JP2008152957A - Heating device and image forming device - Google Patents

Heating device and image forming device Download PDF

Info

Publication number
JP2008152957A
JP2008152957A JP2006337175A JP2006337175A JP2008152957A JP 2008152957 A JP2008152957 A JP 2008152957A JP 2006337175 A JP2006337175 A JP 2006337175A JP 2006337175 A JP2006337175 A JP 2006337175A JP 2008152957 A JP2008152957 A JP 2008152957A
Authority
JP
Japan
Prior art keywords
heating
heating element
width
resistance heating
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006337175A
Other languages
Japanese (ja)
Inventor
Satoru Taniguchi
悟 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2006337175A priority Critical patent/JP2008152957A/en
Publication of JP2008152957A publication Critical patent/JP2008152957A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive heating device of high fixing efficiency capable of both ensuring the ability to fix the entire recording material evenly and preferably and preventing malfunction of a safety element and an image forming device equipped with the heating device. <P>SOLUTION: In a film heating type heating device having a plurality of resistance heating elements of different widths and an image forming device equipped with the heating device, only the widest resistance heating element is provided with a restriction portion formed by reducing the width of only one part in the longitudinal direction of the heating element. The restriction portion is positioned where the heating element is in contact with a safety element having a mechanism for shutting off current to the resistance heating element when a failure occurs. The substrate of the heating element is accommodated in the fixing nip region and a plurality of resistance heating elements is disposed in place on the entire width of the substrate. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、複写機、レーザービームプリンタ等の加熱装置及び該加熱装置を具備した画像形成装置に関する。   The present invention relates to a heating device such as a copying machine or a laser beam printer, and an image forming apparatus including the heating device.

従来、例えば画像の加熱定着等のための記録材の加熱装置には、所定の温度に維持された加熱ローラと、弾性体層を介して前記加熱ローラに圧接する加圧ローラとによって被加熱材としての記録材を挟持搬送しつつ加熱する熱ローラ方式が多用されている。また、このほかにもフラッシュ加熱方式、オープン加熱方式、熱板加熱方式等種々の方式、構成のものが知られており、実用されている。   2. Description of the Related Art Conventionally, in a recording material heating apparatus for image heating and fixing, for example, a material to be heated includes a heating roller maintained at a predetermined temperature and a pressure roller pressed against the heating roller through an elastic layer. In many cases, a heat roller method is used in which the recording material is heated while being nipped and conveyed. In addition, various systems and configurations such as a flash heating system, an open heating system, and a hot plate heating system are known and put into practical use.

最近では、このような方式に代わって、加熱体(ヒータ)と、加熱体の支持体(ステー)と、加熱体に対向圧接しつつ搬送される耐熱性フィルム(定着フィルム)と、定着フィルムを介して被加熱材としての記録材を加熱体に密着させる加圧体(加圧ローラ)を有し、加熱体の熱を定着フィルムを介して記録材へ付与することで記録材面に形成担持されている未定着画像を記録材面に加熱定着させる方式、構成の画像加熱定着方式(フィルム加熱方式の加熱装置)が考案されている(例えば、特許文献1・2参照)。この加熱装置の加熱体としては、セラミックス基板上に抵抗発熱体を形成し、給電により抵抗発熱体を発熱させ、記録材を加熱する構成が一般的である。加熱体の温度は加熱体に当接あるいは接着されたサーミスタ等の検温素子で検知され、その検知温度を基に所定の温度になるようにCPUで温度制御している。   Recently, instead of such a method, a heating body (heater), a heating body support (stay), a heat-resistant film (fixing film) conveyed while being opposed to the heating body, and a fixing film are provided. It has a pressure body (pressure roller) that attaches the recording material as the material to be heated to the heating body, and forms and supports the recording material surface by applying the heat of the heating body to the recording material through the fixing film. An image heating and fixing method (heating device of a film heating method) has been devised (for example, see Patent Documents 1 and 2). As a heating body of this heating apparatus, a structure in which a resistance heating element is formed on a ceramic substrate, the resistance heating element is heated by power feeding, and the recording material is heated is generally used. The temperature of the heating body is detected by a temperature measuring element such as a thermistor that is in contact with or bonded to the heating body, and the temperature of the heating body is controlled by the CPU based on the detected temperature.

また、加熱体の温度を検知する検温素子や温度制御するCPU、温度制御用の電気回路等が故障し、加熱体の温度が異常に高温になった場合の安全対策として、抵抗発熱体に直列接続されたサーモスイッチ、温度ヒューズ等の安全素子を加熱体基板の裏面(非フィルム摺動面)に当接させ、加熱体の温度が安全素子の動作温度以上になった場合は抵抗発熱体へ通電を遮断できる構成をとっている。   In addition, as a safety measure when the temperature sensor that detects the temperature of the heating element, the CPU that controls the temperature, the electrical circuit for temperature control, etc. fails and the temperature of the heating element becomes abnormally high, it is connected in series with the resistance heating element. A safety element such as a connected thermo switch or thermal fuse is brought into contact with the back surface (non-film sliding surface) of the heating element substrate. If the temperature of the heating element exceeds the operating temperature of the safety element, go to the resistance heating element. It has a configuration that can cut off power.

このようなフィルム加熱方式の加熱装置ないしは画像加熱定着装置においては加熱体として低熱容量の加熱体を用いることができる。このため、従来の接触加熱方式である熱ローラ方式、ベルト加熱方式等の装置に比べ省電力及びウェイトタイムの短縮化(クイックスタート)が可能になる。   In such a film heating type heating apparatus or image heating and fixing apparatus, a low heat capacity heating body can be used as the heating body. For this reason, it is possible to save power and shorten the wait time (quick start) as compared with conventional devices such as a heat roller method and a belt heating method.

上述のフィルム加熱方式の加熱装置において、加熱体基板の記録材搬送方向の幅を有効に使うために、基板を加熱体と加圧ローラで形成される圧接ニップ部内に収め、基板幅全体に抵抗発熱体を設ける構成が考案されている。この構成においては、抵抗発熱体は基板幅全体に設けられているので、抵抗発熱体をニップ部の外に存在させないために、基板全体をニップ内に収める必要がある(抵抗発熱体がニップ部の外側に存在すると、その部分が非常に高温になり、加熱体が破損する可能性がある)。   In the above-described film heating type heating apparatus, in order to effectively use the width of the heating body substrate in the recording material conveyance direction, the substrate is placed in the press nip formed by the heating body and the pressure roller, and the entire substrate width is resisted. A configuration in which a heating element is provided has been devised. In this configuration, since the resistance heating element is provided over the entire width of the substrate, it is necessary to place the entire substrate in the nip so that the resistance heating element does not exist outside the nip portion (the resistance heating element is placed in the nip portion). If it is outside, the part becomes very hot and the heating element may be damaged).

抵抗発熱体の記録材搬送方向の幅は広い方が定着の効率は良いが、一般的に抵抗発熱体は銀パラジウム等の高価な材料が用いられるため、抵抗発熱体の幅がコストに与える影響は非常に大きい。よって、できるだけ定着効率の良さを損なわずコストを低減するために、複数本(4〜5本程度)の抵抗発熱体を所定の間隔を空け基板全体に配置する構成が考案され実用化されている。この構成の場合、抵抗発熱体の総幅は小さくできるのでコストは抑えられ、かつ抵抗発熱体を基板全体に配置できるので、ニップ内で基板全体の温度を幅方向において均一に高くすることができ定着効率も良い。
特開平4−44075号公報 特開平4−44076号公報 特開平4−44077号公報 特開平4−44078号公報 特開平4−44079号公報 特開平4−44080号公報 特開平4−44081号公報 特開平4−44082号公報 特開平4−44083号公報 特開平4−204980号公報 特開平4−204981号公報 特開平4−204982号公報 特開平4−204983号公報 特開平4−204984号公報
The wider the width of the resistance heating element in the recording material conveyance direction, the better the fixing efficiency. However, since the resistance heating element is generally made of an expensive material such as silver palladium, the effect of the width of the resistance heating element on the cost is affected. Is very big. Therefore, in order to reduce the cost without impairing the fixing efficiency as much as possible, a configuration in which a plurality (about 4 to 5) of resistance heating elements are arranged on the entire substrate with a predetermined interval has been devised and put into practical use. . In this configuration, the total width of the resistance heating element can be reduced, so that the cost can be reduced and the resistance heating element can be disposed on the entire substrate, so that the temperature of the entire substrate can be uniformly increased in the width direction in the nip. Fixing efficiency is also good.
JP-A-4-44075 JP-A-4-44076 JP-A-4-44077 JP-A-4-44078 JP-A-4-44079 JP-A-4-44080 JP-A-4-44081 JP-A-4-44082 JP-A-4-44083 JP-A-4-204980 JP-A-4-204981 JP-A-4-204982 JP-A-4-204983 JP-A-4-204984

