electricity supply part which opposes the battery cell 20 with the high temperature in the storage battery 2 The amount of heat generated on the heating surface 110a of the energizing part facing the battery cell 20 having a low temperature can be increased. Thereby, regardless of the temperature of each battery cell 20 in the storage battery 2 or the distribution of heat dissipation, the entire storage battery 2 can be heated to a constant temperature.

加えて、抵抗部材110には、一対の電極部材111、112を介して供給された電流が、蓄電池2と対向する加熱面110aに直交する方向(厚み方向)に流れるので、厚みが薄く加熱面110aにおける厚み方向の断面積が小さい抵抗部材110であっても、抵抗部材110の通電面積を充分に確保することができる。すなわち、負の温度抵抗特性を有する抵抗部材110を加熱装置1に適用しても、抵抗部材110の電気抵抗の増大を招くことがない。この結果、加熱装置1の抵抗部材110として用いる抵抗体の種類が必要以上に限定されず、抵抗部材110の選定が行い易くなる。   In addition, since the current supplied via the pair of electrode members 111 and 112 flows to the resistance member 110 in a direction (thickness direction) perpendicular to the heating surface 110a facing the storage battery 2, the thickness is reduced. Even if the resistance member 110 has a small cross-sectional area in the thickness direction at 110a, the energization area of the resistance member 110 can be sufficiently secured. That is, even if the resistance member 110 having negative temperature resistance characteristics is applied to the heating device 1, the electrical resistance of the resistance member 110 is not increased. As a result, the type of the resistor used as the resistance member 110 of the heating device 1 is not limited more than necessary, and the resistance member 110 can be easily selected.

従って、本発明によれば、負の温度抵抗特性を有する抵抗部材110の電気抵抗を増大させることなく、蓄電池2の温度や放熱の分布によらず、蓄電池2を一定の温度に昇温させることが可能となる。   Therefore, according to the present invention, the storage battery 2 is heated to a constant temperature regardless of the temperature of the storage battery 2 or the distribution of heat dissipation without increasing the electrical resistance of the resistance member 110 having negative temperature resistance characteristics. Is possible.

さらに、本実施形態では、抵抗部材110における通電部を、各電池セル20に対応して設ける構成としているので、不必要な電力消費を低減すると共に、各電池セル20を均一な温度に昇温させることが可能となる。   Furthermore, in the present embodiment, since the energization portion in the resistance member 110 is provided corresponding to each battery cell 20, unnecessary power consumption is reduced and each battery cell 20 is heated to a uniform temperature. It becomes possible to make it.

ここで、本実施形態では、加熱部11を蓄電池2の外周縁における端面(底面)に熱的に接触して配置する構成としているが、これに限定されない。例えば、図6に示すように、加熱部11を蓄電池2の各電池セル20の側面(各電池セル20の並び方向に直交する側面)に熱的に接触して配置する構成としてもよい。なお、図6は、加熱部11の配置形態の変形例を示す要部斜視図である。   Here, in this embodiment, although the heating part 11 is set as the structure arrange | positioned in thermal contact with the end surface (bottom surface) in the outer periphery of the storage battery 2, it is not limited to this. For example, as shown in FIG. 6, the heating unit 11 may be disposed in thermal contact with the side surface of each battery cell 20 of the storage battery 2 (the side surface orthogonal to the arrangement direction of the battery cells 20). FIG. 6 is a main part perspective view showing a modification of the arrangement of the heating unit 11.

(第2実施形態)
次に、本発明の第2実施形態について図7〜図9に基づいて説明する。図7は、本実施形態の加熱部11の分解斜視図であり、図8は、本実施形態の加熱部11の厚み方向の断面図である。なお、本実施形態では、第1実施形態と同様または均等な部分についての説明を省略、または簡略化して説明する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIGS. FIG. 7 is an exploded perspective view of the heating unit 11 of the present embodiment, and FIG. 8 is a cross-sectional view in the thickness direction of the heating unit 11 of the present embodiment. In the present embodiment, description of the same or equivalent parts as in the first embodiment will be omitted or simplified.

上述の第1実施形態では、加熱部11の抵抗部材110を一枚のフィルム状の抵抗体で構成している。これに対して、本実施形態では、抵抗部材110を所定の間隔をあけて配置された複数の抵抗体110bで構成している点が相違している。   In the first embodiment described above, the resistance member 110 of the heating unit 11 is configured by a single film-like resistor. On the other hand, in this embodiment, the point which comprises the resistance member 110 by the some resistor 110b arrange | positioned at predetermined intervals differs.

具体的には、図7に示すように、抵抗部材110を加熱面110aの面方向に均等な間隔で配置した複数の抵抗体110bで構成している。各抵抗体110bは、第1分割電極部111aおよび第2分割電極部112aそれぞれに電気的に接続されるように配置されている。ここで、本実施形態の複数の抵抗体110bは、一対の電極部材111、112からの電流が流れる「複数の通電部」を構成しており、複数の抵抗体110bそれぞれは、各電極部111a、112aを介して電気的に直列に接続されている。このため、各抵抗体110bには、同等の電流が流れることとなる。   Specifically, as shown in FIG. 7, the resistance member 110 is composed of a plurality of resistors 110b arranged at equal intervals in the surface direction of the heating surface 110a. Each resistor 110b is disposed so as to be electrically connected to each of the first divided electrode portion 111a and the second divided electrode portion 112a. Here, the plurality of resistors 110b according to the present embodiment constitute “a plurality of current-carrying portions” through which currents from the pair of electrode members 111 and 112 flow, and each of the plurality of resistors 110b includes each electrode portion 111a. , 112a are electrically connected in series. For this reason, an equivalent current flows through each resistor 110b.

