JP2009137026A - Concrete producing apparatus using fine closed cell - Google Patents

Concrete producing apparatus using fine closed cell Download PDF

Info

Publication number
JP2009137026A
JP2009137026A JP2007312433A JP2007312433A JP2009137026A JP 2009137026 A JP2009137026 A JP 2009137026A JP 2007312433 A JP2007312433 A JP 2007312433A JP 2007312433 A JP2007312433 A JP 2007312433A JP 2009137026 A JP2009137026 A JP 2009137026A
Authority
JP
Japan
Prior art keywords
water
concrete
admixture
microbubbles
kneaded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007312433A
Other languages
Japanese (ja)
Other versions
JP5094350B2 (en
Inventor
Masaru Tsuji
勝 辻
Toyoichi Uehara
豊一 上原
Mikihiro Fujito
幹大 藤戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Co Ltd
Nikko KK
Original Assignee
Nikko Co Ltd
Nikko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Co Ltd, Nikko KK filed Critical Nikko Co Ltd
Priority to JP2007312433A priority Critical patent/JP5094350B2/en
Publication of JP2009137026A publication Critical patent/JP2009137026A/en
Application granted granted Critical
Publication of JP5094350B2 publication Critical patent/JP5094350B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a concrete producing apparatus which is realistic and high in practicality and uses fine closed cells such as microbubbles effectively. <P>SOLUTION: The apparatus is equipped with admixture charging piping 12 for charging an admixture metered by an admixture metering tank 11 into a water metering tank 10 and water charging piping 13 for charging kneading water metered by a water metering tank 10 into a mixer 1. A microbubble generator 15 is made to intervene in the water charging piping 13. The fine closed cells such as the microbubbles are produced in the kneading water by making the kneading water incorporated with the admixture pass through the microbubble generator 15. The kneading water containing the detailed open cells and various residual concrete materials are kneaded by a mixer 1 to produce the concrete, so that the compression strength of the concrete can be increased, and the fine closed cells such as the microbubbles can effectively be used realistically and practically. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、粗骨材、細骨材、セメント、混練水、混和剤等の各種コンクリート材料を混練処理してコンクリートを製造するコンクリートの製造装置に関する。   The present invention relates to a concrete production apparatus for producing concrete by kneading various concrete materials such as coarse aggregate, fine aggregate, cement, kneaded water, and admixture.

近年、マイクロバブルと呼ばれる直径が約50μm以下の微細気泡が、生物の生理活性を促進したり、細菌やウィルス等に対する殺菌効果を有する等、様々な技術分野において有用性を発揮することが知られるようになり、メディア等でも数多く取り上げられている。ところで、このような微細気泡のメカニズム等は未だ十分に解明されておらず、依然として研究段階にあるものの、この微細気泡を利用する方法や装置の一つとして、例えば、微細気泡をセメント系材料や混練水等に混入、或いは発生させるようにしたものが幾つか提案されている。   In recent years, it is known that microbubbles having a diameter of about 50 μm or less, called microbubbles, exhibit usefulness in various technical fields such as promoting the biological activity of organisms and having a bactericidal effect against bacteria and viruses. As a result, it has been featured in many media. By the way, although the mechanism of such fine bubbles has not yet been fully elucidated and is still in the research stage, as one of methods and apparatuses using these fine bubbles, for example, the fine bubbles can be converted into cement-based materials, Several proposals have been made for mixing or generating in kneaded water.

特許文献1には、セメントミルク、モルタルまたはコンクリートの製造に際して、AE剤や発泡剤、起泡剤等の混和剤に代えてマイクロバブルを混入させる方法及び装置が記載されており、これによれば、AE剤等の混和剤を使用することなく、材料中に多数の微細な独立した気泡を一様に分布させ、ワーカビリティ及び耐凍害性等の向上を図れるとしている。また特許文献2には、流水管の途中にエアーを注入し、その後、ポンプにて加圧した後、超微細泡に砕くミキサーによって50μm以下の気泡を発生させて微細泡水を製造するようにした水硬性セメント用の混練水の製造方法が記載されており、これによれば、この混練水を使用することにより、セメントを硬化促進し、セメントの節約、流動性の向上、耐久性及び作業性の向上が図れるとしている。
特開2007−191358号公報 特開2007−261242号公報
Patent Document 1 describes a method and an apparatus in which microbubbles are mixed in place of an admixture such as an AE agent, a foaming agent, and a foaming agent in producing cement milk, mortar, or concrete. Without using an admixture such as an AE agent, a large number of fine independent bubbles are uniformly distributed in the material to improve workability and frost resistance. Further, in Patent Document 2, air is injected in the middle of a flowing water pipe, and then pressurized with a pump, and then bubbles of 50 μm or less are generated by a mixer that breaks into ultrafine bubbles to produce fine bubble water. A method for producing kneaded water for hydraulic cement is described, and according to this, the use of this kneaded water accelerates hardening of the cement, saves cement, improves fluidity, durability and operation. It is said that it can improve the performance.
JP 2007-191358 A JP 2007-261242 A

しかしながら、上記何れの先行発明においても実証データ等が全く添付されておらず、不明瞭な点も少なくないため、実用的な技術として十分に確立されているとは言い難く、未だ模索の段階にあると考えられる。   However, in any of the above-mentioned prior inventions, no demonstration data or the like is attached, and there are not a few unclear points, so it is difficult to say that it has been sufficiently established as a practical technique, and is still in the search stage. It is believed that there is.