前述のフィルム加熱方式の加熱装置において、安全素子が加熱体基板の裏面に当接している部分は、他の部分よりも加熱体の温度が低くなる傾向がある。これは、他の部分の加熱体裏面は液晶ポリマー等の樹脂で形成されるステー(加熱体の支持体)に接しているので、加熱体裏面からステーへの熱の逃げはあまり大きくないのに対して、安全素子が当接している部分は、加熱体裏面から安全素子への熱の逃げが大きいためである。元々、フィルム加熱方式の加熱装置では、加熱体裏面からステーへのヒートリークが大きいと定着効率が悪化するので、ステーの材料の熱伝導率を小さくする等の方法で断熱化を図っている。一方、安全素子は異常高温時の動作を速くするため、できるだけ熱を奪いやすくする構成をとっている。以上の構成の違いから、安全素子当接部で加熱体の温度が低下し、その部分だけ定着性が悪化する傾向がある。   In the above-described film heating type heating apparatus, the temperature of the heating body tends to be lower in the portion where the safety element is in contact with the back surface of the heating body substrate than in other portions. This is because the other part of the heating element back surface is in contact with a stay (heating body support) formed of a resin such as liquid crystal polymer, but the heat escape from the heating element back surface to the stay is not very large. On the other hand, the part where the safety element is in contact is because heat escape from the heating element back surface to the safety element is large. Originally, in a film heating type heating apparatus, if the heat leak from the back surface of the heating body to the stay is large, the fixing efficiency deteriorates. Therefore, heat insulation is attempted by reducing the thermal conductivity of the material of the stay. On the other hand, the safety element has a configuration in which heat is easily removed as much as possible in order to speed up the operation at an abnormally high temperature. Due to the difference in the configuration described above, the temperature of the heating body is lowered at the safety element contact portion, and the fixability tends to deteriorate only at that portion.

この安全素子当接部の定着不良を補うための手段の一つとして、安全素子当接部に対応する部分の抵抗発熱体の幅をそれ以外の部分よりも細くし部分的な抵抗を上げて、当接部の発熱量を大きくする構成があり実用化されている。以下、安全素子当接部で抵抗発熱体の幅を細くしている部分を絞り部、幅を細くする割合を絞り量と記述する。絞り量は、絞り部以外の抵抗発熱体の単位体積あたりの抵抗値を100%とした場合に、絞り部のそれが何%であるかを示す量であり、抵抗発熱体の厚さが一定かつ抵抗材料として持つ体積抵抗値の部分的なばらつきがないと仮定すると、以下の式で表される。   As one of the means for compensating for the fixing failure of the safety element abutting portion, the width of the resistance heating element corresponding to the safety element abutting portion is made narrower than the other portions to increase the partial resistance. A configuration in which the amount of heat generated at the contact portion is increased has been put to practical use. Hereinafter, the portion where the width of the resistance heating element is narrowed in the safety element abutting portion is described as a throttle portion, and the ratio of the width reduction is referred to as a throttle amount. The amount of squeezing is the amount that indicates the percentage of the squeezed part when the resistance value per unit volume of the resistive heating element other than the squeezed part is 100%, and the thickness of the resistive heating element is constant. Assuming that there is no partial variation in the volume resistance value possessed by the resistance material, it is expressed by the following equation.

絞り量(%)=(絞り部以外の発熱体幅)/(絞り部の発熱体幅)
抵抗値と発熱量は比例するので、絞り量は単位体積あたりの発熱量の割合と考えてもよい。絞り量は絞り部とそれ以外の部分の定着性が同等になるように設定するのが望ましく、絞り量が小さすぎると絞り部の定着不良が補えず、大きすぎると絞り部の温度が上がりすぎ、通常使用時に安全素子の誤動作の可能性が高くなる。よって、絞り部の定着不良と安全素子の誤動作を防止するためには、絞り量の製造上のばらつきを抑えることが要求される。
Aperture amount (%) = (Width of heating element other than throttle part) / (Heating element width of throttle part)
Since the resistance value and the calorific value are proportional, the amount of restriction may be considered as the ratio of the calorific value per unit volume. It is desirable to set the aperture so that the fixing properties of the aperture and other parts are equal.If the aperture is too small, the fixing failure of the aperture cannot be compensated, and if it is too large, the temperature of the aperture increases too much. The possibility of malfunction of the safety element during normal use increases. Therefore, in order to prevent the fixing defect of the diaphragm portion and the malfunction of the safety element, it is required to suppress the manufacturing variation of the diaphragm amount.

一方、前述の複数本(4〜5本程度)の抵抗発熱体を基板幅全体に配置する構成では、従来の加熱装置で一般的であった1本や2本の抵抗発熱体に比べて、1本あたりの発熱体幅は細くなる。想定される発熱体幅の製造上のばらつき(設計値からのずれ)は発熱体幅によらず一定であるため、発熱体幅が細くなるほどずれ量の影響を大きく受け、絞り量の設計値からのずれも大きくなる傾向にある。よって、絞り部を設ける抵抗発熱体の幅が細いと、絞り部の定着性確保と安全素子の誤動作防止との両立が難しい場合がある。特に応答性の速いサーモスイッチを安全素子として用いた場合には、誤動作防止のためにマージンを多く取る必要があるので、より両立が難しい。発熱体幅を太くすれば、ずれ量の影響を受けにくくなり絞り量のずれも小さくなるが、前述の通りコストアップになる。   On the other hand, in the configuration in which the plurality of resistance heating elements (about 4 to 5) described above are arranged over the entire width of the substrate, the resistance heating element is 1 in comparison with one or two resistance heating elements that are common in conventional heating devices. The heating element width per book becomes narrow. The manufacturing variation (deviation from the design value) of the assumed heating element width is constant regardless of the heating element width. Therefore, the thinner the heating element width, the greater the influence of the deviation amount. There is a tendency for the deviation to increase. Therefore, if the width of the resistance heating element provided with the narrowed portion is narrow, it may be difficult to achieve both the fixing property of the narrowed portion and the prevention of malfunction of the safety element. In particular, when a thermo switch with quick response is used as a safety element, it is necessary to take a large margin to prevent malfunction, and thus it is difficult to achieve both compatibility. Increasing the width of the heating element is less affected by the amount of displacement and the displacement of the aperture amount is reduced, but the cost increases as described above.

本出願に係る発明の目的は、安価で定着効率も良く、記録材全体で一様な定着性の確保と安全素子の誤動作防止との両立を達成できる加熱装置及びそれを具備した画像形成装置を提供することである。   An object of the present invention is to provide a heating device that is inexpensive and has good fixing efficiency, and that can achieve both of ensuring a uniform fixing property throughout the recording material and preventing malfunction of a safety element, and an image forming apparatus including the heating device. Is to provide.

上記目的を達成するため、本出願に係る第1の発明は、少なくとも基板と、複数の抵抗発熱体と、抵抗発熱体に給電する電極とからなる加熱体によって被加熱材を加熱する加熱装置において、複数の抵抗発熱体は被加熱材が搬送される方向の幅が異なるものを含み、幅が最も広い抵抗発熱体のみに、抵抗発熱体の長手方向の一部で被加熱材搬送方向の幅が他の部分の幅と異なる領域が存在することを特徴とする。   In order to achieve the above object, a first invention according to the present application is a heating apparatus that heats a material to be heated by a heating body including at least a substrate, a plurality of resistance heating elements, and an electrode that supplies power to the resistance heating element. The plurality of resistance heating elements include those having different widths in the direction in which the material to be heated is conveyed. Only the resistance heating element having the widest width has a width in the conveyance direction in the longitudinal direction of the resistance heating element. Is characterized in that there is a region different from the width of other portions.

本出願に係る第2の発明は、上述の加熱装置において、被加熱材搬送方向の幅が最も広い抵抗発熱体のみに、抵抗発熱体の長手方向の一部で被加熱材搬送方向の幅が他の部分の幅よりも細くなる領域が存在することを特徴とする。   According to a second aspect of the present invention, in the above-described heating device, only the resistance heating element having the widest width in the conveyance direction of the heated material has a width in the conveyance direction of the heated material in a part of the longitudinal direction of the resistance heating element. A region that is narrower than the width of other portions exists.

本出願に係る第3の発明は、上述の加熱装置において、抵抗発熱体の長手方向の一部で被加熱材搬送方向の幅が他の部分の幅と異なる領域に対応する部分に、抵抗発熱体と直列に接続された安全素子が当接されており、安全素子は所定の温度以上になると抵抗発熱体への給電を遮断する構成であることを特徴とする。   According to a third invention of the present application, in the heating device described above, the resistance heating is generated in a portion corresponding to a region of the longitudinal direction of the resistance heating element, the width of the heated material transport direction being different from the width of the other portion. A safety element connected in series with the body is in contact with the safety element, and the safety element is configured to cut off power supply to the resistance heating element when the temperature exceeds a predetermined temperature.