本実施形態の構成によれば、第1実施形態の加熱装置1と同等の作用効果を奏することができる。特に、本実施形態では、抵抗部材110を複数の抵抗体110bにて構成する場合、抵抗部材110を一枚のフィルム状の抵抗体で構成する場合に比べて、温度特性のバラツキや製造コストの面で有利となる。   According to the structure of this embodiment, there can exist an effect equivalent to the heating apparatus 1 of 1st Embodiment. In particular, in the present embodiment, when the resistance member 110 is configured by a plurality of resistors 110b, the temperature characteristic variation and the manufacturing cost are reduced as compared with the case where the resistance member 110 is configured by a single film-like resistor. This is advantageous.

また、複数の抵抗体110bそれぞれは、図8で示すように、蓄電池2の各電池セル20に対応して配置されている。このように、各電池セル20に対応して抵抗体110bを配置することで、各電池セル20を均一な温度に昇温させることが可能となる。   Further, each of the plurality of resistors 110b is arranged corresponding to each battery cell 20 of the storage battery 2 as shown in FIG. Thus, by arranging the resistor 110b corresponding to each battery cell 20, it becomes possible to raise the temperature of each battery cell 20 to a uniform temperature.

ここで、本実施形態における加熱部11の構造のように、電流の流れ方向を加熱面110aの厚み方向とした抵抗部材110の抵抗値と、従来の加熱部の構造ように、電流の流れ方向を加熱面110aに沿った方向(面方向)とした抵抗部材の抵抗値を比較したところ、図9に示す結果が得られた。なお、図9は、本実施形態の加熱部11の構造および従来の加熱部の構造における抵抗値の比較結果を説明する説明図である。   Here, as in the structure of the heating unit 11 in the present embodiment, the resistance value of the resistance member 110 in which the current flow direction is the thickness direction of the heating surface 110a and the current flow direction as in the structure of the conventional heating unit. When the resistance values of the resistance members in the direction along the heating surface 110a (surface direction) were compared, the result shown in FIG. 9 was obtained. FIG. 9 is an explanatory diagram for explaining a comparison result of resistance values in the structure of the heating unit 11 of the present embodiment and the structure of the conventional heating unit.

図9で示す比較結果は、100個の電池セル20で構成された蓄電池2を加熱するために、加熱面110aの面積を10×25mm、厚みを10μmの抵抗部材110を1つの電池セル20当り4つ配置した条件における抵抗部材110の抵抗値を示している。   The comparison result shown in FIG. 9 shows that in order to heat the storage battery 2 composed of 100 battery cells 20, the resistance member 110 having a heating surface 110 a area of 10 × 25 mm and a thickness of 10 μm is provided per battery cell 20. The resistance value of the resistance member 110 in the condition where four are arranged is shown.

図9に示すように、従来の加熱部の構造では、三二酸化バナジウム系のNTCサーミスタや四二酸化バナジウム系のCTRサーミスタでは、抵抗値が大きく商用電源で使用できる範囲の抵抗を得ることができず、加熱部の抵抗部材として採用することができない。また、三二酸化バナジウム系のNTCサーミスタや四二酸化バナジウム系のCTRサーミスタに比較して、体積抵抗の低いグラファイトで構成されるNTCサーミスタであっても抵抗が大きく、加熱部の抵抗部材として採用することが困難である。   As shown in FIG. 9, with the structure of the conventional heating unit, the vanadium sesquioxide-based NTC thermistor and the vanadium tetroxide-based CTR thermistor cannot obtain a resistance in a range that can be used with a commercial power source because of its large resistance value. It cannot be employed as a resistance member for the heating part. Compared to vanadium sesquioxide-based NTC thermistors and vanadium tetroxide-based CTR thermistors, NTC thermistors composed of graphite with low volume resistance have a large resistance and should be used as resistance members for heating parts. Is difficult.

これに対して、本実施形態の加熱部11の構造では、グラファイトで構成されるNTCサーミスタ、三二酸化バナジウム系のNTCサーミスタ、四二酸化バナジウム系のCTRサーミスタのいずれにおいても、抵抗が小さいので、加熱部11の抵抗部材110として採用することが可能である。   On the other hand, in the structure of the heating unit 11 of this embodiment, the resistance is small in any of the NTC thermistor made of graphite, the vanadium sesquioxide NTC thermistor, and the vanadium tetroxide CTR thermistor. It can be adopted as the resistance member 110 of the portion 11.

このように、本実施形態の加熱部11の構造によれば、NTCサーミスタやCTRサーミスタといった種々の抵抗体のうちから加熱部11の抵抗部材110を選定することが可能となる。   Thus, according to the structure of the heating unit 11 of the present embodiment, the resistance member 110 of the heating unit 11 can be selected from various resistors such as an NTC thermistor and a CTR thermistor.

(第3実施形態)
次に、本発明の第3実施形態について図10に基づいて説明する。図10は、本実施形態の加熱部11の分解斜視図である。なお、本実施形態では、第1、第2実施形態と同様または均等な部分についての説明を省略、または簡略化して説明する。
(Third embodiment)
Next, a third embodiment of the present invention will be described with reference to FIG. FIG. 10 is an exploded perspective view of the heating unit 11 of the present embodiment. In the present embodiment, description of the same or equivalent parts as in the first and second embodiments will be omitted or simplified.

上述の第2実施形態では、加熱部11の抵抗部材110を加熱面110aの面方向に均等な間隔で配置した複数の抵抗体110bで構成している。これに対して、本実施形態では、抵抗部材110を構成する複数の抵抗体110bは、一部の抵抗体を他の抵抗体間の間隔と異なる間隔(不等ピッチ)で配置している。   In the second embodiment described above, the resistance member 110 of the heating unit 11 is configured by a plurality of resistors 110b arranged at equal intervals in the surface direction of the heating surface 110a. On the other hand, in this embodiment, some resistor 110b which comprises the resistance member 110 arrange | positions a part of resistor at the space | interval (unequal pitch) different from the space | interval between other resistors.

