JP2009137770A - Method of manufacturing fired body used for hot isotropic pressure device - Google Patents

Method of manufacturing fired body used for hot isotropic pressure device Download PDF

Info

Publication number
JP2009137770A
JP2009137770A JP2007312411A JP2007312411A JP2009137770A JP 2009137770 A JP2009137770 A JP 2009137770A JP 2007312411 A JP2007312411 A JP 2007312411A JP 2007312411 A JP2007312411 A JP 2007312411A JP 2009137770 A JP2009137770 A JP 2009137770A
Authority
JP
Japan
Prior art keywords
fired
firing
fired product
primary
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007312411A
Other languages
Japanese (ja)
Inventor
Yoshio Ofune
惠生 小舟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2007312411A priority Critical patent/JP2009137770A/en
Publication of JP2009137770A publication Critical patent/JP2009137770A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/001Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a flexible element, e.g. diaphragm, urged by fluid pressure; Isostatic presses
    • B30B11/002Isostatic press chambers; Press stands therefor

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a fired body, in which a fired body easy in machining and free from the occurrence of damage or the deterioration of heat insulation effect if used at ≥1,200°C can be obtained in the manufacture of a support for supporting heating device of a hot isotropic pressure device and a heat insulation structure. <P>SOLUTION: The method of manufacturing the fired body used for the hot isotropic pressure device includes a molding step S1 of forming a mold 26 by impregnating woven fiber or unwoven fiber comprising a ceramic fiber, a first firing step S2 of firing a primary fired product 27 having 1.5-2.5 g/cm<SP>3</SP>density by firing the mold 26 at <1,200°C, a machining step S3 for machining the primary fired product and a second firing step S4 of obtaining a secondary fired product 28 as the fired body by firing the primary fired product after machining at ≥1,200°C. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、熱間等方圧加圧装置に用いられる焼成体の製造方法に関するものである。   The present invention relates to a method for producing a fired body used in a hot isostatic pressing apparatus.

熱間等方圧加圧法(熱間静水圧プレス法、HIP法)は、高圧ガス雰囲気下で金属やセラミックス材料を高密度に焼成したり拡散接合したりする方法であって、粉末材料の高密度焼結又は拡散接合、あるいは鋳造品のガス気孔や巣等の欠陥除去に広く使用されている。このHIP法の実施に用いられる熱間等方圧加圧装置(以下、HIP装置)は、高圧ガスの封入が可能な高圧容器を備えている。そして、この高圧容器は、被処理体を取り囲むように配置され且つ当該被処理体を加熱する加熱装置と、当該加熱装置を保持する支持体と、前記加熱装置及び支持体を取り囲むように配置された断熱構造体とを内部に備えている。   The hot isostatic pressing method (hot isostatic pressing method, HIP method) is a method in which a metal or ceramic material is fired at a high density in a high-pressure gas atmosphere or is diffusion-bonded. It is widely used for density sintering or diffusion bonding, or for removing defects such as gas pores and nests in castings. A hot isostatic pressurization apparatus (hereinafter referred to as an HIP apparatus) used for carrying out the HIP method includes a high-pressure vessel capable of enclosing high-pressure gas. The high-pressure vessel is disposed so as to surround the object to be processed and is disposed so as to surround the heating device that heats the object to be processed, the support that holds the heating device, and the heating device and the support. And a heat insulating structure.

ところで、従来のHIP装置には、加熱装置を支持する支持体や断熱構造体の内壁材に耐熱性に優れるモリブデン合金などが用いられてきた。しかし、モリブデン合金は、材料価格が高価であり、また高圧ガスに窒素を用いた場合には窒化する可能性がある。そこで、特許文献1のように支持体や内壁材を無機質材の焼成体で形成したHIP装置が開発されている。
特許文献1では、支持体や断熱構造体の焼成体を次のような方法で製造している。まず、支持体の焼成体については、アルミナを主成分とするセラミックス繊維により形成された織布を円筒形に巻き上げて成型した後、これに酸化物系のゾル又は酸化物微粉末スラリー(アルミナまたはシリカ系のゾル)を含浸して成形型を形成する。そして、この成形型を焼成し、焼成品に対して孔あけや窓部の形成などの機械加工を行って焼成体を製造している。
By the way, in a conventional HIP apparatus, a molybdenum alloy or the like having excellent heat resistance has been used for the support body that supports the heating apparatus and the inner wall material of the heat insulating structure. However, the molybdenum alloy is expensive in material price and may be nitrided when nitrogen is used as the high-pressure gas. Therefore, as in Patent Document 1, an HIP device in which a support and an inner wall material are formed of a sintered body of an inorganic material has been developed.
In patent document 1, the baking body of a support body and a heat insulation structure is manufactured with the following method. First, for the fired body of the support, a woven fabric formed of ceramic fibers mainly composed of alumina is rolled up into a cylindrical shape and then formed into an oxide-based sol or oxide fine powder slurry (alumina or A mold is formed by impregnating a silica-based sol). Then, the mold is fired, and the fired product is manufactured by performing mechanical processing such as drilling and window formation on the fired product.

また断熱構造体の焼成品については、支持体の焼成体同様な方法で焼成を行い、焼成品に対して焼成体を断熱構造体下部の固定部材に取り付けるための孔あけなどの機械加工を行って、焼成体を製造している。このようにして得られた支持体や断熱構造体の焼成体に対しては加熱装置や高圧容器が取り付けられ、これらをHIP装置として組み立てている。
特開2007−78293号公報
In addition, the fired product of the heat insulation structure is fired in the same manner as the support fired body, and the fired product is subjected to mechanical processing such as drilling to attach the fired body to the fixing member at the bottom of the heat insulation structure. The sintered body is manufactured. A heating device and a high-pressure vessel are attached to the thus obtained support and the fired body of the heat insulating structure, and these are assembled as a HIP device.
JP 2007-78293 A

ところで、特許文献1で用いられる焼成体は、アルミナを主成分とするセラミックス繊維と金属酸化物の微粒子との複合無機質材より成る。この複合無機質材は、1200℃以上の焼成温度で焼成を行うと、焼成が進んで硬度が増加し、機械加工性が著しく低下する。それゆえ、特許文献1のHIP装置では、焼成後に機械加工を行うのが非常に困難であり、加工時間が長くなるなどの問題が生じていた。
一方、複合無機質材は、焼成温度を1200℃未満に下げると、焼成後の機械加工は容易となる。しかし、HIP装置では1200℃以上で実使用されることは少なくない。
By the way, the fired body used in Patent Document 1 is composed of a composite inorganic material of ceramic fibers mainly composed of alumina and metal oxide fine particles. When this composite inorganic material is fired at a firing temperature of 1200 ° C. or higher, the firing progresses, the hardness increases, and the machinability significantly decreases. Therefore, in the HIP apparatus of Patent Document 1, it is very difficult to perform machining after firing, and problems such as a long machining time have occurred.
On the other hand, when the firing temperature of the composite inorganic material is lowered to less than 1200 ° C., machining after firing becomes easy. However, HIP devices are often used at 1200 ° C. or higher.

