JP2009138119A - Near infrared ray-emitting fluorophor nano particle, biological substance-labeling agent using the same - Google Patents

Near infrared ray-emitting fluorophor nano particle, biological substance-labeling agent using the same Download PDF

Info

Publication number
JP2009138119A
JP2009138119A JP2007316738A JP2007316738A JP2009138119A JP 2009138119 A JP2009138119 A JP 2009138119A JP 2007316738 A JP2007316738 A JP 2007316738A JP 2007316738 A JP2007316738 A JP 2007316738A JP 2009138119 A JP2009138119 A JP 2009138119A
Authority
JP
Japan
Prior art keywords
infrared light
labeling agent
emitting phosphor
biological
near infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007316738A
Other languages
Japanese (ja)
Inventor
Takuji Aimiya
拓司 相宮
Naoko Furusawa
直子 古澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Medical and Graphic Inc
Original Assignee
Konica Minolta Medical and Graphic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Medical and Graphic Inc filed Critical Konica Minolta Medical and Graphic Inc
Priority to JP2007316738A priority Critical patent/JP2009138119A/en
Publication of JP2009138119A publication Critical patent/JP2009138119A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide fluorophor nano particles which have a nano size suitable for a biological substance-labeling agent, emit rear infrared ray passing through "biological window", and have high ray-emitting accuracy, and to provide a biological substance-labeling agent using the same. <P>SOLUTION: The near infrared ray-emitting fluorophor nano particles having an average particle diameter of 2 to 50 nm and emitting near infrared rays having wavelengths in a range of 700 to 2,000 nm, when excited with near infrared rays having wavelengths in a range of 700 to 900 nm, is characterized in that at least one portion of the composition is represented by the following general formula (1): A<SB>1-x-y</SB>Nd<SB>x</SB>Yb<SB>y</SB>PO<SB>4</SB>(wherein, A is an element selected from Y, Lu and La; 0<x≤0.5, 0<y≤0.5, x+y<1.0), and the fluorophor nano particles are dried, calcinated and produced by passing their raw materials through a spray calcination oven in a state dissolved in a solvent. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、近赤外発光蛍光体ナノ粒子、それを用いた生体物質標識剤に関する。   The present invention relates to near-infrared emitting phosphor nanoparticles and a biological material labeling agent using the same.

生体物質を標識する手段として、分子標識物質をマーカー物質に結合した生体物質標識剤を用いる方法が検討されている。マーカー物質に蛍光材料が用いられる場合には励起光として用いられる波長の短い紫外域の光が細胞にダメージを与えることが問題となっており、ダメージの少ない長波長励起・発光の蛍光体が求められている。   As means for labeling a biological substance, a method using a biological substance labeling agent in which a molecular labeling substance is bound to a marker substance has been studied. When a fluorescent material is used for the marker substance, it is a problem that light in the ultraviolet region with a short wavelength used as excitation light damages the cell, and a long-wavelength excitation / luminescence phosphor with little damage is desired. It has been.

一方、特に近年、小動物を対象としたin vivo光イメージングが注目されており、小動物の生体内の細胞を外部より、生体を傷つけることなく(非侵襲で)観察するような光学系装置が各メーカから販売され始めている。これは、生体内の観察したい部位に選択的に集まるような標識をつけた蛍光材料を生体内に注入し、外部より励起光を照射し出てきた発光を外部でモニターする方法である。   On the other hand, in recent years, in vivo optical imaging targeting small animals has attracted attention, and optical system devices that allow observation of cells in the living body of small animals from the outside without damaging the living body (non-invasively) are provided by various manufacturers. Has begun to be sold from. In this method, a fluorescent material with a label that selectively gathers at a site to be observed in the living body is injected into the living body, and the emitted light emitted from the outside is externally monitored.

このように、生体内の蛍光材料を励起し、発光を外部に取り出すためには、励起光及び発光が生体を透過する必要がある。紫外光及び可視光は、生体の吸収が高く、ほとんど透過することができないので好ましくない。また、1000nm以上の波長では、水の吸収が立ち上がり透過率が低くなり、好ましくない。しかしながら、近赤外線の700〜1000nmは、「生体の窓」及び「分光領域の窓」と呼ばれる生体の透過率が特異的に高い領域であり、この範囲内で励起及び発光を示す蛍光材料が求められている。   Thus, in order to excite the fluorescent material in the living body and extract the emitted light to the outside, it is necessary that the excitation light and the emitted light pass through the living body. Ultraviolet light and visible light are not preferred because they are highly absorbed by the living body and hardly transmit. On the other hand, when the wavelength is 1000 nm or more, the absorption of water rises and the transmittance decreases, which is not preferable. However, 700 to 1000 nm in the near infrared region is a region having a specifically high biological transmittance called “biological window” and “spectral region window”, and a fluorescent material exhibiting excitation and emission within this range is desired. It has been.

上記方法で従来使用されてきた有機蛍光色素などのマーカー物質は、励起光照射時の劣化が激しく寿命が短いことが欠点であり、また発光効率が低く、感度も十分ではなかった。   The marker substances such as organic fluorescent dyes conventionally used in the above method have the disadvantages that they are severely deteriorated when irradiated with excitation light and have a short lifetime, and the luminous efficiency is low and the sensitivity is not sufficient.