ここで、加熱部11は、その長手方向の中央側に比べて、両端側において温度が低下し易い傾向がある。このため、本実施形態では、図10に示すように、複数の抵抗体110bのうち、両端側に位置する抵抗体110bの間隔を、加熱部11の長手方向の中央側に位置する抵抗体110bの間隔に比べて短くなるように配置している。なお、図10に示す抵抗体110bの配置態様は、一例であって、他の配置形態としてもよい。   Here, as for the heating part 11, compared with the center side of the longitudinal direction, there exists a tendency for temperature to fall easily at both ends. For this reason, in this embodiment, as shown in FIG. 10, among the plurality of resistors 110 b, the interval between the resistors 110 b positioned on both ends is set to the resistor 110 b positioned on the center side in the longitudinal direction of the heating unit 11. It arrange | positions so that it may become short compared with the space | interval. In addition, the arrangement | positioning aspect of the resistor 110b shown in FIG. 10 is an example, Comprising: It is good also as another arrangement | positioning form.

このように、抵抗部材110を構成する抵抗体110bの配置間隔を調整することによって、抵抗部材110における加熱面110aの温度分布の均一化を図ることが可能となる。   As described above, by adjusting the arrangement interval of the resistors 110b constituting the resistance member 110, the temperature distribution of the heating surface 110a in the resistance member 110 can be made uniform.

なお、複数の抵抗体110bの配置間隔に限らず、複数の抵抗体110bのうち、一部の抵抗体の体積抵抗、通電面積(電極部との接触面積)、厚み、温度抵抗特性を他の抵抗体と異なる構成とすることで、抵抗部材110における加熱面110aの温度分布の均一化を図ってもよい。   In addition to the arrangement interval of the plurality of resistors 110b, among the plurality of resistors 110b, the volume resistance, current-carrying area (contact area with the electrode portion), thickness, and temperature resistance characteristics of some of the resistors can be changed. By adopting a configuration different from that of the resistor, the temperature distribution of the heating surface 110a in the resistance member 110 may be made uniform.

また、抵抗体110bと同様に、複数の第1分割電極部111aおよび複数の第2分割電極112aについても、一部の電極部の通電面積、厚み、電極部間の間隔を他の電極部と異なる構成としてもよい。これによって、抵抗部材110における加熱面110aの温度分布の均一化を図ってもよい。   Similarly to the resistor 110b, the energization area, thickness, and spacing between the electrode parts of some electrode parts are also different from those of the other electrode parts for the plurality of first divided electrode parts 111a and the plurality of second divided electrodes 112a. It is good also as a different structure. Thereby, the temperature distribution of the heating surface 110a in the resistance member 110 may be made uniform.

(第4実施形態)
次に、本発明の第4実施形態について図11〜図13に基づいて説明する。図11は、本実施形態の加熱部11の分解斜視図であり、図12は、本実施形態の加熱部11の厚み方向の断面図である。なお、本実施形態では、第1〜第3実施形態と同様または均等な部分についての説明を省略、または簡略化して説明する。
(Fourth embodiment)
Next, 4th Embodiment of this invention is described based on FIGS. 11-13. FIG. 11 is an exploded perspective view of the heating unit 11 of the present embodiment, and FIG. 12 is a cross-sectional view in the thickness direction of the heating unit 11 of the present embodiment. In the present embodiment, description of the same or equivalent parts as in the first to third embodiments will be omitted or simplified.

上述の第1〜第3実施形態では、抵抗部材110と絶縁部材115、116に設けられた一対の電極部材111、112と別体で構成し、一対の電極部材111、112にて抵抗部材110を挟み込む構成としている。   In the first to third embodiments described above, the resistor member 110 and the pair of electrode members 111 and 112 provided on the insulating members 115 and 116 are configured separately, and the pair of electrode members 111 and 112 constitutes the resistor member 110. It is set as the structure which inserts | pinches.

これに対して、本実施形態では、絶縁部材115、116に設けられた一対の電極部材111、112のうち第2電極部材112における第1電極部材111に対向する対向面に抵抗体110bを一体に形成し、加熱部11の厚み方向に電流が流れるように、第1電極部材111と第2電極部材112とを加熱部11の厚み方向に向かい合うように配置している。   On the other hand, in the present embodiment, the resistor 110b is integrated with the opposing surface of the second electrode member 112 facing the first electrode member 111 of the pair of electrode members 111 and 112 provided on the insulating members 115 and 116. The first electrode member 111 and the second electrode member 112 are arranged so as to face each other in the thickness direction of the heating unit 11 so that a current flows in the thickness direction of the heating unit 11.

具体的には、図11、図12に示すように、第2電極部材112の各第2分割電極部112aにおける第1電極部材111に対向する対向面に、ペースト状の抵抗材料を印刷して、抵抗体110bを構成する抵抗層を形成する。なお、第2分割電極部112aへの抵抗体110bの形成方法は、印刷に限定されず、例えば、成膜等の表面処理によって形成してもよい。   Specifically, as shown in FIG. 11 and FIG. 12, a paste-like resistance material is printed on the opposing surface of the second electrode member 112 facing the first electrode member 111 in each second divided electrode portion 112a. Then, a resistance layer constituting the resistor 110b is formed. In addition, the formation method of the resistor 110b to the 2nd division | segmentation electrode part 112a is not limited to printing, For example, you may form by surface treatments, such as film-forming.