それゆえ、例えば支持体については、1200℃未満で焼成されたものをHIP装置に組み込むと、1200℃以上の実使用で焼成が進み、支持体とヒータエレメントとの寸法差が大きくなってHIP装置の破損を招く原因となる。
また、内壁材については、例えば1200℃未満で焼成されたものを断熱構造体に用いると、1200℃以上の実使用で内壁材が焼成により収縮し、内壁材と断熱材との間に隙間ができて断熱性能が低下し、HIP装置の断熱効果の低下を招く原因となる。
本発明は、上述の問題に鑑みてなされたものであり、機械加工が容易に行えるものでありながら、1200℃以上で実使用しても支持体の破損や断熱効果の低下が起きることがない熱間等方圧加圧装置に用いられる焼成体の製造方法を提供することを目的とする。
Therefore, for example, when a support that has been fired at less than 1200 ° C. is incorporated into the HIP device, firing proceeds at an actual use of 1200 ° C. or more, and the dimensional difference between the support and the heater element increases, resulting in a HIP device. Cause damage.
As for the inner wall material, for example, if the one fired at less than 1200 ° C. is used for the heat insulating structure, the inner wall material shrinks due to firing at an actual use of 1200 ° C. or higher, and there is a gap between the inner wall material and the heat insulating material. It is possible to reduce the heat insulation performance and cause a decrease in the heat insulation effect of the HIP device.
The present invention has been made in view of the above-mentioned problems, and can be easily machined. However, even when actually used at 1200 ° C. or higher, the support is not damaged and the heat insulation effect is not lowered. It aims at providing the manufacturing method of the sintered body used for a hot isostatic pressurization apparatus.

前記目的を達成するため、本発明の熱間等方圧加圧装置に用いられる焼成体の製造方法は次の技術的手段を講じている。
即ち、被処理体を取り囲むように配置され且つ当該被処理体を加熱する加熱装置と、当該加熱装置を支持する支持体と、前記加熱装置及び支持体に対して外套状に配置される断熱構造体とを高圧容器内に備える熱間等方圧加圧装置に関し、前記支持体と断熱構造体の内壁材とを焼成体で形成する際に用いられる焼成体の製造方法であって、前記焼成体を、以下の(1)〜(4)の工程に従って製造することを特徴とする。
In order to achieve the object, the method for producing a fired body used in the hot isostatic pressing apparatus of the present invention employs the following technical means.
That is, a heating device that is disposed so as to surround the object to be processed and that heats the object to be processed, a support that supports the heating device, and a heat insulating structure that is disposed in a mantle shape with respect to the heating device and the support A hot isostatic pressing apparatus comprising a body in a high-pressure vessel, the method for producing a fired body used when the support and the inner wall material of the heat insulating structure are formed from a fired body, The body is produced according to the following steps (1) to (4).

(1)セラミックス繊維から成る織布又は不織布に、金属酸化物のバインダを含浸させて、成形型を形成する工程
(2)前記成形型を1200℃未満で焼成して密度1.5〜2.5g/cm3の1次焼成品を焼成する工程
(3)前記1次焼成品に対して機械加工を行う工程
(4)前記機械加工後の1次焼成品を1200℃以上で焼成して2次焼成品とし、この2次焼成品を前記焼成体として得る工程
このようにすれば、1200℃未満で1次焼成が行われているので、1次焼成で焼成が進んで材料の硬度が大きく増加することはない。それゆえ、1次焼成後に機械加工を行う際には高速度鋼製や超硬合金製の一般的な工具を用いて容易に機械加工することができる。
(1) A step of impregnating a woven fabric or non-woven fabric made of ceramic fibers with a metal oxide binder to form a mold (2) The mold is fired at a temperature of less than 1200 ° C. to obtain a density of 1.5-2. A step of firing a primary fired product of 5 g / cm 3 (3) A step of machining the primary fired product (4) A step of firing the post-machined primary fired product at 1200 ° C. or higher. Step of obtaining a secondary fired product and obtaining the secondary fired product as the fired body In this way, since primary firing is performed at less than 1200 ° C., firing proceeds in the primary firing and the hardness of the material is large. There is no increase. Therefore, when machining is performed after the primary firing, machining can be easily performed using a general tool made of high-speed steel or cemented carbide.

そして、機械加工後の焼成体を1200℃以上で2次焼成してから熱間等方圧加圧装置として組み立てているため、1200℃を超える温度で実使用しても組立後に焼成が進むことがない。それゆえ、実使用しても支持体とヒータエレメントとの寸法差が大きくなることはなく、支持体の変形・破損が発生する可能性もない。また、内壁材に対しても実使用で収縮が起きることがなく、内壁材と断熱材との間に隙間もできないため、断熱性能が低下する可能性がない。
つまり、本発明の製造方法によれば、機械加工が容易に行えるものでありながら、1200℃以上で実使用しても支持体の破損や断熱効果の低下が起きることがない焼成体を得ることができる。
And since the fired body after machining is secondarily fired at 1200 ° C. or higher and then assembled as a hot isostatic pressing device, firing proceeds even after actual use at temperatures exceeding 1200 ° C. There is no. Therefore, even when actually used, the dimensional difference between the support and the heater element does not increase, and there is no possibility that the support is deformed or damaged. In addition, the inner wall material does not shrink due to actual use, and there is no gap between the inner wall material and the heat insulating material.
That is, according to the production method of the present invention, a fired body that can be easily machined but does not cause damage to the support or decrease in the heat insulating effect even when actually used at 1200 ° C. or higher is obtained. Can do.

また、前記成形型の寸法が前記(2)及び/又は(4)の工程においてδ%縮む場合には、前記成形型を前記2次焼成品に対してδ%の収縮分だけ大きい寸法に形成すると良い。
このようにすれば、1次焼成及び2次焼成における収縮を考慮した寸法で成形型が形成されているため、支持体や内壁材を2次焼成後に所定の寸法通りに仕上げることができ、2次焼成後の支持体や内壁材をそのまま利用して熱間等方圧加圧装置を容易に組み立てることができる。
Further, when the size of the mold is reduced by δ% in the step (2) and / or (4), the mold is formed to have a size larger than the secondary fired product by a contraction of δ%. Good.
In this way, since the mold is formed with dimensions that allow for shrinkage in the primary firing and the secondary firing, the support and the inner wall material can be finished to the predetermined dimensions after the secondary firing. A hot isostatic pressing device can be easily assembled using the support and the inner wall material after the next firing as they are.

