JP2009137658A - Method for continuously manufacturing laminated sheet - Google Patents

Method for continuously manufacturing laminated sheet Download PDF

Info

Publication number
JP2009137658A
JP2009137658A JP2007312171A JP2007312171A JP2009137658A JP 2009137658 A JP2009137658 A JP 2009137658A JP 2007312171 A JP2007312171 A JP 2007312171A JP 2007312171 A JP2007312171 A JP 2007312171A JP 2009137658 A JP2009137658 A JP 2009137658A
Authority
JP
Japan
Prior art keywords
resin
laminated board
resin composition
metal foil
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007312171A
Other languages
Japanese (ja)
Inventor
Madoka Yuasa
円 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2007312171A priority Critical patent/JP2009137658A/en
Publication of JP2009137658A publication Critical patent/JP2009137658A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for continuously manufacturing laminated sheets, capable of manufacturing multilayer printed-wiring boards with a high yield without generating large warpage in use of the laminated sheets even when the laminated sheets are continuously manufactured. <P>SOLUTION: In the method for continuously manufacturing laminated sheets, the diameter of a core of a take-up roll for winding up the laminated sheets is set to be ≥150 mm and ≤400 mm. In particular, suitably, the continuously manufacturing method has a process of laminating resin sheets with metal foil obtained by forming an electrical insulating resin layer comprising a resin composition on metal foil on both faces of a base material. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

積層板の連続製造方法に関するものである。   The present invention relates to a method for continuously producing laminated sheets.

近年、多層プリント配線板は、小型化、高機能化の要求が強くなる反面、価格競争が激しく、特に多層プリント配線板に用いられる多層積層板やガラス布基材入りエポキシ樹脂積層板、あるいはガラス不織布を中間層基材としガラス織布を表面層基材とした積層板は、いずれも価格の低減が大きな課題となっている。また、近年電気機器、電子機器、通信機器等においては、デジタル化が進み多層プリント配線板での安定したインピーダンスが要求されるようになり、これに伴い多層プリント配線板の原料である積層板では板厚精度が要求されるようになってきた。多層プリント配線板に用いられる多層積層板やガラス布基材入りエポキシ樹脂積層板、あるいはガラス不織布を中間層基材としガラス織布を表面層基材とした積層板を積層成形する場合には、熱盤間に銅箔、積層板、鏡面板等を何枚も重ねて加熱加圧成形する多段型のバッチプレスが一般的である。しかしこのような多段のバッチプレスでは、各積層板の熱盤内での位置により積層成形時に各積層板にかかる熱履歴が異なるため、成形性、反り、寸法変化率等の品質に於いて差が生じ、品質バラツキの少ない製品を供給することは困難であった。さらに、20〜100kg/cm2の高圧により積層板を成形するため樹脂フローにより板厚精度が出ない問題があった。前記問題を解決すべく、近年、連続的に積層板を製造する工程が提案されている(例えば、特許文献1〜4参照。)。
しかし、連続的に製造する場合、成形した積層板を巻き取る工程において、巻き取られた積層板内に応力を溜め込み、この積層板を使用する際、使用用途に合わせて裁断すると、積層板が反るという問題があった。このため、後の多層プリント配線板製造時において歩留りが低下する問題があった。
In recent years, the demand for miniaturization and high functionality has been increasing for multilayer printed wiring boards, but price competition has been intense, and in particular, multilayer laminated boards used for multilayer printed wiring boards, epoxy resin laminated boards with glass cloth substrates, or glass For all the laminates using nonwoven fabric as the intermediate layer base material and glass woven fabric as the surface layer base material, cost reduction is a major issue. In recent years, electrical devices, electronic devices, communication devices, etc. have been digitized, and stable impedance in multilayer printed wiring boards has been required. With this, in laminated boards that are raw materials for multilayer printed wiring boards, Thickness accuracy has been required. In the case of laminating a multilayer laminate used for a multilayer printed wiring board or an epoxy resin laminate containing a glass cloth substrate, or a laminate having a glass nonwoven fabric as a surface layer substrate and a glass nonwoven fabric as an intermediate layer substrate, A multi-stage batch press is generally used in which a number of copper foils, laminated plates, mirror plates, and the like are stacked between heating plates and are heated and pressed. However, in such a multi-stage batch press, the heat history applied to each laminated plate during lamination molding differs depending on the position of each laminated plate in the hot platen. Therefore, it was difficult to supply a product with less quality variation. Furthermore, there is a problem that the plate thickness accuracy cannot be obtained by the resin flow because the laminated plate is formed at a high pressure of 20 to 100 kg / cm 2 . In order to solve the above problem, a process for continuously producing a laminated board has been proposed in recent years (see, for example, Patent Documents 1 to 4).
However, in the case of continuous production, in the process of winding the molded laminate, when stress is accumulated in the wound laminate, and when this laminate is used, it is cut according to the intended use. There was a problem of warping. For this reason, there was a problem that the yield was lowered during the subsequent production of the multilayer printed wiring board.

特開2001−260241号公報JP 2001-260241 A 特開2004−223864号公報JP 2004-223864 A 特開2004−291580号公報JP 2004-291580 A 特開2005−271349号公報JP 2005-271349 A

積層板使用時に大きな反りが発生することなく、歩留まりの高い多層プリント配線板を製造することができる積層板の連続的製造方法を提供するものである。   It is an object of the present invention to provide a method for continuously producing a laminated board capable of producing a multilayer printed wiring board having a high yield without causing a large warp when the laminated board is used.