そして、抵抗体110bが形成された第2分割電極部112aが、加熱部11の厚み方向から見たときに、抵抗体110bを介して対向する第1分割電極部111aと重合するように配置する。なお、本実施形態では、各第2分割電極部112aに対応して抵抗体110bが複数設けられることとなる。   Then, the second divided electrode portion 112a on which the resistor 110b is formed is arranged so as to overlap with the first divided electrode portion 111a opposed via the resistor 110b when viewed from the thickness direction of the heating portion 11. . In the present embodiment, a plurality of resistors 110b are provided corresponding to each second divided electrode portion 112a.

このような構造の加熱部11を有する加熱装置1によれば、第1〜第3実施形態の加熱部11の構造を有する加熱装置と同様な作用効果を奏することができる。また、本実施形態の加熱部11は、第1〜第3実施形態の加熱部11に比べて、加熱部11の構造が複雑となるものの、部品点数を少なくすることができるといった利点を有する。   According to the heating device 1 having the heating unit 11 having such a structure, the same operational effects as the heating device having the structure of the heating unit 11 of the first to third embodiments can be obtained. In addition, the heating unit 11 of the present embodiment has an advantage that the number of parts can be reduced although the structure of the heating unit 11 is complicated compared to the heating unit 11 of the first to third embodiments.

なお、本実施形態では、第2電極部材112における第1電極部材111に対向する対向面に抵抗体110bを一体に形成する構成としているが、これに限定されない。例えば、図13に示すように、第1電極部材111における第2電極部材112に対向する対向面、および第2電極部材112における第1電極部材111に対向する対向面それぞれに、抵抗体110bを一体に形成する構成としてもよい。   In the present embodiment, the resistor 110b is integrally formed on the opposing surface of the second electrode member 112 that faces the first electrode member 111. However, the present invention is not limited to this. For example, as illustrated in FIG. 13, the resistor 110 b is provided on each of the facing surface of the first electrode member 111 that faces the second electrode member 112 and the facing surface of the second electrode member 112 that faces the first electrode member 111. It is good also as a structure formed integrally.

(第5実施形態)
次に、本発明の第5実施形態について図14、図15に基づいて説明する。図14は、本実施形態の加熱部11の斜視図であり、図15は、本実施形態の加熱部11の厚み方向の断面図である。なお、本実施形態では、第1〜第4実施形態と同様または均等な部分についての説明を省略、または簡略化して説明する。
(Fifth embodiment)
Next, a fifth embodiment of the present invention will be described with reference to FIGS. FIG. 14 is a perspective view of the heating unit 11 of the present embodiment, and FIG. 15 is a cross-sectional view in the thickness direction of the heating unit 11 of the present embodiment. In the present embodiment, description of the same or equivalent parts as those in the first to fourth embodiments will be omitted or simplified.

上述の第4実施形態では、絶縁部材115、116に設けられた一対の電極部材111、112のうち少なくとも一方の電極部材における他方の電極部材に対向する対向面に抵抗体110bを一体に形成する構成としている。これに対して、本実施形態では、抵抗部材110の両面に一対の電極部材111、112を一体に形成する構成としている。   In the fourth embodiment described above, the resistor 110b is integrally formed on the opposing surface of the at least one electrode member of the pair of electrode members 111, 112 provided on the insulating members 115, 116, which faces the other electrode member. It is configured. On the other hand, in the present embodiment, the pair of electrode members 111 and 112 are integrally formed on both surfaces of the resistance member 110.

具体的には、図14、図15に示すように、一枚のフィルム状の抵抗部材110における加熱面110a側に第1電極部材111を構成する複数の第1分割電極部111aが一体に形成されると共に、加熱面110aと反対側の面に第2電極部材112を構成する複数の第2分割電極部112aが一体に形成される構成としている。   Specifically, as shown in FIGS. 14 and 15, a plurality of first divided electrode portions 111 a constituting the first electrode member 111 are integrally formed on the heating surface 110 a side of a single film-like resistance member 110. In addition, a plurality of second divided electrode portions 112a constituting the second electrode member 112 are integrally formed on the surface opposite to the heating surface 110a.

このような加熱部11の構造によれば、抵抗部材110の両面に直接的に一対の電極部材111、112を形成しているので、絶縁部材115、116を省略することが可能となる。これにより、加熱部11を構成する部材の部品点数を一層少なくすることが可能となる。   According to such a structure of the heating unit 11, since the pair of electrode members 111 and 112 are formed directly on both surfaces of the resistance member 110, the insulating members 115 and 116 can be omitted. Thereby, it becomes possible to further reduce the number of parts of the members constituting the heating unit 11.

(第6実施形態)
次に、本発明の第6実施形態について図16〜図18に基づいて説明する。図16は、加熱部11における抵抗体110bと電極部材111、112との接触抵抗を説明する説明図であり、図17は、図16の等価回路を示す回路図であり、図18は、本実施形態の加熱部11の模式的な斜視図である。なお、本実施形態では、第1〜第5実施形態と同様または均等な部分についての説明を省略、または簡略化して説明する。
(Sixth embodiment)
Next, a sixth embodiment of the present invention will be described with reference to FIGS. 16 is an explanatory diagram for explaining the contact resistance between the resistor 110b and the electrode members 111 and 112 in the heating unit 11, FIG. 17 is a circuit diagram showing an equivalent circuit of FIG. 16, and FIG. It is a typical perspective view of the heating part 11 of embodiment. In the present embodiment, description of the same or equivalent parts as in the first to fifth embodiments will be omitted or simplified.

