JP2009138120A - Near infrared ray-emitting fluorophor, biological substance-labeling agent using the same - Google Patents

Near infrared ray-emitting fluorophor, biological substance-labeling agent using the same Download PDF

Info

Publication number
JP2009138120A
JP2009138120A JP2007316739A JP2007316739A JP2009138120A JP 2009138120 A JP2009138120 A JP 2009138120A JP 2007316739 A JP2007316739 A JP 2007316739A JP 2007316739 A JP2007316739 A JP 2007316739A JP 2009138120 A JP2009138120 A JP 2009138120A
Authority
JP
Japan
Prior art keywords
infrared light
emitting phosphor
phosphor
near infrared
labeling agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007316739A
Other languages
Japanese (ja)
Inventor
Takuji Aimiya
拓司 相宮
Kazuya Tsukada
和也 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Medical and Graphic Inc
Original Assignee
Konica Minolta Medical and Graphic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Medical and Graphic Inc filed Critical Konica Minolta Medical and Graphic Inc
Priority to JP2007316739A priority Critical patent/JP2009138120A/en
Publication of JP2009138120A publication Critical patent/JP2009138120A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a near infrared ray-emitting fluorophor which emits rear infrared having wavelengths in a range of 700 to 2,000 nm, when excited with near infrared rays having wavelengths in a range of 700 to 900 nm, to provide fluorophor nano particles having nano sizes suitable for biological substance-labeling agents, emitting near infrared rays passing through "biological window", and having high ray-emitting accuracy, and to provide a biological substance-labeling agent using the same. <P>SOLUTION: The near infrared ray-emitting fluorophor emitting near infrared rays having wavelengths in a range of 700 to 2,000 nm, when excited with near infrared rays having wavelengths in a range of 700 to 900 nm, is characterized in that at least one portion of the composition is represented by the following general formula (1): A<SB>1-x-y</SB>Nd<SB>x</SB>Yb<SB>y</SB>(PO<SB>3</SB>)<SB>3</SB>(wherein, A is an element selected from Y, Lu and La; 0<x≤0.5, 0<y≤0.5, 0<x+y<1). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、近赤外発光蛍光体、それを用いた生体物質標識剤に関する。   The present invention relates to a near-infrared light emitting phosphor and a biological material labeling agent using the same.

生体物質を標識する手段として、分子標識物質をマーカー物質に結合した生体物質標識剤を用いる方法が検討されている。マーカー物質に蛍光材料が用いられる場合には励起光として用いられる波長の短い紫外域の光が細胞にダメージを与えることが問題となっており、ダメージの少ない長波長励起・発光の蛍光体が求められている。   As means for labeling a biological substance, a method using a biological substance labeling agent in which a molecular labeling substance is bound to a marker substance has been studied. When a fluorescent material is used for the marker substance, it is a problem that light in the ultraviolet region with a short wavelength used as excitation light damages the cell, and a long-wavelength excitation / luminescence phosphor with little damage is desired. It has been.

一方、特に近年、小動物を対象としたin vivo光イメージングが注目されており、小動物の生体内の細胞を外部より、生体を傷つけることなく(非侵襲で)観察するような光学系装置が各メーカから販売され始めている。これは、生体内の観察したい部位に選択的に集まるような標識をつけた蛍光材料を生体内に注入し、外部より励起光を照射し出てきた発光を外部でモニターする方法である。   On the other hand, in recent years, in vivo optical imaging targeting small animals has attracted attention, and optical system devices that allow observation of cells in the living body of small animals from the outside without damaging the living body (non-invasively) are provided by various manufacturers. Has begun to be sold from. In this method, a fluorescent material with a label that selectively gathers at a site to be observed in the living body is injected into the living body, and the emitted light emitted from the outside is externally monitored.

このように、生体内の蛍光材料を励起し、発光を外部に取り出すためには、励起光及び発光が生体を透過する必要がある。紫外光及び可視光は、生体の吸収が高く、ほとんど透過することができないので好ましくない。また、1000nm以上の波長では、水の吸収が立ち上がり透過率が低くなり、好ましくない。しかしながら、近赤外線の700〜1000nmは、「生体の窓」及び「分光領域の窓」と呼ばれる生体の透過率が特異的に高い領域であり、この範囲内で励起及び発光を示す蛍光材料が求められている。   Thus, in order to excite the fluorescent material in the living body and extract the emitted light to the outside, it is necessary that the excitation light and the emitted light pass through the living body. Ultraviolet light and visible light are not preferred because they are highly absorbed by the living body and hardly transmit. On the other hand, when the wavelength is 1000 nm or more, the absorption of water rises and the transmittance decreases, which is not preferable. However, 700 to 1000 nm in the near infrared region is a region having a specifically high biological transmittance called “biological window” and “spectral region window”, and a fluorescent material exhibiting excitation and emission within this range is desired. It has been.

上記方法で従来使用されてきた有機蛍光色素などのマーカー物質は、励起光照射時の劣化が激しく寿命が短いことが欠点であり、また発光効率が低く、感度も十分ではなかった。   The marker substances such as organic fluorescent dyes conventionally used in the above method have the disadvantages that they are severely deteriorated when irradiated with excitation light and have a short lifetime, and the luminous efficiency is low and the sensitivity is not sufficient.

そのため、近年、上記マーカー物質として半導体ナノ粒子を用いる方法が注目されている。例えば、極性官能基を有する高分子を半導体ナノ粒子の表面に物理的および/または化学的に吸接合した生体物質標識剤が検討されている(例えば特許文献1参照)。また、有機分子をSi/SiO2型半導体ナノ粒子の表面に結合した生体物質標識剤が検討されている(例えば特許文献2参照)。 Therefore, in recent years, a method using semiconductor nanoparticles as the marker substance has attracted attention. For example, a biological substance labeling agent in which a polymer having a polar functional group is physically and / or chemically adsorbed and bonded to the surface of a semiconductor nanoparticle has been studied (see, for example, Patent Document 1). In addition, a biological substance labeling agent in which organic molecules are bonded to the surface of Si / SiO 2 type semiconductor nanoparticles has been studied (for example, see Patent Document 2).