そのため、近年、上記マーカー物質として半導体ナノ粒子を用いる方法が注目されている。例えば、極性官能基を有する高分子を半導体ナノ粒子の表面に物理的および/または化学的に吸接合した生体物質標識剤が検討されている(例えば特許文献1参照)。また、有機分子をSi/SiO2型半導体ナノ粒子の表面に結合した生体物質標識剤が検討されている(例えば特許文献2参照)。 Therefore, in recent years, a method using semiconductor nanoparticles as the marker substance has attracted attention. For example, a biological substance labeling agent in which a polymer having a polar functional group is physically and / or chemically adsorbed and bonded to the surface of a semiconductor nanoparticle has been studied (see, for example, Patent Document 1). In addition, a biological substance labeling agent in which organic molecules are bonded to the surface of Si / SiO 2 type semiconductor nanoparticles has been studied (for example, see Patent Document 2).

しかしながら、これら従来の半導体ナノ粒子を用いた生体物質標識剤には発光精度等において未解決の問題が存在した。   However, there have been unsolved problems with respect to light emission accuracy and the like in the biomaterial labeling agents using these conventional semiconductor nanoparticles.

例えば、特許文献1で実質的にその効果も含めて開示されている半導体ナノ粒子は、(CdSe/ZnS型)半導体ナノ粒子であるが、一般的に量子ドットと呼ばれボーア励起子のサイズよりも小さな粒径を持つ場合に、バンドギャップがサイズに依存して変化するという性質、すなわち、同一組成で粒子サイズを変化させることで発光波長が変化するという特徴を持っている。このような量子ドット蛍光材料はサイズにより発光波長を自在に変化させることが可能であるという長所を持つ一方、粒径制御の精度が発光波長の精度につながるという短所があった。   For example, the semiconductor nanoparticles disclosed in Patent Document 1 substantially including the effects thereof are (CdSe / ZnS type) semiconductor nanoparticles, which are generally called quantum dots and are larger than the size of Bohr excitons. In the case of having a small particle size, the band gap changes depending on the size, that is, the emission wavelength changes by changing the particle size with the same composition. While such a quantum dot fluorescent material has the advantage that the emission wavelength can be freely changed depending on the size, it has the disadvantage that the accuracy of particle size control leads to the accuracy of the emission wavelength.

一方、近赤外励起で発光する近赤外発光蛍光体は、近年、現金に変わる支払い方法として用いられているクレジットカードやプリペイドカードの偽造防止用の潜像形成インクとして一般的に使用されている。公知例としては、A1-x-yNdxYbyPO4(式中、AはY、LuおよびLaから選ばれる少なくとも1種であって、0<x≦0.5、0<y≦0.5、x+y<1.0である。)などが知られている(特許文献3参照)。これらはいずれも、近赤外発光ダイオード(中心波長880nm)で励起、980nmで発光するため、励起光及び発光のどちらも「生体の窓」を通過し、好ましい組成であることがわかる。 On the other hand, near-infrared light-emitting phosphors that emit light by near-infrared excitation are generally used as latent image forming inks for preventing counterfeiting of credit cards and prepaid cards that are used as payment methods in place of cash in recent years. Yes. Known examples, in A 1-xy Nd x Yb y PO 4 ( wherein, A is at least one selected from Y, Lu and La, 0 <x ≦ 0.5,0 < y ≦ 0. 5, x + y <1.0) (see Patent Document 3). Both of these are excited by a near-infrared light-emitting diode (center wavelength: 880 nm) and emit light at 980 nm, so that both excitation light and light emission pass through the “biological window” and are found to be preferable compositions.

しかしながら、潜像形成インクとして使用される場合には蛍光体粒子のサイズは数ミクロンからサブミクロンの範囲で形成されることが一般的であり、安定な発光精度は得られているが、生体標識剤として好適に用いることのできる100nm以下の粒子は従来用いられていなかった(特許文献3参照)。
特開2003−329686号公報 特開2005−172429号公報 特許第3336572号明細書
However, when used as a latent image forming ink, the size of phosphor particles is generally formed in the range of several microns to submicron, and stable emission accuracy is obtained. Particles of 100 nm or less that can be suitably used as an agent have not been conventionally used (see Patent Document 3).
JP 2003-329686 A JP 2005-172429 A Japanese Patent No. 3336572

本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、生体物質標識剤に適したナノサイズであり、「生体の窓」を通過する近赤外発光をし、発光精度の高い蛍光体ナノ粒子を提供することである。またそれを用いた生体物質標識剤を提供することである。   The present invention has been made in view of the above-described problems and circumstances, and its solution is a nano-size suitable for a biological substance labeling agent, which emits near-infrared light that passes through a “biological window” and emits light. It is to provide phosphor nanoparticles with high accuracy. Moreover, it is providing the biological material labeling agent using the same.

本発明者等は、上記課題を解決すべく鋭意検討の結果、特定の粒径の蛍光体ナノ粒子を特定の組成の蛍光体ナノ粒子として、特定の製造方法によって製造すると、近赤外発光蛍光体ナノ粒子が得られることを見出し、本発明に至った。   As a result of intensive studies to solve the above problems, the present inventors have produced phosphor nanoparticles having a specific particle size as phosphor nanoparticles having a specific composition by a specific manufacturing method. The present inventors have found that body nanoparticles can be obtained, and have reached the present invention.