さらに、前記1次焼成品の寸法が前記(4)の工程においてρ%縮む場合には、前記機械加工を前記2次焼成品に対してρ%の収縮分だけ大きい寸法で行うと良い。
このようにすれば、2次焼成における収縮を考慮した寸法で機械加工が行われるため、支持体や内壁材を2次焼成後に所定の寸法通りに仕上げることができ、2次焼成後の支持体や内壁材をそのまま利用して熱間等方圧加圧装置を容易に組み立てることができる。
Furthermore, when the size of the primary fired product shrinks by ρ% in the step (4), the machining may be performed with a size larger than the shrinkage of ρ% with respect to the secondary fired product.
In this way, since machining is performed with dimensions taking into account the shrinkage in the secondary firing, the support and the inner wall material can be finished to the predetermined dimensions after the secondary firing, and the support after the secondary firing. In addition, the hot isostatic pressing device can be easily assembled using the inner wall material as it is.

本発明の熱間等方圧加圧装置に用いられる焼成体の製造方法によれば、機械加工が容易に行えるものでありながら、1200℃以上で実使用しても支持体の破損や断熱効果の低下が起きることがない焼成体を得ることができる。   According to the method for producing a fired body used in the hot isostatic pressing apparatus of the present invention, the support can be damaged or thermally insulated even if it is actually used at 1200 ° C. or higher, although it can be easily machined. It is possible to obtain a fired body in which the decrease in the temperature does not occur.

以下、本発明の第1実施形態を図面に基づき説明する。
図1は本発明に係る熱間等方圧加圧装置の正面断面図である。熱間等方圧加圧装置1(以下、HIP装置1という)は、内部に高圧ガスを収容可能な処理室9を備える円筒状の高圧容器2を有している。そして、処理室9には、被処理体Wを取り囲むように配置され且つ被処理体Wを加熱する加熱装置3と、加熱装置3を支持する支持体4と、加熱装置3及び支持体4に対して外套状に配置される断熱構造体5とが備えられている。HIP装置1は、加熱装置3により処理室9の高圧ガスを加熱することで、被処理体Wの熱間等方圧加圧処理(HIP処理)を可能としている。
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a front sectional view of a hot isostatic pressing device according to the present invention. A hot isostatic pressurizing apparatus 1 (hereinafter referred to as an HIP apparatus 1) has a cylindrical high-pressure vessel 2 having a processing chamber 9 in which high-pressure gas can be accommodated. In the processing chamber 9, a heating device 3 that is disposed so as to surround the workpiece W and heats the workpiece W, a support 4 that supports the heating device 3, and the heating device 3 and the support 4 are provided. On the other hand, a heat insulating structure 5 arranged in a jacket shape is provided. The HIP device 1 heats the high-pressure gas in the processing chamber 9 by the heating device 3, thereby enabling hot isostatic pressing (HIP processing) of the workpiece W.

なお、以降の説明において、図1の紙面の上下をHIP装置1を説明する際の上下とする。
図1に示されるように、高圧容器2は、円筒状の容器本体6と、容器本体6の上面を覆う上蓋部7と、容器本体6の下面を覆う下蓋部8とを有している。容器本体6の内部側には円柱状の処理室9が形成されている。
上蓋部7には容器本体6の内外を連通する注入排出口10が設けられており、この注入排出口10を介して容器本体6内(処理室9内)に高圧ガスを供給したり容器本体6内(処理室9内)の高圧ガスを外部に排出可能となっている。下蓋部8には処理室9側(容器本体6の内部)に向って上方にステージ11が突出状に形成されており、このステージ11には被処理体Wが載置可能となっている。上蓋部7及び下蓋部8は、処理室9に高圧ガスを密閉しても高圧ガスの内圧を支えることができるように、窓枠状のプレスフレーム(図示略)によって支持されている。
In the following description, the top and bottom of the page of FIG. 1 are the top and bottom when the HIP device 1 is described.
As shown in FIG. 1, the high-pressure container 2 includes a cylindrical container body 6, an upper lid part 7 that covers the upper surface of the container body 6, and a lower lid part 8 that covers the lower surface of the container body 6. . A cylindrical processing chamber 9 is formed inside the container body 6.
The upper lid portion 7 is provided with an inlet / outlet port 10 that communicates the inside and outside of the container body 6. Via the inlet / outlet port 10, high-pressure gas is supplied into the container body 6 (inside the processing chamber 9) or the container body The high-pressure gas in 6 (inside the processing chamber 9) can be discharged to the outside. A stage 11 is formed on the lower lid portion 8 so as to project upward toward the processing chamber 9 (inside the container body 6), and a workpiece W can be placed on the stage 11. . The upper lid portion 7 and the lower lid portion 8 are supported by a window frame-shaped press frame (not shown) so that the internal pressure of the high-pressure gas can be supported even when the high-pressure gas is sealed in the processing chamber 9.

図2及び図3は高圧容器2の処理室9に収容される加熱装置3及び支持体4を示したものである。
加熱装置3は、被処理体Wの周りを取り囲むように配置されたヒータエレメント12を備えている。ヒータエレメント12は上下方向に複数の電熱抵抗線13(本実施形態では3線)で構成されている。各電熱抵抗線13は、線の中途側が上下に交互に折り曲がりながら蛇行しており、この蛇行部分が支持体4の外周面を取り巻くように配置されている。各電熱抵抗線13の線の両端には支持体4の下端側に引き出されたリード部14が設けられており、リード部14を介して各電熱抵抗線13に通電が可能となっている。
2 and 3 show the heating device 3 and the support 4 accommodated in the processing chamber 9 of the high-pressure vessel 2.
The heating device 3 includes a heater element 12 disposed so as to surround the object to be processed W. The heater element 12 is composed of a plurality of electric heating resistance wires 13 (three wires in this embodiment) in the vertical direction. Each electric heating resistance wire 13 meanders while the middle side of the wire is alternately bent up and down, and this meandering portion is disposed so as to surround the outer peripheral surface of the support 4. Lead portions 14 drawn out to the lower end side of the support 4 are provided at both ends of each of the electric resistance wires 13, and the electric resistance wires 13 can be energized via the lead portions 14.