しかしながら、これら従来の半導体ナノ粒子を用いた生体物質標識剤には発光精度等において未解決の問題が存在した。   However, there have been unsolved problems with respect to light emission accuracy and the like in the biomaterial labeling agents using these conventional semiconductor nanoparticles.

例えば、特許文献1で実質的にその効果も含めて開示されている半導体ナノ粒子は、(CdSe/ZnS型)半導体ナノ粒子であるが、一般的に量子ドットと呼ばれボーア励起子のサイズよりも小さな粒径を持つ場合に、バンドギャップがサイズに依存して変化するという性質、すなわち、同一組成で粒子サイズを変化させることで発光波長が変化するという特徴を持っている。このような量子ドット蛍光材料はサイズにより発光波長を自在に変化させることが可能であるという長所を持つ一方、粒径制御の精度が発光波長の精度につながるという短所があった。   For example, the semiconductor nanoparticles disclosed in Patent Document 1 substantially including the effects thereof are (CdSe / ZnS type) semiconductor nanoparticles, which are generally called quantum dots and are larger than the size of Bohr excitons. In the case of having a small particle size, the band gap changes depending on the size, that is, the emission wavelength changes by changing the particle size with the same composition. While such a quantum dot fluorescent material has the advantage that the emission wavelength can be freely changed depending on the size, it has the disadvantage that the accuracy of particle size control leads to the accuracy of the emission wavelength.

一方、近赤外励起で発光する近赤外発光蛍光体は、近年、現金に変わる支払い方法として用いられているクレジットカードやプリペイドカードの偽造防止用の潜像形成インクとして一般的に使用されている。公知例としては、A1-x-yNdxYbyPO4
(式中、AはY、LuおよびLaから選ばれる少なくとも1種であって、0<x≦0.5、0<y≦0.5、x+y<1.0である。)などが知られている(特許文献3)これらはいずれも、近赤外発光ダイオード(中心波長880nm)で励起、980nmで発光するため、励起光及び発光のどちらも「生体の窓」を通過し、好ましい組成であることがわかる。しかしながら、潜像形成インクとして使用される場合には蛍光体粒子のサイズは数ミクロンからサブミクロンの範囲で形成されることが一般的であり、生体標識剤として好適に用いることのできる100nm以下の粒子は従来用いられていなかった(特許文献3参照)。
特開2003−329686号公報 特開2005−172429号公報 特許第3336572号明細書
On the other hand, near-infrared light-emitting phosphors that emit light by near-infrared excitation are generally used as latent image forming inks for preventing counterfeiting of credit cards and prepaid cards that are used as payment methods in place of cash in recent years. Yes. Known examples, A 1-xy Nd x Yb y PO 4
(Wherein A is at least one selected from Y, Lu and La, and 0 <x ≦ 0.5, 0 <y ≦ 0.5, and x + y <1.0). (Patent Document 3) Both of these are excited by a near-infrared light emitting diode (center wavelength: 880 nm) and emit light at 980 nm, so that both excitation light and light emission pass through the “biological window” and have a preferable composition. I know that there is. However, when used as a latent image forming ink, the size of the phosphor particles is generally formed in the range of several microns to sub-micron, and is 100 nm or less which can be suitably used as a biomarker. The particles have not been used conventionally (see Patent Document 3).
JP 2003-329686 A JP 2005-172429 A Japanese Patent No. 3336572

本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、700〜900nmの範囲内の波長の近赤外光により励起されたときに、700〜2000nmの範囲内の波長の近赤外光の発光を示す近赤外発光蛍光体を提供することである。更に、生体物質標識剤に適したナノサイズであり、「生体の窓」を通過する近赤外発光をし、発光精度の高い蛍光体ナノ粒子を提供することである。また、それを用いた生体物質標識剤を提供することである。   The present invention has been made in view of the above-mentioned problems and situations, and the problem to be solved is a wavelength in the range of 700 to 2000 nm when excited by near infrared light having a wavelength in the range of 700 to 900 nm. It is providing the near-infrared light emission fluorescent substance which shows light emission of near-infrared light. Furthermore, the present invention is to provide phosphor nanoparticles having a nano-size suitable for a biological substance labeling agent, emitting near-infrared light passing through a “biological window” and having high emission accuracy. Moreover, it is providing the biological material labeling agent using the same.

本発明者等は、上記課題を解決すべく鋭意検討の結果、蛍光体を特定の組成及び特定の粒径にすることにより、近赤外発光蛍光体、更には近赤外発光蛍光体ナノ粒子が得られることを見出し、本発明に至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have made the phosphor a specific composition and a specific particle size, thereby producing a near-infrared light-emitting phosphor, and further a near-infrared light-emitting phosphor nanoparticle. Was obtained, and the present invention was achieved.

すなわち、本発明に係る上記課題は、以下の手段により解決される。   That is, the said subject which concerns on this invention is solved by the following means.

1.700〜900nmの範囲内の波長の近赤外光により励起されたときに、700〜2000nmの範囲内の波長の近赤外光の発光を示す近赤外発光蛍光体であって、その組成の少なくとも一部が下記一般式(1)で表されることを特徴とする近赤外発光蛍光体。
一般式(1):A1-x-yNdxYby(PO33
(式中、AはY,LuおよびLaから選択される元素であり;0<x≦0.5;0<y≦0.5および0<x+y<1である。)
2.前記近赤外発光蛍光体が、平均粒径が2〜50nmである近赤外発光蛍光体ナノ粒子であることを特徴とする前記1に記載の近赤外発光蛍光体。
1. A near-infrared emitting phosphor that emits near-infrared light having a wavelength in the range of 700 to 2000 nm when excited by near-infrared light having a wavelength in the range of 700 to 900 nm, At least a part of the composition is represented by the following general formula (1).
Formula (1): A 1-xy Nd x Yb y (PO 3) 3
(Wherein A is an element selected from Y, Lu and La; 0 <x ≦ 0.5; 0 <y ≦ 0.5 and 0 <x + y <1)
2. 2. The near-infrared light-emitting phosphor according to 1 above, wherein the near-infrared light-emitting phosphor is a near-infrared light-emitting phosphor nanoparticle having an average particle diameter of 2 to 50 nm.

