JP2009139052A - Aluminum heat exchanger with superior corrosion resistance and its manufacturing method - Google Patents

Aluminum heat exchanger with superior corrosion resistance and its manufacturing method Download PDF

Info

Publication number
JP2009139052A
JP2009139052A JP2007318270A JP2007318270A JP2009139052A JP 2009139052 A JP2009139052 A JP 2009139052A JP 2007318270 A JP2007318270 A JP 2007318270A JP 2007318270 A JP2007318270 A JP 2007318270A JP 2009139052 A JP2009139052 A JP 2009139052A
Authority
JP
Japan
Prior art keywords
tube
header
brazing
less
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007318270A
Other languages
Japanese (ja)
Other versions
JP5334086B2 (en
Inventor
Yasunori Hyogo
靖憲 兵庫
Masazo Asano
雅三 麻野
Ken Toma
建 当摩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2007318270A priority Critical patent/JP5334086B2/en
Publication of JP2009139052A publication Critical patent/JP2009139052A/en
Application granted granted Critical
Publication of JP5334086B2 publication Critical patent/JP5334086B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Prevention Of Electric Corrosion (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger with superior brazing characteristics and superior long term corrosion resistance. <P>SOLUTION: A tube having an alloy composition containing 0.05-0.50% of Mn, more than 0.10% and less than 0.50% of Si, and 0.01-0.10% of Cu, and the rest comprising aluminum and unavoidable impurity, and applied on a surface with a binder and a fluoric flux containing Si powder and zinc with a particle size of 30 μm or less is attached and brazed to a header, and a junction fillet wherein an electric potential of the tube surface is relatively 20 mV or more lower is formed between the header and the tube by brazing. By carrying out brazing by using fine Si powder, favorable brazing can be carried out without local melting of the tube during brazing, the tube surface becomes 30 mV or more lower than the fillet formed between the tube and the header, and corrosion of the fillet is sufficiently prevented. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、自動車のエアコンコンデンサなどに好適なアルミニウム製熱交換器および該熱交換器の製造方法に関するものである。   The present invention relates to an aluminum heat exchanger suitable for an air conditioner condenser of an automobile, and a method for manufacturing the heat exchanger.

ろう付によって製造されるアルミニウム製熱交換器では、これまでAl製の芯材にAl−Si合金ろう材をクラッドしたブレージングシートが広く使用されてきているが、これを用いなくともSi粉末をフラックスとバインダとの混合物の形でチューブ(押出管など)の表面に塗布したものを使用することによって安価に製品が製造できるようになっている。   In aluminum heat exchangers manufactured by brazing, brazing sheets in which an Al-Si alloy brazing material is clad on an Al core material have been widely used so far. A product can be manufactured at a low cost by using a tube (extruded tube or the like) coated in the form of a mixture of a binder and a binder.

しかし、Si粉末を用いたろう付けでは、ろう付時の加熱でチューブ表面から内部にSiが拡散するため、Si濃度が表面で高く内部で低くなり、チューブには表面で電位が高く内部で低い電位勾配が形成される。このため、チューブに腐食が生じると孔食となり、冷媒漏れや強度低下の原因となっていた。   However, in brazing using Si powder, Si diffuses from the tube surface to the inside due to heating during brazing, so the Si concentration is high on the surface and low inside, and the tube has a high potential on the surface and a low potential on the inside. A gradient is formed. For this reason, when corrosion occurs in the tube, it becomes pitting corrosion, causing refrigerant leakage and strength reduction.

そこで、亜鉛含有フラックスを用いることで、ろう付時の亜鉛拡散による犠牲層をチューブ表面に形成させ、チューブに腐食が生じた場合でも全面腐食となって貫通孔の発生が抑制され、孔食発生によるチューブの冷媒漏れや強度低下を抑制することができる方法が提案されている(例えば特許文献1参照)。
特開2004−330233号公報
Therefore, by using a zinc-containing flux, a sacrificial layer formed by zinc diffusion during brazing is formed on the tube surface, and even when the tube is corroded, the entire surface is corroded and the generation of through holes is suppressed. There has been proposed a method capable of suppressing the refrigerant leakage and strength reduction of the tube due to (see, for example, Patent Document 1).
JP 2004-330233 A

しかし、上記方法では確かにチューブの耐食性は良好であるものの、チューブとヘッダーの接合部フィレットは、チューブ表面に形成されたろう材とヘッダーに貼り合わされていたろう材が流動し形成されるため、チューブに塗布されていた亜鉛を含むフラックスから供給される亜鉛により、電位が卑となり腐食の進行が促進される。このフィレットではチューブ表面のような亜鉛の濃度勾配がなく一定なため、腐食が生じるとフィレット内部への進行を抑制することができない。そのため、チューブで腐食による貫通孔が発生しなくとも、このフィレットで貫通孔が発生し、冷媒漏れによる問題が発生する。   However, although the corrosion resistance of the tube is certainly good in the above method, the joint fillet of the tube and header is formed by the flow of the brazing material formed on the tube surface and the brazing material bonded to the header. By the zinc supplied from the flux containing zinc that has been applied, the potential becomes lower and the progress of corrosion is promoted. Since this fillet has a constant zinc concentration gradient as on the tube surface, if corrosion occurs, the progress to the fillet cannot be suppressed. Therefore, even if a through hole due to corrosion does not occur in the tube, a through hole is generated in this fillet, causing a problem due to refrigerant leakage.

本発明は、上記事情を背景としてなされたものであり、チューブとヘッダーとの接合部においても良好な耐食性が確保されるアルミニウム製熱交換器および該熱交換器の製造方法を提供することを目的とする。   The present invention has been made against the background of the above circumstances, and an object of the present invention is to provide an aluminum heat exchanger in which good corrosion resistance is ensured even at a joint portion between a tube and a header, and a method for manufacturing the heat exchanger. And

すなわち、本発明の耐食性に優れたアルミニウム熱交換器の製造方法のうち、第1の本発明は、質量%でMn:0.05〜0.50%、Si:0.10%超〜0.50%未満、Cu:0.001〜0.10%未満を含有し、残部アルミニウムと不可避不純物からなる合金組成を有し、表面に粒径30μm以下のSi粉末と亜鉛を含有したフッ化物系フラックスとバインダとを塗布したチューブをヘッダーに組み付けてろう付けし、該ろう付けによって前記ヘッダーと前記チューブとの間に、前記チューブ表面の電位が相対的に20mV以上卑となる接合部フィレットを形成することを特徴とする。   That is, among the manufacturing methods of the aluminum heat exchanger excellent in corrosion resistance of the present invention, the first present invention is Mn: 0.05 to 0.50% by mass%, Si: more than 0.10% to 0.00. Fluoride-based flux containing less than 50%, Cu: 0.001 to less than 0.10%, having an alloy composition consisting of the balance aluminum and inevitable impurities, and containing Si powder having a particle size of 30 μm or less and zinc on the surface And a tube coated with a binder are assembled to the header and brazed, and by this brazing, a joint fillet is formed between the header and the tube so that the potential of the tube surface is relatively lower than 20 mV. It is characterized by that.