すなわち、本発明に係る上記課題は、以下の手段により解決される。   That is, the said subject which concerns on this invention is solved by the following means.

1.平均粒径が2〜50nmであり、かつ700〜900nmの範囲内の波長の近赤外光により励起されたときに、700〜2000nmの範囲内の波長の近赤外光の発光を示す近赤外発光蛍光体ナノ粒子であって、その組成の少なくとも一部が下記一般式(1)で表され、かつその原料を溶媒に溶解した状態で、噴霧焼成炉を通過させることにより、乾燥及び焼成し、製造されたことを特徴とする近赤外発光蛍光体ナノ粒子。
一般式(1):A1-x-yNdxYbyPO4
(式中、AはY、LuおよびLaから選ばれる元素であって、0<x≦0.5、0<y≦0.5、x+y<1.0である。)
2.前記1に記載の近赤外発光蛍光体ナノ粒子であって、その表面が親水化処理されていることを特徴とする近赤外発光蛍光体ナノ粒子。
1. Near-red light having an average particle diameter of 2 to 50 nm and emitting near-infrared light having a wavelength in the range of 700 to 2000 nm when excited by near infrared light having a wavelength in the range of 700 to 900 nm. Externally emitting phosphor nanoparticles, at least part of the composition of which is represented by the following general formula (1), and dried and fired by passing through a spray firing furnace with the raw material dissolved in a solvent The near-infrared light emitting phosphor nanoparticles characterized by being manufactured.
Formula (1): A 1-xy Nd x Yb y PO 4
(In the formula, A is an element selected from Y, Lu and La, and 0 <x ≦ 0.5, 0 <y ≦ 0.5, and x + y <1.0.)
2. 2. The near-infrared light-emitting phosphor nanoparticle according to 1, wherein the surface thereof is hydrophilized.

3.前記1〜2のいずれか一項に記載の近赤外発光蛍光体ナノ粒子と分子標識物質とを有機分子を介して結合させたことを特徴とする生体物質標識剤。   3. A biological material labeling agent, wherein the near-infrared light emitting phosphor nanoparticles according to any one of the above 1 and 2 are bound to a molecular labeling material via an organic molecule.

4.前記分子標識物質がヌクレオチド鎖であることを特徴とする前記3に記載の生体物質標識剤。   4). 4. The biological substance labeling agent according to 3 above, wherein the molecular labeling substance is a nucleotide chain.

5.前記近赤外発光蛍光体ナノ粒子と分子標識物質とを結合させる有機分子が、ビオチン及びアビジンであることを特徴とする前記3又は4に記載の生体物質標識剤。   5). 5. The biological material labeling agent according to 3 or 4 above, wherein the organic molecule that binds the near-infrared light emitting phosphor nanoparticles and the molecular labeling material is biotin and avidin.

本発明の上記手段により、生体物質標識剤に適したナノサイズであり、「生体の窓」を通過する近赤外発光をし、発光精度の高い蛍光体ナノ粒子を提供することができる。また、それを用いた生体物質標識剤を提供することができる。   By the above-mentioned means of the present invention, it is possible to provide phosphor nanoparticles having a nano-size suitable for a biological substance labeling agent, emitting near-infrared light that passes through a “biological window” and having high emission accuracy. Moreover, the biological material labeling agent using the same can be provided.

本発明の近赤外発光蛍光体ナノ粒子は、平均粒径が2〜50nmであり、かつ700〜900nmの範囲内の波長の近赤外光により励起されたときに、700〜2000nmの範囲内の波長の近赤外光の発光を示す近赤外発光蛍光体ナノ粒子であって、その組成の少なくとも一部が前記一般式(1)で表され、かつその原料を溶媒に溶解した状態で、噴霧焼成炉を通過させることにより、乾燥及び焼成し、製造されたことを特徴とする。この特徴は、請求項1〜5に係る発明に共通する技術的特徴である。   The near-infrared light-emitting phosphor nanoparticles of the present invention have an average particle diameter of 2 to 50 nm, and when excited by near-infrared light having a wavelength in the range of 700 to 900 nm, are in the range of 700 to 2000 nm. A near-infrared phosphor nanoparticle that emits near-infrared light having a wavelength of at least a portion of which the composition is represented by the general formula (1) and the raw material is dissolved in a solvent. It is characterized by being manufactured by drying and firing by passing through a spray firing furnace. This feature is a technical feature common to the inventions according to claims 1 to 5.

本発明の実施態様として、本発明の近赤外発光蛍光体ナノ粒子は、その表面が親水化処理されていることが好ましい。   As an embodiment of the present invention, it is preferable that the near-infrared light emitting phosphor nanoparticles of the present invention have a hydrophilic surface.

また、本発明の近赤外発光蛍光体ナノ粒子は、分子標識物質と有機分子を介して結合させることにより生体物質標識剤とすることができる。なお、生体物質標識剤において、前記分子標識物質がヌクレオチド鎖であることが好ましい。また、前記有機分子が、ビオチン及びアビジンであることが好ましい。   Moreover, the near-infrared light emitting phosphor nanoparticle of the present invention can be used as a biological material labeling agent by binding with a molecular labeling substance via an organic molecule. In the biological substance labeling agent, the molecular labeling substance is preferably a nucleotide chain. The organic molecules are preferably biotin and avidin.