3.前記近赤外発光蛍光体の表面が親水化処理されていることを特徴とする前記1又は2に記載の近赤外発光蛍光体。   3. 3. The near infrared light emitting phosphor as described in 1 or 2 above, wherein the surface of the near infrared light emitting phosphor is hydrophilized.

4.前記2又は3に記載の近赤外発光蛍光体ナノ粒子と分子標識物質とを有機分子を介して結合させたことを特徴とする生体物質標識剤。   4). 4. A biological material labeling agent comprising the near-infrared light emitting phosphor nanoparticles described in 2 or 3 bound to a molecular labeling material via an organic molecule.

5.前記分子標識物質がヌクレオチド鎖であることを特徴とする前記4に記載の生体物質標識剤。   5). 5. The biological substance labeling agent according to 4 above, wherein the molecular labeling substance is a nucleotide chain.

6.前記近赤外発光蛍光体ナノ粒子と分子標識物質とを結合させる有機分子が、ビオチン及びアビジンであることを特徴とする前記4又は5に記載の生体物質標識剤。   6). 6. The biological material labeling agent according to 4 or 5 above, wherein the organic molecule that binds the near-infrared light emitting phosphor nanoparticles and the molecular labeling material is biotin and avidin.

本発明の上記手段により、700〜900nmの範囲内の波長の近赤外光により励起されたときに、700〜2000nmの範囲内の波長の近赤外光の発光を示す近赤外発光蛍光体を提供することができる。更に、生体物質標識剤に適したナノサイズであり、「生体の窓」を通過する近赤外発光をし、発光精度の高い蛍光体ナノ粒子を提供することができる。また、それを用いた生体物質標識剤を提供することができる。   A near-infrared light emitting phosphor that emits near-infrared light having a wavelength in the range of 700 to 2000 nm when excited by near-infrared light having a wavelength in the range of 700 to 900 nm by the above means of the present invention. Can be provided. Furthermore, it is a nano-size suitable for a biological substance labeling agent, can emit near-infrared light that passes through a “biological window”, and can provide phosphor nanoparticles with high emission accuracy. Moreover, the biological material labeling agent using the same can be provided.

本発明の近赤外発光蛍光体は、700〜900nmの範囲内の波長の近赤外光により励起されたときに、700〜2000nmの範囲内の波長の近赤外光の発光を示す近赤外発光蛍光体であって、その組成の少なくとも一部が前記記一般式(1)で表されることを特徴とする。この特徴は請求項1〜6に係る発明に共通する技術的特徴である。   The near-infrared light-emitting phosphor of the present invention emits near-infrared light having a wavelength in the range of 700 to 2000 nm when excited by near-infrared light having a wavelength in the range of 700 to 900 nm. It is an external light-emitting phosphor, and at least a part of the composition is represented by the general formula (1). This feature is a technical feature common to the inventions according to claims 1 to 6.

本発明の実施態様としては、前記近赤外発光蛍光体が、平均粒径が2〜50nmである近赤外発光蛍光体ナノ粒子である態様が好ましい。また、前記近赤外発光蛍光体が、その表面が親水化処理されていることが好ましい。   As an embodiment of the present invention, an embodiment in which the near-infrared light-emitting phosphor is a near-infrared light-emitting phosphor nanoparticle having an average particle diameter of 2 to 50 nm is preferable. Moreover, it is preferable that the surface of the near-infrared light emitting phosphor is subjected to a hydrophilic treatment.

本発明の近赤外発光蛍光体ナノ粒子は、分子標識物質と有機分子を介して結合させることにより生体物質標識剤とすることができる。なお、生体物質標識剤において、前記分子標識物質がヌクレオチド鎖であることが好ましい。また、前記有機分子が、ビオチン及びアビジンであることが好ましい。   The near-infrared light emitting phosphor nanoparticles of the present invention can be used as a biological material labeling agent by binding with a molecular labeling substance via an organic molecule. In the biological substance labeling agent, the molecular labeling substance is preferably a nucleotide chain. The organic molecules are preferably biotin and avidin.

なお、本願において、「ナノ粒子」とは、平均粒径(直径)が、100nm未満の粒子をいい、本発明において好ましい平均粒径は、2〜50nmである。   In the present application, the “nanoparticle” means a particle having an average particle diameter (diameter) of less than 100 nm, and a preferable average particle diameter in the present invention is 2 to 50 nm.

以下、本発明とその構成要素、及び本発明を実施するための最良の形態・態様等について詳細な説明をする。   Hereinafter, the present invention, its components, and the best mode and mode for carrying out the present invention will be described in detail.

(近赤外発光蛍光体)
本発明の近赤外発光蛍光体は、700〜900nmの範囲内の波長の近赤外光により励起されたときに、700〜2000nmの範囲内の波長の近赤外光の発光を示す近赤外発光蛍光体であって、その組成の少なくとも一部が下記一般式(1)で表されることを特徴とする。
一般式(1):A1-x-yNdxYby(PO33
(式中、AはY,LuおよびLaから選択される元素であり;0<x≦0.5;0<y≦0.5および0<x+y<1である。)
本発明の近赤外発光蛍光体を製造するための原料としては、上記一般式(1)に含まれている各種元素の酸化物やハロゲン化物等を用いることができる。例えば、酸化ネオジム、塩化ネオジム、硝酸ネオジム、酸化イッテルビウム、塩化イッテルビウム、硝酸イッテルビウム、酸化ランタン、塩化ランタン、硝酸ランタン、酸化イットリウム、塩化イットリウム、硝酸イットリウム、塩化プラジオセム、塩化テルビウム、オルトリン酸、リン酸アンモニウム、リン酸二水素アンモニウム等を用いることができる。
(Near infrared phosphor)
The near-infrared light-emitting phosphor of the present invention emits near-infrared light having a wavelength in the range of 700 to 2000 nm when excited by near-infrared light having a wavelength in the range of 700 to 900 nm. It is an external light-emitting phosphor, and at least a part of the composition is represented by the following general formula (1).
Formula (1): A 1-xy Nd x Yb y (PO 3) 3
(Wherein A is an element selected from Y, Lu and La; 0 <x ≦ 0.5; 0 <y ≦ 0.5 and 0 <x + y <1)
As raw materials for producing the near-infrared light emitting phosphor of the present invention, oxides or halides of various elements contained in the general formula (1) can be used. For example, neodymium oxide, neodymium chloride, neodymium nitrate, ytterbium oxide, ytterbium chloride, ytterbium nitrate, lanthanum oxide, lanthanum chloride, lanthanum nitrate, yttrium oxide, yttrium chloride, yttrium nitrate, pradocem chloride, terbium chloride, orthophosphoric acid, ammonium phosphate , Ammonium dihydrogen phosphate and the like can be used.