このような目的は、このような目的は、下記[1]〜[8]に記載の本発明により達成される。
[1]積層板の連続的製造方法であって、積層板を巻取りロールで巻き取る工程において巻取りロールの巻き芯径が150mm以上400mm以下であることを特徴とする積層板の連続的製造方法。
[2]前記積層板の厚みは、15μm以上100μm以下である[1]に記載の積層板の連続的製造方法。
[3]前記積層板は、樹脂組成物からなる絶縁樹脂層を金属箔上に形成してなる金属箔付き樹脂シートを、基材の両面に積層してなる積層板である[1]または[2]に記載の積層板の連続的製造方法。
[4]前記樹脂組成物は、エポキシ樹脂組成物である[1]ないし[3]のいずれかに記載の積層板の連続的製造方法。
[5]前記樹脂組成物は、さらにフェノール樹脂を含むものである[4]に記載の積層板の連続的製造方法。
[6]前記樹脂組成物は、さらにフェノキシ樹脂を含むものである[4]または[5]に記載の積層板の連続的製造方法。
[7]前記樹脂組成物は、さらにシアネート樹脂を含むものである[4]ないし[6]のいずれかに記載の積層板の連続的製造方法。
[8]前記樹脂組成物は、さらに無機充填材を含むものである[4]ないし[7]のいずれかに記載の積層板の連続的製造方法。
Such an object is achieved by the present invention described in the following [1] to [8].
[1] A continuous production method of a laminate, wherein the winding core has a winding core diameter of 150 mm or more and 400 mm or less in the step of winding the laminate with a take-up roll. Method.
[2] The method for continuously producing a laminated board according to [1], wherein the thickness of the laminated board is 15 μm or more and 100 μm or less.
[3] The laminate is a laminate obtained by laminating a resin sheet with a metal foil formed by forming an insulating resin layer made of a resin composition on a metal foil on both surfaces of the substrate [1] or [ 2] The continuous manufacturing method of the laminated board as described in 2].
[4] The method for continuously producing a laminated board according to any one of [1] to [3], wherein the resin composition is an epoxy resin composition.
[5] The method for continuously producing a laminated board according to [4], wherein the resin composition further contains a phenol resin.
[6] The method for continuously producing a laminated board according to [4] or [5], wherein the resin composition further contains a phenoxy resin.
[7] The method for continuously producing a laminated board according to any one of [4] to [6], wherein the resin composition further contains a cyanate resin.
[8] The method for continuously producing a laminated board according to any one of [4] to [7], wherein the resin composition further contains an inorganic filler.

本発明の積層板の連続的製造方法によれば、反りの小さい積層板を提供することができる。また本発明の積層板の連続的製造方法により得られた積層板を用い、多層プリント配線板を製造した場合は、歩留まり良く多層プリント配線板を製造できる。 According to the continuous manufacturing method of the laminated board of this invention, a laminated board with small curvature can be provided. Moreover, when a multilayer printed wiring board is manufactured using the laminated board obtained by the continuous manufacturing method of the laminated board of this invention, a multilayer printed wiring board can be manufactured with a sufficient yield.

以下に本発明の積層板の連続的製造方法について詳細に説明する。 Below, the continuous manufacturing method of the laminated board of this invention is demonstrated in detail.

本発明は、積層板を巻取りロールで巻き取る積層板の連続的製造方法であって、積層板を、巻取りロールで巻き取る際の巻き芯の直径は、150mm以上400mm以下であることを特徴とする積層板の連続的製造方法である。   The present invention is a continuous production method of a laminated board in which the laminated board is wound up by a take-up roll, and the diameter of the winding core when the laminated board is taken up by the take-up roll is from 150 mm to 400 mm. It is the continuous manufacturing method of the laminated board characterized.

前記積層板を巻取る際の巻き芯の直径は、好ましくは巻き芯の直径は200mm以上であり、より好ましくは300mm以上である。
前記下限値未満であると、積層板使用時に反りが大きくなり、多層プリント配線板を製造した際の歩留まりが低下する。前記上限値より大きい場合、積層板使用時に反りは小さいものの取扱いが、不便で、積層板を巻き取ることができる量が少なくなる。積層板を巻き芯に巻きつかせる工程では、積層板の巻き外と巻き内で内外差が発生する。反りが発生する原因は、樹脂層内に内部応力が発生して歪となり、反りを発生させる。この内部応力を抑制するには、巻き芯の直径が最も重要な因子となる。
The diameter of the winding core when winding the laminate is preferably 200 mm or more, more preferably 300 mm or more.
When it is less than the lower limit, warpage is increased when a laminated board is used, and the yield when a multilayer printed wiring board is manufactured decreases. When the value is larger than the upper limit value, the warp is small when the laminate is used, but it is inconvenient to handle and the amount of the laminate that can be wound is reduced. In the step of winding the laminated plate around the winding core, an internal / external difference occurs between the outside and inside of the winding of the laminated plate. The cause of warping is that internal stress is generated in the resin layer, resulting in distortion and warping. In order to suppress this internal stress, the diameter of the winding core is the most important factor.

前記巻き芯の材質は、特に限定されないが、例えば金属、プラスチック、塩化ビニル、紙、樹脂、グラスファイバー等が挙げられる。   Although the material of the said winding core is not specifically limited, For example, a metal, a plastics, vinyl chloride, paper, resin, glass fiber etc. are mentioned.

前記巻き芯の表面は、凹凸の少ないものが好ましい。積層板を巻き取った際に、凹凸が積層板に転写されるからである。巻き芯の表面の凹凸を平滑にすることは、用いる巻き芯の材質にあわせて行うことができる。
また、巻き芯の内部は中空状態、充填状態にすると等は特に限定されない。
The surface of the winding core is preferably one with less unevenness. This is because the irregularities are transferred to the laminate when the laminate is wound up. Smoothing the irregularities on the surface of the core can be performed according to the material of the core used.
Moreover, the inside of the winding core is not particularly limited to a hollow state or a filled state.