各電熱抵抗線13には、白金合金やモリブデン合金などの金属材料で形成されており、高圧ガスを1600℃程度まで加熱可能となっている。また、各電熱抵抗線13近傍には、温度測定用の熱電対(図示略)が設けられており、高圧ガスの温度を精度良く調整可能となっている。
支持体4は、上下に長い筒状(本実施形態では円筒状)に形成されており、側面には筒内外を連通する窓部15が周方向に複数形成されている。これらの窓部15は上下方向に複数(本実施形態では3箇所)並んで設けられており、これらの窓部15に対応するように加熱装置3のヒータエレメント12が取り付けられている。これらの窓部15は、支持体4の内外を連通する開口として形成されており、ヒータエレメント12で加熱された高圧ガスに対して、その流通を確保して対流を促進できるように形成されている。支持体4に窓部15を設けることにより、HIP装置1の昇温効率が向上し、各ヒータエレメント12の温度を制御する場合の制御精度や応答性を高めることができるようになっている。
Each electrothermal resistance wire 13 is made of a metal material such as a platinum alloy or a molybdenum alloy, and can heat a high-pressure gas to about 1600 ° C. Further, a thermocouple (not shown) for temperature measurement is provided in the vicinity of each electrothermal resistance wire 13 so that the temperature of the high-pressure gas can be adjusted with high accuracy.
The support 4 is formed in a cylindrical shape that is long in the vertical direction (cylindrical in the present embodiment), and a plurality of windows 15 that communicate with the inside and outside of the cylinder are formed on the side surface in the circumferential direction. A plurality of these window portions 15 are provided in the vertical direction (three in this embodiment), and the heater elements 12 of the heating device 3 are attached so as to correspond to these window portions 15. These window portions 15 are formed as openings that communicate between the inside and outside of the support 4, and are formed so as to ensure the circulation of the high-pressure gas heated by the heater element 12 and promote convection. Yes. By providing the window 15 on the support 4, the heating efficiency of the HIP device 1 is improved, and the control accuracy and responsiveness when controlling the temperature of each heater element 12 can be increased.

図1に示すように、断熱構造体5は、内周側に配備される内壁材16と、この内壁材16の外周側に設けられる内外2層の断熱体17a、17bと、これら内外2層の断熱体17a、17bの間に設けられる外壁材18aと、外側の断熱体17bを被覆する外壁材18bと、を有している。これらの内壁材16、断熱体17a、17b及び外壁材18a、18bはいずれも有底円筒を上下逆さまにしたような形状(逆コップ状)に形成されており、互いに入れ子状に重ね合わされている。
内外2層の断熱体17a、17bは、例えばセラミックファイバ、ジルコニアフェルトなどの断熱材料で厚み2〜20mm程度に形成されている。断熱体17a、17bをセラミックファイバ、ジルコニアフェルトで厚み2〜20mmに形成することにより、処理室9の保温性を良好にすることが可能となる。
As shown in FIG. 1, the heat insulating structure 5 includes an inner wall member 16 disposed on the inner peripheral side, inner and outer two-layer heat insulating members 17a and 17b provided on the outer peripheral side of the inner wall member 16, and two inner and outer layers. The outer wall member 18a provided between the heat insulators 17a and 17b and the outer wall member 18b covering the outer heat insulator 17b. The inner wall member 16, the heat insulators 17a and 17b, and the outer wall members 18a and 18b are all formed in a shape (inverted cup shape) in which a bottomed cylinder is turned upside down, and are nested with each other. .
The inner and outer two-layer heat insulators 17a and 17b are formed of a heat insulating material such as ceramic fiber or zirconia felt to a thickness of about 2 to 20 mm. By forming the heat insulators 17a and 17b with ceramic fibers and zirconia felt to a thickness of 2 to 20 mm, the heat retaining property of the processing chamber 9 can be improved.

外壁材18a、18bは、例えばステンレスなどの金属材料を用いて形成されている。 内壁材16は、上下に長い筒体19とこの筒体19の上方の開口を塞ぐように形成される蓋板20とが一体で形成されており、後述する機械加工において内壁材16を断熱構造体下部の固定部材21に取り付けるための穴が設けられている。
上述したHIP装置1の支持体4及び断熱構造体5の内壁材16は焼成体で形成されている。この焼成体は、本実施形態では以下に示す製造方法に従って製造される。
図4に示すように、焼成体は、成型工程S1、1次焼成工程S2、機械加工工程S3、2次焼成工程S4、組立工程S5の順に製造される。
The outer wall materials 18a and 18b are formed using a metal material such as stainless steel, for example. The inner wall material 16 is integrally formed with a vertically long cylindrical body 19 and a lid plate 20 formed so as to close an opening above the cylindrical body 19, and the inner wall material 16 is heat-insulated in machining described later. A hole for attaching to the fixing member 21 at the lower part of the body is provided.
The support body 4 of the HIP device 1 and the inner wall material 16 of the heat insulation structure 5 described above are formed of a fired body. In the present embodiment, the fired body is manufactured according to the following manufacturing method.
As shown in FIG. 4, the fired body is manufactured in the order of a molding step S1, a primary firing step S2, a machining step S3, a secondary firing step S4, and an assembly step S5.

成型工程S1は、セラミックス繊維から成る基体と金属酸化物のバインダとで成る無機質材を支持体4の形状に成型して成形型26を形成するものである。本実施形態の成型工程S1は、基体を支持体4の形状に合わせて円筒状に巻き回し、次に金属酸化物のバインダを含浸して行われる。成型工程S1において形成された成形型26は1次焼成工程S2に送られる。
基体は、アルミナを主成分とするセラミック繊維の織布又は不織布であり、直径2〜5μm程度のセラミック繊維を網目状にまたはランダムに組み合わせて形成されている。金属酸化物のバインダは、アルミナ又はシリカの微粒子を懸濁したゾル又はスラリーであり、セラミック繊維の網目間を充填して基体を緻密化できるように200メッシュ以下の粒径の微粒子を使用している。
In the molding step S1, an inorganic material composed of a substrate made of ceramic fibers and a metal oxide binder is molded into the shape of the support 4 to form the mold 26. The molding step S1 of the present embodiment is performed by winding the base body into a cylindrical shape in accordance with the shape of the support body 4, and then impregnating with a metal oxide binder. The mold 26 formed in the molding step S1 is sent to the primary firing step S2.
The substrate is a woven or non-woven fabric of ceramic fibers whose main component is alumina, and is formed by combining ceramic fibers having a diameter of about 2 to 5 μm in a mesh form or randomly. The metal oxide binder is a sol or slurry in which fine particles of alumina or silica are suspended, and fine particles having a particle size of 200 mesh or less are used so that the substrate can be densified by filling the spaces between the ceramic fibers. Yes.