なお、本願において、「ナノ粒子」とは、平均粒径(直径)が、100nm未満の粒子をいい、本発明において好ましい平均粒径は、2〜50nmである。   In the present application, the “nanoparticle” means a particle having an average particle diameter (diameter) of less than 100 nm, and a preferable average particle diameter in the present invention is 2 to 50 nm.

以下、本発明とその構成要素、及び本発明を実施するための最良の形態・態様等について詳細な説明をする。   Hereinafter, the present invention, its components, and the best mode and mode for carrying out the present invention will be described in detail.

(近赤外発光蛍光体ナノ粒子)
本発明の近赤外発光蛍光体ナノ粒子は、その組成の少なくとも一部が下記一般式(1)で表されることを特徴とする。
一般式(1):A1-x-yNdxYbyPO4
(式中、AはY、LuおよびLaから選ばれる少なくとも1種であって、0<x≦0.5、0<y≦0.5、x+y<1.0である。)
本発明の近赤外発光蛍光体ナノ粒子は、700nm〜900nmの範囲の波長を有する近赤外光により励起されたときに、700nm〜2000nmの範囲の波長の近赤外光の発光を示す特性を持たせるために当該ナノ粒子の平均粒径を2〜50nmにすることを要する。また、好ましい態様としては、共賦活剤として、Pr及びTbのうちの少なくともいずれかの元素を含有させる。
(Near-infrared emitting phosphor nanoparticles)
The near-infrared light emitting phosphor nanoparticles of the present invention are characterized in that at least a part of the composition is represented by the following general formula (1).
Formula (1): A 1-xy Nd x Yb y PO 4
(In the formula, A is at least one selected from Y, Lu and La, and 0 <x ≦ 0.5, 0 <y ≦ 0.5, and x + y <1.0.)
The near-infrared light emitting phosphor nanoparticles of the present invention exhibit properties of emitting near infrared light having a wavelength in the range of 700 nm to 2000 nm when excited by near infrared light having a wavelength in the range of 700 nm to 900 nm. It is necessary to make the average particle size of the nanoparticles 2 to 50 nm in order to have the above. Moreover, as a preferable aspect, at least one element of Pr and Tb is contained as a co-activator.

なお、最終的に形成する近赤外発光蛍光体ナノ粒子が50nm以下の粒子である場合、構成元素中の金属元素の数が4種類以上となったときや、10原子(atom)%以下の共賦活剤を含有すると、従来の固相法で製造された粒子に比べて、また、金属元素が3種類のときや、共賦活剤を含有しないときにと比べて、格段に発光強度が高くなる。   In addition, when the near-infrared light emitting phosphor nanoparticles finally formed are particles of 50 nm or less, when the number of metal elements in the constituent elements is four or more, or 10 atom (atom)% or less. When the co-activator is contained, the emission intensity is significantly higher than particles produced by the conventional solid-phase method, and when the number of metal elements is three or when no co-activator is contained. Become.

本発明の近赤外発光蛍光体ナノ粒子を製造するための原料としては、一般式(1)に含まれている各種元素の酸化物やハロゲン化物等を用いることができる。例えば、酸化ネオジム、塩化ネオジム、硝酸ネオジム、酸化イッテルビウム、塩化イッテルビウム、硝酸イッテルビウム、酸化ランタン、塩化ランタン、硝酸ランタン、酸化イットリウム、塩化イットリウム、硝酸イットリウム、塩化プラジオセム、塩化テルビウム、オルトリン酸、リン酸アンモニウム、リン酸二水素アンモニウム等を用いることができる。   As raw materials for producing the near-infrared light-emitting phosphor nanoparticles of the present invention, oxides or halides of various elements contained in the general formula (1) can be used. For example, neodymium oxide, neodymium chloride, neodymium nitrate, ytterbium oxide, ytterbium chloride, ytterbium nitrate, lanthanum oxide, lanthanum chloride, lanthanum nitrate, yttrium oxide, yttrium chloride, yttrium nitrate, pradocem chloride, terbium chloride, orthophosphoric acid, ammonium phosphate , Ammonium dihydrogen phosphate and the like can be used.

本発明において、上記近赤外発光蛍光体ナノ粒子の平均粒径は本来3次元で求める必要があるが、微粒子過ぎるため難しく、現実には二次元画像で評価せざるを得ないため、透過型電子顕微鏡(TEM)を用いて電子顕微鏡写真の撮影シーンを変えて数多く撮影し平均化することで求めることが好ましい。従って、本発明において、当該平均粒径は、TEMを用いて電子顕微鏡写真を撮影し十分な数の粒子について断面積を計測し、その計測値を相当する円の面積としたときの直径を粒径として求めて、その算術平均を平均粒径とした。TEMで撮影する粒子数としては20個以上が好ましく、100個の粒子を撮影するのが更に好ましい。   In the present invention, the average particle diameter of the near-infrared light emitting phosphor nanoparticles must originally be determined in three dimensions, but it is difficult because it is too fine, and in reality it must be evaluated with a two-dimensional image. It is preferable to obtain by averaging a large number of images taken by changing the shooting scene of the electron micrograph using an electron microscope (TEM). Therefore, in the present invention, the average particle diameter is a diameter obtained by taking an electron micrograph using a TEM, measuring a cross-sectional area of a sufficient number of particles, and setting the measured value as an area of a corresponding circle. Obtained as the diameter, the arithmetic average was taken as the average particle diameter. The number of particles photographed with a TEM is preferably 20 or more, and more preferably 100 particles are photographed.