(近赤外発光蛍光体ナノ粒子)
本発明の近赤外発光蛍光体ナノ粒子は、当該ナノ粒子の平均粒径を2〜50nmにすることが好ましい。また、好ましい態様としては、共賦活剤として、Pr及びTbのうちの少なくともいずれかの元素を含有させる。
(Near-infrared emitting phosphor nanoparticles)
The near-infrared light emitting phosphor nanoparticles of the present invention preferably have an average particle size of 2 to 50 nm. Moreover, as a preferable aspect, at least one element of Pr and Tb is contained as a co-activator.

なお、最終的に形成する近赤外発光蛍光体ナノ粒子が50nm以下の粒子である場合、構成元素中の金属元素の数が4種類以上となったときや、10原子(atom)%以下の共賦活剤を含有すると、従来の固相法で製造された粒子に比べて、また、金属元素が3種類のときや、共賦活剤を含有しないときにと比べて、格段に発光強度が高くなる。   In addition, when the near-infrared light emitting phosphor nanoparticles finally formed are particles of 50 nm or less, when the number of metal elements in the constituent elements is four or more, or 10 atom (atom)% or less. When the co-activator is contained, the emission intensity is significantly higher than particles produced by the conventional solid-phase method, and when the number of metal elements is three or when no co-activator is contained. Become.

なお、本発明の近赤外発光蛍光体ナノ粒子を製造するための原料は、上記近赤外発光蛍光体の原料と同様である。   In addition, the raw material for manufacturing the near-infrared light emission fluorescent nanoparticle of this invention is the same as the raw material of the said near-infrared light emission fluorescent substance.

本発明において、上記近赤外発光蛍光体ナノ粒子の平均粒径は本来3次元で求める必要があるが、微粒子過ぎるため難しく、現実には二次元画像で評価せざるを得ないため、透過型電子顕微鏡(TEM)を用いて電子顕微鏡写真の撮影シーンを変えて数多く撮影し平均化することで求めることが好ましい。従って、本発明において、当該平均粒径は、TEMを用いて電子顕微鏡写真を撮影し十分な数の粒子について断面積を計測し、その計測値を相当する円の面積としたときの直径を粒径として求めて、その算術平均を平均粒径とした。TEMで撮影する粒子数としては20個以上が好ましく、100個の粒子を撮影するのが更に好ましい。   In the present invention, the average particle diameter of the near-infrared light emitting phosphor nanoparticles must originally be determined in three dimensions, but it is difficult because it is too fine, and in reality it must be evaluated with a two-dimensional image. It is preferable to obtain by averaging a large number of images taken by changing the shooting scene of the electron micrograph using an electron microscope (TEM). Therefore, in the present invention, the average particle diameter is a diameter obtained by taking an electron micrograph using a TEM, measuring a cross-sectional area of a sufficient number of particles, and setting the measured value as an area of a corresponding circle. Obtained as the diameter, the arithmetic average was taken as the average particle diameter. The number of particles photographed with a TEM is preferably 20 or more, and more preferably 100 particles are photographed.

(近赤外発光蛍光体ナノ粒子の製造方法)
本発明の特徴であるナノサイズの近赤外発光蛍光体は、原料を溶媒に溶解した状態で、噴霧焼成炉を通過させることにより、乾燥及び焼成する製造方法により達成される。
(Method for producing near-infrared emitting phosphor nanoparticles)
The nano-sized near-infrared light-emitting phosphor that is a feature of the present invention is achieved by a production method in which a raw material is dissolved in a solvent and dried and fired by passing through a spray firing furnace.

噴霧・乾燥熱分解法は、一般的には原料溶液をノズル、超音波により霧化して微小な液滴にし、この液滴の溶媒を高温で蒸発させると共に、得られた固体粒子を高温で熱分解して目的とする化合物の微粒子(以下、単に「粒子」ともいう。)を得る方法である。蛍光体の粒径は、液滴サイズと原料溶液濃度によりコントロールすることが出来る。   In the spray / dry pyrolysis method, the raw material solution is generally atomized by a nozzle and ultrasonic waves into fine droplets, and the solvent of the droplets is evaporated at a high temperature and the obtained solid particles are heated at a high temperature. This is a method of decomposing and obtaining fine particles of a target compound (hereinafter also simply referred to as “particles”). The particle size of the phosphor can be controlled by the droplet size and the raw material solution concentration.

さらに、この際に、リン酸フラックスを蛍光体原料として同時に噴霧することで、粒子同士の凝集による大サイズ化を防ぐことが出来る。蛍光体粒子はフラックスに包まれた状態で回収されるため、仮に噴霧焼成後の粒子が凝集してしまっても、フラックス部分がくっついた状態であり、内部の粒子は単体のまま保たれるため、フラックスを溶解・除去することで、ナノ粒子化を達成することが出来た。   Further, at this time, the phosphoric acid flux is simultaneously sprayed as a phosphor raw material, thereby preventing an increase in size due to aggregation of particles. Since the phosphor particles are collected in a state of being wrapped in the flux, even if the particles after spray firing are aggregated, the flux part is stuck, and the internal particles are kept as a single unit. By dissolving and removing the flux, nano particles could be achieved.