1次焼成工程S2は、成形型26に対して1200℃未満の焼成温度で焼成し、密度1.5〜2.5g/cm3の1次焼成品27を形成するものである。1次焼成工程S2の条件(温度と時間)は、焼成される成形型26の形状や組成、焼成温度により都度変化するが、当業者であれば操業条件や過去の実績に基づいて定めることが可能である。例えば、アルミナのセラミック繊維の基体とアルミナのバインダとで成る成形型26を1000℃で1次焼成工程S2する場合では、焼成時間は2〜12hrである。1次焼成品27は機械加工工程S3の工程に送られる。 The primary firing step S2 is performed by firing the molding die 26 at a firing temperature of less than 1200 ° C. to form a primary fired product 27 having a density of 1.5 to 2.5 g / cm 3 . The conditions (temperature and time) of the primary firing step S2 vary depending on the shape and composition of the mold 26 to be fired and the firing temperature, but those skilled in the art can determine the conditions based on operating conditions and past results. Is possible. For example, in the case where the mold 26 composed of an alumina ceramic fiber base and an alumina binder is subjected to the primary firing step S2 at 1000 ° C., the firing time is 2 to 12 hours. The primary fired product 27 is sent to the machining step S3.

1次焼成工程S2の焼成温度を1200℃未満とするのは、機械加工性が良好な密度1.5〜2.5g/cm3の1次焼成品27を得るためである。1次焼成品27の密度を1.5g/cm3以上とするのは、密度0.9〜1.0g/cm3の基体にアルミナ等のバインダを含浸すると、焼成後の密度が必然的に1.5g/cm3以上となるからである。また、1次焼成品27の密度を2.5g/cm3以下とするのは、金鋸やドリルによる1次焼成品27の機械加工性を確保するためである。
機械加工工程S3は、1次焼成品27に対して穴あけ加工や切断加工を行うものである。支持体4の機械加工工程S3では、1次焼成品27に対して高速度鋼製や超硬合金製の金鋸等を用いて窓部15を形成したり、ビット工具を用いてヒータエレメント12を取り付ける取り付け孔等が形成される。機械加工工程S3が完了した1次焼成品27は2次焼成工程S4に送られる。
The reason why the firing temperature in the primary firing step S2 is less than 1200 ° C. is to obtain the primary fired product 27 having a good machinability and a density of 1.5 to 2.5 g / cm 3 . To the density of the primary sintered product 27 and 1.5 g / cm 3 or more, when impregnated with binder such as alumina substrate density 0.9~1.0g / cm 3, the density after sintering is necessarily This is because it becomes 1.5 g / cm 3 or more. The reason why the density of the primary fired product 27 is 2.5 g / cm 3 or less is to ensure the machinability of the primary fired product 27 by a gold saw or a drill.
The machining step S <b> 3 performs drilling or cutting on the primary fired product 27. In the machining step S3 of the support 4, the window portion 15 is formed on the primary fired product 27 using a high-speed steel or cemented carbide gold saw or the like, or the heater element 12 using a bit tool. A mounting hole or the like for mounting is formed. The primary fired product 27 for which the machining step S3 has been completed is sent to the secondary firing step S4.

2次焼成工程S4は、機械加工工程S3後の1次焼成品27を1200℃以上の焼成温度で2次焼成して、密度2.2〜3.0g/cm3の2次焼成品28を形成するものである。2次焼成工程S4の焼成温度は1200〜1600℃とするのが好ましく、この範囲の焼成温度で2次焼成工程S4を行うことで支持体4やヒータエレメント12の変形・破損を抑制乃至防止できるようになる。つまり、1200〜1600℃の範囲から実使用温度(HIP処理の温度)に応じて選択される温度で2次焼成しておけば、1200℃以上の実使用温度でHIP処理を繰り返し行っても支持体4とヒータエレメント12との寸法差が大きくなることがなくなり、支持体4がヒータエレメント12より収縮し変形・破損が生じることが抑制乃至防止される。2次焼成品28は、最終の焼成体すなわち支持体4として組立工程S5に送られる。 In the secondary firing step S4, the primary fired product 27 after the machining step S3 is secondarily fired at a firing temperature of 1200 ° C. or higher to obtain a secondary fired product 28 having a density of 2.2 to 3.0 g / cm 3. To form. The firing temperature of the secondary firing step S4 is preferably 1200 to 1600 ° C., and deformation / breakage of the support 4 and the heater element 12 can be suppressed or prevented by performing the secondary firing step S4 at a firing temperature in this range. It becomes like this. In other words, if secondary firing is performed at a temperature selected according to the actual use temperature (temperature of HIP treatment) from the range of 1200 to 1600 ° C, it is supported even if the HIP treatment is repeatedly performed at an actual use temperature of 1200 ° C or higher. The dimensional difference between the body 4 and the heater element 12 is not increased, and the support body 4 is suppressed or prevented from contracting from the heater element 12 and causing deformation or breakage. The secondary fired product 28 is sent to the assembly step S5 as the final fired body, that is, the support body 4.