(近赤外発光蛍光体ナノ粒子の製造方法)
本発明の特徴であるナノサイズの近赤外発光蛍光体は、原料を溶媒に溶解した状態で、噴霧焼成炉を通過させることにより、乾燥及び焼成する製造方法により達成される。
(Method for producing near-infrared emitting phosphor nanoparticles)
The nano-sized near-infrared light-emitting phosphor that is a feature of the present invention is achieved by a production method in which a raw material is dissolved in a solvent and dried and fired by passing through a spray firing furnace.

噴霧・乾燥熱分解法は、一般的には原料溶液をノズル、超音波により霧化して微小な液滴にし、この液滴の溶媒を高温で蒸発させると共に、得られた固体粒子を高温で熱分解して目的とする化合物の微粒子(以下、単に「粒子」ともいう。)を得る方法である。蛍光体の粒径は、液滴サイズと原料溶液濃度によりコントロールすることが出来る。   In the spray / dry pyrolysis method, the raw material solution is generally atomized by a nozzle and ultrasonic waves into fine droplets, and the solvent of the droplets is evaporated at a high temperature and the obtained solid particles are heated at a high temperature. This is a method of decomposing and obtaining fine particles of a target compound (hereinafter also simply referred to as “particles”). The particle size of the phosphor can be controlled by the droplet size and the raw material solution concentration.

さらに、この際に、リン酸フラックスを蛍光体原料として同時に噴霧することで、粒子同士の凝集による大サイズ化を防ぐことが出来る。蛍光体粒子はフラックスに包まれた状態で回収されるため、仮に噴霧焼成後の粒子が凝集してしまっても、フラックス部分がくっついた状態であり、内部の粒子は単体のまま保たれるため、フラックスを溶解・除去することで、ナノ粒子化を達成することが出来た。   Further, at this time, the phosphoric acid flux is simultaneously sprayed as a phosphor raw material, thereby preventing an increase in size due to aggregation of particles. Since the phosphor particles are collected in a state of being wrapped in the flux, even if the particles after spray firing are aggregated, the flux part is stuck, and the internal particles are kept as a single unit. By dissolving and removing the flux, nano particles could be achieved.

〔近赤外発光蛍光体ナノ粒子集合体の親水化処理〕
上述した近赤外発光蛍光体ナノ粒子は集合体として得られるが、当該集合体表面は、一般的には、疎水性であるため、例えば生体物質標識剤として使用する場合は、このままでは水分散性が悪く、粒子が凝集してしまう等の問題があるため、当該ナノ粒子の表面を親水化処理することが好ましい。親水化処理の方法としては例えば、表面の親油性基をピリジン等で除去した後に粒子表面に表面修飾剤を化学的及び/又は物理的に結合させる方法がある。表面修飾剤としては、親水基として、カルボキシル基・アミノ基を持つものが好ましく用いられ、具体的にはメルカプトプロピオン酸、メルカプトウンデカン酸、アミノプロパンチオールなどがあげられる。
[Hydrophilic treatment of near-infrared phosphor nanoparticle aggregates]
Although the near-infrared light emitting phosphor nanoparticles described above are obtained as an aggregate, the surface of the aggregate is generally hydrophobic. For example, when used as a biological material labeling agent, the dispersion is water-dispersed as it is. The surface of the nanoparticle is preferably subjected to a hydrophilization treatment because the properties are poor and the particles are aggregated. As a method for the hydrophilization treatment, for example, there is a method of chemically and / or physically binding a surface modifier to the particle surface after removing the lipophilic group on the surface with pyridine or the like. As the surface modifier, those having a carboxyl group / amino group as a hydrophilic group are preferably used, and specific examples include mercaptopropionic acid, mercaptoundecanoic acid, aminopropanethiol and the like.

具体的には、例えば、近赤外発光蛍光体ナノ粒子10-5gをメルカプトウンデカン酸0.2gが溶解した純水10ml中に分散させて、40℃、10分間攪拌し、シェルの表面を処理することで近赤外発光蛍光体ナノ粒子の表面をカルボキシル基で修飾することができる。 Specifically, for example, 10 −5 g of near-infrared light emitting phosphor nanoparticles are dispersed in 10 ml of pure water in which 0.2 g of mercaptoundecanoic acid is dissolved, and stirred at 40 ° C. for 10 minutes to form the surface of the shell. By processing, the surface of the near-infrared-emitting phosphor nanoparticles can be modified with a carboxyl group.

〔生体物質標識剤〕
本発明に係る生体物質標識剤は、上述した親水化処理された近赤外発光蛍光体ナノ粒子と、分子標識物質と有機分子を介して結合させて得られる。
[Biological substance labeling agent]
The biological material labeling agent according to the present invention is obtained by binding the above-mentioned hydrophilic-treated near-infrared light emitting phosphor nanoparticles, a molecular labeling substance and an organic molecule.