フラックスとしては、原料であるリン酸塩を化学量論比の1.5〜10倍を添加することが好ましい。フラックスは少ないと蛍光体の融着が起こる。過剰であると原料の濃度が希薄となり、反応に時間がかかる、収率が下がるなどの問題が生じる
〔近赤外発光蛍光体ナノ粒子集合体の親水化処理〕
上述した近赤外発光蛍光体ナノ粒子は集合体として得られるが、当該集合体表面は、一般的には、疎水性であるため、例えば生体物質標識剤として使用する場合は、このままでは水分散性が悪く、粒子が凝集してしまう等の問題があるため、当該ナノ粒子の表面を親水化処理することが好ましい。親水化処理の方法としては例えば、表面の親油性基をピリジン等で除去した後に粒子表面に表面修飾剤を化学的及び/又は物理的に結合させる方法がある。表面修飾剤としては、親水基として、カルボキシル基・アミノ基を持つものが好ましく用いられ、具体的にはメルカプトプロピオン酸、メルカプトウンデカン酸、アミノプロパンチオールなどがあげられる。
As the flux, it is preferable to add 1.5 to 10 times the stoichiometric ratio of the raw material phosphate. When the flux is small, the phosphor is fused. If it is excessive, the concentration of the raw material becomes dilute, and the reaction takes time and the yield decreases. [Hydrophilic treatment of near-infrared emitting phosphor nanoparticle aggregates]
Although the near-infrared light emitting phosphor nanoparticles described above are obtained as an aggregate, the surface of the aggregate is generally hydrophobic. For example, when used as a biological material labeling agent, the dispersion is water-dispersed as it is. The surface of the nanoparticle is preferably subjected to a hydrophilization treatment because the properties are poor and the particles are aggregated. As a method for the hydrophilization treatment, for example, there is a method of chemically and / or physically binding a surface modifier to the particle surface after removing the lipophilic group on the surface with pyridine or the like. As the surface modifier, those having a carboxyl group / amino group as a hydrophilic group are preferably used, and specific examples include mercaptopropionic acid, mercaptoundecanoic acid, aminopropanethiol and the like.

具体的には、例えば、近赤外発光蛍光体ナノ粒子10-5gをメルカプトウンデカン酸0.2gが溶解した純水10ml中に分散させて、40℃、10分間攪拌し、シェルの表面を処理することで近赤外発光蛍光体ナノ粒子の表面をカルボキシル基で修飾することができる。 Specifically, for example, 10 −5 g of near-infrared light emitting phosphor nanoparticles are dispersed in 10 ml of pure water in which 0.2 g of mercaptoundecanoic acid is dissolved, and stirred at 40 ° C. for 10 minutes to form the surface of the shell. By processing, the surface of the near-infrared-emitting phosphor nanoparticles can be modified with a carboxyl group.

〔生体物質標識剤〕
本発明に係る生体物質標識剤は、上述した親水化処理された近赤外発光蛍光体ナノ粒子と、分子標識物質と有機分子を介して結合させて得られる。
[Biological substance labeling agent]
The biological material labeling agent according to the present invention is obtained by binding the above-mentioned hydrophilic-treated near-infrared light emitting phosphor nanoparticles, a molecular labeling substance and an organic molecule.

〈分子標識物質〉
本発明に係る生体物質標識剤は分子標識物質が目的とする生体物質と特異的に結合及び/又は反応することにより、生体物質の標識が可能となる。
<Molecular labeling substance>
The biological substance labeling agent according to the present invention can label a biological substance by specifically binding and / or reacting with the target biological substance.

当該分子標識物質としては例えば、ヌクレオチド鎖、抗体、抗原およびシクロデキストリン等が挙げられる。   Examples of the molecular labeling substance include nucleotide chains, antibodies, antigens and cyclodextrins.

〈有機分子〉
本発明に係る生体物質標識剤は、親水化処理された近赤外発光蛍光体ナノ粒子と、分子標識物質とが有機分子により結合されている。該有機分子としては近赤外発光蛍光体ナノ粒子と分子標識物質とを結合できる有機分子であれば特に制限はないが、例えば、タンパク質中でも、アルブミン、ミオグロビンおよびカゼイン等、またタンパク質の一種であるアビジンをビオチンと共に用いることも好適に用いられる。上記結合の態様としては特に限定されず、共有結合、イオン結合、水素結合、配位結合、物理吸着および化学吸着等が挙げられる。結合の安定性から共有結合などの結合力の強い結合が好ましい。
<Organic molecule>
In the biological material labeling agent according to the present invention, the near-infrared light emitting phosphor nanoparticles subjected to a hydrophilic treatment and the molecular labeling substance are bound by an organic molecule. The organic molecule is not particularly limited as long as it is an organic molecule capable of binding a near-infrared emitting phosphor nanoparticle and a molecular labeling substance. For example, among proteins, albumin, myoglobin, casein, and the like are also a kind of protein. It is also preferable to use avidin together with biotin. The form of the bond is not particularly limited, and examples thereof include a covalent bond, an ionic bond, a hydrogen bond, a coordination bond, physical adsorption, and chemical adsorption. A bond having a strong bonding force such as a covalent bond is preferable from the viewpoint of bond stability.

具体的には、近赤外発光蛍光体ナノ粒子をメルカプトウンデカン酸で親水化処理した場合は、有機分子としてアビジンおよびビオチンを用いることができる。この場合親水化処理された当該ナノ粒子のカルボキシル基はアビジンと好適に共有結合し、アビジンがさらにビオチンと選択的に結合し、ビオチンがさらに生体物質標識剤と結合することにより生体物質標識剤となる。   Specifically, avidin and biotin can be used as organic molecules when the near-infrared emitting phosphor nanoparticles are hydrophilized with mercaptoundecanoic acid. In this case, the carboxyl group of the nanoparticle subjected to hydrophilic treatment is preferably covalently bonded to avidin, and avidin is further selectively bonded to biotin, and biotin is further bonded to the biological material labeling agent to Become.

以下、実施例により本発明をより詳細に説明するが、本発明はこれに限定されるものではない。なお、以下においては、近赤外発光蛍光体ナノ粒子を単に「蛍光体」と称する。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to this. In the following, the near-infrared light emitting phosphor nanoparticles are simply referred to as “phosphors”.

得られた蛍光体の組成分析はX線回折(XRD)(PANalytical社製)により行い、組成の同定は、得られた回折ピークとリファレンスデータベースとして比較を行った。具体的には、PANalytical社製解析ソフトX’pert High Scoreを使用し、リファレンスデータベースとしてICDD PDF2を用い、一致の程度を示すスコアを求め、スコアが80以上のものを該蛍光体の母体組成と同定した。   The composition analysis of the obtained phosphor was performed by X-ray diffraction (XRD) (manufactured by PANalytical), and the identification of the composition was compared with the obtained diffraction peak as a reference database. Specifically, using the analysis software X'pert High Score manufactured by PANalytical, using ICDD PDF2 as a reference database, a score indicating the degree of coincidence was obtained, and those having a score of 80 or more were determined as the matrix composition of the phosphor. Identified.