本発明は上記の点に鑑み、現実的で、実用性の高い、マイクロバブル等の微細気泡を有効利用したコンクリートの製造装置を提供することを課題とする。   In view of the above points, an object of the present invention is to provide a practical and practical practical apparatus for producing concrete that effectively uses fine bubbles such as microbubbles.

本発明者らは、上記先行発明等と同様に、マイクロバブル等の微細気泡が有する多様な有用性に着目し、コンクリートを製造する際に混練水に微細気泡を生成させたものを使用すれば、製造したコンクリートの性状、例えば、ワーカビリティや耐凍害性等が向上するのではないかと思い至った。そして、この仮定の下、実際に、混練水に微細気泡を生成させた後、この混練水に混和剤を混入させると共に、粗骨材、細骨材、セメント等、残りのコンクリート材料と混練処理してコンクリートを製造し、このコンクリートにて供試体を作製してコンクリート試験を試みたが、微細気泡の特性上、混練水に生成させた微細気泡は生成後僅か数分程度で消失してしまうため(白濁の有無で判断可能)、いくら急いで作業しても混練時まで微細気泡を残存させておくことができず、そのためか、製造したコンクリートの性状にはほとんど何の変化も現れなかった。   The present inventors pay attention to various usefulness possessed by microbubbles such as microbubbles, as in the above-described prior invention, etc., and if the one in which fine bubbles are generated in the kneaded water is used when producing concrete. The inventors have thought that the properties of the produced concrete, such as workability and frost resistance, may be improved. Under this assumption, after actually generating fine bubbles in the kneaded water, the admixture is mixed into the kneaded water, and the remaining concrete material such as coarse aggregate, fine aggregate, cement and the like are kneaded. The concrete test was made using this concrete, and a concrete test was attempted. However, due to the characteristics of the fine bubbles, the fine bubbles generated in the kneaded water disappeared only after a few minutes. Therefore, no matter how fast the work was done, fine bubbles could not be left until kneading. For this reason, there was almost no change in the properties of the concrete produced. .

そこで、本発明者らは試行錯誤を繰り返し、鋭意研究を重ねた結果、先ず、混練水に所定量の混和剤を混入させた後、この混和剤入りの混練水に微細気泡を生成させ、この微細気泡を含んだ混練水と、粗骨材、細骨材、セメント等、残りのコンクリート材料とを混練処理してコンクリートを製造するようにすれば、混和剤の効果によって微細気泡の寿命が大幅に延び、混練時においても混練水に微細気泡が十分に残存したままの状態(白濁がほとんど消失していない状態)で使用できることを見い出した。そして、このようにして製造したコンクリートにて作製した供試体に対してコンクリート試験を試みたところ、明確な理由は定かではないものの、混練水の微細気泡の影響によって、通常の混練水を使用して製造したコンクリートと比較して圧縮強度が増進するという非常に顕著な優位性が確認され、これであれば微細気泡を有効利用するコンクリートの製造装置として十分に現実的で実用的なものとして成り立つと考えた。   Therefore, the present inventors repeated trial and error, and as a result of intensive research, first, after mixing a predetermined amount of admixture into the kneaded water, fine bubbles were generated in the kneaded water containing the admixture, and this If concrete is produced by kneading the kneaded water containing fine bubbles and the remaining concrete materials such as coarse aggregate, fine aggregate, cement, etc., the life of the fine bubbles will be greatly increased by the effect of the admixture. It was found that it can be used in a state in which fine bubbles remain sufficiently in the kneaded water even when kneading (a state in which white turbidity has hardly disappeared). Then, when a concrete test was attempted on a specimen made of concrete manufactured in this way, although a clear reason is not clear, normal kneading water is used due to the influence of fine bubbles in the kneading water. It is confirmed that the compressive strength is greatly enhanced compared with concrete manufactured in this way, and this is sufficiently realistic and practical as a concrete manufacturing device that effectively uses fine bubbles. I thought.

即ち、上記課題を解決するために、本発明に係る請求項1記載の微細気泡を利用したコンクリートの製造装置では、粗骨材、細骨材、セメント、混練水、混和剤等の各種コンクリート材料を計量槽にて計量し、計量したこれら各種コンクリート材料をミキサにて混練処理してコンクリートを製造するコンクリート製造装置であって、混和剤計量槽にて計量した混和剤を水計量槽に投入する混和剤投入配管を備えると共に、水計量槽にて計量した混練水をミキサに投入する水投入配管を備え、該水投入配管の途中には微細気泡生成手段を介在させ、該微細気泡生成手段に混和剤を混入した混練水を通過させることにより混練水に微細気泡を生成させるように構成したことを特徴としている。   That is, in order to solve the above problems, in the concrete production apparatus using fine bubbles according to claim 1 according to the present invention, various concrete materials such as coarse aggregate, fine aggregate, cement, kneaded water, admixture, etc. Is a concrete manufacturing equipment that manufactures concrete by mixing these measured concrete materials with a mixer and mixing the measured concrete materials into a water measuring tank. It is provided with an admixture charging pipe and a water charging pipe for charging the kneaded water weighed in the water measuring tank into the mixer, and a fine bubble generating means is interposed in the middle of the water charging pipe. It is characterized in that fine bubbles are generated in the kneaded water by passing the kneaded water mixed with the admixture.

また、請求項2記載の微細気泡を利用したコンクリートの製造装置では、前記微細気泡生成手段はマイクロバブル生成装置であることを特徴としている。   Moreover, in the concrete manufacturing apparatus using the fine bubbles according to claim 2, the fine bubble generating means is a microbubble generating device.