上述の第1〜第5実施形態では、図16に示すように、例えば、抵抗部材110と電極部材111、112との接触面に異物が混入していると、当該異物により抵抗部材110と電極部材111、112との間にコンデンサ成分が生じ、加熱部11における電流の流れが阻害されてしまうことがある(図17参照)。   In the first to fifth embodiments described above, as shown in FIG. 16, for example, when foreign matter is mixed in the contact surface between the resistance member 110 and the electrode members 111 and 112, the resistance member 110 and the electrode are caused by the foreign matter. A capacitor component is generated between the members 111 and 112, and the current flow in the heating unit 11 may be obstructed (see FIG. 17).

第1〜第5実施形態では、直流電源12により加熱部11に直流電流を供給する構成であるため、加熱部11の抵抗部材110に適切に電流が流れず、抵抗部材110の加熱面110aに温度分布が生じてしまう虞がある。   In 1st-5th embodiment, since it is the structure which supplies a direct current to the heating part 11 with the direct-current power supply 12, an electric current does not flow into the resistance member 110 of the heating part 11 appropriately, and it is on the heating surface 110a of the resistance member 110. There is a risk of temperature distribution.

このため、本実施形態では、図18に示すように、交流電源(交流印加手段)15により加熱部11に交流電流を供給する構成としている。これによれば、抵抗部材110と電極部材111、112との間のコンデンサ成分にも電流が流れるので、加熱部11の抵抗部材110に適切に電流を流すことができ、抵抗部材110の加熱面110aにおける温度分布が生じてしまうことを抑制することができる。   For this reason, in this embodiment, as shown in FIG. 18, it is set as the structure which supplies an alternating current to the heating part 11 by the alternating current power supply (alternating current application means) 15. In FIG. According to this, since a current also flows through the capacitor component between the resistance member 110 and the electrode members 111 and 112, a current can be appropriately passed through the resistance member 110 of the heating unit 11, and the heating surface of the resistance member 110 It can suppress that the temperature distribution in 110a arises.

ここで、交流電源15として、交流電流の周波数を変更するための周波数制御手段15aを備えるものを採用し、蓄電池2の温度や抵抗部材110の抵抗値に応じて周波数を変更することで、抵抗部材110の加熱面110aにおける温度分布の均一化を図ることができる。   Here, as the AC power supply 15, one having frequency control means 15 a for changing the frequency of the AC current is adopted, and the resistance is changed by changing the frequency according to the temperature of the storage battery 2 and the resistance value of the resistance member 110. The temperature distribution on the heating surface 110a of the member 110 can be made uniform.

(他の実施形態)
以上、本発明の実施形態について説明したが、本発明はこれに限定されるものではなく、各請求項に記載した範囲を逸脱しない限り、各請求項の記載文言に限定されず、当業者がそれらから容易に置き換えられる範囲にも及び、かつ、当業者が通常有する知識に基づく改良を適宜付加することができる。例えば、以下のように種々変形可能である。
(Other embodiments)
As mentioned above, although embodiment of this invention was described, this invention is not limited to this, Unless it deviates from the range described in each claim, it is not limited to the wording of each claim, and those skilled in the art Improvements based on the knowledge that a person skilled in the art normally has can be added as appropriate to the extent that they can be easily replaced. For example, various modifications are possible as follows.

(1)上述の各実施形態では、抵抗部材110としてフィルム状の抵抗体を採用しているが、抵抗部材110の形状はフィルム状に限定されず、例えば、板状や棒状の抵抗体を採用してもよい。   (1) In each of the above-described embodiments, a film-like resistor is adopted as the resistance member 110. However, the shape of the resistance member 110 is not limited to a film shape, and for example, a plate-like or rod-like resistor is adopted. May be.

(2)上述の各実施形態では、蓄電池2を備える電気自動車に加熱装置1を適用しているが、図19に示すように、蓄電池2の他に、燃料電池4、DC−DCコンバータ5、インバータ6等を備える燃料電池システムに適用してもよい。なお、加熱装置1の用途は、車両に搭載された蓄電池2の加熱に限らず、空調用のヒータ(被加熱対象は、ユーザまたは車室内の空気)や、記録材に画像を加熱定着させる加熱体等といった様々な用途に用いることができる。   (2) In each above-mentioned embodiment, although heating device 1 is applied to an electric vehicle provided with storage battery 2, as shown in Drawing 19, in addition to storage battery 2, fuel cell 4, DC-DC converter 5, You may apply to a fuel cell system provided with inverter 6 grade | etc.,. The application of the heating device 1 is not limited to heating the storage battery 2 mounted on the vehicle, but is a heater for air conditioning (the object to be heated is air in the user or the passenger compartment) or heating that heats and fixes an image on a recording material. It can be used for various purposes such as body.

(3)上述の各実施形態では、加熱部11に対して直流電源12や交流電源15から電力を供給する構成としているが、これに限定されず、例えば、図19に示すように、被加熱対象である蓄電池2と加熱部11とを直列に接続し、蓄電池2から電力を供給する構成としてもよい。   (3) In each of the above-described embodiments, power is supplied from the DC power supply 12 or the AC power supply 15 to the heating unit 11. However, the present invention is not limited to this. For example, as shown in FIG. The target storage battery 2 and the heating unit 11 may be connected in series, and power may be supplied from the storage battery 2.

(4)上述の各実施形態では、抵抗部材110として、遷移金属酸化物により構成される半導体を採用した例を説明したが、負の温度抵抗特性を有するものであれば、これに限定されず、例えば、導電物質と絶縁物質とで構成される複合材料にて構成してもよい。   (4) In each of the above-described embodiments, an example in which a semiconductor composed of a transition metal oxide is used as the resistance member 110 has been described. However, the resistance member 110 is not limited to this as long as it has negative temperature resistance characteristics. For example, you may comprise with the composite material comprised with an electroconductive substance and an insulating substance.