本出願に係る第4の発明は、上述の加熱装置において、前記安全素子は、サーモスイッチあるいは温度ヒューズであることを特徴とする。   According to a fourth aspect of the present application, in the above-described heating device, the safety element is a thermo switch or a thermal fuse.

本出願に係る第5の発明は、少なくとも、加熱体と、一面を加熱体と接触摺動し他面を被加熱材と接触する耐熱性フィルムと、耐熱性フィルムを駆動し、かつ耐熱性フィルムを介して被加熱材を加熱体に密着させる加圧部材とを有し、加熱体と加圧部材により形成されるニップ部を耐熱性フィルムと被加熱材が一緒に挟持搬送されることにより被加熱材を加熱する加熱装置において、該加熱装置が請求項1〜4の何れか1項に記載の構成であることを特徴とする。   According to a fifth aspect of the present application, at least a heating body, a heat resistant film that contacts and slides one surface with the heating body, and another surface contacts a material to be heated, drives the heat resistant film, and heat resistant film And a pressure member for bringing the heated material into close contact with the heating body, and the heat-resistant film and the heated material are sandwiched and conveyed together in a nip formed by the heating body and the pressure member. The heating apparatus which heats a heating material WHEREIN: This heating apparatus is the structure of any one of Claims 1-4, It is characterized by the above-mentioned.

本出願に係る第6の発明は、上述の加熱装置において、被加熱材搬送方向において前記加熱体の基板が加熱体と加圧部材により形成されるニップ部の中に存在することを特徴とする。   A sixth invention according to the present application is characterized in that, in the above-described heating device, the substrate of the heating body exists in a nip portion formed by the heating body and the pressure member in the heated material conveyance direction. .

本出願に係る第7の発明は、記録材上に画像を形成する像形成手段と、該記録材上の画像を加熱する像加熱手段とを有する画像形成装置において、像形成手段として上述の加熱装置を備えたことを特徴とする。   According to a seventh aspect of the present application, there is provided an image forming apparatus comprising: an image forming unit that forms an image on a recording material; and an image heating unit that heats the image on the recording material. A device is provided.

フィルム加熱方式の加熱装置において、加熱体の基板幅全体に幅の異なるものを含む複数本の抵抗発熱体を配置し、最も幅の広い抵抗発熱体のみに絞り部を設けることにより、従来の加熱装置で困難であった、定着効率の向上・低コスト・絞り量の精度向上という項目を全てバランス良く満足することが可能になる。絞り量の精度向上により、記録材全体で一様かつ良好な定着性が得られるとともに、通常使用時の安全素子の誤動作が防止され、加熱装置及び画像形成装置の品質と信頼性が向上する。   In the heating device of the film heating system, conventional heating is performed by arranging a plurality of resistance heating elements including those having different widths over the entire substrate width of the heating element, and providing a throttle portion only on the widest resistance heating element. This makes it possible to satisfy all the items of improvement in fixing efficiency, low cost, and improvement in aperture accuracy, which were difficult with the apparatus. By improving the accuracy of the aperture amount, uniform and good fixability can be obtained over the entire recording material, and the malfunction of the safety element during normal use can be prevented, improving the quality and reliability of the heating device and the image forming apparatus.

(実施例1)
以下、図面を参照し本発明の第1の実施例を説明する。
(Example 1)
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.

図5は本実施例における画像形成装置としてのレーザービームプリンタの要部である。101は像担持体として有機感光ドラム、102は帯電部材としての帯電ローラ、103はレーザー露光装置、104は現像スリーブ及び現像ブレードならびに1成分磁性トナー等からなる現像装置、105はクリーニングブレード、106は転写ローラ、107は加熱定着装置である。本実施例の画像形成装置は最大通紙幅をA4サイズ(紙幅:210mm)とする。   FIG. 5 shows the main part of a laser beam printer as an image forming apparatus in this embodiment. 101 is an organic photosensitive drum as an image carrier, 102 is a charging roller as a charging member, 103 is a laser exposure device, 104 is a developing device including a developing sleeve and a developing blade, and one-component magnetic toner, 105 is a cleaning blade, and 106 is A transfer roller 107 is a heat fixing device. In the image forming apparatus of this embodiment, the maximum sheet passing width is A4 size (paper width: 210 mm).

有機感光ドラム101は所定の周速度にて回転駆動され、帯電ローラ102によって本例の場合は負の所定電位に一様に帯電される。そしてその有機感光ドラム101の一様帯電処理面にレーザー露光装置103からのレーザービームによる画像情報の走査露光がなされて、有機感光ドラム101に走査露光パターンに対応した静電潜像が形成される。   The organic photosensitive drum 101 is rotationally driven at a predetermined peripheral speed and is uniformly charged to a negative predetermined potential in this example by the charging roller 102. Then, scanning exposure of the image information by the laser beam from the laser exposure device 103 is performed on the uniformly charged surface of the organic photosensitive drum 101, and an electrostatic latent image corresponding to the scanning exposure pattern is formed on the organic photosensitive drum 101. .

次に、現像装置104の中で帯電したネガトナーが有機感光ドラム101上の静電潜像の露光明部に付着して静電潜像がトナー像として可視像となる(反転現像)。   Next, the negative toner charged in the developing device 104 adheres to the exposed bright portion of the electrostatic latent image on the organic photosensitive drum 101, and the electrostatic latent image becomes a visible image as a toner image (reversal development).

一方、所定の給紙制御タイミングにて給紙ローラ108が回転駆動されて給紙カセット109から紙等の記録材Pが1枚分離給送されて、搬送ローラ110、レジストローラ111等を含むシートパス112を通って有機感光ドラム101と転写ローラ106との当接部である転写ニップ部に所定の制御タイミングにて導入され、記録材Pの面に有機感光ドラム101上のトナー像が順次に転写される。   On the other hand, the sheet feeding roller 108 is rotationally driven at a predetermined sheet feeding control timing, and one sheet of recording material P such as paper is separated and fed from the sheet feeding cassette 109, and includes a conveying roller 110, a registration roller 111, and the like. The toner image on the organic photosensitive drum 101 is sequentially applied to the surface of the recording material P through a path 112 and introduced into a transfer nip portion that is a contact portion between the organic photosensitive drum 101 and the transfer roller 106. Transcribed.

転写ニップ部を出た記録材Pは、有機感光ドラム101面から分離されて、シートパス113を通って画像加熱定着装置としての定着装置107に導入されてトナー像の加熱定着処理を受け、シートパス114を通って排紙トレイ115上に排出される。   The recording material P that has exited the transfer nip is separated from the surface of the organic photosensitive drum 101, introduced into a fixing device 107 as an image heating and fixing device through a sheet path 113, and subjected to a heat fixing process of a toner image. The paper is discharged onto the paper discharge tray 115 through the path 114.

また記録材分離後の有機感光ドラム101面はクリーニングブレード105により転写残トナーの除去を受けて清掃され、繰り返して作像に供される。   Further, the surface of the organic photosensitive drum 101 after separation of the recording material is cleaned by removing the transfer residual toner by the cleaning blade 105, and is repeatedly used for image formation.

次に、本実施例における加熱装置107について説明する。図4は本実施例のフィルム加熱方式の加熱装置の概略構成図である。この装置は特開平4-44075〜44083号公報、同4-204980〜204984号公報等に開示のテンションレスタイプの装置である。   Next, the heating device 107 in the present embodiment will be described. FIG. 4 is a schematic configuration diagram of a film heating type heating apparatus according to the present embodiment. This apparatus is a tensionless type apparatus disclosed in Japanese Patent Laid-Open Nos. 4-44075 to 44083 and 4-204980 to 204984.

このテンションレスタイプのフィルム加熱方式の加熱装置は、耐熱性フィルムとしてエンドレスベルト状もしくは円筒状のものを用い、該フィルムの周長の少なくとも一部は常にテンションフリー(テンションが加わらない状態)とし、フィルムは加圧部材の回転駆動力で回転駆動するようにした装置である。   This tensionless type film heating type heating device uses an endless belt-shaped or cylindrical heat-resistant film, and at least part of the circumference of the film is always tension-free (in a state where no tension is applied), The film is a device that is rotationally driven by the rotational driving force of the pressure member.