第2の本発明の耐食性に優れたアルミニウム熱交換器の製造方法は、前記第1の本発明において、前記亜鉛を含有したフッ化物系フラックスは、亜鉛換算量で2〜10g/mが前記チューブに塗布されていることを特徴とする。 The manufacturing method of the aluminum heat exchanger excellent in corrosion resistance according to the second aspect of the present invention is the first aspect of the present invention, wherein the zinc-containing fluoride-based flux is 2 to 10 g / m 2 in terms of zinc. It is applied to the tube.

第3の本発明の耐食性に優れたアルミニウム熱交換器の製造方法は、前記第1または第2の本発明において、前記ヘッダーがろう材をクラッドしたクラッド材であり、前記ろう材中の亜鉛の濃度が質量%で、2.0%未満であることを特徴とする。   According to a third aspect of the present invention, there is provided a method for producing an aluminum heat exchanger excellent in corrosion resistance. In the first or second aspect of the present invention, the header is a clad material clad with a brazing material, and the zinc in the brazing material The concentration is mass% and is less than 2.0%.

第4の本発明の耐食性に優れたアルミニウム熱交換器の製造方法は、前記第1〜第3の本発明のいずれかにおいて、前記ヘッダーの外側に質量%で、亜鉛を0.5〜3.0%含有した犠牲層が設けられていること特徴とする。   The manufacturing method of the aluminum heat exchanger excellent in corrosion resistance according to the fourth aspect of the present invention is the method according to any one of the first to third aspects of the present invention, wherein the zinc is added in an amount of 0.5-3. A sacrificial layer containing 0% is provided.

第5の本発明の耐食性に優れたアルミニウム熱交換器は、質量%でMn:0.05〜0.50%、Si:0.10%超〜0.50%未満、Cu:0.001〜0.10%未満を含有し、残部アルミニウムと不可避不純物からなる合金組成を有するチューブとヘッダーとが、チューブ表面に塗布され、粒径30μm以下のSi粉末と亜鉛を含有したフッ化物系フラックスとバインダとを含む塗布物によってろう付けされており、前記チューブ表面の電位が、前記ろう付けによって前記チューブとヘッダーとの間に形成された接合部フィレットの電位よりも20mV以上卑になっていることを特徴とする。   The aluminum heat exchanger excellent in corrosion resistance of the fifth aspect of the present invention is Mn: 0.05 to 0.50% in mass%, Si: more than 0.10% to less than 0.50%, Cu: 0.001 to A tube and header containing less than 0.10% and having an alloy composition consisting of the balance aluminum and inevitable impurities are applied to the tube surface, and a fluoride flux and binder containing Si powder having a particle size of 30 μm or less and zinc. That the potential of the surface of the tube is more than 20 mV lower than the potential of the joint fillet formed between the tube and the header by the brazing. Features.

本発明はアルミニウム製熱交換器に関するものであり、組成が限定されたチューブとヘッダーとが組み合わされる。その他にフィン等が接合されて熱交換器として用いることが可能になる。なお、ここでアルミニウム製とされるものには、チューブとしてのアルミニウム合金の他に、アルミニウム合金や純アルミニウム、その他材料からなる部材の組み合わせのものが含まれる。   The present invention relates to an aluminum heat exchanger, in which a tube and a header having a limited composition are combined. In addition, fins or the like can be joined and used as a heat exchanger. Here, what is made of aluminum includes, in addition to an aluminum alloy as a tube, a combination of members made of aluminum alloy, pure aluminum, or other materials.

次に、チューブの組成を限定した理由を説明する。なお、下記含有量はいずれも質量%で示されている。   Next, the reason why the composition of the tube is limited will be described. In addition, all the following content is shown by the mass%.

Mn:0.05〜0.50%
Mnは、チューブの強度を向上させることができるとともに、チューブの電位調整を行うことができるので、必須成分として含有させる。0.05%未満の含有では、効果が少なく、ヘッダーとの間に形成されるフィレットに対する良好な電位関係も得られない。一方、0.50%を超えて含有すると、材料の押出し加工性を低下させる。
Mn: 0.05 to 0.50%
Since Mn can improve the strength of the tube and adjust the potential of the tube, Mn is contained as an essential component. If the content is less than 0.05%, the effect is small, and a good potential relationship with respect to the fillet formed between the header and the header cannot be obtained. On the other hand, if the content exceeds 0.50%, the extrudability of the material is lowered.

Si:0.10%超〜0.50%未満
Siは、Mnとともに含有させることで、微細なAl−Mn−Si系化合物を形成し、強度が有効に向上し、またチューブの電位調整をすることができるので、必須成分として含有させる。ただし、0.10%以下の含有では、上記効果が十分でなく、フィレットとの間の良好な電位関係が得られない。一方、0.50%以上含有すると、合金の融点が低下して押出加工中に材料の部分溶融による表面欠陥を生じるようになる。
Si: More than 0.10% to less than 0.50% Si, together with Mn, forms a fine Al-Mn-Si compound, effectively improves strength, and adjusts the potential of the tube. Therefore, it is contained as an essential component. However, if the content is 0.10% or less, the above effect is not sufficient, and a good potential relationship with the fillet cannot be obtained. On the other hand, when the content is 0.50% or more, the melting point of the alloy is lowered, and surface defects are caused by partial melting of the material during the extrusion process.