1 加熱装置
110 抵抗部材
110a 加熱面
110b 抵抗体
111 第1電極部材
111a 第1分割電極部
112 第2電極部材
112a 第2分割電極部
15 交流電源(交流印加手段)
15a 周波数制御手段
DESCRIPTION OF SYMBOLS 1 Heating apparatus 110 Resistance member 110a Heating surface 110b Resistance body 111 1st electrode member 111a 1st division | segmentation electrode part 112 2nd electrode member 112a 2nd division | segmentation electrode part 15 AC power supply (alternating current application means)
15a Frequency control means

Claims (16)

被加熱対象を加熱する加熱装置であって、
負の温度抵抗特性を有し、通電により発熱する抵抗部材(110)と、
前記抵抗部材(110)に電流を供給するための一対の電極部材(111、112)と、を備え、
前記抵抗部材(110)は、前記一対の電極部材(111、112)からの電流が流れる複数の通電部を有し、前記一対の電極部材(111、112)を介して前記複数の通電部が電気的に直列に接続されており、
前記一対の電極部材(111、112)は、前記抵抗部材(110)における前記被加熱対象と対向する加熱面(110a)に直交する方向に電流が流れるように、前記加熱面(110a)に直交する方向から前記抵抗部材(110)を挟み込むように配置されていることを特徴とする加熱装置。
A heating device for heating an object to be heated,
A resistance member (110) having negative temperature resistance characteristics and generating heat upon energization;
A pair of electrode members (111, 112) for supplying current to the resistance member (110),
The resistance member (110) includes a plurality of energization portions through which current from the pair of electrode members (111, 112) flows, and the plurality of energization portions are interposed via the pair of electrode members (111, 112). Electrically connected in series,
The pair of electrode members (111, 112) are orthogonal to the heating surface (110a) so that current flows in a direction orthogonal to the heating surface (110a) facing the object to be heated in the resistance member (110). The heating device is arranged so as to sandwich the resistance member (110) from the direction of the movement.
被加熱対象を加熱する加熱装置であって、
負の温度抵抗特性を有し、通電により発熱する抵抗部材(110)と、
前記抵抗部材(110)に電流を供給するための一対の電極部材(111、112)と、を備え、
前記抵抗部材(110)は、前記一対の電極部材(111、112)からの電流が流れる複数の通電部を有し、前記一対の電極部材(111、112)を介して前記複数の通電部が電気的に直列に接続されており、
前記一対の電極部材(111、112)は、少なくとも一方の電極部材(111)における他方の電極部材(112)と対向する対向面に前記通電部が一体に形成され、前記抵抗部材(110)における前記被加熱対象と対向する加熱面(110a)に直交する方向に電流が流れるように、前記加熱面(110a)に直交する方向に向かい合って配置されていることを特徴とする加熱装置。
A heating device for heating an object to be heated,
A resistance member (110) having negative temperature resistance characteristics and generating heat upon energization;
A pair of electrode members (111, 112) for supplying current to the resistance member (110),
The resistance member (110) includes a plurality of energization portions through which current from the pair of electrode members (111, 112) flows, and the plurality of energization portions are interposed via the pair of electrode members (111, 112). Electrically connected in series,
In the pair of electrode members (111, 112), the current-carrying portion is integrally formed on an opposing surface of the at least one electrode member (111) facing the other electrode member (112), and the resistance member (110) The heating apparatus, wherein the heating device is arranged so as to face a direction orthogonal to the heating surface (110a) so that a current flows in a direction orthogonal to the heating surface (110a) facing the object to be heated.
被加熱対象を加熱する加熱装置であって、
負の温度抵抗特性を有し、通電により発熱する抵抗部材(110)と、
前記抵抗部材(110)に電流を供給するための一対の電極部材(111、112)と、を備え、
前記抵抗部材(110)は、
前記抵抗部材(110)は、前記一対の電極部材(111、112)からの電流が流れる複数の通電部を有し、前記一対の電極部材(111、112)を介して前記複数の通電部が電気的に直列に接続される共に、
前記抵抗部材(110)における前記被加熱対象と対向する加熱面(110a)に直交する方向に電流が流れるように、前記一対の電極部材(111、112)のうち、前記加熱面(110a)に一方の電極部材(111)が一体に形成されると共に、前記加熱面(110a)と反対側の面に他方の電極部材(112)が一体に形成されていることを特徴とする加熱装置。
A heating device for heating an object to be heated,
A resistance member (110) having negative temperature resistance characteristics and generating heat upon energization;
A pair of electrode members (111, 112) for supplying current to the resistance member (110),
The resistance member (110)
The resistance member (110) includes a plurality of energization portions through which current from the pair of electrode members (111, 112) flows, and the plurality of energization portions are interposed via the pair of electrode members (111, 112). Electrically connected in series,
Of the pair of electrode members (111, 112), the heating surface (110a) of the pair of electrode members (111) is arranged such that a current flows in a direction perpendicular to the heating surface (110a) facing the object to be heated in the resistance member (110). One of the electrode members (111) is integrally formed, and the other electrode member (112) is integrally formed on the surface opposite to the heating surface (110a).
前記一対の電極部材(111、112)における一方の電極部材(111)は、所定の間隔をあけて分割された複数の第1分割電極部(111a)で構成され、
前記一対の電極部材(111、112)における他方の電極部材(112)は、所定の間隔をあけて分割された複数の第2分割電極部(112a)で構成され、
前記第1分割電極部(111a)は、前記加熱面(110a)に直交する方向から見たときに、前記抵抗部材(110)を介して対向する前記第2分割電極部(112a)と重合するように配置されていることを特徴とする請求項1ないし3のいずれか1つに記載の加熱装置。
One electrode member (111) in the pair of electrode members (111, 112) includes a plurality of first divided electrode portions (111a) divided at a predetermined interval,
The other electrode member (112) in the pair of electrode members (111, 112) includes a plurality of second divided electrode portions (112a) divided at a predetermined interval,