〈実施例1〉蛍光体1:Nd01Yb0108(PO33の製造方法
リン酸二水素アンモニウム59.8g、酸化ネオジム3.5g、酸化イッテルビウム4.0g、酸化イットリウム18.0gを乳鉢にいれ、十分混合した後、アルミナ製のフタ付きルツボに充填した後、電気炉に入れ、室温から700℃迄、一定昇温速度で2時間かけて昇温し、しかる後700℃で3時間焼成した。焼成終了後、ただちに電気炉から取り出し空気中で冷却した。次いで、ルツボ内に水を入れ、80℃の熱水中に10時間浸漬した。冷却後、1Nの硝酸で洗浄し、その後水洗して蛍光体1を得た。XRD解析の結果蛍光体母体組成は、Y(PO33であった。
<Example 1> Phosphor 1: Nd 0 . 1 Yb 0 . 1 Y 0 . 8 (PO 3 ) 3 production method 59.8 g of ammonium dihydrogen phosphate, 3.5 g of neodymium oxide, 4.0 g of ytterbium oxide, and 18.0 g of yttrium oxide were mixed in a mortar, and then covered with an alumina lid. After filling the crucible, it was put into an electric furnace, heated from room temperature to 700 ° C. at a constant heating rate over 2 hours, and then fired at 700 ° C. for 3 hours. Immediately after the completion of firing, the product was taken out of the electric furnace and cooled in air. Next, water was put in the crucible and immersed in hot water at 80 ° C. for 10 hours. After cooling, it was washed with 1N nitric acid, and then washed with water to obtain phosphor 1. As a result of XRD analysis, the phosphor matrix composition was Y (PO 3 ) 3 .

〈実施例2〉蛍光体2:Nd01Yb0108(PO33の製造方法
実施例1の組成で、焼成条件を室温から1000℃迄、一定昇温速度で2時間かけて昇温し、しかる後1000℃で5時間焼成したほかは同様の操作を行い、蛍光体2を得た。
Example 2 Phosphor 2: Nd 0 . 1 Yb 0 . 1 Y 0 . 8 (PO 3 ) 3 Production Method The composition of Example 1 was used except that the firing conditions were raised from room temperature to 1000 ° C. over 2 hours at a constant heating rate, and then fired at 1000 ° C. for 5 hours. Thus, phosphor 2 was obtained.

XRD解析の結果蛍光体母体組成は、Y(PO33であった。 As a result of XRD analysis, the phosphor matrix composition was Y (PO 3 ) 3 .

〈比較例1〉蛍光体3:Nd01Yb0108PO4の製造方法
リン酸二水素アンモニウム23g、酸化ネオジム3.5g、酸化イッテルビウム4.0g、酸化イットリウム 18.0gを乳鉢にいれ、十分混合した後、アルミナ製のフタ付きルツボに充填した後、電気炉に入れ、室温から700℃迄、一定昇温速度で2時間かけて昇温し、しかる後700℃で5時間焼成したほかは、実施例1と同様の操作を行い、蛍光体3を得た。XRD解析の結果粉末の母体組成は、YPO4であった。
<Comparative Example 1> Phosphor 3: Nd 0 . 1 Yb 0 . 1 Y 0 . 8 PO 4 Production Method After putting 23 g of ammonium dihydrogen phosphate, 3.5 g of neodymium oxide, 4.0 g of ytterbium oxide, and 18.0 g of yttrium oxide into a mortar, mixing them well, and then filling the crucible with an alumina lid. The phosphor 3 was subjected to the same operation as in Example 1 except that it was put in an electric furnace and heated from room temperature to 700 ° C. at a constant heating rate over 2 hours and then fired at 700 ° C. for 5 hours. Got. As a result of XRD analysis, the matrix composition of the powder was YPO 4 .

〈比較例2〉蛍光体4:Nd01Yb0108PO4の製造方法
比較例1の組成にし、焼成条件を室温から1200℃迄、一定昇温速度で2時間かけて昇温し、しかる後1200℃で5時間焼成したほかは実施例1と同様の操作を行い、蛍光体4を得た。XRD解析の結果粉末母体組成は、YPO4であった。
<Comparative Example 2> Phosphor 4: Nd 0 . 1 Yb 0 . 1 Y 0 . 8 PO 4 Production Method The composition of Example 1 was used except that the composition of Comparative Example 1 was used, and the firing conditions were raised from room temperature to 1200 ° C. at a constant heating rate over 2 hours and then fired at 1200 ° C. for 5 hours. The same operation was performed to obtain phosphor 4. As a result of XRD analysis, the powder matrix composition was YPO 4 .

上記のようにして形成した蛍光体1、2、3および4について励起光810nmでの発光スペクトルを測定した。結果を表1にまとめて示す。   With respect to the phosphors 1, 2, 3 and 4 formed as described above, emission spectra at an excitation light of 810 nm were measured. The results are summarized in Table 1.

Figure 2009138120
Figure 2009138120

表1に示した結果から、本発明に係る母体組成がY(PO33のもの(実施例1および2)は母体組成がYPO4のものより低温、短時間の焼成で赤外発光蛍光体が得られることがわかる。 From the results shown in Table 1, infrared emission fluorescence is obtained when the matrix composition according to the present invention is Y (PO 3 ) 3 (Examples 1 and 2) when firing at a lower temperature and in a shorter time than that of the matrix composition YPO 4. It turns out that a body is obtained.

〈実施例3〉蛍光体5:Nd01Yb0108(PO33の製造方法
リン酸二水素アンモニウム115g、硝酸ネオジム44g、硝酸イッテルビウム41g、硝酸イットリウム 30.6gを希硝酸に溶解し200mlとしA液とする。
Example 3 Phosphor 5: Nd 0 . 1 Yb 0 . 1 Y 0 . 8 (PO 3 ) 3 Production Method 115 g of ammonium dihydrogen phosphate, 44 g of neodymium nitrate, 41 g of ytterbium nitrate, and 30.6 g of yttrium nitrate are dissolved in dilute nitric acid to make 200 ml.