Cu:0.001〜0.10%
適量のCu含有はチューブの耐食性および強度を向上させる作用がある。0.001%未満のCu含有では、耐食性の向上はなく、チューブの強度が低下する。一方、0.10%超のCu含有では、チューブやヘッダーとの間に形成されるフィレットの耐食性が劣化する。
Cu: 0.001 to 0.10%
An appropriate amount of Cu has the effect of improving the corrosion resistance and strength of the tube. When Cu content is less than 0.001%, the corrosion resistance is not improved and the strength of the tube is lowered. On the other hand, if Cu content exceeds 0.10%, the corrosion resistance of the fillet formed between the tube and the header deteriorates.

この他にTi、Feの1種または2種を加えても良い。これら元素も材料強度を向上させる効果も有する。Ti、Feを含有させる場合、Fe:0.10〜0.50%、Ti:0.01〜0.20%の含有量とする。これら成分は、上限を超える量の含有ではさらに優れた特性を付与できないばかりでなく、材料の加工性を劣化させる。一方、下限未満では狙いの特性を付与できない。   In addition, one or two of Ti and Fe may be added. These elements also have the effect of improving the material strength. When Ti and Fe are contained, the content is Fe: 0.10 to 0.50% and Ti: 0.01 to 0.20%. When these components are contained in an amount exceeding the upper limit, not only excellent properties can be imparted but also the workability of the material is deteriorated. On the other hand, if it is less than the lower limit, the desired characteristics cannot be imparted.

さらに、本発明においてSi粉末にはより微細なものを用い、これをチューブ表面に均一に塗布することによって、ろう付時の加熱によってチューブ表面全体に薄いAl−Si合金溶融ろうが形成され、チューブの局部溶融がほとんど生じることがない。このため、チューブ表面上に凹みが生じることがなく、チューブの強度が十分保たれ、凹み発生による製品の耐食性劣化も抑えることができる。粒径が30μmを超えると上記局部溶融による凹みが生じるようになる。好適には、さらにSi粉末の平均粒径を1〜5μm未満とするのが望ましい。これは平均粒径が1μm未満であると、Al−Si合金溶融ろうの形成が十分でなく、ろう付け性が低下するためであり、5μm以上では局部溶融による凹みが生じやすくなるためである。   Furthermore, in the present invention, a finer powder is used as the Si powder, and this is uniformly applied to the tube surface, so that a thin Al-Si alloy molten braze is formed on the entire tube surface by heating during brazing, and the tube Almost no local melting occurs. For this reason, there is no dent on the tube surface, the strength of the tube is sufficiently maintained, and deterioration of the corrosion resistance of the product due to the dent can be suppressed. When the particle size exceeds 30 μm, the dent due to the local melting occurs. Preferably, the average particle size of the Si powder is preferably less than 1 to 5 μm. This is because if the average particle size is less than 1 μm, the formation of the Al—Si alloy melt brazing is not sufficient, and the brazing performance is lowered, and if it is 5 μm or more, dents due to local melting tend to occur.

また、フラックス中に亜鉛が含有されるので、ろう付時に亜鉛がチューブへ拡散し、表面の亜鉛濃度が高く内部が低くなり、チューブ表面の電位が卑で内部が貴となる電位勾配の犠牲層が形成される。このため、チューブで腐食が生じても孔食形態とならず冷媒漏れや強度低下を抑制できる。フラックスとしては、亜鉛フッ化カリウム(KZnF)の単体またはこれを含む混合物を好適に用いることができる。亜鉛を含むフラックスとしては、さらに、ZnFなどを例示することができる。亜鉛フッ化カリウム(KZnF)などの亜鉛を含むフラックスに混合して用いることができるフラックスとしては、KAlF、KAlFなどを例示することができる。 In addition, since zinc is contained in the flux, zinc diffuses into the tube during brazing, the surface zinc concentration is high and the inside is low, the potential on the surface of the tube is base, and the sacrificial layer with a potential gradient where the inside is noble Is formed. For this reason, even if corrosion occurs in the tube, it does not become a pitting corrosion form, and refrigerant leakage and strength reduction can be suppressed. As the flux, zinc potassium fluoride (KZnF 3 ) alone or a mixture containing the same can be suitably used. The flux containing zinc, furthermore, can be exemplified such as ZnF 2. Examples of the flux that can be used by mixing with a flux containing zinc such as zinc potassium fluoride (KZnF 3 ) include KAlF 4 and K 3 AlF 6 .

チューブとヘッダーとの間には、チューブ表面に形成されたろう材が流動することで、またヘッダーにろう材が貼り合わされている場合、このろう材がともに流動することで、接合部フィレットが形成される。チューブ表面のろう材はフラックス中の亜鉛を含有しているが、フィレットの電位をチューブ表面より貴とすることで、フィレットでの腐食発生を抑制できる。好適には、フラックス中の亜鉛換算量として2〜10g/mにすることで、上記作用が確実に得られる。フラックス中の亜鉛換算量が2g/m未満の場合はチューブの耐食性が不十分となり貫通孔が発生しやすくなる。また10g/mを超えるとフィレットで亜鉛濃縮し貫通孔が発生しやすくなる。なお、ヘッダーにろう材層を設ける場合、ヘッダーの外側、内側のいずれに設けることも可能である。 When the brazing material formed on the tube surface flows between the tube and the header, and when the brazing material is bonded to the header, the brazing material flows together to form a joint fillet. The Although the brazing material on the tube surface contains zinc in the flux, the occurrence of corrosion in the fillet can be suppressed by making the fillet potential more noble than the tube surface. Suitably, the said effect | action is acquired reliably by setting it as 2-10 g / m < 2 > as zinc conversion amount in a flux. When the zinc conversion amount in the flux is less than 2 g / m 2 , the corrosion resistance of the tube is insufficient, and through holes are easily generated. On the other hand , if it exceeds 10 g / m 2 , zinc is concentrated in the fillet and through holes are likely to be generated. In addition, when providing a brazing filler metal layer in a header, it can be provided either on the outer side or the inner side of the header.