1はステーであり、加熱体保持部材兼フィルムガイド部材としての耐熱性・剛性部材である。3は加熱体としてのセラミックヒータであり、上記のステー1の下面にステー長手に沿って配設して保持させてある。2はエンドレス(円筒状)の耐熱性フィルムであり、加熱体3を含むフィルムガイド部材であるステー1に外嵌させてある。このエンドレスの耐熱性フィルム2の内周長と加熱体3を含むステー1の外周長はフィルム2の方を例えば3mm程度大きくしてあり、従ってフィルム2は周長に余裕を持って外嵌している。   Reference numeral 1 denotes a stay, which is a heat resistant and rigid member as a heating body holding member and a film guide member. Reference numeral 3 denotes a ceramic heater as a heating body, which is disposed and held on the lower surface of the stay 1 along the length of the stay. Reference numeral 2 denotes an endless (cylindrical) heat-resistant film that is externally fitted to a stay 1 that is a film guide member including a heating element 3. The inner peripheral length of the endless heat-resistant film 2 and the outer peripheral length of the stay 1 including the heating element 3 are about 3 mm larger than that of the film 2, so that the film 2 is fitted with a margin in the peripheral length. ing.

ステー1はポリイミド、ポリアミドイミド、PEEK、PPS、液晶ポリマー等の高耐熱性樹脂や、これらの樹脂とセラミックス、金属、ガラス等との複合材料等で構成できる。本実施例では液晶ポリマーを用いた。   The stay 1 can be composed of a high heat resistant resin such as polyimide, polyamideimide, PEEK, PPS, liquid crystal polymer, or a composite material of these resins and ceramics, metal, glass, or the like. In this example, a liquid crystal polymer was used.

フィルム2は熱容量を小さくしてクイックスタート性を向上させるために、フィルム膜厚は100μm以下、好ましくは50μm以下20μm以上の耐熱性のあるPTFE、PFA、FEP等の単層フィルム、或いはポリイミド、ポリアミドイミド、PEEK、PES、PPS等のフィルムの外周表面にPTFE、PFA、FEP等をコーティングした複合層フィルムを使用できる。本実施例では膜厚約50μmのポリイミドフィルムの外周表面にPTFEをコーティングしたものを用いた。フィルム2の外径は18mmとした。   Film 2 has a film thickness of 100 μm or less, preferably 50 μm or less and 20 μm or more, heat resistant single layer film such as PTFE, PFA, FEP, polyimide, polyamide, etc. in order to reduce heat capacity and improve quick start performance A composite layer film in which PTFE, PFA, FEP or the like is coated on the outer peripheral surface of a film such as imide, PEEK, PES, or PPS can be used. In this embodiment, a polyimide film having a film thickness of about 50 μm coated with PTFE on the outer peripheral surface was used. The outer diameter of the film 2 was 18 mm.

4は加熱体3との間にフィルム2を挟んで圧接ニップ部(定着ニップ部)Nを形成し、かつフィルム2を回転駆動させるフィルム外面接触駆動手段としての加圧ローラである。この加圧ローラ4は芯金4aと弾性体層4bと最外層の離形層4cからなり、不図示の軸受け手段・付勢手段により所定の押圧力をもってフィルム2を挟ませて加熱体3の表面に圧接させて配設してある。本実施例では、芯金4aはアルミ芯金を、弾性体層4bはシリコーンゴムを、離形層4cは厚さ約30μmのPFAのチューブを用いた。加圧ローラ4の外径は20mm、弾性体層4bの厚さは3mmとした。   Reference numeral 4 denotes a pressure roller as a film outer surface contact driving means for forming a pressure nip portion (fixing nip portion) N with the film 2 sandwiched between the heating member 3 and rotating the film 2. The pressure roller 4 is composed of a cored bar 4a, an elastic layer 4b, and an outermost release layer 4c. The film 2 is sandwiched by a bearing means / biasing means (not shown) with a predetermined pressing force. It is disposed in pressure contact with the surface. In this embodiment, the core metal 4a is an aluminum core, the elastic layer 4b is silicone rubber, and the release layer 4c is a PFA tube having a thickness of about 30 μm. The outer diameter of the pressure roller 4 was 20 mm, and the thickness of the elastic layer 4b was 3 mm.

この加圧ローラ4は駆動系Mにより矢印の時計方向に所定の周速度で回転駆動される。この加圧ローラ4の回転駆動により、圧接ニップ部Nにおける該加圧ローラとフィルム外面との摩擦力でフィルム2に回転力が作用して、フィルム2はその内面側が定着ニップ部Nにおいて加熱体3の表面に密着して摺動しながらステー1の外回りを矢印の反時計方向に加圧ローラ4の回転周速度とほぼ同じ周速度で従動回転状態になる。   The pressure roller 4 is rotationally driven by the drive system M in a clockwise direction indicated by an arrow at a predetermined peripheral speed. By the rotational driving of the pressure roller 4, a rotational force acts on the film 2 by the frictional force between the pressure roller and the film outer surface at the pressure nip portion N, and the film 2 has a heating body at the fixing nip portion N on the inner surface side. 3, while being in close contact with the surface of 3, the outer periphery of the stay 1 is driven counterclockwise in the counterclockwise direction indicated by the arrow at a rotational speed substantially equal to the rotational speed of the pressure roller 4.

図2は本実施例における加熱体3の正面図及び通電制御を行う回路を表す図である。また、図3は本実施例における加熱体3の断面図である。   FIG. 2 is a diagram illustrating a front view of the heating body 3 and a circuit for performing energization control in this embodiment. Moreover, FIG. 3 is sectional drawing of the heating body 3 in a present Example.

加熱体3は被加熱材としての記録材Pの搬送方向aに対して直角方向を長手とする細長の耐熱性・絶縁性・良熱伝導性の基板7、該基板の表面(フィルム摺動面)側に基板長手に沿って形成具備させた抵抗発熱体6、この抵抗発熱体を形成した加熱体表面を保護させた耐熱性オーバーコート層8、抵抗発熱体6の長手端部の給電用電極9・10等からなる全体に低熱容量の加熱体である。   The heating element 3 is an elongated heat-resistant / insulating / good heat-conductive substrate 7 whose longitudinal direction is a direction perpendicular to the conveying direction a of the recording material P as a material to be heated, the surface of the substrate (film sliding surface) ) Side of the resistance heating element 6 formed along the length of the substrate, the heat-resistant overcoat layer 8 protecting the surface of the heating element on which the resistance heating element is formed, and the feeding electrode at the longitudinal end of the resistance heating element 6 It is a heating element with a low heat capacity as a whole consisting of 9 · 10 and the like.

本実施例の抵抗発熱体6は、銀・パラジウム・ガラス粉末(無機結着剤)・有機結着剤を混練して調合したペーストをスクリーン印刷により、加熱体基板7上に線帯状に3本形成して得たものである。抵抗発熱体の形状については、後に詳細を述べる。抵抗発熱体の材料としては、銀パラジウム(Ag/Pd)以外にRuO2、Ta2N等の電気抵抗材料を用いても良い。 The resistance heating element 6 of this example is composed of three pastes in the form of a line band on the heating element substrate 7 by screen printing a paste prepared by kneading silver, palladium, glass powder (inorganic binder), and organic binder. It was obtained by forming. Details of the shape of the resistance heating element will be described later. As a material for the resistance heating element, an electrical resistance material such as RuO 2 or Ta 2 N may be used in addition to silver palladium (Ag / Pd).

7は耐熱性・絶縁性を有する加熱体基板であり、例えば、アルミナや窒化アルミニウム等のセラミックス材料が用いられる。本実施例では幅7mm・長さ270mm・厚さ1mmのアルミナ基板を使用している。給電用電極9・10は銀パラジウムのスクリーン印刷パターンを用いた。8は、抵抗発熱体6のオーバーコート層であり、抵抗発熱体6と加熱体3表面との電気的な絶縁性とフィルム2の摺動性とを確保することが主な目的である。本実施例では、オーバーコート層8として厚さ約50μmの耐熱性ガラス層を用いた。   Reference numeral 7 denotes a heating body substrate having heat resistance and insulation, and for example, a ceramic material such as alumina or aluminum nitride is used. In this embodiment, an alumina substrate having a width of 7 mm, a length of 270 mm, and a thickness of 1 mm is used. The power feeding electrodes 9 and 10 used a screen printing pattern of silver palladium. 8 is an overcoat layer of the resistance heating element 6, and its main purpose is to ensure electrical insulation between the resistance heating element 6 and the surface of the heating element 3 and the slidability of the film 2. In this example, a heat-resistant glass layer having a thickness of about 50 μm was used as the overcoat layer 8.