組立工程S5は、支持体4に加熱装置3を取り付け、次にこれらの周りに断熱構造体5を配置し、さらにこれらを高圧容器2内に配置して、HIP装置1を組み立てるものである。
上述した製造方法は、支持体4に用いられる焼成体の製造方法であったが、内壁材16に用いられる焼成体の製造方法も同様に行われる。
すなわち、内壁材16の焼成体も、成型工程S1、1次焼成工程S2、機械加工工程S3、2次焼成工程S4、組立工程S5の順に製造される。しかし、内壁材16の場合は、成型工程S1において筒体19と蓋板20を一体のコップ状として形成するため、両者の接合部では無機質材を折り曲げたシートを重ね合わせて成形する。筒体19と蓋板20との接合部の無機質材構成の一例を図5に示す。内壁材19は、図5に示すように、筒体19と蓋板20とが複数枚(本実施形態では3枚)重ね合わされて構成されている。蓋板20は縁部がほぼ直角に折り曲げられており、この折り曲げられた縁部を筒体19の側面と重ね合わすようにして接合される。図5に示すような構成で両者を一体のコップ状とすることにより、HIP装置に必要なコップ状の内壁材の気密性が確保できる。そして、1次焼成工程S2後の機械加工工程S3で、内壁材16を断熱構造体下部の固定部材21に取り付けるための穴を加工した後、機械加工が完了した1次焼成品27が2次焼成工程S4に送られる。そして、2次焼成された焼成体は内壁材16として組立工程S5に送られる。
In the assembling step S5, the heating device 3 is attached to the support 4, and then the heat insulating structure 5 is disposed around them, and these are further disposed in the high-pressure vessel 2, and the HIP device 1 is assembled.
The manufacturing method described above is a method for manufacturing a fired body used for the support 4, but the method for manufacturing the fired body used for the inner wall material 16 is also performed in the same manner.
That is, the fired body of the inner wall material 16 is also manufactured in the order of the molding step S1, the primary firing step S2, the machining step S3, the secondary firing step S4, and the assembly step S5. However, in the case of the inner wall material 16, the cylindrical body 19 and the cover plate 20 are formed as an integral cup shape in the molding step S <b> 1. An example of the inorganic material configuration of the joint portion between the cylindrical body 19 and the cover plate 20 is shown in FIG. As shown in FIG. 5, the inner wall member 19 is configured by overlapping a plurality of cylinders 19 and a cover plate 20 (three in this embodiment). The edge of the lid plate 20 is bent substantially at a right angle, and the bent edge is joined so as to overlap the side surface of the cylindrical body 19. By making both into an integral cup shape with the configuration shown in FIG. 5, the airtightness of the cup-shaped inner wall material necessary for the HIP device can be ensured. And after machining the hole for attaching the inner wall material 16 to the fixing member 21 at the lower part of the heat insulating structure in the machining step S3 after the primary firing step S2, the primary fired product 27 whose machining has been completed is secondary. It is sent to the firing step S4. The fired body subjected to the secondary firing is sent to the assembly step S5 as the inner wall material 16.

次に、上述した1次焼成工程S2及び2次焼成工程S4で生じる寸法変化(体積変化)について説明する。
1次焼成工程S2は、成型工程S1で使用するゾルまたはスラリーに含まれている水分等を気化して除去するとともに、後の機械加工工程S3での機械加工に耐えられる強度を得るための焼成工程である。1次焼成工程S2の焼成温度は1200℃未満としているため、この工程S2での寸法変化はわずかな値となる。従って、厳密な寸法管理のためにはこの工程での寸法変化を考慮することも好適ではあるが、一般的な焼結体の寸法管理においては、1次焼成工程S2での寸法変化は考慮する必要のない場合が多い。
Next, the dimensional change (volume change) that occurs in the primary firing step S2 and the secondary firing step S4 described above will be described.
The primary firing step S2 vaporizes and removes moisture and the like contained in the sol or slurry used in the molding step S1, and at the same time, obtains strength sufficient to withstand machining in the subsequent machining step S3. It is a process. Since the firing temperature in the primary firing step S2 is less than 1200 ° C., the dimensional change in this step S2 is a slight value. Therefore, although it is preferable to consider the dimensional change in this step for strict dimensional control, the dimensional change in the primary firing step S2 is taken into consideration in the general dimensional control of the sintered body. Often not necessary.

次に、2次焼成工程S4で生ずる寸法変化(体積変化)について説明する。図6は、1次焼成工程S2を経た1次焼成品を、2次焼成工程S4で焼成する際の焼成温度と寸法変化との関係を示す図である。
図6に示すように、焼成温度が1200℃未満(例えば、図6のP点)では熱膨張による寸法の伸びが観察される。しかし、焼成温度が1200℃を超えると(例えば、図6のQ点)、焼結が進行して1次焼成品は焼成により寸法が小さくなる(収縮する)傾向がある。この2次焼成後には冷却工程に移るが、冷却工程では熱膨張により伸びていた寸法分だけ逆に寸法が小さくなる。このとき、冷却が終わっても焼結が進行して寸法が縮んでいるため2次焼成前に比べて2次焼成後の寸法は小さくなっている(例えば、図6のR点)。
Next, the dimensional change (volume change) that occurs in the secondary firing step S4 will be described. FIG. 6 is a diagram showing the relationship between the firing temperature and the dimensional change when the primary fired product that has undergone the primary firing process S2 is fired in the secondary firing process S4.
As shown in FIG. 6, when the firing temperature is less than 1200 ° C. (for example, point P in FIG. 6), dimensional elongation due to thermal expansion is observed. However, when the firing temperature exceeds 1200 ° C. (for example, Q point in FIG. 6), the sintering proceeds and the primary fired product tends to become smaller (shrink) due to firing. After the secondary firing, the process proceeds to the cooling process. In the cooling process, however, the dimensions are reduced by the dimension that has been extended by thermal expansion. At this time, even after the cooling is finished, the sintering proceeds and the size is reduced, so that the size after the secondary firing is smaller than that before the secondary firing (for example, point R in FIG. 6).

上述の2次焼成による寸法変化を本実施形態に当てはめると、本実施形態では2次焼成工程を焼成温度1400℃で行っている。この1400℃の焼成温度で寸法収縮がρ%生じる場合には、2次焼成前に100%の寸法の1次焼成品が2次焼成後には(100−ρ)%の寸法となる。
ここで、2次焼成品28を設計通りの大きさに形成するための成形型26の寸法を考える。1次焼成による成形型26の寸法変化をX%とすれば、2次焼成品28は成形型26に対してX+ρ%(=δ%)寸法変化することになる。それゆえ、成形型26の寸法を2次焼成品28の設計寸法に対してδ%だけ大きく形成するのが好ましい。このようにすれば、1次焼成工程S2および2次焼成工程S4での収縮により無機材質の寸法が変化しても、支持体4や内壁材16を2次焼成後に所定の寸法通りに仕上げることができ、2次焼成品28をそのままHIP装置に組み込むことができる。ただし、上述のように1次焼成による寸法変化X%は小さいため、成形型26の寸法は2次焼成工程S4での収縮であるρ%分だけ大きく形成しても実用上は問題ない。
When the above-described dimensional change due to the secondary firing is applied to this embodiment, the secondary firing step is performed at a firing temperature of 1400 ° C. in this embodiment. When dimensional shrinkage occurs at the firing temperature of 1400 ° C., the primary fired product having a size of 100% before the secondary firing becomes a size of (100−ρ)% after the secondary firing.
Here, consider the dimensions of the mold 26 for forming the secondary fired product 28 as designed. If the dimensional change of the molding die 26 due to the primary firing is X%, the secondary firing product 28 undergoes a dimensional change of X + ρ% (= δ%) with respect to the molding die 26. Therefore, it is preferable that the size of the mold 26 is increased by δ% with respect to the design size of the secondary fired product 28. In this way, even if the dimensions of the inorganic material change due to the shrinkage in the primary firing step S2 and the secondary firing step S4, the support 4 and the inner wall material 16 are finished to the predetermined dimensions after the secondary firing. The secondary fired product 28 can be incorporated into the HIP apparatus as it is. However, since the dimensional change X% due to the primary firing is small as described above, there is no practical problem even if the size of the mold 26 is increased by ρ% which is the shrinkage in the secondary firing step S4.