同様に、ヘッダーに貼り合わされているろう材に含有される亜鉛濃度を2.0%未満にすることで、フィレットの腐食発生を抑制できる。2.0%を超えるとフィレットで亜鉛濃縮し貫通孔が発生しやすくなる。
またヘッダーの外部側に亜鉛を0.5〜3.0%含有した犠牲層を設け、フィレットよりもヘッダー表面の電位を卑にすることで、フィレットを犠牲防食することができる。さらにヘッダー表面の電位をチューブ表面のそれより卑とすることで、ヘッダー表面はフィレットおよびチューブを犠牲防食することができ、より熱交換器の耐食性寿命を延ばすことができる。上記犠牲材に含まれるZnが、0.5%未満では犠牲防食効果が期待できない。3.0%を超えると過剰な犠牲防食効果によりヘッダーの耐食性が低下する。なお、ヘッダーの外側に犠牲層を設ける場合、ヘッダーの内側には上記ろう材層を設けることができる。
Similarly, the occurrence of fillet corrosion can be suppressed by making the zinc concentration contained in the brazing material bonded to the header less than 2.0%. If it exceeds 2.0%, zinc will be concentrated in the fillet and through-holes are likely to be generated.
Further, a sacrificial layer containing 0.5 to 3.0% of zinc is provided on the outer side of the header, and the fillet can be sacrificial and corrosion-prevented by making the header surface potential lower than the fillet. Furthermore, by making the electric potential of the header surface lower than that of the tube surface, the header surface can sacrifice and prevent the fillet and the tube, and the corrosion resistance life of the heat exchanger can be further extended. If Zn contained in the sacrificial material is less than 0.5%, a sacrificial anticorrosive effect cannot be expected. If it exceeds 3.0%, the corrosion resistance of the header is lowered due to an excessive sacrificial anticorrosive effect. When providing the sacrificial layer outside the header, the brazing material layer can be provided inside the header.

以上説明したように、本発明によれば、質量%でMn:0.05〜0.50%、Si:0.10%超〜0.50%未満、Cu:0.001〜0.10%未満を含有し、残部アルミニウムと不可避不純物からなる合金組成を有するチューブとヘッダーとが、チューブ表面に塗布された粒径30μm以下のSi粉末と亜鉛を含有したフッ化物系フラックスとバインダとを含む塗布物によってろう付けされており、前記チューブ表面の電位が、前記ろう付けによって前記チューブとヘッダーとの間に形成された接合部フィレットの電位よりも20mV以上卑になるので、フィレットが防食され実環境にて長時間使用されても腐食による冷媒漏れが発生しない効果が得られる。   As described above, according to the present invention, by mass, Mn: 0.05 to 0.50%, Si: more than 0.10% to less than 0.50%, Cu: 0.001 to 0.10% A tube and header having an alloy composition consisting of the remaining aluminum and the inevitable impurities, and a coating containing Si powder with a particle size of 30 μm or less, zinc-containing fluoride-based flux and binder Since the electric potential of the tube surface is more than 20 mV lower than the electric potential of the joint fillet formed between the tube and the header by the brazing, the fillet is prevented from being corroded. Even if it is used for a long time, the effect of preventing refrigerant leakage due to corrosion is obtained.

以下に、本発明の一実施形態を図1〜図3に基づいて説明する。
熱交換器用チューブには、Mn:0.05〜0.50%、Si:0.10超〜0.50%未満、Cu:0.001〜0.10%を含有し、さらに必要に応じてFe:0.10〜0.50%、Ti:0.01〜0.20%の1種または2種を含有し、残部がAlと不可避不純物からなる組成を有するAl合金を用いる。該Al合金を常法により溶製し、通常は押出加工を経てチューブ1とされる。この実施形態では、チューブ1は、扁平な多穴管構造とされ、内部に、複数の通路2が形成されている。
Below, one Embodiment of this invention is described based on FIGS. 1-3.
The tube for heat exchanger contains Mn: 0.05 to 0.50%, Si: more than 0.10 to less than 0.50%, Cu: 0.001 to 0.10%, and if necessary An Al alloy containing one or two of Fe: 0.10 to 0.50% and Ti: 0.01 to 0.20%, with the balance being composed of Al and inevitable impurities is used. The Al alloy is melted by a conventional method, and is usually formed into a tube 1 through an extrusion process. In this embodiment, the tube 1 has a flat multi-hole tube structure, and a plurality of passages 2 are formed therein.

また、熱交換器用ヘッダー4は、アルミニウム合金材によって全体として円筒状に形成され、前記チューブ1が挿通される差込用穴5…5を有している。
さらに、熱交換器用フィン6としてAl合金を常法により溶製し、圧延工程などを経て波形形状としたものを用意する。なお、チューブ1、ヘッダー4およびフィン6の製造方法は、本発明としては特に限定をされるものではなく、既知の製法を適宜採用することができる。
Moreover, the header 4 for heat exchangers is formed in a cylindrical shape as a whole by an aluminum alloy material, and has insertion holes 5 through 5 through which the tube 1 is inserted.
Further, as the heat exchanger fins 6, an Al alloy is melted by a conventional method, and a corrugated shape is prepared through a rolling process or the like. In addition, the manufacturing method of the tube 1, the header 4, and the fin 6 is not specifically limited as this invention, A well-known manufacturing method can be employ | adopted suitably.

上記チューブ1には、Si粉末ろう材とZnを含有するフッ化物系フラックスと、必要に応じてバインダ、溶剤を加えた塗布物3が塗布される。上記Si粉末は、最大粒径が30μm以下であり、好適には平均粒径が1〜5μm未満のものが用いられる。フッ化物フラックスには、KZnFなどの亜鉛を含むフッ化物系フラックスが用いられ、所望によりこれに加えて、KAlF、KAlFの1種または2種以上などを混合して用いることができる。なお、フッ化物系フラックスのサイズは、本発明としては特に限定をされないが、平均粒径10μm以下が望ましい。これは、10μmを超えると塗膜の厚みが増大するため、ろう付け中に製品中央部の縮みが発生し、ろう付け後にフィンの剥がれが生じることの理由による。また、バインダには、既知のものを用いることができ、好適にはアクリル系樹脂が用いられる。これら材料と水、アルコールなどの適宜材料の溶剤を混合して塗布物とする。これら材料の混合比も本発明としては特に限定をされるものではないが、好適にはSi粉末:フラックス:バインダ:アルコール=1〜5:5〜20:1〜4:10〜30の混合比とする。 The tube 1 is coated with an Si powder brazing material, a fluoride-based flux containing Zn, and a coating 3 to which a binder and a solvent are added as necessary. The Si powder has a maximum particle size of 30 μm or less, and preferably has an average particle size of less than 1 to 5 μm. As the fluoride flux, a fluoride-based flux containing zinc such as KZnF 3 is used. If desired, one or more of KAlF 4 and K 3 AlF 6 may be used in combination. it can. The size of the fluoride-based flux is not particularly limited as the present invention, but an average particle size of 10 μm or less is desirable. This is because if the thickness exceeds 10 μm, the thickness of the coating film increases, so that the center of the product shrinks during brazing, and the fins peel off after brazing. Moreover, a known thing can be used for a binder and an acrylic resin is used suitably. These materials are mixed with an appropriate solvent such as water or alcohol to obtain a coated product. The mixing ratio of these materials is not particularly limited in the present invention, but is preferably a mixing ratio of Si powder: flux: binder: alcohol = 1-5: 5-20: 1-4: 10-30. And