図2には加熱体3の裏面(非フィルム摺動面)も示している。5は加熱体の温度を検知するために設けられた検温素子である。本実施例では、検温素子として加熱体3から分離した外部当接型のサーミスタを用いている。この外部当接型サーミスタ5は、例えば支持体上に断熱層を設けその上にチップサーミスタの素子を固定し、素子を下側(加熱体裏面側)に向けて所定の加圧力により加熱体裏面に当接するような構成をとる。本実施例では、支持体として高耐熱性の液晶ポリマーを、断熱層としてセラミックスペーパーを積層したものを用いた。外部当接型サーミスタ5は最小通紙域内に設けられており、CPU11に通じている。   FIG. 2 also shows the back surface (non-film sliding surface) of the heating element 3. Reference numeral 5 denotes a temperature measuring element provided for detecting the temperature of the heating body. In this embodiment, an external contact type thermistor separated from the heating body 3 is used as the temperature measuring element. The external contact type thermistor 5 is provided with a heat insulating layer on a support, for example, and an element of the chip thermistor is fixed on the support, and the element is directed downward (on the back side of the heating body) with a predetermined pressurizing force. It is configured so as to abut. In this example, a highly heat-resistant liquid crystal polymer was used as the support, and ceramic paper was laminated as the heat insulating layer. The external contact type thermistor 5 is provided in the minimum sheet passing area and communicates with the CPU 11.

14は加熱体3の温度が異常昇温した場合に、抵抗発熱体6への通電を遮断するために設けられた安全素子であり、所定の加圧力で基板7の裏面に当接されている。安全素子としては、サーモスイッチや温度ヒューズ等を用いることができ、本実施例では所定の温度でバイメタルが反転することにより電流を遮断することができる機構をもつサーモスイッチを用いた。前述の通り、サーモスイッチ当接部は熱の逃げが大きく加熱体3の温度が部分的に低くなるため、それを補うためにサーモスイッチ当接部に対応する部分に絞り部15を設けている。絞り部15については、後に詳細を述べる。外部当接型サーミスタ5と同じく、サーモスイッチ14も最小通紙域内に設けられている。   Reference numeral 14 denotes a safety element provided to cut off the energization of the resistance heating element 6 when the temperature of the heating element 3 is abnormally increased, and is in contact with the back surface of the substrate 7 with a predetermined pressure. . As the safety element, a thermo switch, a thermal fuse, or the like can be used. In this embodiment, a thermo switch having a mechanism capable of interrupting current by reversing the bimetal at a predetermined temperature is used. As described above, the thermal switch contact portion has a large escape of heat and the temperature of the heating element 3 is partially lowered. Therefore, in order to compensate for this, the throttle portion 15 is provided at a portion corresponding to the thermo switch contact portion. . Details of the aperture 15 will be described later. Similar to the external contact type thermistor 5, the thermo switch 14 is also provided in the minimum sheet passing area.

この加熱体3をオーバーコート層8を形成具備させた表面側を下向きに露呈させてステー1の下面側に保持させて固定配設してある。以上の構成をとることにより、加熱体全体を熱ローラ方式に比べて低熱容量にすることができ、クイックスタートが可能になる。   The heating body 3 is fixedly disposed by exposing the surface side on which the overcoat layer 8 is formed and holding it on the lower surface side of the stay 1. By adopting the above configuration, the entire heating element can be reduced in heat capacity as compared with the heat roller system, and a quick start becomes possible.

加熱体3は、抵抗発熱体の長手端部の給電用電極9・10に対する給電により抵抗発熱体8が長手全長にわたって発熱することで昇温する。その昇温が外部当接型サーミスタ5で検知され、外部当接型サーミスタ5の出力をA/D変換しCPU11に取り込み、その情報に基づいてトライアック12により抵抗発熱体に通電する電力を位相制御あるいは波数制御等により制御して、加熱体3の温度制御がなされる。すなわち、外部当接型サーミスタ5の検知温度が所定の設定温度より低いと加熱体3が昇温するように、設定温度より高いと降温するように通電を制御することで、加熱体3は定着時一定温度に保たれる。なお、本実施例では位相制御により出力を0〜100%まで5%刻みの21段階で変化させている。出力100%は加熱体3に全通電したときの出力を示す。   The heating element 3 rises in temperature when the resistance heating element 8 generates heat over the entire length by feeding power to the feeding electrodes 9 and 10 at the longitudinal end of the resistance heating element. The temperature rise is detected by the external contact type thermistor 5, the output of the external contact type thermistor 5 is A / D converted and taken into the CPU 11, and the electric power supplied to the resistance heating element by the triac 12 based on the information is phase controlled. Alternatively, the temperature of the heating element 3 is controlled by controlling the wave number or the like. That is, the heating body 3 is fixed by controlling the energization so that the heating body 3 is heated when the temperature detected by the external contact type thermistor 5 is lower than a predetermined set temperature, and the temperature is lowered when the temperature is higher than the set temperature. At a constant temperature. In this embodiment, the output is changed in 21 steps from 5 to 100% from 0 to 100% by phase control. The output 100% indicates the output when the heater 3 is fully energized.

加熱体3の温度が所定に立ち上がり、かつ加圧ローラ4の回転によるフィルム2の回転周速度が定常化した状態において、フィルム2を挟んで加熱体3と加圧ローラ4とで形成される圧接ニップ部Nに被加熱材としての画像定着すべき記録材Pが画像形成部(転写部)より導入される。そして、記録材Pがフィルム2と一緒に圧接ニップ部Nを挟持搬送されることにより加熱体3の熱がフィルム2を介して記録材Pに付与され記録材P上の未定着顕画像(トナー画像)Tが記録材P面に加熱定着される。圧接ニップ部Nを通った記録材Pはフィルム2の面から分離されて搬送される。   Pressure contact formed by the heating body 3 and the pressure roller 4 with the film 2 sandwiched in a state where the temperature of the heating body 3 rises to a predetermined level and the rotational peripheral speed of the film 2 is stabilized by the rotation of the pressure roller 4 A recording material P to be image-fixed as a heated material is introduced into the nip portion N from an image forming portion (transfer portion). Then, when the recording material P is nipped and conveyed together with the film 2 through the pressure nip N, the heat of the heating body 3 is applied to the recording material P through the film 2 and an unfixed visible image (toner on the recording material P). Image) T is heat-fixed on the surface P of the recording material. The recording material P that has passed through the pressure nip N is separated from the surface of the film 2 and conveyed.

本実施例では、基板幅を有効に使い定着効率を向上させるために基板幅全体に抵抗発熱体を配置し、基板をニップ内に収める構成をとっている。すなわち、図4において、ニップ幅Nは基板幅の7mmよりも大きい。本実施例ではニップ幅の設計中心値を8mmとし、加圧力・加圧ローラ硬度等が製造上ふれても、必ず加熱体3がニップ内に収まるように設定している。   In this embodiment, in order to effectively use the substrate width and improve the fixing efficiency, a resistance heating element is disposed over the entire substrate width, and the substrate is placed in the nip. That is, in FIG. 4, the nip width N is larger than the substrate width of 7 mm. In this embodiment, the design center value of the nip width is set to 8 mm, and the heating body 3 is always set within the nip even if the pressing force, the pressure roller hardness, and the like are affected in manufacturing.

図1は本実施例における加熱体3の正面図である。図1においては、簡単のためオーバーコート層8を省略している。以下、本実施例の抵抗発熱体6の形状について、詳細に説明する。図1に示す通り、本実施例では抵抗発熱体6を3本設けており、記録材Pの搬送方向aにおいて上流側が1本、下流側が2本並列に接続された構成になっている。上流側の発熱体幅Aは2mmとし、下流側2本の発熱体幅A/2はいずれも1mmである。よって、総発熱体幅は4mmとなる。前述の通り、本実施例では抵抗発熱体6を可能な限り基板幅全体に配置する構成をとっており、搬送方向aにおいて基板端から抵抗発熱体端までの距離dは0.5mmである。絶縁性を確保するためオーバーコート層8は確実に抵抗発熱体6を覆う必要があるため、dの値としては0.5mm程度は最低限必要である。発熱体間距離Cは1mmとした。なお、抵抗発熱体6の厚さは、3本とも約10μmとした。   FIG. 1 is a front view of a heating body 3 in the present embodiment. In FIG. 1, the overcoat layer 8 is omitted for simplicity. Hereinafter, the shape of the resistance heating element 6 of the present embodiment will be described in detail. As shown in FIG. 1, in this embodiment, three resistance heating elements 6 are provided, and in the conveyance direction a of the recording material P, one upstream side and two downstream sides are connected in parallel. The upstream heating element width A is 2 mm, and the two downstream heating element widths A / 2 are both 1 mm. Therefore, the total heating element width is 4 mm. As described above, in this embodiment, the resistance heating element 6 is arranged over the entire substrate width as much as possible, and the distance d from the substrate end to the resistance heating element end in the transport direction a is 0.5 mm. Since the overcoat layer 8 needs to reliably cover the resistance heating element 6 in order to ensure insulation, the minimum value of d is about 0.5 mm. The distance C between the heating elements was 1 mm. Note that the thickness of the three resistance heating elements 6 was about 10 μm.