〈分子標識物質〉
本発明に係る生体物質標識剤は分子標識物質が目的とする生体物質と特異的に結合及び/又は反応することにより、生体物質の標識が可能となる。
<Molecular labeling substance>
The biological substance labeling agent according to the present invention can label a biological substance by specifically binding and / or reacting with the target biological substance.

当該分子標識物質としては例えば、ヌクレオチド鎖、抗体、抗原およびシクロデキストリン等が挙げられる。   Examples of the molecular labeling substance include nucleotide chains, antibodies, antigens and cyclodextrins.

〈有機分子〉
本発明に係る生体物質標識剤は、親水化処理された近赤外発光蛍光体ナノ粒子と、分子標識物質とが有機分子により結合されている。該有機分子としては近赤外発光蛍光体ナノ粒子と分子標識物質とを結合できる有機分子であれば特に制限はないが、例えば、タンパク質中でも、アルブミン、ミオグロビンおよびカゼイン等、またタンパク質の一種であるアビジンをビオチンと共に用いることも好適に用いられる。上記結合の態様としては特に限定されず、共有結合、イオン結合、水素結合、配位結合、物理吸着および化学吸着等が挙げられる。結合の安定性から共有結合などの結合力の強い結合が好ましい。
<Organic molecule>
In the biological material labeling agent according to the present invention, the near-infrared light emitting phosphor nanoparticles subjected to a hydrophilic treatment and the molecular labeling substance are bound by an organic molecule. The organic molecule is not particularly limited as long as it is an organic molecule capable of binding a near-infrared emitting phosphor nanoparticle and a molecular labeling substance. For example, among proteins, albumin, myoglobin, casein, and the like are also a kind of protein. It is also preferable to use avidin together with biotin. The form of the bond is not particularly limited, and examples thereof include a covalent bond, an ionic bond, a hydrogen bond, a coordination bond, physical adsorption, and chemical adsorption. A bond having a strong bonding force such as a covalent bond is preferable from the viewpoint of bond stability.

具体的には、近赤外発光蛍光体ナノ粒子をメルカプトウンデカン酸で親水化処理した場合は、有機分子としてアビジンおよびビオチンを用いることができる。この場合親水化処理された当該ナノ粒子のカルボキシル基はアビジンと好適に共有結合し、アビジンがさらにビオチンと選択的に結合し、ビオチンがさらに生体物質標識剤と結合することにより生体物質標識剤となる。   Specifically, avidin and biotin can be used as organic molecules when the near-infrared emitting phosphor nanoparticles are hydrophilized with mercaptoundecanoic acid. In this case, the carboxyl group of the nanoparticle subjected to hydrophilic treatment is preferably covalently bonded to avidin, and avidin is further selectively bonded to biotin, and biotin is further bonded to the biological material labeling agent to Become.

以下、実施例により本発明をより詳細に説明するが、本発明はこれに限定されるものではない。なお、以下においては、近赤外発光蛍光体粒子を単に「蛍光体」と称する。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to this. In the following, the near-infrared emitting phosphor particles are simply referred to as “phosphors”.

下記の種々の方法により、蛍光体:Nd01Yb0108PO4を作製した。 The phosphors: Nd 0 . 1 Yb 0 . 1 Y 0 . 8 PO 4 was produced.

〈実施例1〉蛍光体1の製造方法
リン酸二水素アンモニウム115g、硝酸ネオジム44g、硝酸イッテルビウム41g、硝酸イットリウム30.6gを希硝酸に溶解し200mlとしA液とする。
Example 1 Method for Producing Phosphor 1 115 g of ammonium dihydrogen phosphate, 44 g of neodymium nitrate, 41 g of ytterbium nitrate, and 30.6 g of yttrium nitrate are dissolved in dilute nitric acid to make 200 ml, and a solution A is obtained.

A液を、特開2003−277745号明細書記載の噴霧焼成装置を用い、乾燥工程200℃・焼成工程1200℃で反応を行ったのち、得られた粉体を80℃の熱水中に10時間浸漬した。冷却後、1Nの硝酸で洗浄し、その後水洗して蛍光体1を得た。   After the liquid A was reacted at a drying step of 200 ° C. and a baking step of 1200 ° C. using a spray baking apparatus described in JP-A No. 2003-277745, the obtained powder was placed in hot water at 80 ° C. for 10 minutes. Soaked for hours. After cooling, it was washed with 1N nitric acid, and then washed with water to obtain phosphor 1.

〈実施例2〉:蛍光体2の製造方法
リン酸二水素アンモニウム230g、硝酸ネオジム44g、硝酸イッテルビウム41g、硝酸イットリウム30.6gを希硝酸に溶解し500mlとしB液とした以外は実施例1と同様にして蛍光体2を得た。
<Example 2>: Production method of phosphor 2 Example 2 except that 230 g of ammonium dihydrogen phosphate, 44 g of neodymium nitrate, 41 g of ytterbium nitrate, and 30.6 g of yttrium nitrate were dissolved in dilute nitric acid to give 500 ml. Similarly, phosphor 2 was obtained.