また、1次焼成品27の寸法と2次焼成品28の寸法とを比較すると、図6で示した通り2次焼成品28は1次焼成品27に比べてρ%だけ寸法が小さくなる(収縮する)。それゆえ、機械加工工程S3の寸法(加工寸法)は、2次焼成品28よりρ%だけ大きく加工するのが好ましい。このようにすれば、機械加工工程S3により形成される窓部15や挿通孔を2次焼成工程S4後に所定の寸法通りに仕上げることができ、2次焼成品28をそのままHIP装置1に組み込むことができる。
支持体4や内壁材16にセラミックス繊維の基体と金属酸化物のバインダとで成る焼成体を用いることにより、脆性が改善され、機械的な衝撃、温度分布により発生する熱応力にも割れ難くなる。つまり、基体を構成するセラミックス繊維が熱応力が加わった時などに生成するクラックの急激な成長を抑制し、通常のセラミックスのように瞬時にクラックが走って破壊に至ることがないため、熱応力にも割れ難くなる。
Further, when the dimensions of the primary fired product 27 and the dimensions of the secondary fired product 28 are compared, the size of the secondary fired product 28 is smaller by ρ% than the primary fired product 27 as shown in FIG. Shrink). Therefore, it is preferable to process the dimension (process dimension) of the machining step S3 by ρ% larger than that of the secondary fired product 28. If it does in this way, the window part 15 and insertion hole which are formed by machining process S3 can be finished to a predetermined dimension after secondary baking process S4, and the secondary baked product 28 is integrated in the HIP apparatus 1 as it is. Can do.
By using a fired body made of a ceramic fiber base and a metal oxide binder for the support 4 and the inner wall material 16, brittleness is improved and thermal stress generated by mechanical impact and temperature distribution is hardly broken. . In other words, the rapid growth of cracks that occur when the ceramic fibers that make up the substrate are subjected to thermal stress, etc., and the cracks do not run instantaneously like normal ceramics, resulting in failure. It becomes difficult to break.

無機質材は、耐熱性(高温強度)を良好にすべく、アルミナを98%以上含むのが好ましい。特に、白金合金やモリブデン合金製のヒータエレメント12と組み合わせる場合には、HIP装置1の使用温度が1400℃を超える可能性がある。しかし、支持体4をアルミナを主成分とする焼成体で形成することで支持体4の耐熱温度は1600℃以上となり、ヒータエレメント12に白金合金やモリブデン合金製のものを用いてもヒータエレメント12の加熱に耐えることができるようになる。
本発明は上記各実施形態に限定されるものではなく、発明の本質を変更しない範囲で各部材の形状、構造、材質、組み合わせなどを適宜変更可能である。
The inorganic material preferably contains 98% or more of alumina in order to improve heat resistance (high temperature strength). In particular, when combined with a platinum alloy or molybdenum alloy heater element 12, the operating temperature of the HIP device 1 may exceed 1400 ° C. However, if the support 4 is formed of a fired body mainly composed of alumina, the heat resistance temperature of the support 4 becomes 1600 ° C. or higher. Even if the heater element 12 made of platinum alloy or molybdenum alloy is used, the heater element 12 Can withstand heating.
The present invention is not limited to the above-described embodiments, and the shape, structure, material, combination, and the like of each member can be appropriately changed without changing the essence of the invention.

上記実施形態では、成型工程S1は、基体を支持体4の形状に合わせて円筒状に巻き回し、次に金属酸化物のバインダを含浸させて行われていた。しかし、基体に金属酸化物のバインダを含浸させてから、支持体4の形状に合わせて円筒状に巻き回すこともできる。
上記実施形態では、支持体4の1次焼成品27に対する機械加工工程S3として窓部15の形成を挙げると共に、断熱構造体5の内壁材16の1次焼成品27に対する機械加工工程S3として挿通孔の穿孔を例示した。しかし、機械加工工程S3として、切断加工、曲げ加工、バリ取りなどを行うこともできる。
In the above embodiment, the molding step S1 is performed by winding the base body into a cylindrical shape in accordance with the shape of the support body 4, and then impregnating the binder with a metal oxide. However, after the base is impregnated with a binder of metal oxide, it can be wound into a cylindrical shape in accordance with the shape of the support 4.
In the said embodiment, while forming the window part 15 as machining process S3 with respect to the primary baked goods 27 of the support body 4, it inserts as machining process S3 with respect to the primary baked goods 27 of the inner wall material 16 of the heat insulation structure 5. FIG. The hole drilling was illustrated. However, cutting, bending, deburring, etc. can be performed as the machining step S3.

なお、上記実施形態では焼成体は支持体4及び断熱構造体5に用いられていた。しかし、焼成体はHIP装置1におけるこれら以外の部材、例えばヒータエレメント12を係止するガイシ、被処理体設置台などにも用いることができる。   In the above embodiment, the fired body is used for the support 4 and the heat insulating structure 5. However, the fired body can also be used for members other than these in the HIP apparatus 1, such as a insulator for holding the heater element 12, an object mounting base, and the like.

本発明に係る熱間等方圧加圧装置の正面断面図である。It is front sectional drawing of the hot isostatic pressurization apparatus which concerns on this invention. 熱間等方圧加圧装置の加熱装置の正面図である。It is a front view of the heating apparatus of a hot isostatic pressurization apparatus. 図2のA−A線断面図である。It is the sectional view on the AA line of FIG. 本発明の焼成体の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the sintered body of this invention. 内壁材における筒体と蓋板との接合部を示す図である。It is a figure which shows the junction part of the cylinder and cover plate in an inner wall material. 無機質材の焼成温度と寸法の熱変化量との関係を示す図である。It is a figure which shows the relationship between the calcination temperature of an inorganic material, and the amount of thermal changes of a dimension.