本発明に係る請求項1及び2記載の微細気泡を利用したコンクリート製造装置によれば、混和剤計量槽にて計量した混和剤を水計量槽に投入する混和剤投入配管を備えると共に、水計量槽にて計量した混練水をミキサに投入する水投入配管を備え、該水投入配管の途中にはマイクロバブル生成装置等の微細気泡生成手段を介在させ、該微細気泡生成手段に混和剤を混入した混練水を通過させることで混練水に微細気泡を生成させるように構成したことにより、製造したコンクリートの圧縮強度を増進させることができ、コンクリートの性状の向上が図れて好適であり、マイクロバブル等の微細気泡を現実的にかつ実用的に有効利用可能となる。   According to the concrete manufacturing apparatus using the fine bubbles according to claims 1 and 2 of the present invention, the admixture metering pipe for feeding the admixture measured in the admixture metering tank to the water metering tank is provided, and the water metering is performed. It is equipped with a water injection pipe for introducing the kneaded water weighed in the tank into the mixer, and a microbubble generator such as a microbubble generator is interposed in the middle of the water input pipe, and an admixture is mixed in the microbubble generator. By forming the fine water bubbles in the kneaded water by allowing the kneaded water to pass through, it is possible to increase the compressive strength of the manufactured concrete, which is suitable for improving the properties of the concrete and is suitable for microbubbles. Such fine bubbles can be effectively used practically and practically.

本発明に係る微細気泡を利用したコンクリート製造装置にあっては、混和剤計量槽にて計量したAE剤やAE減水剤等の混和剤を水計量槽に投入する混和剤投入配管と、水計量槽にて計量した混練水をミキサに投入する水投入配管とをそれぞれ備えると共に、水投入配管の途中には微細気泡生成手段である、例えばマイクロバブル生成装置を介在させる。そして、計量を終えた混和剤を混和剤投入配管を介して水計量槽内の混練水に混入させた後、この混和剤を混入した混練水を水投入配管より払い出して途中のマイクロバブル生成装置を通過させることにより、混練水内にマイクロバブル等の微細気泡を生成させていく。このとき、混練水に生成させた微細気泡は、混和剤の効果によって短時間では消失せず、多くの微細気泡が比較的長時間残存し続ける。こうして、微細気泡を多く含んだ混練水を、粗骨材や細骨材、セメント等、残りのコンクリート材料と共に、ミキサにて所定時間混練処理を行ってコンクリートを製造していく。   In the concrete manufacturing apparatus using fine bubbles according to the present invention, an admixture introduction pipe for introducing an admixture such as an AE agent or an AE water reducing agent measured in an admixture measurement tank into the water measurement tank, and a water measurement Each is equipped with a water injection pipe for supplying the kneaded water weighed in the tank to the mixer, and a microbubble generation device, for example, a microbubble generation device is interposed in the middle of the water injection pipe. Then, after mixing the admixture that has been weighed into the kneading water in the water metering tank via the admixture charging pipe, the kneading water mixed with this admixture is discharged from the water charging pipe and the microbubble generating device in the middle By passing the water, fine bubbles such as microbubbles are generated in the kneaded water. At this time, the fine bubbles generated in the kneaded water do not disappear in a short time due to the effect of the admixture, and many fine bubbles remain for a relatively long time. In this way, kneading water containing a lot of fine bubbles is kneaded for a predetermined time with a mixer together with the remaining concrete materials such as coarse aggregate, fine aggregate, cement and the like to produce concrete.

そして、このようにして製造したコンクリートは、混練水中のマイクロバブル等の微細気泡の何らかの影響により、通常の混練水を使用して製造したコンクリートと比較して高い圧縮強度を発現し、非常に顕著で優れた性状となって好適であり、マイクロバブル等の微細気泡をコンクリートの製造装置に極めて現実的かつ実用的に有効利用することが可能となる。   And the concrete manufactured in this way expresses high compressive strength compared with the concrete manufactured using normal kneading water due to some influence of fine bubbles such as microbubbles in kneading water, and is very remarkable. Therefore, it is possible to effectively use fine bubbles such as microbubbles in a concrete manufacturing apparatus in a practical and practical manner.

以下、本発明の実施例を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明を採用したコンクリート製造装置の要部の概略図であって、図中の1は各種コンクリート材料を混練処理する二軸式ミキサである。図2は前記二軸式ミキサ1の詳細な平面図(a)、及び側断面図(b)であり、混練槽2に二本の平行な混練軸3を貫通させ、それぞれ相反方向に回転自在に軸支していると共に、該混練軸3の周囲には軸線に沿って螺旋状になるように多数のアーム4を突設し、各アーム4の先端部には混練羽根5を取り付けており、駆動モータ6の駆動に応じて各混練軸3を相反方向に回転させ、それに伴って回転する各混合羽根5により混合槽2内の各種コンクリート材料を混練処理可能としている。   FIG. 1 is a schematic view of a main part of a concrete production apparatus adopting the present invention. In FIG. 1, reference numeral 1 denotes a biaxial mixer for kneading various concrete materials. FIG. 2 is a detailed plan view (a) and a side sectional view (b) of the biaxial mixer 1, in which two parallel kneading shafts 3 are passed through the kneading tank 2 and can be rotated in opposite directions. In addition, a large number of arms 4 project around the kneading shaft 3 so as to be spiral along the axis, and kneading blades 5 are attached to the tip of each arm 4. Each kneading shaft 3 is rotated in the opposite direction in accordance with the drive of the drive motor 6, and various concrete materials in the mixing tank 2 can be kneaded by the mixing blades 5 that rotate accordingly.