本実施例では、上流側の太い抵抗発熱体のみに絞り部15を設けており、図1に示す形状で絞り部のみ発熱体幅を細くしている。絞り部15の発熱体幅の設計値は1.6 mmであり、前述の式に従い絞り量は125%となる。本実施例の加熱装置の構成では、絞り量を125%に設定することにより、絞り部の定着性を他の部分と同等にできた。絞り部15の長手位置はサーモスイッチ当接部に対応させており、抵抗発熱体6の長手方向における中心から絞り部15の中心までの距離は25mmとした。絞り部15の長手方向の長さは7mmとした。   In this embodiment, only the thick resistance heating element on the upstream side is provided with the throttle portion 15, and the heating element width is narrowed only in the throttle portion in the shape shown in FIG. The design value of the heating element width of the aperture 15 is 1.6 mm, and the aperture is 125% according to the above formula. In the configuration of the heating apparatus of this example, the fixing property of the throttle part can be made equal to that of other parts by setting the throttle amount to 125%. The longitudinal position of the aperture 15 corresponds to the thermoswitch contact portion, and the distance from the center of the resistance heating element 6 in the longitudinal direction to the center of the aperture 15 is 25 mm. The length of the throttle part 15 in the longitudinal direction was 7 mm.

本実施例では、抵抗発熱体6の常温における総抵抗値(給電用電極9・10間の抵抗)は20Ωとした。よって、上流側の抵抗発熱体の抵抗値は約10Ω、下流側の抵抗発熱体の抵抗値はそれぞれ約20Ωである。   In this example, the total resistance value of the resistance heating element 6 at room temperature (resistance between the power feeding electrodes 9 and 10) was 20Ω. Therefore, the resistance value of the upstream resistance heating element is about 10Ω, and the resistance value of the downstream resistance heating element is about 20Ω.

本実施例のように、複数本の抵抗発熱体が存在する構成で最も幅が太いもののみに絞り部を設けることで、絞り量の精度は向上する。抵抗発熱体6の厚さが一定で抵抗材料として持つ体積抵抗値の部分的なばらつきがないと仮定すれば、絞り量は抵抗発熱体6の幅のみによって決まる。ここでは、厚さや体積抵抗値のばらつき以外の要素、すなわち発熱幅が絞り量に与える影響について議論する。スクリーン印刷のずれによる発熱体幅の製造上のばらつき(設計値からのずれ)は発熱体幅によらず一定であるため、発熱体幅が細くなるほどずれ量の影響を大きく受け、絞り量の設計値からのずれも大きくなる傾向にある。表1は、発熱体幅が設計値からずれた場合に、絞り量が設計値からどの程度ずれるかを、発熱体幅で比較したものである(発熱体幅1mmの場合と2mmの場合との比較)。ここで、発熱体幅の設計値からのずれ(公差)は0.1mmとした。製造上、この程度の公差は必要である。   As in the present embodiment, by providing the diaphragm portion only in the structure having a plurality of resistance heating elements and having the widest width, the accuracy of the diaphragm amount is improved. Assuming that the thickness of the resistance heating element 6 is constant and there is no partial variation in the volume resistance value possessed by the resistance material, the amount of drawing is determined only by the width of the resistance heating element 6. Here, the influence of factors other than variations in thickness and volume resistance, that is, the influence of the heat generation width on the drawing amount will be discussed. The variation in heating element width due to screen printing deviation (deviation from the design value) is constant regardless of the heating element width. Therefore, the thinner the heating element width, the greater the influence of the deviation amount, and the design of the aperture amount. The deviation from the value tends to increase. Table 1 compares how much the aperture amount deviates from the design value when the heating element width deviates from the design value (in the case of the heating element width of 1 mm and 2 mm). Comparison). Here, the deviation (tolerance) from the design value of the heating element width was set to 0.1 mm. This degree of tolerance is necessary in manufacturing.

Figure 2008152957
Figure 2008152957

表1において、設計値の欄は、絞り量125%を得るために必要な絞り部と絞り部以外の発熱体幅である。ずれ1の欄は発熱体幅が0.1mmプラス側にずれた場合で、ずれ2の欄は発熱体幅が0.1mmマイナス側にずれた場合を示す。絞り量の計算値は、絞り部と絞り部以外の発熱体幅から前述の式に従って絞り量を計算したものである。絞り量の差は、ずれ1・2の場合に絞り量が設計値からどの程度ずれているかを示したものである。表1に示す通り、発熱体幅が広い方が絞り量のずれが少なく(2mmは1mmの約1/2)、絞り量の精度が向上することが分かる。   In Table 1, the column of the design value is a throttle portion necessary for obtaining a throttle amount of 125% and a heating element width other than the throttle portion. The column for deviation 1 shows the case where the heating element width has shifted to the plus side by 0.1 mm, and the column for deviation 2 shows the case where the heating element width has shifted to the minus side by 0.1 mm. The calculated value of the aperture amount is obtained by calculating the aperture amount according to the above formula from the aperture portion and the width of the heating element other than the aperture portion. The difference in the aperture amount indicates how much the aperture amount deviates from the design value when the displacement is 1 or 2. As shown in Table 1, it can be seen that the wider the heating element width, the smaller the displacement of the aperture (2 mm is about 1/2 of 1 mm), and the accuracy of the aperture is improved.

本実施例において、下流側の幅1mmの抵抗発熱体にも絞り部を設けてしまうと、上述の通り、下流側の抵抗発熱体の絞り量の精度が悪化するため、上流側と下流側とを合わせた抵抗発熱体全体の絞り量の精度も悪化する。よって、本実施例のように、最も幅の広い上流側の発熱体のみに絞り部を設ける構成が望ましい。   In this embodiment, if a restriction portion is provided also in the resistance heating element having a width of 1 mm on the downstream side, as described above, the accuracy of the restriction amount of the downstream resistance heating element is deteriorated. In addition, the accuracy of the amount of restriction of the entire resistance heating element is also deteriorated. Therefore, as in the present embodiment, a configuration in which the throttle portion is provided only in the widest upstream heating element is desirable.

以下、定着効率・コスト・絞り量の精度の3点において、本実施例と3種類の従来例との比較をする。図6〜8は従来例1〜3の加熱体の正面図である。図6〜8においても、簡単のためオーバーコート層は省略している。また、従来例1〜3の加熱体と本実施例の加熱体との相違点は、抵抗発熱体6の形状のみであり、それ以外の構成や材料、抵抗発熱体6の総抵抗等は全て同じであるとする。   In the following, the present embodiment is compared with three types of conventional examples in terms of fixing efficiency, cost, and aperture accuracy. FIGS. 6-8 is a front view of the heating body of the prior art examples 1-3. 6 to 8, the overcoat layer is omitted for simplicity. Further, the difference between the heating elements of the conventional examples 1 to 3 and the heating element of this example is only the shape of the resistance heating element 6, and all other configurations and materials, the total resistance of the resistance heating element 6, etc. Suppose they are the same.

図6は従来例1の加熱体の正面図である。従来例1では抵抗発熱体は2本とし、搬送方向aにおいて上下流対称の形状となっている。発熱体幅Aは2mmであり、総発熱体幅は本実施例と同じく4mmである。従来例1の発熱体パターンは、抵抗発熱体6を基板幅全体に配置せず基板をニップ内に収めない構成において一般的である、抵抗発熱体6が基板7の幅方向中央に寄せられたパターンである。発熱体間距離Cは0.5mmであり、基板端から抵抗発熱体端までの距離dは1.25mmとなる。従来例1は、抵抗発熱体6を基板幅全体に配置していないため、定着効率は本実施例よりも劣る。総発熱体幅は本実施例と同じであるので、銀パラジウムの使用量は変わらずコストも同じである。絞り量の精度も、絞り部を設けている発熱体幅は本実施例と同じく2mmであるので、同等である。   FIG. 6 is a front view of the heating body of Conventional Example 1. In Conventional Example 1, the number of resistance heating elements is two, and the shape is symmetrical in the upstream and downstream directions in the transport direction a. The heating element width A is 2 mm, and the total heating element width is 4 mm as in this embodiment. The heating element pattern of Conventional Example 1 is generally used in a configuration in which the resistance heating element 6 is not arranged over the entire width of the substrate and the substrate is not stored in the nip. The resistance heating element 6 is brought to the center in the width direction of the substrate 7. It is a pattern. The distance C between the heating elements is 0.5 mm, and the distance d from the substrate end to the resistance heating element end is 1.25 mm. In Conventional Example 1, since the resistance heating element 6 is not disposed over the entire width of the substrate, the fixing efficiency is inferior to that of this example. Since the total heating element width is the same as in this embodiment, the amount of silver palladium used is the same and the cost is the same. The accuracy of the aperture amount is also the same because the width of the heating element provided with the aperture is 2 mm as in this embodiment.