上記塗布物は、適宜の方法によりチューブ表面に塗布される。塗布物の塗布方法は特に限定をされるものではなく、スプレー法、シャワー法、フローコーター法、ロールコータ法、刷毛塗り法、浸漬法などを適宜採用することができる。
なお、塗布物の塗布量は、Si粉末において1〜5g/mの範囲が望ましい。これは、下限未満では、形成される溶融ろうの量が不足して、接合強度が十分でなく、上限を超えると、チューブの溶融量が増加してチューブの肉厚が減少して、好ましくない。また、Zn含有フラックスは、Zn換算量で2〜10g/mが望ましい。
The coated material is applied to the tube surface by an appropriate method. The method for applying the coated material is not particularly limited, and a spray method, a shower method, a flow coater method, a roll coater method, a brush coating method, a dipping method, and the like can be appropriately employed.
In addition, as for the application quantity of a coated material, the range of 1-5 g / m < 2 > is desirable in Si powder. If the amount is less than the lower limit, the amount of the molten solder formed is insufficient and the bonding strength is not sufficient, and if the upper limit is exceeded, the amount of melting of the tube increases and the wall thickness of the tube decreases, which is not preferable. . The Zn-containing flux is preferably 2 to 10 g / m 2 in terms of Zn.

上記チューブ1、1間にフィン6が配置されるとともに、チューブ1の端部がヘッダー4の差込用穴5に挿通されて互いに組み付けられ、ろう付けに供される。ろう付けに際しては、不活性雰囲気などの適当な雰囲気で適温に加熱して、ろう材を溶解させる。この際の加熱温度としては580〜620℃が例示される。また、加熱保持時間としては1〜10分が挙げられる。ただし、これら温度および加熱時間は例示であり、本発明としては特定の条件に限定されるものではない。
ろう付に際しては、チューブ1のマトリックスの一部が前記塗布物3と反応してろうとなって、部材同士が良好にろう付される。チューブ1表面ではろう付けによってフラックス中のZnが拡散してチューブ1内側よりも卑になる。
The fins 6 are arranged between the tubes 1 and 1, and the end portions of the tubes 1 are inserted into the insertion holes 5 of the header 4 and assembled to each other for brazing. At the time of brazing, the brazing material is dissolved by heating to an appropriate temperature in an appropriate atmosphere such as an inert atmosphere. Examples of the heating temperature at this time include 580 to 620 ° C. Moreover, 1 to 10 minutes are mentioned as a heating holding time. However, these temperatures and heating times are exemplary, and the present invention is not limited to specific conditions.
At the time of brazing, a part of the matrix of the tube 1 reacts with the coating 3 and the members are brazed well. On the surface of the tube 1, Zn in the flux diffuses by brazing and becomes lower than the inside of the tube 1.

上記ろう付けに際し、フラックスは、被ろう付け材の表面酸化皮膜を除去し、ろう付け加熱中の酸化を防止し、さらにろうの広がり、ぬれを促進してろう付け性を向上させる。
上記ろう付けに際しては、Si粉末によるチューブの局部溶解もなく、良好なろう付けがなされ、チューブ1とヘッダー4との間に適度なフィレット10が形成される。
このフィレット10は、ろう付け後のチューブ1の表面電位よりも貴になっており、チューブ1の表面電位は、相対的にフィレット10よりも20mV以上卑である。これにより、チューブ1の表面が優先腐食状態になり、フィレット10では腐食が抑制される。上記により得られた熱交換器は、実環境にて長時間使用されても腐食による冷媒漏れが発生しない。
In the brazing, the flux removes the surface oxide film of the brazing material, prevents oxidation during brazing heating, and further promotes the spreading and wetting of the brazing to improve the brazing property.
At the time of brazing, there is no local melting of the tube with Si powder, and good brazing is performed, and an appropriate fillet 10 is formed between the tube 1 and the header 4.
The fillet 10 is nobler than the surface potential of the tube 1 after brazing, and the surface potential of the tube 1 is relatively lower than the fillet 10 by 20 mV or more. Thereby, the surface of the tube 1 is in a preferential corrosion state, and the fillet 10 is inhibited from corrosion. The heat exchanger obtained as described above does not cause refrigerant leakage due to corrosion even when used in a real environment for a long time.

なお、ヘッダー4には、上記ろう付けが確実になされるように、図3(a)に示すように、チューブ1が挿通される外側にろう材層40を設けることができる。上記ろう付けに際しては、チューブ1の表面に形成されるろう材と、ろう材層40の溶融によるろう材とがともに溶融してチューブ1とヘッダー4との間にフィレット10を形成し、両者を良好にろう付けする。なお、ろう材層40におけるZn含有量を2.0%未満とすることで、ろう材層40から流動するZnがフィレット10に濃縮するのを回避することができ、これにより、ろう付け後のチューブ1の表面電位がフィレット10よりも20mV以上卑となる状態を確実に得ることができる。ろう材層40のZn含有量が2.0%以上になると、フィレット10にZnが濃縮し、早期に貫通孔が発生する。   In addition, as shown to Fig.3 (a), the brazing | wax material layer 40 can be provided in the header 4 on the outer side through which the tube 1 is penetrated so that the said brazing may be performed reliably. At the time of brazing, the brazing material formed on the surface of the tube 1 and the brazing material by melting the brazing material layer 40 are melted together to form the fillet 10 between the tube 1 and the header 4. Braze well. In addition, by making the Zn content in the brazing filler metal layer 40 less than 2.0%, it is possible to avoid the Zn flowing from the brazing filler metal layer 40 from being concentrated in the fillet 10, and thereby, after brazing A state in which the surface potential of the tube 1 is 20 mV or more lower than that of the fillet 10 can be reliably obtained. When the Zn content of the brazing filler metal layer 40 is 2.0% or more, Zn is concentrated in the fillet 10 and through holes are generated early.