前記二軸式ミキサ1の上位には、コンクリート材料である砂利等の粗骨材を計量する粗骨材計量槽7と、砂等の細骨材を計量する細骨材計量槽8と、セメントを計量するセメント計量槽9、及び混練水を計量する水計量槽10をそれぞれ配設していると共に、前記水計量槽10の上位には、AE剤やAE減水剤等の混和剤を計量する混和剤計量槽11を配設している。   Above the biaxial mixer 1, a coarse aggregate measuring tank 7 for measuring coarse aggregate such as gravel, which is a concrete material, a fine aggregate measuring tank 8 for measuring fine aggregate such as sand, and cement A cement metering tank 9 for metering water and a water metering tank 10 for metering kneaded water are arranged, and admixtures such as AE agent and AE water reducing agent are metered above the water metering tank 10. An admixture metering tank 11 is provided.

また、前記混和剤計量槽11の下端部には、計量した混和剤を払い出して下位の水計量槽10に投入させる混和剤投入配管12を連結していると共に、水計量槽10の下端部には、計量した混練水を払い出して下位のミキサ1に投入させる水投入配管13を連結しており、混和剤計量槽11より払い出される混和剤は、水計量槽10にて計量した混練水に混入した後、この混練水と共にミキサ1へ投入するように構成している。   The admixture metering tank 11 is connected to the lower end portion of the admixture metering tank 11 with an admixture introduction pipe 12 for discharging the measured admixture and introducing it into the lower water metering tank 10. Is connected to a water input pipe 13 for discharging the measured kneaded water and supplying it to the lower mixer 1, and the admixture discharged from the admixture measuring tank 11 is mixed into the kneaded water measured in the water measuring tank 10. After that, it is configured so as to be put into the mixer 1 together with the kneaded water.

前記水投入配管13の途中には、水計量槽10より払い出される混練水を加圧して短時間にてミキサ1に送り出すためのラインポンプ14を介在させていると共に、該ラインポンプ14の下流側には、微細気泡生成手段であるマイクロバブル生成装置15を介在させている。   A line pump 14 for pressurizing the kneaded water discharged from the water metering tank 10 and feeding it to the mixer 1 in a short time is interposed in the middle of the water supply pipe 13, and downstream of the line pump 14. Is provided with a microbubble generating device 15 which is a fine bubble generating means.

前記マイクロバブル生成装置15は、エアポンプと気泡発生部とを主体に構成され、エアポンプの駆動に伴って気泡発生部内に空気を送り込むと、気泡発生部内に形成された千鳥構造の内壁によって空気が細かく剪断されていき、やがて50μm以下のマイクロバブル等の微細気泡が生成される構造となっており、水計量槽10より水投入配管13を介してミキサ1に払い出される混練水に対し、必要に応じて適宜マイクロバブル等の微細気泡を生成可能としている。   The micro-bubble generating device 15 is mainly composed of an air pump and a bubble generating unit. When air is sent into the bubble generating unit as the air pump is driven, the air is fined by the inner wall of the staggered structure formed in the bubble generating unit. The structure is such that fine bubbles such as microbubbles of 50 μm or less are generated in the course of time, and the kneaded water discharged from the water metering tank 10 via the water input pipe 13 to the mixer 1 as required. Thus, microbubbles such as microbubbles can be generated as appropriate.

なお、マイクロバブル生成装置15は、必ずしも上記のような構造のものを採用する必要はなく、例えば、高圧下で空気を大量に溶解させた後、減圧によって再気泡化させて微細気泡を生成させる、所謂加圧減圧法と呼ばれるものや、ベンチュリー管に水と空気とを一緒に通すことにより微細気泡を生成させるようにしたもの等、様々な構造のものを採用することができ、要は混練水に安定してマイクロバブル等の微細気泡を生成できるものであればよい。   The microbubble generator 15 does not necessarily have to have the above-described structure. For example, after a large amount of air is dissolved under high pressure, the microbubbles are re-bubbled by reducing pressure to generate fine bubbles. It is possible to adopt various structures such as what is called a pressure reduction method or a method in which fine bubbles are generated by passing water and air through a venturi tube together. What is necessary is just to be able to produce | generate fine bubbles, such as a microbubble, stably in water.

そして、水道水等の純粋な混練水にマイクロバブル等の微細気泡を生成させた場合、マイクロバブル等の微細気泡は僅か数分程度で消失してしまうが、本実施例のように、水道水等に所定量のAE剤やAE減水剤等の混和剤を予め混入させた混練水にマイクロバブル等の微細気泡を生成させた場合には、マイクロバブル等の微細気泡は混和剤中の界面活性剤の作用によって短時間では消失せず、ミキサ1投入後も比較的長時間に亘って残存させ続けることを可能としている。   When fine bubbles such as microbubbles are generated in pure kneaded water such as tap water, microbubbles such as microbubbles disappear in only a few minutes. When microbubbles such as microbubbles are generated in kneaded water in which a predetermined amount of an admixture such as an AE agent or AE water reducing agent is mixed in advance, the microbubbles such as microbubbles are the surface activity in the admixture. It does not disappear in a short time due to the action of the agent, and can remain for a relatively long time after the mixer 1 is charged.