積層板を巻き芯に巻き取る際の、巻きつけ張力は、張力が大きいほど内外差による内部応力を増加させる。そのため、巻きつけ張力は小さいほうが好ましい。
積層板の搬送方向と直角方向の積層板の長さをXとし、「巻きつけ張力」/「X」(単位:N/mm)とすると、0.5N/mm以下であることが好ましく、さらに好ましくは0.3N/mm以下である。
The winding tension at the time of winding the laminate on the winding core increases the internal stress due to the difference between inside and outside as the tension increases. Therefore, it is preferable that the winding tension is small.
When the length of the laminate in the direction perpendicular to the transport direction of the laminate is X and “winding tension” / “X” (unit: N / mm), it is preferably 0.5 N / mm or less. Preferably it is 0.3 N / mm or less.

前記積層板は、樹脂組成物、基材、及び金属箔を用い形成される。前記金属箔は、特に限定されないが、例えば、銅、ニッケル、アルミニウム、ステンレス等を用いることができる。これらの中でも、加工性の観点から、銅、又はアルミニウムが好ましい。さらに好ましくは、圧延銅、電解銅であり、特に好ましくは電解銅である。電解銅は、弾性率が低い点で多層プリント配線板製造時に不良が発生しにくい。   The laminate is formed using a resin composition, a base material, and a metal foil. Although the said metal foil is not specifically limited, For example, copper, nickel, aluminum, stainless steel etc. can be used. Among these, copper or aluminum is preferable from the viewpoint of workability. More preferred are rolled copper and electrolytic copper, and particularly preferred is electrolytic copper. Electrolytic copper is less susceptible to defects during the production of multilayer printed wiring boards because of its low elastic modulus.

また、前記金属箔は、剥離可能な金属箔層を備えた2層構造の金属箔を用いることもできる。2層構造の金属箔を積層後に、剥離可能な金属箔層を剥離することで、薄い金属箔を有する積層板を製造することができる。一方、取扱い時は、剥離可能な金属箔層を備えた2層構造の金属箔であり、取扱いが容易な程度の厚みがあることから、容易に薄い金属箔を有する積層板を製造することができる。   The metal foil may be a two-layer metal foil having a peelable metal foil layer. A laminate having a thin metal foil can be produced by peeling a peelable metal foil layer after laminating a metal foil having a two-layer structure. On the other hand, it is a metal foil having a two-layer structure provided with a peelable metal foil layer at the time of handling, and since it has a thickness that is easy to handle, it is possible to easily manufacture a laminate having a thin metal foil. it can.

前記積層板の厚みは、15μm以上100μm以下であることが好ましい。積層板の厚みが、前記下限値未満であると、十分な強度を得ることができない場合があり、前記上限値より厚いと巻きつけた際の内外差の影響でひずみが大きくなり、使用時の反りの原因となる場合がある。   The thickness of the laminate is preferably 15 μm or more and 100 μm or less. If the thickness of the laminate is less than the lower limit value, sufficient strength may not be obtained, and if it is thicker than the upper limit value, the distortion increases due to the effect of internal and external differences when wound, May cause warping.

前記積層板の連続的製造方法において、積層板を形成する工程は、特に限定されないが、例えば、基材に樹脂組成物を含浸させてなるプリプレグの両面に、金属箔を積層する工程、予め樹脂組成物からなる絶縁樹脂層を金属箔上に形成してなる金属箔付き樹脂シートを準備して、ラミネーター装置を用い、基材の両面に、この金属箔付き樹脂シートを積層する工程等が挙げられ、基材の両面に金属箔付き樹脂シートを積層する工程が好ましい。この工程であれば、基材両面の各樹脂層の厚みを任意に設定することが可能である。
また、金属箔付き樹脂シート作製時に、加熱等により絶縁樹脂層の反応率を変えることができることから、積層板の表裏で反応率の異なった積層板を製造することができる。尚、ここで反応率は、DSC(示差走査熱量分析装置)を用い、後述するようにして求めた値をいう。
In the continuous manufacturing method of the laminate, the step of forming the laminate is not particularly limited. For example, a step of laminating metal foil on both surfaces of a prepreg obtained by impregnating a resin composition on a base material, resin in advance A step of preparing a resin sheet with a metal foil formed by forming an insulating resin layer made of a composition on a metal foil, and laminating the resin sheet with the metal foil on both surfaces of a substrate using a laminator device, etc. And a step of laminating a resin sheet with metal foil on both surfaces of the substrate is preferable. If it is this process, it is possible to set arbitrarily the thickness of each resin layer of a base material both surfaces.
Moreover, since the reaction rate of an insulating resin layer can be changed by heating etc. at the time of preparation of the resin sheet with metal foil, the laminated board from which the reaction rate differed in the front and back of a laminated board can be manufactured. Here, the reaction rate refers to a value obtained as described later using a DSC (differential scanning calorimeter).

(反応率の計算)
まず、金属箔付き樹脂シートの製造において、金属箔上形成した直後の絶縁樹脂層の一部をとりDSCで発熱量を測定したときの発熱ピーク面積を求める。この発熱ピーク面積(=A)が全硬化反応熱となる。なお、金属箔付き樹脂シートを加熱し、硬化反応が進め、完全に硬化すると、発熱ピークがなくなる。発熱ピークがなくなったところを、反応率100%とした。
次に、加熱等により任意に硬化を進め、その時点において、絶縁樹脂層の一部をとりDSCで発熱量を測定し、発熱ピーク面積(=B)を求める。その時点における反応率は、(1−B/A)×100(%)から求まる値とした。
(Calculation of reaction rate)
First, in the production of a resin sheet with a metal foil, a part of the insulating resin layer immediately after being formed on the metal foil is taken, and the heat generation peak area when the heat generation amount is measured by DSC is determined. This exothermic peak area (= A) is the total curing reaction heat. When the resin sheet with metal foil is heated and the curing reaction proceeds and is completely cured, the exothermic peak disappears. The point at which the exothermic peak disappeared was defined as a reaction rate of 100%.
Next, the curing is arbitrarily progressed by heating or the like, and at that time, a part of the insulating resin layer is taken and the calorific value is measured by DSC to obtain the exothermic peak area (= B). The reaction rate at that time was a value obtained from (1−B / A) × 100 (%).