符号の説明Explanation of symbols

1 熱間等方圧加圧装置
2 高圧容器
3 加熱装置
4 支持体
5 断熱構造体
6 容器本体
7 上蓋部
8 下蓋部
9 処理室
10 注入排出口
11 ステージ
12 ヒータエレメント
13 電熱抵抗線
14 リード部
15 窓部
16 内壁材
17 断熱体
18 外壁材
19 筒体
20 蓋板
21 固定部材
26 成形型
27 1次焼成品
28 2次焼成品
S1 成型工程
S2 1次焼成工程
S3 機械加工工程
S4 2次焼成工程
S5 組立工程
W 被処理体
DESCRIPTION OF SYMBOLS 1 Hot isostatic-pressure pressurization device 2 High pressure vessel 3 Heating device 4 Support body 5 Thermal insulation structure 6 Container main body 7 Upper lid part 8 Lower lid part 9 Processing chamber 10 Injection discharge port 11 Stage 12 Heater element 13 Electrothermal resistance wire 14 Lead Part 15 Window part 16 Inner wall material 17 Heat insulator 18 Outer wall material 19 Cylindrical body 20 Cover plate 21 Fixing member 26 Mold 27 Primary fired product 28 Secondary fired product S1 Molding step S2 Primary firing step S3 Machining step S4 Secondary Firing process S5 Assembly process W Object to be processed

Claims (3)

被処理体を取り囲むように配置され且つ当該被処理体を加熱する加熱装置と、当該加熱装置を支持する支持体と、前記加熱装置及び支持体に対して外套状に配置される断熱構造体とを高圧容器内に備える熱間等方圧加圧装置に関し、前記支持体と断熱構造体の内壁材とを焼成体で形成する際に用いられる焼成体の製造方法であって、
前記焼成体を、以下の(1)〜(4)の工程に従って製造することを特徴とする熱間等方圧加圧装置に用いられる焼成体の製造方法。
(1)セラミックス繊維から成る織布又は不織布に、金属酸化物のバインダを含浸させて、成形型を形成する工程
(2)前記成形型を1200℃未満で焼成して密度1.5〜2.5g/cm3の1次焼成品を焼成する工程
(3)前記1次焼成品に対して機械加工を行う工程
(4)前記機械加工後の1次焼成品を1200℃以上で焼成して2次焼成品とし、この2次焼成品を前記焼成体として得る工程
A heating device that is disposed so as to surround the object to be processed and that heats the object to be processed, a support that supports the heating device, and a heat insulating structure that is disposed in a jacket shape with respect to the heating device and the support. Is a method for producing a fired body used when forming the support and the inner wall material of the heat insulating structure with a fired body.
A method for producing a fired body used in a hot isostatic pressing apparatus, wherein the fired body is produced according to the following steps (1) to (4).
(1) A step of impregnating a woven fabric or non-woven fabric made of ceramic fibers with a metal oxide binder to form a mold (2) The mold is fired at a temperature of less than 1200 ° C. to obtain a density of 1.5-2. A step of firing a primary fired product of 5 g / cm 3 (3) A step of machining the primary fired product (4) A step of firing the post-machined primary fired product at 1200 ° C. or higher. A step of obtaining a secondary fired product and obtaining the secondary fired product as the fired body
前記成形型の寸法が前記(2)及び/又は(4)の工程においてδ%縮む場合に、前記成形型を前記2次焼成品に対してδ%の収縮分だけ大きい寸法に形成することを特徴とする請求項1に記載の熱間等方圧加圧装置に用いられる焼成体の製造方法。   When the size of the mold is reduced by δ% in the step (2) and / or (4), the mold is formed to have a size larger than the secondary fired product by a contraction of δ%. The manufacturing method of the sintered body used for the hot isostatic pressurization apparatus of Claim 1 characterized by the above-mentioned. 前記1次焼成品の寸法が前記(4)の工程においてρ%縮む場合に、前記機械加工を前記2次焼成品に対してρ%の収縮分だけ大きい寸法で行うことを特徴とする請求項1又は2に記載の熱間等方圧加圧装置に用いられる焼成体の製造方法。   The size of the primary fired product is reduced by ρ% in the step (4), and the machining is performed with a size larger than the secondary fired product by a shrinkage of ρ%. A method for producing a fired body used in the hot isostatic pressing apparatus according to 1 or 2.
JP2007312411A 2007-12-03 2007-12-03 Method of manufacturing fired body used for hot isotropic pressure device Withdrawn JP2009137770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007312411A JP2009137770A (en) 2007-12-03 2007-12-03 Method of manufacturing fired body used for hot isotropic pressure device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007312411A JP2009137770A (en) 2007-12-03 2007-12-03 Method of manufacturing fired body used for hot isotropic pressure device

Publications (1)

Publication Number Publication Date
JP2009137770A true JP2009137770A (en) 2009-06-25

Family

ID=40868803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007312411A Withdrawn JP2009137770A (en) 2007-12-03 2007-12-03 Method of manufacturing fired body used for hot isotropic pressure device

Country Status (1)

Country Link
JP (1) JP2009137770A (en)

Similar Documents

Publication Publication Date Title
KR101310437B1 (en) Heater, apparatus, and associated method
JP4467453B2 (en) Ceramic member and manufacturing method thereof
US9288845B2 (en) Ceramic heater
KR101462123B1 (en) Method for producing ceramic sintered body, ceramic sintered body, and ceramic heater
KR100281954B1 (en) Ceramic heater
KR102292855B1 (en) Wafer support
JP5689325B2 (en) Degreasing method and degreasing apparatus for ceramic molded body
JPH07190362A (en) Ceramic glowing plug
TW201334891A (en) Sintering machine and method of manufacturing sintered body
JP2009137770A (en) Method of manufacturing fired body used for hot isotropic pressure device
KR101053101B1 (en) Hot press sintering mold and its manufacturing method
JP2004259610A (en) Ceramic heater, manufacturing method thereof, and glow plug
JP2007250644A (en) Heating member and substrate heating device using the same
JP5910728B2 (en) Manufacturing method of inorganic fiber bonded ceramics
JP6405095B2 (en) Ceramic heater manufacturing apparatus and ceramic heater manufacturing method
JP6370062B2 (en) Aluminum nitride joined body and manufacturing method thereof
JP4453068B2 (en) Ceramic tray
JP2662360B2 (en) Manufacturing method of ceramic heater and ceramic heater
JP2007078293A (en) Hot isotropic pressure device
JP2820423B2 (en) Ceramic heater furnace
JPS624872Y2 (en)
JP6168982B2 (en) Manufacturing method of ceramic heater element
JP2004131319A (en) Long ceramic sintered compact, joined body and their manufacturing processes
JP3022133B2 (en) Ceramic heater
JP2003146756A (en) Method of manufacturing glassy carbon pipe and core for manufacturing glassy carbon pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110613