16は水投入配管13に接続したエアポンプであって、マイクロバブル生成装置15にて生成した微細気泡の影響により、水投入配管13内に気泡状の混練水が付着残留した場合には、前記エアポンプ16より水投入配管13内に適宜圧縮空気を送り込み、ミキサ1内へ噴き出させるようにしている。   Reference numeral 16 denotes an air pump connected to the water supply pipe 13. When air bubbles are mixed and remain in the water supply pipe 13 due to the influence of fine bubbles generated by the microbubble generator 15, the air pump 16, compressed air is appropriately fed into the water input pipe 13 to be ejected into the mixer 1.

そして、上記構成のコンクリート製造装置にてコンクリートを製造する場合には、先ず、粗骨材計量槽7にて粗骨材を、細骨材計量槽8にて細骨材を、セメント計量槽9にてセメントをそれぞれ計量する一方、混和剤計量槽11にて混和剤を計量し、この混和剤を混和剤投入配管12を介して下位の水計量槽10に投入し、水計量槽10にて計量される混練水に混入させる。そして、計量を終えたこれら各種コンクリート材料をそれぞれ所定のタイミングにて払い出して下位のミキサ1に投入していくが、水計量槽10より水投入配管13を介して払い出される混練水は、その途中に介在させたマイクロバブル生成装置15を通過することによって、混練水内に適宜量のマイクロバブル等の微細気泡を生成させながらミキサ1に投入される。   And when manufacturing concrete with the concrete manufacturing apparatus of the said structure, first, a coarse aggregate is measured in the coarse aggregate measuring tank 7, a fine aggregate is measured in the fine aggregate measuring tank 8, and the cement measuring tank 9 is used. Each of the cements is weighed, while the admixture is weighed in the admixture metering tank 11, and this admixture is introduced into the lower water metering tank 10 through the admixture inlet pipe 12. Mix in the kneaded water to be weighed. Then, these various concrete materials that have been weighed out are dispensed at a predetermined timing and introduced into the lower mixer 1, but the kneaded water dispensed from the water metering tank 10 through the water introduction pipe 13 is in the middle. By passing through the microbubble generating device 15 interposed in the kneaded water, an appropriate amount of microbubbles such as microbubbles are generated in the kneaded water, and the microbubbles are introduced into the mixer 1.

このとき、混練水に生成させたマイクロバブル等の微細気泡は、予め混練水に混入させたAE剤やAE減水剤等の混和剤の効果によって短時間では消失することはなく、ミキサ1投入後も多くのマイクロバブル等の微細気泡が比較的長時間残存し続ける。こうして、マイクロバブル等の微細気泡を多く含んだ混練水を、一緒に投入した粗骨材や細骨材、セメント等、残りのコンクリート材料と所定時間混練処理を行い、所望のコンクリートを製造してミキサ1より排出する。   At this time, the fine bubbles such as microbubbles generated in the kneaded water do not disappear in a short time due to the effect of the admixture such as the AE agent and the AE water reducing agent previously mixed in the kneaded water. Many microbubbles such as microbubbles remain for a relatively long time. In this way, kneading water containing a lot of fine bubbles such as microbubbles is kneaded with the remaining concrete materials such as coarse aggregate, fine aggregate, cement and the like for a predetermined time to produce the desired concrete. Discharge from mixer 1.

次に、上記構成のコンクリート製造装置にて製造されるコンクリートの性状について、下記の通り実証試験(コンクリート試験)を行った。   Next, a verification test (concrete test) was performed as follows on the properties of the concrete manufactured by the concrete manufacturing apparatus having the above configuration.

先ず、使用するコンクリート材料を表1に、配合を表2にそれぞれ示す。   First, the concrete materials to be used are shown in Table 1, and the composition is shown in Table 2.

Figure 2009137026
Figure 2009137026

Figure 2009137026
Figure 2009137026

そして、表1の各種コンクリート材料を表2の配合表に従い、図2に示すような、混練容量60リットルの強制二軸式ミキサに投入してミキサを始動させ、30秒後に混練水を投入し、その後120秒間混練してコンクリートを製造した。混練終了後、ミキサよりコンクリートを排出し、直ちにスランプと空気量とを測定して確認する一方、供試体(100mm径×200mmの標準円柱)を作製した。   Then, according to the blending table of Table 2, the various concrete materials shown in Table 1 are put into a forced biaxial mixer having a kneading capacity of 60 liters as shown in FIG. 2 and the mixer is started. Thereafter, concrete was produced by kneading for 120 seconds. After completion of the kneading, the concrete was discharged from the mixer, and immediately after measuring and confirming the slump and the amount of air, a specimen (100 mm diameter × 200 mm standard cylinder) was produced.

このとき、水道水をそのまま混練水として使用したものを(N)、水道水にマイクロバブルを生成させてから(混練時点にはマイクロバブルはほぼ消失)混練水として使用したものを(MB)、予め混和剤を混入させた水道水にマイクロバブルを生成させてから(混練時点にもマイクロバブルは十分に残存)混練水として使用したものを(Ad−MB)とした。   At this time, what used tap water as it is as kneaded water (N), after generating microbubbles in tap water (microbubbles almost disappeared at the time of kneading), used as kneaded water (MB), Microbubbles were generated in tap water mixed with an admixture in advance (microbubbles remained sufficiently even at the time of kneading) and used as kneaded water (Ad-MB).