前記積層板の製造において、ラミネーター装置により積層する条件は、特に限定されないが、真空下で行うことが好ましく、さらに好ましくは、真空加熱下で行うことが好ましい。   In the production of the laminate, conditions for laminating with a laminator apparatus are not particularly limited, but it is preferably performed under vacuum, more preferably under vacuum heating.

前記金属箔の厚みは、0.1μm以上18μm以下であることが好ましい。さらに、0.5μm以上12μm以下であることが好ましく、さらには1μm以上10μm以下であることが好ましい。金属箔の厚みが前記下限値未満であると、金属箔にピンホールの発生し易く、多層プリント配線板製造工程で不良が発生する場合があり、前記上限値を超えると、内部応力が大きくなるため、積層板の反りが大きくなる。   The thickness of the metal foil is preferably 0.1 μm or more and 18 μm or less. Furthermore, it is preferably 0.5 μm or more and 12 μm or less, and more preferably 1 μm or more and 10 μm or less. If the thickness of the metal foil is less than the lower limit, pinholes are likely to occur in the metal foil, and defects may occur in the multilayer printed wiring board manufacturing process. If the upper limit is exceeded, the internal stress increases. For this reason, the warp of the laminated plate is increased.

前記基材は、特に限定されないが、例えば、ガラス織布、ガラス不織布等のガラス繊維基材、ポリアミド樹脂繊維、芳香族ポリアミド樹脂繊維、全芳香族ポリアミド樹脂繊維等のポリアミド系樹脂繊維、ポリエステル樹脂繊維、芳香族ポリエステル樹脂繊維、全芳香族ポリエステル樹脂繊維等のポリエステル系樹脂繊維、ポリイミド樹脂繊維、フッ素樹脂繊維等を主成分とする織布または不織布で構成される合成繊維基材、クラフト紙、コットンリンター紙、リンターとクラフトパルプの混抄紙等を主成分とする紙基材等の有機繊維基材等が挙げられる。これらの中でもガラス繊維基材が好ましい。これにより、積層板の強度が上がり、また低吸水率化することができる。また、積層板の線膨張係数を小さくすることができる。   The base material is not particularly limited. For example, glass fiber base materials such as glass woven fabric and glass nonwoven fabric, polyamide resin fibers, aromatic polyamide resin fibers, polyamide resin fibers such as wholly aromatic polyamide resin fibers, and polyester resins. Synthetic fiber substrate, kraft paper, composed of woven fabric or nonwoven fabric mainly composed of fibers, aromatic polyester resin fibers, polyester resin fibers such as wholly aromatic polyester resin fibers, polyimide resin fibers, fluororesin fibers, etc. Examples thereof include organic fiber base materials such as paper base materials mainly composed of cotton linter paper, mixed paper of linter and kraft pulp, and the like. Among these, a glass fiber base material is preferable. Thereby, the intensity | strength of a laminated board rises and it can make a low water absorption. Moreover, the linear expansion coefficient of a laminated board can be made small.

前記樹脂組成物は、特に限定されないが、エポキシ樹脂組成物であることが好ましい。   The resin composition is not particularly limited, but is preferably an epoxy resin composition.

前記エポキシ樹脂組成物を構成するエポキシ樹脂は、特に限定されないが、例えば、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、アリールアルキレン型エポキシ樹脂、ナフタレン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、脂環式エポキシ樹脂及びこれらの共重合体等が挙げられる。これらの中の1種類を単独で用いることもできるし、異なる重量平均分子量を有する2種類以上を併用したり、1種類または2種類以上と、それらのプレポリマーを併用したりすることもできる。 The epoxy resin constituting the epoxy resin composition is not particularly limited. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, Biphenyl type epoxy resin, aryl alkylene type epoxy resin, naphthalene type epoxy resin, triphenolmethane type epoxy resin, alicyclic epoxy resin, and copolymers thereof may be mentioned. One of these can be used alone, or two or more having different weight average molecular weights can be used in combination, or one or two or more of these prepolymers can be used in combination.

前記エポキシ樹脂組成物は、さらにフェノール樹脂を含むことが好ましい。前記フェノール樹脂は、特に限定されないが、例えばフェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールAノボラック樹脂、アリールアルキレン型ノボラック樹脂等のノボラック型フェノール樹脂、未変性のレゾールフェノール樹脂、桐油、アマニ油、クルミ油等で変性した油変性レゾールフェノール樹脂等のレゾール型フェノール樹脂が挙げられる。これらの中の1種類を単独で用いることもできるし、異なる重量平均分子量を有する2種類以上を併用したり、1種類または2種類以上と、それらのプレポリマーを併用したりすることもできる。これらの中でも特に、アリールアルキレン型フェノール樹脂が好ましい。これにより、さらに吸湿半田耐熱性を向上させることができる。   The epoxy resin composition preferably further contains a phenol resin. The phenol resin is not particularly limited, but, for example, a novolak phenol resin such as a phenol novolak resin, a cresol novolak resin, a bisphenol A novolak resin, an arylalkylene type novolak resin, an unmodified resole phenol resin, tung oil, linseed oil, walnut oil And resol type phenolic resins such as oil-modified resol phenolic resins modified with the above. One of these can be used alone, or two or more having different weight average molecular weights can be used in combination, or one or two or more of these prepolymers can be used in combination. Among these, arylalkylene type phenol resins are particularly preferable. Thereby, moisture absorption solder heat resistance can be improved further.