また、ヘッダー4は、図3(b)に示すように、チューブ1が挿通される外部側側に犠牲材層41を設けることができ、その際に内部側に前記ろう材層40を設けて上記ろう付けが確実になされるようにしてもよい。上記犠牲材層41は、ヘッダー4の防食を図るとともに、フィレット10に対し、ヘッダー4の表面を卑にしてフィレット10を長時間防食させることができる。また、ヘッダー4の表面電位が、チューブ1の表面電位よりも卑になるのが一層望ましい。この犠牲材層41では、犠牲効果を十分に得るために、Znを0.5%以上含有するのが望ましい。一方、3.0%を超えて含有するとフィレット10へのZn濃縮が生じ、フィレット10の耐食性を低下させるため、犠牲材層のZn含有量を0.5〜3.0%とするのが望ましい。   As shown in FIG. 3B, the header 4 can be provided with a sacrificial material layer 41 on the outer side through which the tube 1 is inserted, and at that time, the brazing material layer 40 is provided on the inner side. The brazing may be surely performed. The sacrificial material layer 41 can prevent corrosion of the header 4 and can prevent the fillet 10 from being corroded for a long time with the surface of the header 4 as a base. In addition, it is more desirable that the surface potential of the header 4 be lower than the surface potential of the tube 1. The sacrificial material layer 41 preferably contains 0.5% or more of Zn in order to obtain a sufficient sacrificial effect. On the other hand, if the content exceeds 3.0%, Zn concentration in the fillet 10 occurs, and the corrosion resistance of the fillet 10 is reduced. Therefore, it is desirable that the Zn content of the sacrificial material layer be 0.5 to 3.0%. .

チューブ材としてMn:0.30%、Si:0.35%、Cu:0.003%、残部Alおよび不可避不純物からな組成を有するアルミニウム合金を溶製し、均質化処理後、熱間押出で、図1に示すような肉厚0.25mmの扁平多穴管とした。その後、該チューブに平均粒径2.5μm、最大粒径30μm以下、塗布量3g/mのSi粉末と表1に示すフッ化物系フラックスとを、アクリル系樹脂とイソプロピルアルコールとの混合物としてロール塗布し、乾燥させた。 An aluminum alloy having a composition consisting of Mn: 0.30%, Si: 0.35%, Cu: 0.003%, the balance Al and inevitable impurities is melted as a tube material, and after homogenization treatment, hot extrusion is performed. A flat multi-hole tube having a wall thickness of 0.25 mm as shown in FIG. Thereafter, the tube is rolled with Si powder having an average particle size of 2.5 μm, a maximum particle size of 30 μm or less, and an application amount of 3 g / m 2 and a fluoride flux shown in Table 1 as a mixture of an acrylic resin and isopropyl alcohol. It was applied and dried.

次に表2に示す合金組成の組合せで材料を貼り合せ、熱間圧延と冷間圧延にて1.2mm厚さのヘッダー材とした。このヘッダー材をプレス加工で半円状とした後、スロット加工にてチューブ差込用の穴を設けた。スロット加工有無の半円状ヘッダー材同士を組合せ、図1に示すような円筒状のヘッダーパイプとした。なお、組合せ後にヘッダーパイプをフッ化物系フラックスを分散させた水溶液中に浸漬させ、フラックスを20g/m塗布した。 Next, materials were bonded together in combinations of the alloy compositions shown in Table 2, and a header material having a thickness of 1.2 mm was formed by hot rolling and cold rolling. After this header material was made into a semicircle by pressing, a hole for inserting a tube was provided by slot processing. A semicircular header material with or without slot processing was combined to form a cylindrical header pipe as shown in FIG. After the combination, the header pipe was immersed in an aqueous solution in which a fluoride-based flux was dispersed, and the flux was applied at 20 g / m 2 .

フィン合金はJIS3003合金に1.5%亜鉛を加えた合金を溶製し、均質化処理後、熱間圧延と冷間圧延にて0.07mm厚さの板とした。その後、コルゲート加工を行いフィン材とした。
上記チューブとヘッダー、フィンを用いて図2に示すミニコアを組立て、窒素雰囲気の炉中で600℃、3分保持のろう付を行った。いずれのコアも接合は良好であった。表1、2には、ろう付け後のチューブ表面およびヘッダー表面の電位を示した。
また、これら種々の材料組合せからなるコアをSWAAT38日間の長期腐食試験に供した。試験後に腐食による貫通孔の有無と発生部位の確認を行った。
As the fin alloy, an alloy obtained by adding 1.5% zinc to JIS3003 alloy was melted, and after homogenization, a plate having a thickness of 0.07 mm was formed by hot rolling and cold rolling. Thereafter, corrugation was performed to obtain a fin material.
The mini-core shown in FIG. 2 was assembled using the tube, header, and fin, and brazed at 600 ° C. for 3 minutes in a nitrogen atmosphere furnace. All cores were well bonded. Tables 1 and 2 show the tube surface and header surface potentials after brazing.
Moreover, the core which consists of these various material combination was used for the long-term corrosion test of SWAAT 38 days. After the test, the presence or absence of through-holes due to corrosion and the occurrence site were confirmed.

表3に腐食試験結果をまとめて示した。表3より本発明を満たす組合せからなるコアは、いずれも貫通孔の発生はなかった。一方、比較材を用いたコアでは、チューブまたはフィレットにて貫通孔が発生し、十分な耐孔食性を得ることができなかった。表3には、さらに、ろう付け後のチューブ表面とフィレットの電位差を示した。
以上のように、本発明の条件を満たす熱交換器ではチューブとヘッダーの接合部フィレットを含めた全ての部位で耐食性が極めて良好となり、長期の使用後にも貫通孔の発生がないばかりでなく、製品の耐圧強度も維持できるなど、実用上、有益であった。
Table 3 summarizes the corrosion test results. According to Table 3, the cores composed of the combinations satisfying the present invention did not generate any through holes. On the other hand, in the core using the comparative material, through holes were generated in the tube or fillet, and sufficient pitting corrosion resistance could not be obtained. Table 3 further shows the potential difference between the tube surface and the fillet after brazing.
As described above, in the heat exchanger that satisfies the conditions of the present invention, the corrosion resistance is extremely good in all parts including the joint fillet of the tube and the header, and not only the occurrence of through holes after a long period of use, It was useful in practice, such as maintaining the pressure strength of the product.