なお、水道水にマイクロバブルを生成させるにあたり、微細気泡生成手段であるマイクロバブル生成装置(株式会社アスプ製、型式AS−K2)を使用した。このマイクロバブル生成装置は、前記説明した通り、ポンプと気泡発生部を主体に構成され、ポンプの駆動に伴って気泡発生部内に空気を圧送すると、気泡発生部内に形成された千鳥構造の内壁によって空気が細かく剪断されていき、やがて50μm以下のマイクロバブル等の微細気泡が生成される構造となっている。   In addition, in generating microbubbles in tap water, a microbubble generating device (manufactured by Asp Co., Ltd., model AS-K2) which is a fine bubble generating means was used. As described above, this microbubble generating device is mainly composed of a pump and a bubble generating unit. When air is pumped into the bubble generating unit as the pump is driven, the microbubble generating device is formed by an inner wall of a staggered structure formed in the bubble generating unit. The air is finely sheared, and eventually, fine bubbles such as microbubbles of 50 μm or less are generated.

そして、前記各供試体の圧縮強度試験(JIS A 1108)を材齢91日まで行った。その結果を図3に示すが、混練水中にマイクロバブルが存在しない(N)、若しくはほとんど存在しない(MB)では、材齢7日時点での圧縮強度が共に24N/mm程度であるのに対し、混練水中にマイクロバブルが多く存在する(Ad−MB)では26N/mm程度であり、マイクロバブルの存在によって約6%程度の強度増進の効果が確認された。また、材齢28日時点の圧縮強度では、(N)、(MB)が共に31N/mm程度であるのに対し、(Ad−MB)では34N/mm程度であり、約9%程度の強度増進の効果が確認され、また材齢91日時点の圧縮強度では、(N)、(MB)が共に36N/mm程度であるのに対し、(Ad−MB)では39N/mm程度であり、約7%程度の強度増進の効果が確認された。 And the compressive strength test (JIS A 1108) of each said test body was done to the material age 91 days. The results are shown in FIG. 3, and when the microbubbles are not present in the kneaded water (N) or almost absent (MB), the compressive strength at the age of 7 days is both about 24 N / mm 2. On the other hand, when there are many microbubbles in the kneaded water (Ad-MB), it is about 26 N / mm 2 , and the effect of increasing strength by about 6% was confirmed by the presence of microbubbles. Further, in the compressive strength at the age of 28 days, (N) and (MB) are both about 31 N / mm 2 , while (Ad-MB) is about 34 N / mm 2 and about 9%. The compressive strength at the age of 91 days is (N) and (MB) both about 36 N / mm 2 , while (Ad-MB) is 39 N / mm 2. The strength enhancement effect of about 7% was confirmed.

また、各供試体の乾燥による質量減少率も圧縮強度と併せて計測したのでその結果を図4に示すが、混練水中にマイクロバブルが存在しない(N)、若しくはほとんど存在しない(MB)はほぼ同一の値であるのに対し、混練水中にマイクロバブルが多く存在する(Ad−MB)では、(N)、(MB)よりも終始低い値であった。   In addition, since the mass reduction rate due to drying of each specimen was also measured together with the compressive strength, the result is shown in FIG. 4, and almost no microbubbles are present in the kneaded water (N) or almost absent (MB). In contrast to the same value, in the case where many microbubbles exist in the kneaded water (Ad-MB), the value was always lower than (N) and (MB).

上記試験結果より、コンクリートの製造過程において、予めAE剤やAE減水剤等の混和剤を混入させた混練水を、微細気泡生成手段である、例えばマイクロバブル生成装置を通過させて微細気泡を生成させることにより、この混練水中に存在する微細気泡が何らかの影響をもたらして、製造したコンクリートの圧縮強度を大きく増進させることが確認された。   From the above test results, in the concrete production process, kneaded water mixed with admixtures such as AE agent and AE water reducing agent in advance is passed through a microbubble generator, for example, a microbubble generator to generate microbubbles. By doing so, it was confirmed that the fine bubbles present in the kneaded water had some influence and greatly increased the compressive strength of the produced concrete.

このように、本発明の微細気泡を利用したコンクリートの製造装置によれば、混和剤計量槽にて計量した混和剤を水計量槽の混練水に投入して混入させ、この混和剤を予め混入させた混練水を、水投入配管に介在させたマイクロバブル生成装置等の微細気泡生成手段を通過させることで、混和剤中の界面活性剤の作用によって混練水内に生成されるマイクロバブル等の微細気泡を比較的長時間に亘って残存可能とし、この微細気泡が多く含まれる混練水を、ミキサにて粗骨材、細骨材、セメント等、残りのコンクリート材料と混練処理してコンクリートを製造することにより、コンクリートの圧縮強度を大きく増進させ、顕著な優位性をもたらすことができて好適であり、マイクロバブル等の微細気泡をコンクリートの製造に極めて現実的かつ実用的に有効利用することが可能となる。   Thus, according to the concrete manufacturing apparatus using fine bubbles of the present invention, the admixture weighed in the admixture metering tank is introduced into the kneaded water of the water metering tank and mixed, and this admixture is mixed in advance. The micro-bubbles generated in the kneaded water by the action of the surfactant in the admixture by passing the kneaded water passed through the fine bubble generating means such as a micro-bubble generating device interposed in the water input pipe The fine bubbles can remain for a relatively long time, and the kneaded water containing a lot of fine bubbles is kneaded with the remaining concrete materials such as coarse aggregate, fine aggregate, cement, etc. in the mixer to produce concrete. It is suitable for manufacturing because it can greatly increase the compressive strength of concrete and can bring a significant advantage. It is possible to practically effective use.