A液を、特開2003−277745号明細書記載の噴霧焼成装置を用い、乾燥工程200℃・焼成工程700℃で反応を行ったのち、得られた粉体を80℃の熱水中に10時間浸漬した。冷却後、1Nの硝酸で洗浄し、その後水洗して蛍光体5を得た。XRD解析の結果蛍光体母体組成は、Y(PO33であった。 After the liquid A was reacted at a drying step of 200 ° C. and a baking step of 700 ° C. using a spray baking apparatus described in Japanese Patent Application Laid-Open No. 2003-277745, the obtained powder was placed in hot water at 80 ° C. for 10 minutes. Soaked for hours. After cooling, the phosphor 5 was washed with 1N nitric acid and then washed with water. As a result of XRD analysis, the phosphor matrix composition was Y (PO 3 ) 3 .

〈比較例3〉蛍光体6:Nd01Yb0108PO4の製造方法
リン酸二水素アンモニウム115g、硝酸ネオジム44g、硝酸イッテルビウム41g、硝酸イットリウム 30.6gを希硝酸に溶解し200mlとしC液とした以外は、実施例1と同様にして蛍光体6を得た。XRD解析の結果粉末母体組成は、YPO4であった。
<Comparative Example 3> Phosphor 6: Nd 0 . 1 Yb 0 . 1 Y 0 . 8 PO 4 Production Method Phosphor as in Example 1 except that 115 g of ammonium dihydrogen phosphate, 44 g of neodymium nitrate, 41 g of ytterbium nitrate, 30.6 g of yttrium nitrate were dissolved in dilute nitric acid to make 200 ml. 6 was obtained. As a result of XRD analysis, the powder matrix composition was YPO 4 .

〈比較例4〉蛍光体7:Nd01Yb0108PO4の製造方法
リン酸二水素アンモニウム115g、硝酸ネオジム44g、硝酸イッテルビウム41g、硝酸イットリウム30.6gを希硝酸に溶解し200mlとしD液とし、焼成工程を1200℃とした以外は、実施例1と同様にして蛍光体7を得た。XRD解析の結果粉末母体組成は、YPO4であった。
<Comparative Example 4> Phosphor 7: Nd 0 . 1 Yb 0 . 1 Y 0 . 8 PO 4 Production Method Example 1 except that 115 g of ammonium dihydrogen phosphate, 44 g of neodymium nitrate, 41 g of ytterbium nitrate, 30.6 g of yttrium nitrate were dissolved in dilute nitric acid to make 200 ml, and the baking process was 1200 ° C. In the same manner as in Example 1, a phosphor 7 was obtained. As a result of XRD analysis, the powder matrix composition was YPO 4 .

上記のようにして形成した蛍光体5、6および7のTEM観察を行い、粒子100個について粒径を測定し、平均粒径を求めた。   The phosphors 5, 6 and 7 formed as described above were observed with a TEM, and the particle size of 100 particles was measured to obtain the average particle size.

また、励起光810nmでの発光スペクトルを測定した。蛍光体1の発光ピーク強度を100とした相対発光強度を示す。   In addition, an emission spectrum at excitation light of 810 nm was measured. The relative light emission intensity with the light emission peak intensity of the phosphor 1 as 100 is shown.

以上の結果を表2まとめて示す。   The above results are summarized in Table 2.

Figure 2009138120
Figure 2009138120

表2に示した結果から、本発明に係る母体がY(PO33の蛍光体は、噴霧焼成を行うことにより、平均粒径が2〜50nmの範囲にある。さらに母体がYPO4である蛍光体に比べ、低温焼成で高い発光強度を示すナノ粒子が得られることがわかる。 From the results shown in Table 2, the phosphor of Y (PO 3 ) 3 based on the present invention has an average particle diameter in the range of 2 to 50 nm by spray firing. Furthermore, it can be seen that nanoparticles exhibiting high emission intensity can be obtained by low-temperature firing as compared with a phosphor whose base material is YPO 4 .

〈実施例4〉
蛍光体2:1.0×10-5mol/lの水分散液にアビジン25mgを添加し40℃で10分間攪拌を行い、アビジンコンジュゲートナノ粒子を作製した。
<Example 4>
Phosphor 2: 25 mg of avidin was added to an aqueous dispersion of 1.0 × 10 −5 mol / l and stirred at 40 ° C. for 10 minutes to prepare avidin-conjugated nanoparticles.

得られたアビジンコンジュゲートナノ粒子溶液にビオチン化された塩基配列が既知であるオリゴヌクレオチドを混合攪拌し、ナノ粒子で標識(ラベリング)されたオリゴヌクレオチドを作製した。   The resulting avidin-conjugated nanoparticle solution was mixed and stirred with a biotinylated oligonucleotide having a known base sequence to prepare an oligonucleotide labeled with a nanoparticle.

さまざまな塩基配列を持つオリゴヌクレオチドを固定化したDNAチップ上に上記の標識(ラベリング)したオリゴヌクレオチドを滴下・洗浄したところ、標識(ラベリング)されたオリゴヌクレオチドと相補的な塩基配列をもつオリゴヌクレオチドのスポットのみが810nmの励起光により発光した。   When the above labeled (labeled) oligonucleotide is dropped and washed on a DNA chip on which oligonucleotides having various base sequences are immobilized, the oligonucleotide has a complementary base sequence to the labeled (labeled) oligonucleotide. Only the spot of was emitted with excitation light of 810 nm.

このことより、ナノ粒子でのオリゴヌクレオチドの標識(ラベリング)を確認することができた。すなわち、この結果により、本発明の近赤外発光蛍光体ナノ粒子を用いた生体物質標識剤を提供することができることが分かる。   This confirmed the labeling (labeling) of the oligonucleotide with the nanoparticles. That is, it can be seen from this result that a biological substance labeling agent using the near-infrared light emitting phosphor nanoparticles of the present invention can be provided.