図7は従来例2の加熱体の正面図である。従来例2は従来例1の構成をベースに可能な限り発熱体幅を広くした構成をとっている。発熱体幅Bは2.75mmであり、総発熱体幅は5.5mmである。発熱体間距離Cは0.5mm、基板端から抵抗発熱体端までの距離dも0.5mmである。従来例2は、抵抗発熱体6を基板幅全体に配置し、かつ総発熱体幅も大きいため、定着効率は本実施例よりも優るが、コストが非常に高くなる。絞り量の精度は、絞り部を設けている発熱体幅が本実施例よりも広いため、本実施例よりも優る。   FIG. 7 is a front view of a heating body of Conventional Example 2. Conventional Example 2 has a configuration in which the heating element width is made as wide as possible based on the configuration of Conventional Example 1. The heating element width B is 2.75 mm, and the total heating element width is 5.5 mm. The distance C between the heating elements is 0.5 mm, and the distance d from the substrate edge to the resistance heating element edge is also 0.5 mm. In Conventional Example 2, since the resistance heating element 6 is disposed over the entire substrate width and the total heating element width is large, the fixing efficiency is superior to that of the present embodiment, but the cost is very high. The accuracy of the aperture amount is superior to that of this embodiment because the width of the heating element provided with the aperture is wider than that of this embodiment.

図8は従来例3の加熱体の正面図である。従来例3では抵抗発熱体6は4本とし、上流側に2本、下流側に2本それぞれ並列に接続されている。従来例3も基板幅全体に抵抗発熱体6を配置したパターンになっている。4本の発熱体幅A/2は全て1mmであり、総発熱体幅は本実施例と同じく4mmである。発熱体間距離C・Dはそれぞれ0.6mm・0.8mmであり、基板端から抵抗発熱体端までの距離dは最小の0.5mmである。従来例3は、抵抗発熱体6を基板幅全体に配置していて、総発熱体幅も本実施例と同じであるため、定着効率は本実施例とほぼ同等と考えられる。実際に従来例3の加熱体を本実施例の加熱装置に搭載して比較した結果、同等の定着性を得るために必要な電力はほぼ同等であった。コストも本実施例と同じである。ただし、絞り量の精度は、絞り部を設けている発熱体幅が1mmで本実施例よりも細いので、前述したとおり悪化する。   FIG. 8 is a front view of a heating body of Conventional Example 3. In Conventional Example 3, four resistance heating elements 6 are connected in parallel, two on the upstream side and two on the downstream side. Conventional example 3 also has a pattern in which resistance heating elements 6 are arranged over the entire width of the substrate. The four heating element widths A / 2 are all 1 mm, and the total heating element width is 4 mm as in this embodiment. The distances C and D between the heating elements are 0.6 mm and 0.8 mm, respectively, and the distance d from the substrate end to the resistance heating element end is a minimum of 0.5 mm. In Conventional Example 3, the resistance heating element 6 is disposed over the entire substrate width, and the total heating element width is the same as in this embodiment, so that the fixing efficiency is considered to be substantially equivalent to that in this embodiment. As a result of actually mounting and comparing the heating element of Conventional Example 3 on the heating device of this example, the electric power necessary to obtain the same fixing ability was almost the same. The cost is the same as in this embodiment. However, the accuracy of the aperture amount deteriorates as described above because the width of the heating element provided with the aperture portion is 1 mm, which is narrower than the present embodiment.

以上、説明してきた、定着効率・コスト・絞り量の精度の3点における本実施例と従来例1〜3との比較をまとめると、表2のようになる。   Table 2 summarizes the comparison between the present embodiment and the conventional examples 1 to 3 in terms of the fixing efficiency, cost, and aperture accuracy described above.

Figure 2008152957
Figure 2008152957

○は本実施例と同等であり、◎は本実施例よりも優っており、×は本実施例よりも劣っていることを意味する。表2に示した通り、本実施例が定着効率・コスト・絞り量の精度の3点において、最もバランスのとれた構成であることが分かる。従来例2は、定着効率と絞り量の精度で本実施例よりも優るが、本実施例に対するコストアップが非常に大きくバランスが悪い。なお、従来例1・3の総発熱体幅は本実施例に合わせる必要性はないが、コストを同じにして定着効率と絞り量の精度を本実施例と比較した方が、全体的なバランスの比較が容易であるため、本実施例と同じ総発熱体幅とした。   “◯” is equivalent to this example, “優” is superior to this example, and “x” means inferior to this example. As shown in Table 2, it can be seen that this embodiment is the most balanced configuration in terms of fixing efficiency, cost, and aperture accuracy. Conventional Example 2 is superior to the present embodiment in terms of fixing efficiency and aperture accuracy, but the cost increase relative to the present embodiment is very large and the balance is poor. Although the total heating element widths of the conventional examples 1 and 3 do not need to match those of this embodiment, the overall balance is better when the cost is the same and the accuracy of the fixing efficiency and the aperture amount is compared with this embodiment. Therefore, the total heating element width is the same as that of this example.

(実施例2)
本実施例では、抵抗発熱体の形状が実施例1と異なった加熱体を用いる。抵抗発熱体の形状以外の加熱体、加熱装置、画像形成装置の構成は実施例1と同じである。
(Example 2)
In this embodiment, a heating element having a resistance heating element having a shape different from that of the first embodiment is used. The configurations of the heating element, the heating device, and the image forming apparatus other than the shape of the resistance heating element are the same as those in the first embodiment.

図9は本実施例における加熱体3の正面図である。図9においても、簡単のためオーバーコート層を省略している。図9に示す通り、本実施例では抵抗発熱体6を5本設けており、上流側が1本、下流側が4本並列に接続された構成になっている。上流側の発熱体幅Aは2mmとし、下流側4本の発熱体幅A/4はいずれも0.5mmである。よって、総発熱体幅は実施例1と同じく4mmとなる。本実施例においても、抵抗発熱体6を可能な限り基板幅全体に配置する構成をとっており、発熱体間距離C・基板端から抵抗発熱体端までの距離dはともに0.5mmとした。   FIG. 9 is a front view of the heating body 3 in the present embodiment. Also in FIG. 9, the overcoat layer is omitted for simplicity. As shown in FIG. 9, in the present embodiment, five resistance heating elements 6 are provided, and one upstream side and four downstream sides are connected in parallel. The upstream heating element width A is 2 mm, and the four downstream heating element widths A / 4 are both 0.5 mm. Therefore, the total heating element width is 4 mm as in the first embodiment. Also in this embodiment, the resistance heating element 6 is arranged as much as possible over the entire substrate width, and the distance C between the heating elements and the distance d from the substrate edge to the resistance heating element edge are both 0.5 mm.

なお、抵抗発熱体6の厚さは、実施例1と同じく5本とも約10μmとした。また、抵抗発熱体6の材料も、実施例1と同じく銀パラジウムをスクリーン印刷したものを用いた。   The thickness of the resistance heating element 6 was set to about 10 μm for all the five heating elements as in the first embodiment. Further, the material of the resistance heating element 6 was the same as that used in Example 1 with screen-printed silver palladium.

本実施例においても、上流側の太い抵抗発熱体のみに絞り部15を設けている。絞り部15の発熱体幅の設計値は1.6mmであり、絞り量は125%となる。本実施例の加熱装置の構成においても、絞り量を125%に設定することにより、絞り部の定着性を他の部分と同等にできた。絞り部15の長手方向の位置・長さは実施例1と同じとした。   Also in the present embodiment, the narrowed portion 15 is provided only on the upstream thick resistance heating element. The design value of the heating element width of the aperture 15 is 1.6 mm, and the aperture is 125%. Also in the configuration of the heating apparatus of the present example, the fixing property of the throttle part can be made equal to that of other parts by setting the throttle amount to 125%. The position and length in the longitudinal direction of the aperture 15 are the same as those in the first embodiment.

本実施例においても、抵抗発熱体6の常温における総抵抗値(給電用電極9・10間の抵抗)は20Ωとした。よって、上流側の抵抗発熱体の抵抗値は約10Ω、下流側の抵抗発熱体の抵抗値はそれぞれ約40Ωである。   Also in this example, the total resistance value (resistance between the power feeding electrodes 9 and 10) of the resistance heating element 6 at room temperature was 20Ω. Therefore, the resistance value of the upstream resistance heating element is about 10Ω, and the resistance value of the downstream resistance heating element is about 40Ω.