なお、本実施例においては、微細気泡生成手段としてマイクロバブル生成装置を採用し、このマイクロバブル生成装置に混練水を通過させることにより、マイクロバブルを生成させるようにしているが、ごく最近では、直径がマイクロバブルよりも遙かに小さく、より顕著な有用性を発揮すると考えられている、マイクロナノバブルやナノバブルと呼ばれる微細気泡の生成が可能になりつつあるとの報道がなされており、微細気泡生成手段としてこれらマイクロナノバブルやナノバブルの生成装置を採用することも十分に可能である。   In this example, a microbubble generating device is employed as the fine bubble generating means, and microbubbles are generated by passing the kneaded water through the microbubble generating device. It has been reported that the generation of microbubbles called micro-nanobubbles and nanobubbles, which are considered to be much smaller in diameter than microbubbles and exhibit more remarkable utility, is becoming possible. It is also possible to employ these micro-nano bubbles and nano-bubble generation devices as generation means.

本発明の微細気泡を利用したコンクリートの製造装置の一実施例を示す要部概略説明図である。It is principal part schematic explanatory drawing which shows one Example of the concrete manufacturing apparatus using the fine bubble of this invention. 図1のミキサの平面図(a)と、側断面図(b)である。It is the top view (a) and side sectional view (b) of the mixer of FIG. 本装置にて製造されるコンクリートで作成した供試体の圧縮強度試験結果を比較したグラフである。It is the graph which compared the compressive strength test result of the test body created with the concrete manufactured with this apparatus. 本装置にて製造されるコンクリートで作成した供試体の乾燥による質量減少率を示すグラフである。It is a graph which shows the mass decreasing rate by drying of the test body created with the concrete manufactured with this apparatus.

符号の説明Explanation of symbols

1…ミキサ 7…粗骨材計量槽
8…細骨材計量槽 9…セメント計量槽
10…水計量槽 11…混和剤計量槽
12…混和剤投入配管 13…水投入配管
14…ラインポンプ
15…マイクロバブル生成装置(微細気泡生成手段)
DESCRIPTION OF SYMBOLS 1 ... Mixer 7 ... Coarse aggregate measuring tank 8 ... Fine aggregate measuring tank 9 ... Cement measuring tank 10 ... Water measuring tank 11 ... Admixture measuring tank 12 ... Admixture input pipe 13 ... Water input pipe 14 ... Line pump 15 ... Microbubble generator (fine bubble generator)

Claims (2)

粗骨材、細骨材、セメント、混練水、混和剤等の各種コンクリート材料を計量槽にて計量し、計量したこれら各種コンクリート材料をミキサにて混練処理してコンクリートを製造するコンクリート製造装置であって、混和剤計量槽にて計量した混和剤を水計量槽に投入する混和剤投入配管を備えると共に、水計量槽にて計量した混練水をミキサに投入する水投入配管を備え、該水投入配管の途中には微細気泡生成手段を介在させ、該微細気泡生成手段に混和剤を混入した混練水を通過させることにより混練水に微細気泡を生成させるように構成したことを特徴とする微細気泡を利用したコンクリートの製造装置。   A concrete production equipment that measures concrete materials such as coarse aggregate, fine aggregate, cement, kneaded water, admixture, etc. in a measuring tank and kneads these measured concrete materials in a mixer to produce concrete. An admixture metering pipe for feeding the admixture weighed in the admixture metering tank into the water metering tank, and a water feed pipe for feeding the kneaded water weighed in the water metering tank into the mixer. A micro-bubble generating means is interposed in the middle of the input pipe, and the micro-bubbles are generated in the kneaded water by passing the kneaded water mixed with the admixture into the micro-bubble generating means. Concrete production equipment using bubbles. 前記微細気泡生成手段はマイクロバブル生成装置であることを特徴とする請求項1記載の微細気泡を利用したコンクリートの製造装置。   2. The concrete production apparatus using micro bubbles according to claim 1, wherein the micro-bubble generating means is a micro-bubble generating device.
JP2007312433A 2007-12-03 2007-12-03 Concrete production equipment using fine bubbles Active JP5094350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007312433A JP5094350B2 (en) 2007-12-03 2007-12-03 Concrete production equipment using fine bubbles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007312433A JP5094350B2 (en) 2007-12-03 2007-12-03 Concrete production equipment using fine bubbles

Publications (2)

Publication Number Publication Date
JP2009137026A true JP2009137026A (en) 2009-06-25
JP5094350B2 JP5094350B2 (en) 2012-12-12

Family

ID=40868190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007312433A Active JP5094350B2 (en) 2007-12-03 2007-12-03 Concrete production equipment using fine bubbles

Country Status (1)

Country Link
JP (1) JP5094350B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014185436A (en) * 2013-03-22 2014-10-02 Toda Constr Co Ltd Method for constructing coated floor material, and coated floor
KR20180029336A (en) * 2016-09-12 2018-03-21 두산건설 주식회사 lightweight aerated concrete supply
WO2018074580A1 (en) * 2016-10-21 2018-04-26 株式会社テックコーポレーション Surface treatment method for sand aggregate and method for producing ready-mixed concrete
JP2018076200A (en) * 2016-11-09 2018-05-17 太平洋セメント株式会社 Cement composition
JP2018076201A (en) * 2016-11-09 2018-05-17 太平洋セメント株式会社 Cement composition
JP2018158867A (en) * 2017-03-23 2018-10-11 太平洋セメント株式会社 Cement composition