〈比較例1〉蛍光体3の製造方法
下記粉末原料リン酸二水素アンモニウム23g、酸化ネオジム3.5g、酸化イッテルビウム4.0g、酸化イットリウム18.0gを乳鉢にいれ、十分混合した後、アルミナ製のフタ付きルツボに充填した後、電気炉に入れ、室温から1200℃迄、一定昇温速度で2時間かけて昇温し、しかる後1200℃で5時間焼成した。焼成終了後、ただちに電気炉から取り出し空気中で冷却した。次いで、ルツボ内に水を入れ、80℃の熱水中に10時間浸漬した。冷却後、1Nの硝酸で洗浄し、その後水洗して蛍光体3を得た。
<Comparative example 1> Production method of phosphor 3 The following powder raw materials 23 g of ammonium dihydrogen phosphate, 3.5 g of neodymium oxide, 4.0 g of ytterbium oxide, and 18.0 g of yttrium oxide were placed in a mortar and mixed sufficiently, and then made of alumina. After filling the crucible with the lid, it was put in an electric furnace, heated from room temperature to 1200 ° C. at a constant heating rate over 2 hours, and then fired at 1200 ° C. for 5 hours. Immediately after the completion of firing, the product was taken out of the electric furnace and cooled in air. Next, water was put in the crucible and immersed in hot water at 80 ° C. for 10 hours. After cooling, it was washed with 1N nitric acid and then washed with water to obtain phosphor 3.

上記のようにして形成した蛍光体1、2および3のTEM観察を行い、粒子100個について粒径を測定し、平均粒径を求めた。   The phosphors 1, 2 and 3 formed as described above were observed with a TEM, and the particle size was measured for 100 particles to determine the average particle size.

また、励起光810nmでの発光スペクトルを観察した。蛍光体1の発光ピーク強度を100とした相対発光強度を示す。   In addition, an emission spectrum at an excitation light of 810 nm was observed. The relative light emission intensity with the light emission peak intensity of the phosphor 1 as 100 is shown.

以上の結果を表1に示す。   The results are shown in Table 1.

Figure 2009138119
Figure 2009138119

表1に示した結果から、本発明で得られる蛍光体は、970〜980nmの範囲に極大(最大)発光波長をもち、かつ高い発光強度を示しており、同時に平均粒径が2〜50nmの範囲にあることがわかる。   From the results shown in Table 1, the phosphor obtained in the present invention has a maximum (maximum) emission wavelength in the range of 970 to 980 nm and high emission intensity. At the same time, the average particle diameter is 2 to 50 nm. You can see that it is in range.

〈実施例3〉
蛍光体1:1.0×10-5mol/lの水分散液にアビジン25mgを添加し40℃で10分間攪拌を行い、アビジンコンジュゲートナノ粒子を作製した。
<Example 3>
Phosphor 1: 25 mg of avidin was added to an aqueous dispersion of 1.0 × 10 −5 mol / l and stirred at 40 ° C. for 10 minutes to prepare avidin-conjugated nanoparticles.

得られたアビジンコンジュゲートナノ粒子溶液にビオチン化された塩基配列が既知であるオリゴヌクレオチドを混合攪拌し、ナノ粒子で標識(ラベリング)されたオリゴヌクレオチドを作製した。   The resulting avidin-conjugated nanoparticle solution was mixed and stirred with a biotinylated oligonucleotide having a known base sequence to prepare an oligonucleotide labeled with a nanoparticle.

さまざまな塩基配列を持つオリゴヌクレオチドを固定化したDNAチップ上に上記の標識(ラベリング)したオリゴヌクレオチドを滴下・洗浄したところ、標識(ラベリング)されたオリゴヌクレオチドと相補的な塩基配列をもつオリゴヌクレオチドのスポットのみが810nmの励起光により発光した。   When the above labeled (labeled) oligonucleotide is dropped and washed on a DNA chip on which oligonucleotides having various base sequences are immobilized, the oligonucleotide has a complementary base sequence to the labeled (labeled) oligonucleotide. Only the spot of was emitted with excitation light of 810 nm.

このことより、ナノ粒子でのオリゴヌクレオチドの標識(ラベリング)を確認することができた。すなわち、この結果により、本発明の近赤外発光蛍光体ナノ粒子を用いた生体物質標識剤を提供することができることが分かる。   This confirmed the labeling (labeling) of the oligonucleotide with the nanoparticles. That is, it can be seen from this result that a biological substance labeling agent using the near-infrared light emitting phosphor nanoparticles of the present invention can be provided.

Claims (5)