前記エポキシ樹脂組成物は、さらにフェノキシ樹脂を含むことが好ましい。前記フェノキシ樹脂としては、特に制限されないが、例えばビスフェノール骨格を有するフェノキシ樹脂、ノボラック骨格を有するフェノキシ樹脂、ナフタレン骨格を有するフェノキシ樹脂、ビフェニル骨格を有するフェノキシ樹脂等が挙げられ、これらの骨格を複数種類有した構造のフェノキシ樹脂を用いることもできる。またこれらを単独、又は複数種併用してもよい。 The epoxy resin composition preferably further contains a phenoxy resin. The phenoxy resin is not particularly limited, and examples thereof include a phenoxy resin having a bisphenol skeleton, a phenoxy resin having a novolak skeleton, a phenoxy resin having a naphthalene skeleton, a phenoxy resin having a biphenyl skeleton, and the like. It is also possible to use a phenoxy resin having the structure. These may be used alone or in combination.

前記エポキシ樹脂組成物は、さらにシアネート樹脂を含むことが好ましい。前記シアネート樹脂としては、特に制限されないが、例えばハロゲン化シアン化合物とフェノール類とを反応させ、必要に応じて加熱等の方法でプレポリマー化することにより得ることができる。具体的には、ノボラック型シアネート樹脂やビスフェノールA型シアネート樹脂、ビスフェノールE型シアネート樹脂、テトラメチルビスフェノールF型シアネート樹脂等のビスフェノール型シアネート樹脂等を挙げることができ、これらを単独又は複数種併用してもよい。 The epoxy resin composition preferably further contains a cyanate resin. Although it does not restrict | limit especially as said cyanate resin, For example, it can obtain by making a halogenated cyanide compound and phenols react and prepolymerizing by methods, such as a heating, as needed. Specifically, bisphenol type cyanate resins such as novolac type cyanate resin, bisphenol A type cyanate resin, bisphenol E type cyanate resin, tetramethylbisphenol F type cyanate resin, etc. can be mentioned, and these can be used alone or in combination. May be.

前記エポキシ樹脂組成物は、さらに、適宜硬化剤を用いることができる。硬化剤としては、公知のものを使用することがでる。例えばトリエチルアミン、トリブチルアミン、ジアザビシクロ[2,2,2]オクタン等の3級アミン類、2−エチル−4−エチルイミダゾール、2−フェニル−4−メチルイミダゾール、2−フェニル−4−メチル−5−ヒドルキシメチルイミダゾール、2−フェニル−4,5−ジヒドロキシメチルイミダゾール、2,4−ジアミノ−6−〔2’−メチルイミダゾリル−(1’)〕−エチル−s−トリアジン、2,4−ジアミノ−6−(2’−ウンデシルイミダゾリル)−エチル−s−トリアジン、2,4−ジアミノ−6−〔2’−エチル−4−メチルイミダゾリル−(1’)〕−エチル−s−トリアジン、1−ベンジル−2−フェニルイミダゾール等のイミダゾール系化合物、トリフェニルホスフィン等のホスフィン系化合物等が挙げられる。 The epoxy resin composition can further use a curing agent as appropriate. As the curing agent, known ones can be used. For example, tertiary amines such as triethylamine, tributylamine, diazabicyclo [2,2,2] octane, 2-ethyl-4-ethylimidazole, 2-phenyl-4-methylimidazole, 2-phenyl-4-methyl-5- Hydroxymethylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2,4-diamino-6- [2'-methylimidazolyl- (1 ')]-ethyl-s-triazine, 2,4-diamino -6- (2'-undecylimidazolyl) -ethyl-s-triazine, 2,4-diamino-6- [2'-ethyl-4-methylimidazolyl- (1 ')]-ethyl-s-triazine, 1 -Imidazole compounds such as benzyl-2-phenylimidazole, phosphine compounds such as triphenylphosphine, etc. That.

前記エポキシ樹脂組成物は、さらに、無機充填材を含んでも良い。前記無機充填材としては、特に限定されないが、例えばタルク、アルミナ、ガラス、シリカ、マイカ、水酸化アルミニウム、水酸化マグネシウム等を挙げることができる。これらの中でもシリカが好ましく、溶融シリカ(特に球状溶融シリカ)が高弾性、低熱膨張性に優れる点で好ましい。その形状は破砕状及び球状があるが、樹脂組成物の溶融粘度を下げるには球状シリカを使う等、その目的にあわせた使用方法が採用される。   The epoxy resin composition may further contain an inorganic filler. The inorganic filler is not particularly limited, and examples thereof include talc, alumina, glass, silica, mica, aluminum hydroxide, and magnesium hydroxide. Among these, silica is preferable, and fused silica (particularly spherical fused silica) is preferable in that it is excellent in high elasticity and low thermal expansion. There are crushed and spherical shapes, but a method of use that suits the purpose, such as using spherical silica, is employed to lower the melt viscosity of the resin composition.

前記エポキシ樹脂組成物は、無機充填材含む場合、さらにカップリング剤を含むことが好ましい。前記カップリング剤は、特に限定されないが、例えばエポキシシランカップリング剤、アミノシランカップリング剤、チタネート系カップリング剤、及びシリコーンオイル型カップリング剤等が挙げられ、それらを単独または複数併用してもよい。カップリング剤は、エポキシ樹脂と無機充填材との界面の濡れ性を向上させることができ、界面強度や溶融粘度を改善することができる。   When the said epoxy resin composition contains an inorganic filler, it is preferable that a coupling agent is further included. The coupling agent is not particularly limited, and examples thereof include an epoxy silane coupling agent, an amino silane coupling agent, a titanate coupling agent, and a silicone oil type coupling agent, and these may be used alone or in combination. Good. The coupling agent can improve the wettability of the interface between the epoxy resin and the inorganic filler, and can improve the interface strength and melt viscosity.