Figure 2009139052
Figure 2009139052

Figure 2009139052
Figure 2009139052

Figure 2009139052
Figure 2009139052

本発明の一実施形態に用いるチューブおよびヘッダーを示す図である。It is a figure which shows the tube and header used for one Embodiment of this invention. 同じく、チューブおよびヘッダーの組付けを行った熱交換器を示す図およびb部拡大図である。Similarly, it is the figure which shows the heat exchanger which assembled | attached the tube and the header, and b section enlarged view. 同じく、ヘッダーの構成を示す一部断面図である。Similarly, it is a partial sectional view showing the configuration of the header.

符号の説明Explanation of symbols

1 チューブ
3 塗布物
4 ヘッダー
40 ろう材層
41 犠牲材層
6 フィン
10 フィレット
1 Tube 3 Application 4 Header 40 Brazing Material Layer 41 Sacrificial Material Layer 6 Fin 10 Fillet

Claims (5)

質量%でMn:0.05〜0.50%、Si:0.10%超〜0.50%未満、Cu:0.001〜0.10%未満を含有し、残部アルミニウムと不可避不純物からなる合金組成を有し、表面に粒径30μm以下のSi粉末と亜鉛を含有したフッ化物系フラックスとバインダとを塗布したチューブをヘッダーに組み付けてろう付けし、該ろう付けによって前記ヘッダーと前記チューブとの間に、前記チューブ表面の電位が相対的に20mV以上卑となる接合部フィレットを形成することを特徴とする耐食性に優れたアルミニウム製熱交換器の製造方法。   Contains Mn: 0.05 to 0.50% by mass, Si: more than 0.10% to less than 0.50%, Cu: less than 0.001 to less than 0.10%, and consists of the balance aluminum and inevitable impurities A tube having an alloy composition and having a surface coated with a Si-based powder having a particle size of 30 μm or less and zinc-containing fluoride flux and a binder is assembled and brazed to the header, and the header and the tube are brazed by the brazing. A method for producing an aluminum heat exchanger having excellent corrosion resistance, characterized in that a joint fillet is formed in which the potential of the tube surface is relatively lower than 20 mV. 前記亜鉛を含有したフッ化物系フラックスは、亜鉛換算量で2〜10g/mが前記チューブに塗布されていることを特徴とする請求項1記載の耐食性に優れたアルミニウム製熱交換器の製造方法。 The manufacture of an aluminum heat exchanger excellent in corrosion resistance according to claim 1, wherein the zinc-containing fluoride flux is applied to the tube in an amount of 2 to 10 g / m 2 in terms of zinc. Method. 前記ヘッダーがろう材をクラッドしたクラッド材であり、前記ろう材中の亜鉛の濃度が質量%で、2.0%未満であることを特徴とする請求項1または2に記載の耐食性に優れたアルミニウム製熱交換器の製造方法。   The header is a clad material obtained by clad a brazing material, and the concentration of zinc in the brazing material is mass% and less than 2.0%, and is excellent in corrosion resistance according to claim 1 or 2. A method for manufacturing an aluminum heat exchanger. 前記ヘッダーの外側に質量%で、亜鉛を0.5〜3.0%含有した犠牲層が設けられていること特徴とする請求項1〜3のいずれかに記載の耐食性に優れたアルミニウム製熱交換器の製造方法。   The heat-made aluminum with excellent corrosion resistance according to any one of claims 1 to 3, wherein a sacrificial layer containing 0.5 to 3.0% of zinc is provided outside the header in mass%. Exchanger manufacturing method. 質量%でMn:0.05〜0.50%、Si:0.10%超〜0.50%未満、Cu:0.001〜0.10%未満を含有し、残部アルミニウムと不可避不純物からなる合金組成を有するチューブとヘッダーとが、チューブ表面に塗布され、粒径30μm以下のSi粉末と亜鉛を含有したフッ化物系フラックスとバインダとを含む塗布物によってろう付けされており、前記チューブ表面の電位が、前記ろう付けによって前記チューブとヘッダーとの間に形成された接合部フィレットの電位よりも20mV以上卑になっていることを特徴とする耐食性に優れたアルミニウム製熱交換器。   Contains Mn: 0.05 to 0.50% by mass, Si: more than 0.10% to less than 0.50%, Cu: less than 0.001 to less than 0.10%, and consists of the balance aluminum and inevitable impurities A tube having an alloy composition and a header are applied to the tube surface, and are brazed with a coating containing a Si powder having a particle size of 30 μm or less, a zinc-containing fluoride-based flux, and a binder. An aluminum heat exchanger having excellent corrosion resistance, wherein the potential is 20 mV or more lower than the potential of a joint fillet formed between the tube and the header by the brazing.
JP2007318270A 2007-12-10 2007-12-10 Aluminum heat exchanger having excellent corrosion resistance and method for producing the same Active JP5334086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007318270A JP5334086B2 (en) 2007-12-10 2007-12-10 Aluminum heat exchanger having excellent corrosion resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007318270A JP5334086B2 (en) 2007-12-10 2007-12-10 Aluminum heat exchanger having excellent corrosion resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009139052A true JP2009139052A (en) 2009-06-25
JP5334086B2 JP5334086B2 (en) 2013-11-06