平均粒径が2〜50nmであり、かつ700〜900nmの範囲内の波長の近赤外光により励起されたときに、700〜2000nmの範囲内の波長の近赤外光の発光を示す近赤外発光蛍光体ナノ粒子であって、その組成の少なくとも一部が下記一般式(1)で表され、かつその原料を溶媒に溶解した状態で、噴霧焼成炉を通過させることにより、乾燥及び焼成し、製造されたことを特徴とする近赤外発光蛍光体ナノ粒子。
一般式(1):A1-x-yNdxYbyPO4
(式中、AはY、LuおよびLaから選ばれる元素であって、0<x≦0.5、0<y≦0.5、x+y<1.0である。)
Near-red light having an average particle diameter of 2 to 50 nm and emitting near-infrared light having a wavelength in the range of 700 to 2000 nm when excited by near infrared light having a wavelength in the range of 700 to 900 nm. Externally emitting phosphor nanoparticles, at least part of the composition of which is represented by the following general formula (1), and dried and fired by passing through a spray firing furnace with the raw material dissolved in a solvent The near-infrared light emitting phosphor nanoparticles characterized by being manufactured.
Formula (1): A 1-xy Nd x Yb y PO 4
(In the formula, A is an element selected from Y, Lu and La, and 0 <x ≦ 0.5, 0 <y ≦ 0.5, and x + y <1.0.)
請求項1に記載の近赤外発光蛍光体ナノ粒子であって、その表面が親水化処理されていることを特徴とする近赤外発光蛍光体ナノ粒子。 The near-infrared-emitting phosphor nanoparticle according to claim 1, wherein the surface thereof is hydrophilized. 請求項1〜2のいずれか一項に記載の近赤外発光蛍光体ナノ粒子と分子標識物質とを有機分子を介して結合させたことを特徴とする生体物質標識剤。 A biological material labeling agent comprising the near-infrared light emitting phosphor nanoparticles according to any one of claims 1 to 2 and a molecular labeling substance bonded via an organic molecule. 前記分子標識物質がヌクレオチド鎖であることを特徴とする請求項3に記載の生体物質標識剤。 The biological substance labeling agent according to claim 3, wherein the molecular labeling substance is a nucleotide chain. 前記近赤外発光蛍光体ナノ粒子と分子標識物質とを結合させる有機分子が、ビオチン及びアビジンであることを特徴とする請求項3又は4に記載の生体物質標識剤。 The biological material labeling agent according to claim 3 or 4, wherein the organic molecule that binds the near-infrared light emitting phosphor nanoparticle and the molecular labeling substance is biotin and avidin.
JP2007316738A 2007-12-07 2007-12-07 Near infrared ray-emitting fluorophor nano particle, biological substance-labeling agent using the same Pending JP2009138119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007316738A JP2009138119A (en) 2007-12-07 2007-12-07 Near infrared ray-emitting fluorophor nano particle, biological substance-labeling agent using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007316738A JP2009138119A (en) 2007-12-07 2007-12-07 Near infrared ray-emitting fluorophor nano particle, biological substance-labeling agent using the same

Publications (1)

Publication Number Publication Date
JP2009138119A true JP2009138119A (en) 2009-06-25

Family

ID=40869058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007316738A Pending JP2009138119A (en) 2007-12-07 2007-12-07 Near infrared ray-emitting fluorophor nano particle, biological substance-labeling agent using the same

Country Status (1)

Country Link
JP (1) JP2009138119A (en)

Similar Documents

Publication Publication Date Title
Kim et al. Rapid imaging of latent fingerprints using biocompatible fluorescent silica nanoparticles
Wang et al. Synthesis of NIR-responsive NaYF4: Yb, Er upconversion fluorescent nanoparticles using an optimized solvothermal method and their applications in enhanced development of latent fingerprints on various smooth substrates
Chen et al. Amphiphilic silane modified NaYF 4: Yb, Er loaded with Eu (TTA) 3 (TPPO) 2 nanoparticles and their multi-functions: dual mode temperature sensing and cell imaging
Lin et al. Recent advances in synthesis and surface modification of lanthanide-doped upconversion nanoparticles for biomedical applications
US8435472B2 (en) Method of preparing nano-structured material(s) and uses thereof
US8093566B2 (en) Upconversion fluorescent nano-structured material and uses thereof
Li et al. Classification, synthesis, and application of luminescent silica nanoparticles: a review
Maldiney et al. In vivo imaging with persistent luminescence silicate-based nanoparticles
Rita Kakkar ZnO quantum dots for biomedical applications
JP5790352B2 (en) Fluorescent substance-containing nanoparticles and biological substance detection method using the same
Maldiney et al. Persistent luminescence nanoparticles for diagnostics and imaging
Dosev et al. Inorganic lanthanide nanophosphors in biotechnology
Gainer et al. A review of synthetic methods for the production of upconverting lanthanide nanoparticles
Ju et al. Lanthanide-doped inorganic nanocrystals as luminescent biolabels
JP2017179003A (en) Light-emitting nanoparticles, cell detection method using the same, animal treatment method, medical device, cell visualization method, and method for reducing injury to cell
CN108456518A (en) A kind of rare-earth nanometer particles of intense red fluorescence and preparation method thereof and the application in cell imaging
EP3194527A1 (en) Near-ir emitting cationic silver chalcogenide quantum dots
Chen et al. Bright X-ray and up-conversion nanophosphors annealed using encapsulated sintering agents for bioimaging applications
CN105820809B (en) 6 azepine, 2 thio-thymine gold nano cluster and preparation method thereof
JPWO2008152891A1 (en) Near-infrared emitting phosphor nanoparticle, method for producing the same, and biomaterial labeling agent using the same
CN112639051B (en) Terbium-containing superluminescent lanthanide nanoparticles with longer excited state lifetime
Maldiney et al. Trap depth optimization to improve optical properties of diopside-based nanophosphors for medical imaging
Datta et al. Fluorescent Nanomaterials and Its Application in Biomedical Engineering
JP5125703B2 (en) Rare earth element-doped phosphor nanoparticles and biological material labeling agents using the same
JP2009138120A (en) Near infrared ray-emitting fluorophor, biological substance-labeling agent using the same