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04260674A (en) * 1991-02-08 1992-09-16 Kanegafuchi Chem Ind Co Ltd Production of lightweight cured product
JPH04367553A (en) * 1991-06-17 1992-12-18 Kao Corp Production of concrete improved in freeze-thaw resistance
JPH0640759A (en) * 1992-07-23 1994-02-15 Daido Concrete Kogyo Kk Production of high-strength light-weight concrete molded body and concrete molded body
JPH06122568A (en) * 1992-10-14 1994-05-06 Sekisui Chem Co Ltd Inorganic foam and its production
JP2006076070A (en) * 2004-09-08 2006-03-23 Toshiyuki Nishifuji Method and apparatus for manufacturing ready-mixed concrete
JP2007191358A (en) * 2006-01-20 2007-08-02 Univ Of Tsukuba Micorobubble incorporated material, microbubble incorporated cement based material, and method and apparatus for producing the microbubble incorporated cement based material
JP2007254218A (en) * 2006-03-24 2007-10-04 Milcon:Kk Concrete formed body production method and concrete formed body
JP2007261119A (en) * 2006-03-29 2007-10-11 Milcon:Kk Manufacturing method of concrete molding, and concrete molding

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04260674A (en) * 1991-02-08 1992-09-16 Kanegafuchi Chem Ind Co Ltd Production of lightweight cured product
JPH04367553A (en) * 1991-06-17 1992-12-18 Kao Corp Production of concrete improved in freeze-thaw resistance
JPH0640759A (en) * 1992-07-23 1994-02-15 Daido Concrete Kogyo Kk Production of high-strength light-weight concrete molded body and concrete molded body
JPH06122568A (en) * 1992-10-14 1994-05-06 Sekisui Chem Co Ltd Inorganic foam and its production
JP2006076070A (en) * 2004-09-08 2006-03-23 Toshiyuki Nishifuji Method and apparatus for manufacturing ready-mixed concrete
JP2007191358A (en) * 2006-01-20 2007-08-02 Univ Of Tsukuba Micorobubble incorporated material, microbubble incorporated cement based material, and method and apparatus for producing the microbubble incorporated cement based material
JP2007254218A (en) * 2006-03-24 2007-10-04 Milcon:Kk Concrete formed body production method and concrete formed body
JP2007261119A (en) * 2006-03-29 2007-10-11 Milcon:Kk Manufacturing method of concrete molding, and concrete molding

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014185436A (en) * 2013-03-22 2014-10-02 Toda Constr Co Ltd Method for constructing coated floor material, and coated floor
KR20180029336A (en) * 2016-09-12 2018-03-21 두산건설 주식회사 lightweight aerated concrete supply
KR101897965B1 (en) * 2016-09-12 2018-09-12 두산건설 주식회사 lightweight aerated concrete supply
WO2018074580A1 (en) * 2016-10-21 2018-04-26 株式会社テックコーポレーション Surface treatment method for sand aggregate and method for producing ready-mixed concrete
JP6368058B1 (en) * 2016-10-21 2018-08-01 株式会社テックコーポレーション Sand material surface treatment method and ready-mixed concrete production method
US11345635B2 (en) 2016-10-21 2022-05-31 Tech Corporation Co., Ltd. Surface treatment method for sand aggregate and method for producing ready-mixed concrete
JP2018076200A (en) * 2016-11-09 2018-05-17 太平洋セメント株式会社 Cement composition
JP2018076201A (en) * 2016-11-09 2018-05-17 太平洋セメント株式会社 Cement composition
JP7092459B2 (en) 2016-11-09 2022-06-28 太平洋セメント株式会社 Cement composition
JP2018158867A (en) * 2017-03-23 2018-10-11 太平洋セメント株式会社 Cement composition

Also Published As

Publication number Publication date
JP5094350B2 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
JP5094350B2 (en) Concrete production equipment using fine bubbles
CN104874315B (en) A kind of microbubble generator for strengthening hydrogenation technique
US2864714A (en) Method of producing aerated cementitious material
CN104030634A (en) High-strength and high-toughness reactive powder concrete of carbon doped nano-tube and preparation method of high-strength and high-toughness reactive powder concrete
CN109592947B (en) Ultrahigh-performance concrete for reinforcing underwater concrete structure and preparation method thereof
DE102019120939B4 (en) A method for providing a cement suspension by a cement premixer and a method for mixing concrete or mortar
US20220162129A1 (en) Systems and methods of sequestering carbon dioxide in concrete
CN105345927A (en) Dry concrete blending process based on ultrasonic waves
CN106673568A (en) Silica sol-modified corrosion-resistant reinforced concrete drain pipe and preparation method thereof
Yao et al. A double-blade mixer for concrete with improved mixing quality
JP2009137025A (en) Concrete producing method using fine closed cell
CN106630794A (en) Hydrophobic group-containing Anti-corrosion reinforced concrete water discharge pipe and preparation method thereof
CN206306256U (en) A kind of shock-absorbing type concrete mixed stirring device
CN207344839U (en) A kind of municipal works concrete mixer being moved easily
JP5007897B2 (en) Method for producing kneaded water for hydraulic cement
CN101531488A (en) Concrete with high toughness
CN210934616U (en) Two ingredient water paint mixing and batching output device
JP6804080B2 (en) Reinforcement method
EP2821380A1 (en) Method of production of a composite cellular concrete
CN101514091B (en) Bubble lightweight concrete bicomponent mortar
JP2006241777A (en) Chemical feeding method
JP6933332B2 (en) Ground improvement method, ultra fine bubble water production plant
CN1981908A (en) Secondary-fluid mixing method and mixer for coagulating procedure
RU2410237C1 (en) Method for production of water-cement mix and plant for its realisation
CN113235379A (en) Concrete road surface construction patching device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120424

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120810

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120910

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120918

R150 Certificate of patent or registration of utility model

Ref document number: 5094350

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250