前記エポキシ樹脂組成物は、さらに必要に応じて消泡剤、レベリング剤、顔料、酸化防止剤、紫外線吸収剤等の添加剤を含有することができる。   The epoxy resin composition may further contain additives such as an antifoaming agent, a leveling agent, a pigment, an antioxidant, and an ultraviolet absorber as necessary.

以下、本発明を実施例により詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to examples.

(実施例1)
エポキシ樹脂としてメトキシナフタレンジメチレン型エポキシ樹脂(大日本インキ化学工業株式会社製、EXA−7320)3.0重量部、ビフェニルジメチレン型エポキシ樹脂(日本化薬株式会社製、NC−3000)22.0重量部、硬化剤として1−ベンジルー2−フェニルイミダゾール(四国化成工業社製、キュアゾール1B2PZ)0.2重量部、フェノキシ樹脂(ジャパンエポキシレジン社製、jER4275)10.0重量部、ノボラック型シアネート樹脂(ロンザジャパン株式会社製、プリマセットPT−30)25重量部とを、メチルイソブチルケトンに溶解、分散させた。さらに、無機充填材として球状溶融シリカ(アドマテックス社製・「SO−25R」、平均粒径0.5μm)39.6重量部とエポキシシランカップリング剤(GE東芝シリコーン株式会社製、A−187)0.2重量部を高速撹拌装置を用いて10分間撹拌して、固形分50重量%の樹脂ワニスを調製した。調製した樹脂ワニスをダイコータ方式のキャスティング装置で厚さ12μmの電解銅箔粗化面上に固形分で50g/m2付着するように塗布後、80℃で2分乾燥させ半硬化状態の樹脂が形成された金属箔付き樹脂シートを得た。ゴム製のロール式ラミネーターを用いて、基材として100g/m2 のガラスクロスの両面に、前記金属箔付き樹脂シートの樹脂面側を連続的に積層し、積層板を得た。尚、積層条件は、80℃、1MPa、2m/分であった。
次に積層板を形成後、段階的に温度を上げていき250℃で30分乾燥させて、最後の巻取り工程において、直径が150mmのグラスファイバー製の巻き芯を使用し、巻取り張力を0.5N/mmとして巻取り、厚みが100μmの積層板を製作した。
(Example 1)
Methoxynaphthalene dimethylene type epoxy resin (Dainippon Ink Chemical Co., Ltd., EXA-7320) 3.0 parts by weight as an epoxy resin, biphenyldimethylene type epoxy resin (Nippon Kayaku Co., Ltd., NC-3000) 22. 0 part by weight, 0.2 part by weight of 1-benzyl-2-phenylimidazole (manufactured by Shikoku Kasei Kogyo Co., Ltd., Curazole 1B2PZ), 10.0 parts by weight of phenoxy resin (manufactured by Japan Epoxy Resin Co., Ltd., jER4275), novolac cyanate 25 parts by weight of a resin (Lonza Japan Co., Ltd., Primaset PT-30) was dissolved and dispersed in methyl isobutyl ketone. Furthermore, 39.6 parts by weight of spherical fused silica (manufactured by Admatechs Corporation, “SO-25R”, average particle size 0.5 μm) as an inorganic filler and an epoxy silane coupling agent (GE Toshiba Silicone Co., Ltd., A-187) ) 0.2 part by weight was stirred for 10 minutes using a high-speed stirrer to prepare a resin varnish having a solid content of 50% by weight. The prepared resin varnish is applied by a die coater type casting apparatus so that 50 g / m 2 of solid content adheres on the roughened surface of the electrolytic copper foil having a thickness of 12 μm, and then dried at 80 ° C. for 2 minutes to obtain a semi-cured resin. A formed resin sheet with metal foil was obtained. Using a rubber roll laminator, the resin surface side of the resin sheet with metal foil was continuously laminated on both surfaces of a 100 g / m 2 glass cloth as a base material to obtain a laminate. The lamination conditions were 80 ° C., 1 MPa, and 2 m / min.
Next, after forming the laminate, the temperature is raised stepwise and dried at 250 ° C. for 30 minutes. In the final winding process, a glass fiber core having a diameter of 150 mm is used, and the winding tension is increased. The laminate was wound up at 0.5 N / mm and a thickness of 100 μm.

(実施例2)
実施例1と同様の工程を用いて、積層板の巻取り工程において、直径が300mmのグラスファイバー製の巻き芯を使用し、巻取り張力を0.5N/mmとして巻取った以外は、実施例1と同様にして厚みが100μmの積層板を作製した。
(Example 2)
The same steps as in Example 1 were used, except that a glass fiber core having a diameter of 300 mm was used in the winding step of the laminated plate, and the winding tension was 0.5 N / mm. A laminated board having a thickness of 100 μm was produced in the same manner as in Example 1.

(実施例3)
実施例1と同様の工程を用いて、積層板の巻取り工程において、直径が400mmのグラスファイバー製の巻き芯を使用し、巻取り張力を0.5N/mmとして巻取った以外は、実施例1と同様にして厚みが100μmの積層板を作製した。
(Example 3)
The same steps as in Example 1 were used, except that a glass fiber winding core having a diameter of 400 mm was used in the winding step of the laminated plate, and the winding tension was 0.5 N / mm. A laminated board having a thickness of 100 μm was produced in the same manner as in Example 1.