The first divided electrode portion (111a) overlaps with the second divided electrode portion (112a) facing each other through the resistance member (110) when viewed from a direction orthogonal to the heating surface (110a). The heating device according to any one of claims 1 to 3, wherein the heating device is arranged as described above.
前記複数の第1分割電極部(111a)および前記複数の第2分割電極部(112a)それぞれは、一部の電極部が他の電極部間の配置間隔と異なっていることを特徴とする請求項4に記載の加熱装置。   Each of the plurality of first divided electrode portions (111a) and the plurality of second divided electrode portions (112a) has a part of electrode portions different from an arrangement interval between other electrode portions. Item 5. The heating device according to Item 4. 前記複数の第1分割電極部(111a)および前記複数の第2分割電極部(112a)それぞれは、一部の電極部の通電面積が、他の電極部の通電面積と異なっていることを特徴とする請求項4または5に記載の加熱装置。   In each of the plurality of first divided electrode portions (111a) and the plurality of second divided electrode portions (112a), the energization area of some electrode portions is different from the energization area of other electrode portions. The heating apparatus according to claim 4 or 5. 前記抵抗部材(110)は、一つの抵抗体で構成されており、
前記複数の通電部は、前記加熱面(110a)に直交する方向から見たときに、前記第1分割電極部(111a)と前記第2分割電極部(112a)とが重合する部位で構成されていることを特徴とする請求項4ないし6のいずれか1つに記載の加熱装置。
The resistance member (110) is composed of a single resistor,
The plurality of current-carrying parts are configured by portions where the first divided electrode part (111a) and the second divided electrode part (112a) are superposed when viewed from a direction orthogonal to the heating surface (110a). The heating device according to any one of claims 4 to 6, wherein the heating device is provided.
前記抵抗部材(110)は、前記加熱面(110a)に直交する方向から見たときに、前記第1分割電極部(111a)と前記第2分割電極部(112a)とが重合する位置に配置された複数の抵抗体で構成されており、
前記複数の通電部は、前記複数の抵抗体(110b)で構成されていることを特徴とする請求項1ないし6のいずれか1つに記載の加熱装置。
The resistance member (110) is disposed at a position where the first divided electrode portion (111a) and the second divided electrode portion (112a) overlap when viewed from a direction orthogonal to the heating surface (110a). Is composed of a plurality of resistors,
The heating device according to any one of claims 1 to 6, wherein the plurality of energization parts are configured by the plurality of resistors (110b).
前記複数の抵抗体(110b)は、一部の抵抗体の体積抵抗が他の抵抗体の体積抵抗と異なっていることを特徴とする請求項8に記載の加熱装置。   The heating device according to claim 8, wherein the plurality of resistors (110b) have a volume resistance of a part of the resistors different from a volume resistance of the other resistors. 前記複数の抵抗体(110b)は、一部の抵抗体の温度抵抗特性が他の抵抗体の温度抵抗特性と異なっていることを特徴とする請求項8または9に記載の加熱装置。   The heating device according to claim 8 or 9, wherein the plurality of resistors (110b) have temperature resistance characteristics of some of the resistors different from those of other resistors. 前記複数の抵抗体(110b)は、一部の抵抗体が、他の抵抗体間の配置間隔と異なっていることを特徴とする請求項8ないし10のいずれか1つに記載の加熱装置。   11. The heating device according to claim 8, wherein some of the plurality of resistors (110 b) are different from an arrangement interval between other resistors. 11. 前記複数の抵抗体(110b)は、一部の抵抗体の通電面積が他の抵抗体の通電面積と異なっていることを特徴とする請求項8ないし11のいずれか1つに記載の加熱装置。   The heating device according to any one of claims 8 to 11, wherein in the plurality of resistors (110b), a current-carrying area of a part of the resistors is different from a current-carrying area of another resistor. . 前記複数の抵抗体(110b)は、一部の抵抗体の前記加熱面(110a)に直交する方向の厚みが他の抵抗体の前記加熱面(110a)に直交する方向の厚みと異なっていることを特徴とする請求項8ないし12のいずれか1つに記載の加熱装置。   The plurality of resistors (110b) are different in thickness in a direction perpendicular to the heating surface (110a) of some resistors from a direction orthogonal to the heating surface (110a) of other resistors. The heating apparatus according to any one of claims 8 to 12, wherein 前記被加熱対象は、充放電可能な複数の電池セル(20)を有して構成される蓄電手段(2)であり、
前記複数の通電部は、前記電池セル(20)に対応する位置に設けられていることを特徴とする請求項1ないし13のいずれか1つに記載の加熱装置。
The object to be heated is power storage means (2) configured to have a plurality of chargeable / dischargeable battery cells (20),
The heating device according to any one of claims 1 to 13, wherein the plurality of energization units are provided at positions corresponding to the battery cells (20).
前記一対の電極部材(111、112)に所定の周波数の交流電流を印加する交流印加手段(15)を備えることを特徴とする請求項1ないし14のいずれか1つに記載の加熱装置。   The heating apparatus according to any one of claims 1 to 14, further comprising an alternating current applying means (15) for applying an alternating current having a predetermined frequency to the pair of electrode members (111, 112). 前記交流印加手段(15)にて印加する交流電流の周波数を制御する周波数制御手段(15a)を備えることを特徴とする請求項15に記載の加熱装置。   The heating apparatus according to claim 15, further comprising frequency control means (15a) for controlling the frequency of the alternating current applied by the alternating current application means (15).
JP2010211017A 2010-09-21 2010-09-21 Heating device Pending JP2012069281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010211017A JP2012069281A (en) 2010-09-21 2010-09-21 Heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010211017A JP2012069281A (en) 2010-09-21 2010-09-21 Heating device