Family

ID=40869827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007318270A Active JP5334086B2 (en) 2007-12-10 2007-12-10 Aluminum heat exchanger having excellent corrosion resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP5334086B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011136358A (en) * 2009-12-28 2011-07-14 Mitsubishi Alum Co Ltd Powder brazing filler metal composition having excellent corrosion resistance and aluminum alloy tube for heat exchanger obtained by using the same and heat exchanger
JP2011245516A (en) * 2010-05-27 2011-12-08 Furukawa-Sky Aluminum Corp Method for manufacturing braze-joined aluminum member
JP2015067886A (en) * 2013-09-30 2015-04-13 株式会社Uacj Aluminum alloy heat exchanger
WO2015056669A1 (en) 2013-10-15 2015-04-23 株式会社Uacj Aluminum alloy heat exchanger
KR20170116726A (en) * 2016-04-12 2017-10-20 손희식 Corrosion resistant heat exchanger using the control of alloy composition and potential
JP2019011922A (en) * 2017-06-30 2019-01-24 三菱アルミニウム株式会社 Method for manufacturing aluminum alloy heat exchanger with excellent anticorrosion, and aluminum alloy heat exchanger
CN109931192A (en) * 2017-12-19 2019-06-25 现代自动车株式会社 Cooler for vehicle
CN113454416A (en) * 2019-10-15 2021-09-28 松下知识产权经营株式会社 Heat exchanger and air conditioning device with same
JP2023049357A (en) * 2021-09-29 2023-04-10 ダイキン工業株式会社 Heat exchanger

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07155935A (en) * 1993-12-02 1995-06-20 Daiichi Meteko Kk Aluminum alloy-made heat exchanger and its manufacture
JP2003094165A (en) * 2001-09-20 2003-04-02 Denso Corp Aluminum material for brazing and brazing method using the same
JP2006010304A (en) * 2004-05-21 2006-01-12 Showa Denko Kk Tube for heat exchanger and its manufacturing method, and heat exchanger and its manufacturing method
JP2007051333A (en) * 2005-08-18 2007-03-01 Mitsubishi Alum Co Ltd Aluminum-alloy sheet material for radiator tube

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07155935A (en) * 1993-12-02 1995-06-20 Daiichi Meteko Kk Aluminum alloy-made heat exchanger and its manufacture
JP2003094165A (en) * 2001-09-20 2003-04-02 Denso Corp Aluminum material for brazing and brazing method using the same
JP2006010304A (en) * 2004-05-21 2006-01-12 Showa Denko Kk Tube for heat exchanger and its manufacturing method, and heat exchanger and its manufacturing method
JP2007051333A (en) * 2005-08-18 2007-03-01 Mitsubishi Alum Co Ltd Aluminum-alloy sheet material for radiator tube

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011136358A (en) * 2009-12-28 2011-07-14 Mitsubishi Alum Co Ltd Powder brazing filler metal composition having excellent corrosion resistance and aluminum alloy tube for heat exchanger obtained by using the same and heat exchanger
JP2011245516A (en) * 2010-05-27 2011-12-08 Furukawa-Sky Aluminum Corp Method for manufacturing braze-joined aluminum member
JP2015067886A (en) * 2013-09-30 2015-04-13 株式会社Uacj Aluminum alloy heat exchanger
WO2015056669A1 (en) 2013-10-15 2015-04-23 株式会社Uacj Aluminum alloy heat exchanger
KR20170116726A (en) * 2016-04-12 2017-10-20 손희식 Corrosion resistant heat exchanger using the control of alloy composition and potential
KR102282585B1 (en) * 2016-04-12 2021-07-28 주식회사 에스피텍 Corrosion resistant heat exchanger using the control of alloy composition and potential
JP2019011922A (en) * 2017-06-30 2019-01-24 三菱アルミニウム株式会社 Method for manufacturing aluminum alloy heat exchanger with excellent anticorrosion, and aluminum alloy heat exchanger
CN109931192A (en) * 2017-12-19 2019-06-25 现代自动车株式会社 Cooler for vehicle
CN109931192B (en) * 2017-12-19 2022-08-05 现代自动车株式会社 Cooler for vehicle
CN113454416A (en) * 2019-10-15 2021-09-28 松下知识产权经营株式会社 Heat exchanger and air conditioning device with same
JP2023049357A (en) * 2021-09-29 2023-04-10 ダイキン工業株式会社 Heat exchanger

Also Published As

Publication number Publication date
JP5334086B2 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
JP5115963B2 (en) Aluminum heat exchanger member with excellent corrosion resistance and method for producing aluminum heat exchanger with excellent corrosion resistance
JP6253212B2 (en) Tube for heat exchanger assembly configuration
JP5334086B2 (en) Aluminum heat exchanger having excellent corrosion resistance and method for producing the same
JP2009058167A (en) Aluminum heat exchanger using tube having superior corrosion resistance and its manufacturing method
JP5548411B2 (en) Aluminum alloy heat exchanger and method of manufacturing the same
JP5906113B2 (en) Extruded heat transfer tube for heat exchanger, heat exchanger, and method for producing extruded heat transfer tube for heat exchanger
JP2009058139A (en) Member for aluminum-made heat exchanger having superior corrosion resistance
WO2015056669A1 (en) Aluminum alloy heat exchanger
JP5675092B2 (en) Aluminum alloy tube for heat exchanger excellent in corrosion resistance and heat exchanger using the same
JP2009106947A (en) Aluminum alloy tube
JP4611797B2 (en) Aluminum alloy plate material for radiator tubes with excellent brazeability, and radiator tube and heat exchanger provided with the same
JP6468620B2 (en) Mixed composition paint for brazing
WO2011148781A1 (en) Method for producing aluminum alloy heat exchanger
JP4577634B2 (en) Aluminum alloy extruded tube with brazing filler metal for heat exchanger
WO2014077237A1 (en) Aluminum alloy clad material and heat exchanger provided with tube that is molded from aluminum alloy clad material
JP2016099101A (en) Heat exchanger, and method of manufacturing the same
JP2006348358A (en) Aluminum-alloy extruded material for heat-exchanger, and flat tube with multi-holes for heat-exchanger and header for heat-exchanger using the same
JP4541252B2 (en) Aluminum alloy sheet for radiator tube
JP6860968B2 (en) Aluminum alloy tube for heat exchanger, heat exchanger and its manufacturing method
JP6968598B2 (en) Manufacturing method of aluminum alloy heat exchanger with excellent corrosion resistance and aluminum alloy heat exchanger
JP2017036895A (en) Aluminum alloy tube for heat exchanger
JP6983699B2 (en) Brazing mixed composition paint
JP6976041B2 (en) Heat exchanger
JP2009058140A (en) Member for aluminum heat exchanger having superior corrosion resistance, and manufacturing method of aluminum heat exchanger having superior corrosion resistance
JP2006205254A (en) Aluminum alloy material for heat exchanger having excellent brazing property and corrosion resistance and heat exchanger equipped with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130724

R150 Certificate of patent or registration of utility model

Ref document number: 5334086

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250