Claims (6)

700〜900nmの範囲内の波長の近赤外光により励起されたときに、700〜2000nmの範囲内の波長の近赤外光の発光を示す近赤外発光蛍光体であって、その組成の少なくとも一部が下記一般式(1)で表されることを特徴とする近赤外発光蛍光体。
一般式(1):A1-x-yNdxYby(PO33
(式中、AはY,LuおよびLaから選択される元素であり;0<x≦0.5;0<y≦0.5および0<x+y<1である。)
A near-infrared light emitting phosphor that emits near-infrared light having a wavelength in the range of 700 to 2000 nm when excited by near-infrared light having a wavelength in the range of 700 to 900 nm, the composition of which A near-infrared light emitting phosphor characterized in that at least a part is represented by the following general formula (1).
Formula (1): A 1-xy Nd x Yb y (PO 3) 3
(Wherein A is an element selected from Y, Lu and La; 0 <x ≦ 0.5; 0 <y ≦ 0.5 and 0 <x + y <1)
前記近赤外発光蛍光体が、平均粒径が2〜50nmである近赤外発光蛍光体ナノ粒子であることを特徴とする請求項1に記載の近赤外発光蛍光体。 The near-infrared light-emitting phosphor according to claim 1, wherein the near-infrared light-emitting phosphor is a near-infrared light-emitting phosphor nanoparticle having an average particle diameter of 2 to 50 nm. 前記近赤外発光蛍光体の表面が親水化処理されていることを特徴とする請求項1又は2に記載の近赤外発光蛍光体。 The near-infrared light-emitting phosphor according to claim 1 or 2, wherein a surface of the near-infrared light-emitting phosphor is hydrophilized. 請求項2又は3に記載の近赤外発光蛍光体ナノ粒子と分子標識物質とを有機分子を介して結合させたことを特徴とする生体物質標識剤。 A biological material labeling agent comprising the near-infrared light emitting phosphor nanoparticles according to claim 2 and a molecular labeling substance bonded via an organic molecule. 前記分子標識物質がヌクレオチド鎖であることを特徴とする請求項4に記載の生体物質標識剤。 The biological substance labeling agent according to claim 4, wherein the molecular labeling substance is a nucleotide chain. 前記近赤外発光蛍光体ナノ粒子と分子標識物質とを結合させる有機分子が、ビオチン及びアビジンであることを特徴とする請求項4又は5に記載の生体物質標識剤。 The biological material labeling agent according to claim 4 or 5, wherein the organic molecule that binds the near-infrared light emitting phosphor nanoparticles and the molecular labeling substance is biotin and avidin.
JP2007316739A 2007-12-07 2007-12-07 Near infrared ray-emitting fluorophor, biological substance-labeling agent using the same Pending JP2009138120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007316739A JP2009138120A (en) 2007-12-07 2007-12-07 Near infrared ray-emitting fluorophor, biological substance-labeling agent using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007316739A JP2009138120A (en) 2007-12-07 2007-12-07 Near infrared ray-emitting fluorophor, biological substance-labeling agent using the same

Publications (1)

Publication Number Publication Date
JP2009138120A true JP2009138120A (en) 2009-06-25

Family

ID=40869059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007316739A Pending JP2009138120A (en) 2007-12-07 2007-12-07 Near infrared ray-emitting fluorophor, biological substance-labeling agent using the same

Country Status (1)

Country Link
JP (1) JP2009138120A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112920793A (en) * 2021-01-27 2021-06-08 陕西师范大学 Rare earth luminescent material with enhanced visible light/near-infrared two-region emission

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112920793A (en) * 2021-01-27 2021-06-08 陕西师范大学 Rare earth luminescent material with enhanced visible light/near-infrared two-region emission

Similar Documents

Publication Publication Date Title
Kong et al. A general strategy for ligand exchange on upconversion nanoparticles
Wang et al. Synthesis of NIR-responsive NaYF4: Yb, Er upconversion fluorescent nanoparticles using an optimized solvothermal method and their applications in enhanced development of latent fingerprints on various smooth substrates
Liu et al. Lanthanide-doped luminescent nano-bioprobes: from fundamentals to biodetection
Shen et al. Luminescent rare earth nanomaterials for bioprobe applications
Ostrowski et al. Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals
Lin et al. Recent advances in synthesis and surface modification of lanthanide-doped upconversion nanoparticles for biomedical applications
Chen et al. Amphiphilic silane modified NaYF 4: Yb, Er loaded with Eu (TTA) 3 (TPPO) 2 nanoparticles and their multi-functions: dual mode temperature sensing and cell imaging
JP5790352B2 (en) Fluorescent substance-containing nanoparticles and biological substance detection method using the same
Peng et al. Color-tunable binuclear (Eu, Tb) nanocomposite powder for the enhanced development of latent fingerprints based on electrostatic interactions
CN107033905A (en) A kind of rear-earth-doped lithium yttrium fluoride nano material and preparation method and application
Maldiney et al. In vivo imaging with persistent luminescence silicate-based nanoparticles
Dosev et al. Inorganic lanthanide nanophosphors in biotechnology
Maldiney et al. Persistent luminescence nanoparticles for diagnostics and imaging
Gainer et al. A review of synthetic methods for the production of upconverting lanthanide nanoparticles
Ju et al. Lanthanide-doped inorganic nanocrystals as luminescent biolabels
CN108456518A (en) A kind of rare-earth nanometer particles of intense red fluorescence and preparation method thereof and the application in cell imaging
EP3194527A1 (en) Near-ir emitting cationic silver chalcogenide quantum dots
CN105820809B (en) 6 azepine, 2 thio-thymine gold nano cluster and preparation method thereof
JPWO2008152891A1 (en) Near-infrared emitting phosphor nanoparticle, method for producing the same, and biomaterial labeling agent using the same
CN110408377A (en) A kind of rear-earth-doped NaCeF4Near-infrared fluorescent nano-probe and preparation method thereof and biologic applications
Datta et al. Fluorescent Nanomaterials and Its Application in Biomedical Engineering
JP5125703B2 (en) Rare earth element-doped phosphor nanoparticles and biological material labeling agents using the same
CN106010527B (en) A kind of efficient upconversion fluorescence nano material and its preparation method and application based on molybdic acid ytterbium matrix
Ansari Impact of surface coating on morphological, optical and photoluminescence properties of YF3: Tb3+ nanoparticles
JP2009138120A (en) Near infrared ray-emitting fluorophor, biological substance-labeling agent using the same