Publications (1)

Publication Number Publication Date
JP2012069281A true JP2012069281A (en) 2012-04-05

Family

ID=46166310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010211017A Pending JP2012069281A (en) 2010-09-21 2010-09-21 Heating device

Country Status (1)

Country Link
JP (1) JP2012069281A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013179836A1 (en) * 2012-05-30 2013-12-05 株式会社デンソー Heating device
CN108511852A (en) * 2018-01-31 2018-09-07 倪惠芳 A kind of battery thermostatic equipment of multi-rotor unmanned aerial vehicle

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0218887A (en) * 1988-05-03 1990-01-23 Raychem Corp Electric device
JPH0529067A (en) * 1991-07-25 1993-02-05 Rohm Co Ltd Structure of heating element and heater for office automation equipment
JPH065181U (en) * 1992-06-19 1994-01-21 株式会社村田製作所 Heating element
JP2002502103A (en) * 1998-02-02 2002-01-22 アルザセール、マンフレッド Flat heating elements and applications of flat heating elements
JP2004006299A (en) * 2002-04-22 2004-01-08 Canon Inc Heater having heat generating resistor on substrate, and image heating device using the same
WO2006019056A1 (en) * 2004-08-19 2006-02-23 Kokusai Electric Semiconductor Service Inc. Supplying power adjusting apparatus, semiconductor manufacturing equipment, method for controlling power to heater and semiconductor device manufacturing method
JP2007025474A (en) * 2005-07-20 2007-02-01 Canon Inc Heating device and image forming apparatus
JP2008140702A (en) * 2006-12-04 2008-06-19 Canon Inc Heating device, and image forming device
JP2010067386A (en) * 2008-09-09 2010-03-25 Toyota Motor Corp Temperature raising structure of electricity storing element, and electricity storing device
JP2010160932A (en) * 2009-01-07 2010-07-22 Mitsubishi Motors Corp Heating device of storage battery

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0218887A (en) * 1988-05-03 1990-01-23 Raychem Corp Electric device
JPH0529067A (en) * 1991-07-25 1993-02-05 Rohm Co Ltd Structure of heating element and heater for office automation equipment
JPH065181U (en) * 1992-06-19 1994-01-21 株式会社村田製作所 Heating element
JP2002502103A (en) * 1998-02-02 2002-01-22 アルザセール、マンフレッド Flat heating elements and applications of flat heating elements
JP2004006299A (en) * 2002-04-22 2004-01-08 Canon Inc Heater having heat generating resistor on substrate, and image heating device using the same
WO2006019056A1 (en) * 2004-08-19 2006-02-23 Kokusai Electric Semiconductor Service Inc. Supplying power adjusting apparatus, semiconductor manufacturing equipment, method for controlling power to heater and semiconductor device manufacturing method
JP2007025474A (en) * 2005-07-20 2007-02-01 Canon Inc Heating device and image forming apparatus
JP2008140702A (en) * 2006-12-04 2008-06-19 Canon Inc Heating device, and image forming device
JP2010067386A (en) * 2008-09-09 2010-03-25 Toyota Motor Corp Temperature raising structure of electricity storing element, and electricity storing device
JP2010160932A (en) * 2009-01-07 2010-07-22 Mitsubishi Motors Corp Heating device of storage battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013179836A1 (en) * 2012-05-30 2013-12-05 株式会社デンソー Heating device
JP2014007140A (en) * 2012-05-30 2014-01-16 Denso Corp Heating device
CN104335677A (en) * 2012-05-30 2015-02-04 株式会社电装 Heating device
CN108511852A (en) * 2018-01-31 2018-09-07 倪惠芳 A kind of battery thermostatic equipment of multi-rotor unmanned aerial vehicle
CN108511852B (en) * 2018-01-31 2020-11-24 倪惠芳 Many rotor unmanned aerial vehicle's battery constant temperature equipment

Similar Documents

Publication Publication Date Title
KR100684761B1 (en) Secondary battery module
JP5537867B2 (en) Power supply device for vehicle having shunt resistance and shunt resistance, and vehicle
US10213000B2 (en) Hair styling appliance
JP2011014436A (en) Battery heating device
US20130108896A1 (en) Methods and apparatus for combined thermal management, temperature sensing, and passive balancing for battery systems in electric vehicles
US20110117463A1 (en) Battery temperature control method and assembly
KR101597021B1 (en) Temperature control device
JP2012243535A (en) Battery pack
JP2012069496A (en) Battery heating device
US9040186B2 (en) Method and device to measure temperature of a prismatic cell of automotive battery
US10616959B2 (en) Electric heating device
JP2010067386A (en) Temperature raising structure of electricity storing element, and electricity storing device
JP2020040655A (en) Hybrid heater system
JP2011165391A (en) Battery unit
EP3584808B1 (en) Ptc heating module for heating a fluid
JP2009099992A (en) Apparatus having at least one ptc resistor
JP2012069281A (en) Heating device
JP2013026222A (en) Heating system, heater, and methods of heating component
JP6361322B2 (en) battery
JP2007299546A (en) Planar heating element
WO2012114739A1 (en) Planar heating element
JPH11317302A (en) Positive temperature coefficient thermistor element and heating device using the same
JP2018060684A (en) Power supply device
JP2015032475A (en) Heater unit, heater unit system and battery pack using them
JP2012069495A (en) Battery heating apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140520