本実施例においても、実施例1で説明したのと同様に、定着効率・コスト・絞り量の精度の3点のバランスのとれた構成を達成できる。また、下流側の抵抗発熱体を4本に増やしているので、実施例1よりも基板幅方向の温度分布がより均一になり、ニップ内で基板全体の温度を効率良く高くすることができ、定着効率が更に向上する。   In this embodiment as well, as described in the first embodiment, it is possible to achieve a balanced configuration of three points of fixing efficiency, cost, and aperture accuracy. Moreover, since the resistance heating elements on the downstream side are increased to four, the temperature distribution in the substrate width direction becomes more uniform than in Example 1, and the temperature of the entire substrate can be efficiently increased in the nip. Fixing efficiency is further improved.

本発明の第1の実施例に係る加熱体の正面図The front view of the heating body which concerns on 1st Example of this invention 本発明の第1の実施例に係る加熱体の正面図及び通電制御を行う回路を表す図The figure showing the front view of the heating body which concerns on 1st Example of this invention, and the circuit which performs electricity supply control 本発明の第1の実施例に係る加熱体の断面図Sectional drawing of the heating body which concerns on 1st Example of this invention 本発明に係る加熱装置の概略構成図Schematic configuration diagram of a heating device according to the present invention 本発明に係るレーザービームプリンタの要部を示す概略構成図1 is a schematic configuration diagram showing a main part of a laser beam printer according to the present invention. 従来例1の加熱体の正面図Front view of heating body of Conventional Example 1 従来例2の加熱体の正面図Front view of heating body of Conventional Example 2 従来例3の加熱体の正面図Front view of heating body of Conventional Example 3 本発明の第2の実施例に係る加熱体の正面図The front view of the heating body which concerns on 2nd Example of this invention

符号の説明Explanation of symbols

1 ステー
2 定着フィルム
3 加熱体(ヒータ)
4 加圧ローラ
5 検温素子(外部当接型サーミスタ)
6 抵抗発熱体
7 加熱体基板
8 オーバーコート層
9・10 給電用電極
11 CPU
12 トライアック
13 AC電源
14 安全素子(サーモスイッチ)
15 絞り部
N ニップ部
P 記録材
T トナー
A 記録材搬送方向
1 stay 2 fixing film 3 heating element (heater)
4 Pressure roller 5 Temperature sensor (external contact type thermistor)
6 Resistance heating element 7 Heating substrate 8 Overcoat layer 9 · 10 Power supply electrode 11 CPU
12 Triac 13 AC power supply 14 Safety element (thermo switch)
15 Aperture
N Nip part
P Recording material
T toner
A Recording material transport direction

Claims (7)

少なくとも基板と、複数の抵抗発熱体と、抵抗発熱体に給電する電極とからなる加熱体によって被加熱材を加熱する加熱装置において、複数の抵抗発熱体は被加熱材が搬送される方向の幅が異なるものを含み、幅が最も広い抵抗発熱体のみに、抵抗発熱体の長手方向の一部で被加熱材搬送方向の幅が他の部分の幅と異なる領域が存在することを特徴とする加熱装置。   In a heating device that heats a material to be heated by a heating element including at least a substrate, a plurality of resistance heating elements, and an electrode that supplies power to the resistance heating element, the plurality of resistance heating elements have a width in a direction in which the material to be heated is conveyed Only the resistance heating element having the widest width includes a region in which the width in the conveyance direction of the heated material is different from the width of the other part in the longitudinal direction of the resistance heating element only. Heating device. 請求項1記載の加熱装置において、被加熱材搬送方向の幅が最も広い抵抗発熱体のみに、抵抗発熱体の長手方向の一部で被加熱材搬送方向の幅が他の部分の幅よりも細くなる領域が存在することを特徴とする加熱装置。   The heating device according to claim 1, wherein only the resistance heating element having the widest width in the conveyance direction of the heated material has a width in the conveyance direction of the heated material in a part of the longitudinal direction of the resistance heating element as compared with the width of the other portion. A heating device characterized in that a thinning region exists. 請求項1・2記載の加熱装置において、抵抗発熱体の長手方向の一部で被加熱材搬送方向の幅が他の部分の幅と異なる領域に対応する部分に、抵抗発熱体と直列に接続された安全素子が当接されており、安全素子は所定の温度以上になると抵抗発熱体への給電を遮断する構成であることを特徴とする加熱装置。   3. The heating device according to claim 1 or 2, wherein the resistance heating element is connected in series to a part of the longitudinal direction of the resistance heating element corresponding to a region where the width of the heated material conveyance direction is different from the width of the other part. A heating device, wherein the safety element is in contact with the safety element, and the power supply to the resistance heating element is cut off when the safety element reaches or exceeds a predetermined temperature. 請求項3記載の加熱装置において、前記安全素子は、サーモスイッチあるいは温度ヒューズであることを特徴とする加熱装置。   4. The heating apparatus according to claim 3, wherein the safety element is a thermo switch or a thermal fuse. 少なくとも、加熱体と、一面を加熱体と接触摺動し他面を被加熱材と接触する耐熱性フィルムと、耐熱性フィルムを駆動し、かつ耐熱性フィルムを介して被加熱材を加熱体に密着させる加圧部材とを有し、加熱体と加圧部材により形成されるニップ部を耐熱性フィルムと被加熱材が一緒に挟持搬送されることにより被加熱材を加熱する加熱装置において、該加熱装置が請求項1〜4の何れか1項に記載の構成であることを特徴とする加熱装置。   At least a heating body, a heat-resistant film that contacts and slides one surface with the heating body, and the other surface contacts the material to be heated, drives the heat-resistant film, and the material to be heated is heated through the heat-resistant film. A heating device that heats the heated material by sandwiching and transporting the heat-resistant film and the heated material together through a nip formed by the heating body and the pressurized member. A heating apparatus having the configuration according to any one of claims 1 to 4. 請求項5記載の加熱装置において、被加熱材搬送方向において前記加熱体の基板が加熱体と加圧部材により形成されるニップ部の中に存在することを特徴とする加熱装置。   6. The heating apparatus according to claim 5, wherein the substrate of the heating body is present in a nip portion formed by the heating body and the pressure member in the direction of transporting the heated material. 記録材上に画像を形成する像形成手段と、該記録材上の画像を加熱する像加熱手段とを有する画像形成装置において、像形成手段として請求項1〜6の何れか1項に記載の加熱装置を備えたことを特徴とする画像形成装置。   7. The image forming apparatus according to claim 1, wherein the image forming apparatus includes an image forming unit that forms an image on a recording material, and an image heating unit that heats the image on the recording material. An image forming apparatus comprising a heating device.
JP2006337175A 2006-12-14 2006-12-14 Heating device and image forming device Withdrawn JP2008152957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006337175A JP2008152957A (en) 2006-12-14 2006-12-14 Heating device and image forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006337175A JP2008152957A (en) 2006-12-14 2006-12-14 Heating device and image forming device

Publications (1)

Publication Number Publication Date
JP2008152957A true JP2008152957A (en) 2008-07-03

Family

ID=39654934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006337175A Withdrawn JP2008152957A (en) 2006-12-14 2006-12-14 Heating device and image forming device

Country Status (1)

Country Link
JP (1) JP2008152957A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112822798A (en) * 2020-12-31 2021-05-18 博宇(天津)半导体材料有限公司 Vertical ceramic heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112822798A (en) * 2020-12-31 2021-05-18 博宇(天津)半导体材料有限公司 Vertical ceramic heater

Similar Documents

Publication Publication Date Title
JP5253240B2 (en) Image heating apparatus and heater used in the image heating apparatus
JP4944987B2 (en) Image forming method
JP4659204B2 (en) Fixing apparatus and image forming apparatus provided with the fixing apparatus
JP2020086278A (en) Heating device, fixing device, and image forming apparatus
JP2007025474A (en) Heating device and image forming apparatus
JPH10221986A (en) Image forming device and heater for heating for heating/ fixing device
JP2010164930A (en) Heat fixing apparatus
JP6866089B2 (en) Fixing device
US20040028423A1 (en) Image heating apparatus and image forming apparatus
JP4829551B2 (en) Image forming apparatus
JP2013011649A (en) Image heating device
JP3478697B2 (en) Heat fixing device
JP2008140702A (en) Heating device, and image forming device
JP2008139778A (en) Heating device and image forming apparatus
JP2002236426A (en) Fixing device and image forming apparatus
JP2003337484A (en) Heating device and image forming apparatus
JP3848001B2 (en) Heat fixing device and image forming apparatus
JP2008152957A (en) Heating device and image forming device
JP4208587B2 (en) Fixing device
JP2008123709A (en) Heating body, fixing device, and image forming device
JP2010250094A (en) Heating device and image forming apparatus
JP2009186752A (en) Image forming apparatus
JP2008040082A (en) Image heating apparatus
JP4659205B2 (en) Image forming apparatus
JP2006317512A (en) Heat fixing-device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100302