(実施例4)
実施例1と同様の工程を用いて、基材として45g/m2 のガラスクロスを用いた以外は、実施例1と同様にして厚みが60μmの積層板を作製した。
Example 4
A laminated board having a thickness of 60 μm was produced in the same manner as in Example 1 except that a glass cloth of 45 g / m 2 was used as a substrate using the same steps as in Example 1.

(比較例1)
実施例1と同様の工程を用いて、積層板の巻取り工程において、直径が100mmのグラスファイバー製の巻き芯を使用し、巻取り張力を0.5N/mmとして巻き取った以外は、実施例1と同様にして厚みが100μmの積層板を作製した。
(Comparative Example 1)
The same steps as in Example 1 were used, except that a glass fiber core having a diameter of 100 mm was used and the winding tension was 0.5 N / mm. A laminated board having a thickness of 100 μm was produced in the same manner as in Example 1.

(比較例2)
実施例1と同様の工程を用いて、基材として45g/m2 のガラスクロスを用い積層板を形成し、直径が100mmのグラスファイバー製の巻き芯を使用し、巻取り張力を0.5N/mmとして巻取った以外は、実施例1と同様にして厚みが60μmの積層板を作製した。
(Comparative Example 2)
Using the same process as in Example 1, a laminated sheet is formed using a glass cloth of 45 g / m 2 as a base material, a glass fiber core having a diameter of 100 mm is used, and a winding tension is 0.5 N. A laminate having a thickness of 60 μm was prepared in the same manner as in Example 1 except that the film was wound as / mm.

(評価)
前記で得られた実施例1〜4、比較例1、及び2を用い以下の評価方法により積層板の反りを評価した。
(Evaluation)
Using Examples 1 to 4 and Comparative Examples 1 and 2 obtained above, the warpage of the laminate was evaluated by the following evaluation method.

得られた積層板を、200mm×200mmの枚葉に裁断して試験片を作製した。平板の上に、積層板を設置し、その際の試験片の4隅と平板との距離をノギスにより測定した。各4点の平均値の結果を表1に示す。尚、設置した積層板の上面は、積層板を巻取った際の、巻き芯の中心に近い面とした。 The obtained laminate was cut into a sheet of 200 mm × 200 mm to prepare a test piece. A laminated plate was placed on the flat plate, and the distance between the four corners of the test piece and the flat plate was measured with a caliper. Table 1 shows the results of the average values of the four points. In addition, the upper surface of the installed laminated board was made into the surface close | similar to the center of a winding core at the time of winding up a laminated board.

Figure 2009137658
Figure 2009137658

実施例1〜4は、積層板の反りが小さく、歩留まりよく多層プリント配線板を製造できる。一方、巻き芯径が100μmと小さい巻き芯を用いた比較例1、及び2は、反りが大きく、プリント配線板製造時において歩留まりが低くなる。 In Examples 1 to 4, it is possible to manufacture a multilayer printed wiring board with a small yield and a high yield. On the other hand, Comparative Examples 1 and 2 using a winding core having a winding core diameter as small as 100 μm have a large warpage and a low yield during the production of a printed wiring board.

本発明の積層板の連続的製造方法により得られた積層板は、反りが小さいことから、多層プリント配線板製造時において、感光性樹脂を用い露光・現像により回路パターン等を描く場合があるが、その際に解像度が良いため、精度良く、回路パターン等を描くことができることから、特に線幅が狭い回路パターンが要求される多層プリント配線板に有用に用いることができる。 Since the laminate obtained by the continuous production method of the laminate of the present invention has a small warp, a circuit pattern or the like may be drawn by exposure / development using a photosensitive resin when producing a multilayer printed wiring board. In this case, since the resolution is good, it is possible to draw a circuit pattern or the like with high accuracy. Therefore, the circuit pattern can be usefully used for a multilayer printed wiring board that requires a circuit pattern with a particularly narrow line width.

Claims (8)

積層板の連続的製造方法であって、積層板を巻取りロールで巻き取る工程において巻取りロールの巻き芯径が150mm以上400mm以下であることを特徴とする積層板の連続的製造方法。   A method for continuously producing a laminated board, wherein the winding core has a winding core diameter of 150 mm or more and 400 mm or less in the step of winding the laminated board with a take-up roll. 前記積層板の厚みは、15μm以上100μm以下である請求項1に記載の積層板の連続的製造方法。   The method for continuously producing a laminated board according to claim 1, wherein the thickness of the laminated board is 15 µm or more and 100 µm or less. 前記積層板は、樹脂組成物からなる絶縁樹脂層を金属箔上に形成してなる金属箔付き樹脂シートを、基材の両面に積層してなる積層板である請求項1または2に記載の積層板の連続的製造方法。   The said laminated board is a laminated board formed by laminating | stacking the resin sheet with metal foil which forms the insulating resin layer which consists of a resin composition on metal foil on both surfaces of a base material. A continuous manufacturing method for laminated boards. 前記樹脂組成物は、エポキシ樹脂組成物である請求項1ないし3のいずれかに記載の積層板の連続的製造方法。   The said resin composition is an epoxy resin composition, The continuous manufacturing method of the laminated board in any one of Claim 1 thru | or 3. 前記樹脂組成物は、さらにフェノール樹脂を含むものである請求項4に記載の積層板の連続的製造方法。   The method for continuously producing a laminated board according to claim 4, wherein the resin composition further contains a phenol resin. 前記樹脂組成物は、さらにフェノキシ樹脂を含むものである請求項4または5に記載の積層板の連続的製造方法。   The method for continuously producing a laminated board according to claim 4 or 5, wherein the resin composition further contains a phenoxy resin. 前記樹脂組成物は、さらにシアネート樹脂を含むものである請求項4ないし6のいずれかに記載の積層板の連続的製造方法。   The method for continuously producing a laminated board according to any one of claims 4 to 6, wherein the resin composition further contains a cyanate resin. 前記樹脂組成物は、さらに無機充填材を含むものである請求項4ないし7のいずれかに記載の積層板の連続的製造方法。   The continuous production method of a laminated board according to any one of claims 4 to 7, wherein the resin composition further contains an inorganic filler.
JP2007312171A 2007-12-03 2007-12-03 Method for continuously manufacturing laminated sheet Pending JP2009137658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007312171A JP2009137658A (en) 2007-12-03 2007-12-03 Method for continuously manufacturing laminated sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007312171A JP2009137658A (en) 2007-12-03 2007-12-03 Method for continuously manufacturing laminated sheet

Publications (1)

Publication Number Publication Date
JP2009137658A true JP2009137658A (en) 2009-06-25

Family

ID=40868708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007312171A Pending JP2009137658A (en) 2007-12-03 2007-12-03 Method for continuously manufacturing laminated sheet

Country Status (1)

Country Link
JP (1) JP2009137658A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019235647A1 (en) * 2018-06-08 2019-12-12 大日本印刷株式会社 Metal sheet wound body, packaging provided with wound body, wound body packaging method, wound body storage method, method of manufacturing evaporation mask using wound body metal sheet, and metal sheet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002255453A (en) * 2001-02-27 2002-09-11 Matsushita Electric Works Ltd Bobbin for metal foil with resin layer
JP2002308483A (en) * 2001-04-11 2002-10-23 Mitsui Chemicals Inc Core
JP2004067271A (en) * 2002-08-02 2004-03-04 Toray Ind Inc Method for manufacturing roll-shaped laminated film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002255453A (en) * 2001-02-27 2002-09-11 Matsushita Electric Works Ltd Bobbin for metal foil with resin layer
JP2002308483A (en) * 2001-04-11 2002-10-23 Mitsui Chemicals Inc Core
JP2004067271A (en) * 2002-08-02 2004-03-04 Toray Ind Inc Method for manufacturing roll-shaped laminated film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019235647A1 (en) * 2018-06-08 2019-12-12 大日本印刷株式会社 Metal sheet wound body, packaging provided with wound body, wound body packaging method, wound body storage method, method of manufacturing evaporation mask using wound body metal sheet, and metal sheet
CN110578119A (en) * 2018-06-08 2019-12-17 大日本印刷株式会社 Metal plate, wound body, method for packing and storing the same, package, and method for manufacturing vapor deposition mask
JPWO2019235647A1 (en) * 2018-06-08 2021-07-15 大日本印刷株式会社 Winding body of metal plate, packing body with winding body, packing method of winding body, storage method of winding body, manufacturing method of vapor deposition mask using metal plate of winding body, and metal plate
TWI782212B (en) * 2018-06-08 2022-11-01 日商大日本印刷股份有限公司 Winding body of metal plate, packing body provided with winding body, packaging method of winding body, storage method of winding body, manufacturing method of vapor deposition cover using metal plate of winding body, and metal plate
JP7317816B2 (en) 2018-06-08 2023-07-31 大日本印刷株式会社 Wound body of metal plate, package provided with wound body, method for packing wound body, method for storing wound body, method for manufacturing vapor deposition mask using wound metal plate, and metal plate

Similar Documents

Publication Publication Date Title
JP5493853B2 (en) Epoxy resin composition, prepreg, laminate, multilayer printed wiring board, semiconductor device, insulating resin sheet, and method for producing multilayer printed wiring board
JP6481610B2 (en) Resin composition for printed wiring board material, and prepreg, resin sheet, metal foil-clad laminate, and printed wiring board using the same
TWI553054B (en) Resin composition for printed circuit boards
JP5293598B2 (en) Resin composition, prepreg, laminate, multilayer printed wiring board, and semiconductor device
JP5120267B2 (en) Laminated body, circuit board including laminated body, semiconductor package, and laminated body manufacturing method
WO2016072404A1 (en) Resin composition, prepreg, metal-foil-clad laminated board, resin composite sheet, and printed circuit board
JP6512521B2 (en) Laminated board, metal-clad laminated board, printed wiring board, multilayer printed wiring board
TWI433773B (en) Laminate, print circuit board and semiconductor device
JP4940680B2 (en) Resin composition and prepreg and laminate using the same
TWI496805B (en) Interlayer insulating film with carrier material and multilayer printed circuit board using the same
JP5799174B2 (en) Insulating resin film, pre-cured product, laminate and multilayer substrate
JP3963662B2 (en) Laminate production method
JP2015009556A (en) Copper foil with carrier, production method of copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate sheet and production method of printed wiring board
JP5233135B2 (en) LAMINATED PLATE, METHOD FOR PRODUCING LAMINATED PLATE, AND SEMICONDUCTOR DEVICE
JP2015010273A (en) Copper foil with carrier, production method of copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate sheet and production method of printed wiring board
JP5977969B2 (en) Insulating sheet, method for manufacturing insulating sheet, and multilayer substrate
JP2013035960A (en) Resin composition for printed circuit board, prepreg and laminate
JP2009137658A (en) Method for continuously manufacturing laminated sheet
JP2012041510A (en) Resin composition, b-stage film, laminated film, and multilayer substrate
JP2014062150A (en) Insulating resin film, production method of insulating resin film, preliminarily cured product, laminate, and multilayer substrate
JP4125256B2 (en) Method and apparatus for continuous production of laminates
TW202106795A (en) Resin composition, prepreg, resin sheet, laminate, metal foil-clad laminate, and printed wiring board
JP2012051232A (en) Method of manufacturing laminate sheet and laminate sheet
JP4119388B2 (en) Method and apparatus for continuous production of laminates
JP2004238465A (en) Method for producing composite substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121105

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121114

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130111