JP2009136888A - Semisolidified metal product molding die structure, method of molding semisolidified metal product, and semisolidified metal product - Google Patents

Semisolidified metal product molding die structure, method of molding semisolidified metal product, and semisolidified metal product Download PDF

Info

Publication number
JP2009136888A
JP2009136888A JP2007314115A JP2007314115A JP2009136888A JP 2009136888 A JP2009136888 A JP 2009136888A JP 2007314115 A JP2007314115 A JP 2007314115A JP 2007314115 A JP2007314115 A JP 2007314115A JP 2009136888 A JP2009136888 A JP 2009136888A
Authority
JP
Japan
Prior art keywords
mold
semi
solid metal
product
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007314115A
Other languages
Japanese (ja)
Other versions
JP4378734B2 (en
Inventor
Tetsuya Nishioka
哲也 西岡
Tsutomu Sasaki
勉 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Goshi Giken Co Ltd
Original Assignee
Goshi Giken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Goshi Giken Co Ltd filed Critical Goshi Giken Co Ltd
Priority to JP2007314115A priority Critical patent/JP4378734B2/en
Priority to PCT/JP2008/000482 priority patent/WO2009072222A1/en
Publication of JP2009136888A publication Critical patent/JP2009136888A/en
Application granted granted Critical
Publication of JP4378734B2 publication Critical patent/JP4378734B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/007Semi-solid pressure die casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/02Pressure casting making use of mechanical pressure devices, e.g. cast-forging

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Press Drives And Press Lines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semisolidified metal product molding die structure that attains assured molding of a product with a complex configuration, such as a thin product with flange part, from a high-quality semisolidified metal at low cost, and also to provide a relevant molding method and a semisolidified metal product. <P>SOLUTION: The semisolidified metal product molding die structure includes a fixed lower die designed to mount the semisolidified metal on its upper surface side and a movable upper die capable of descending for pressurization toward the fixed lower die. Further, the structure includes a side die disposed on the side portion of the fixed lower die and adapted so as to form a product cavity together with the fixed lower die and the movable upper die. The side die is provided on the fixed lower die in a vertically slidable manner and is capable of ascending for pressurization with a force smaller than the descending pressurization force of the movable upper die. The compression of the upper die is started at a position where the side die is ascended, and the compression is maintained while defining the peripheral side portion of the product and then final molding is performed at the lowest position. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、半凝固金属製品の成形金型構造および半凝固金属製品の成形方法ならびにそれらにより成形される半凝固金属製品に関し、特に金型に半凝固金属を載置して、直接にプレス成形することで高品質の金属成形品を得ることができる凝固金属製品の成形金型構造および半凝固金属製品の成形方法並びにそれらにより成形される半凝固金属製品に関する。   The present invention relates to a molding die structure of a semi-solid metal product, a method of molding the semi-solid metal product, and a semi-solid metal product formed by the same, and more particularly, a semi-solid metal is placed on a die and directly press-molded. The present invention relates to a molding die structure of a solidified metal product, a method of molding a semisolid metal product, and a semisolid metal product molded by them.

近時、アルミニウム合金材料による金属ビレットの加熱あるいは溶湯の冷却による、粒状の固相と液相を共存させた例えば冷却曲線で540℃〜650℃程度の半凝固(半溶融)状態での加工が、溶融状態からの加工に比して保形性に優れ、同時に加工性にも優れる点で種々の製品に採用されつつある。これに対し、例えばアルミニウム合金材料による自動車用ホイールの半凝固(半溶融)成形については、成形する金型に液体から温度を低下させて製造した半凝固金属あるいは固体状態の材料を加熱させた半溶融金属を一旦スリーブに移し、しかる後、製品キャビティを形成する金型内に半溶融金属を充填し、加圧成形するダイカストマシンを用いた成形方法が知られている。しかしながら、この方法では、スリーブに挿入した段階で固液共存状態の金属はスリーブに接触して急速に熱を奪われるために凝固層が生成しやすい。また、流動性を維持するために急速に加圧充填するため、空気の巻き込みが発生し、このために、凝固層および空気層が混入しやすく機械的性質のばらつきの原因になりやすい。また、スリーブ内に残されたビスケット部分と製品までのランナを加えた製品以外の部分の全鋳込み重量に対する割合が高い。その結果、製品価格が高くなる、という問題がある。これに対して特許文献1の方法が提案されている。 Recently, by processing a metal billet with an aluminum alloy material or cooling a molten metal, processing in a semi-solid state (semi-molten) of about 540 ° C. to 650 ° C., for example, in a cooling curve in which a granular solid phase and a liquid phase coexist It is being adopted for various products in that it is excellent in shape retention as compared with processing from a molten state and at the same time is excellent in workability. On the other hand, for example, in the semi-solid (semi-molten) molding of an automobile wheel made of an aluminum alloy material, a semi-solid metal or a solid-state material produced by lowering the temperature from a liquid to a molding die is heated. There is known a molding method using a die casting machine in which a molten metal is once transferred to a sleeve, and then a semi-molten metal is filled in a mold for forming a product cavity, followed by pressure molding. However, in this method, the solid-liquid coexisting metal contacts the sleeve and is rapidly deprived of heat when inserted into the sleeve, so that a solidified layer is easily generated. In addition, rapid pressurization and filling to maintain fluidity causes air entrainment, which easily causes the solidified layer and the air layer to be mixed, and causes variations in mechanical properties. Moreover, the ratio with respect to the total casting weight of parts other than the product which added the runner to the product and the biscuit part left in the sleeve is high. As a result, there is a problem that the product price becomes high. On the other hand, the method of patent document 1 is proposed.

特開2003−126955号JP 2003-126955 A

特許文献1の方法では、図18〜図20に示すように、キャビティ部112に連通するランナ部114と圧縮部116を上下金型118、119に一体的に設けたもの(図18(1)、(2))、ランナ部や圧縮部を設けずに金型内に半凝固金属117を載置し直接成形するもの(図19(1)、(2))、上金型118に上下移動可能な第二金型132もしくはピストンを設置して、必要に応じて部分加圧をするもの(図20(1)、(2))が示されている。しかしながら、図18の方法では、まず圧縮部に半凝固金属が接触し、さらに、ビスケット部134、ランナ部114を経由してキャビティ112内に金属が流入するようになっているので金属は急速に熱を奪われることによる凝固層の混入、空気層の混入による機械的性質のバラツキ、及び全鋳込み重量に対する非製品部分の割合が高く、製品価格を高くさせる、等の問題は依然として解消されない。 In the method of Patent Document 1, as shown in FIGS. 18 to 20, a runner portion 114 and a compression portion 116 communicating with the cavity portion 112 are integrally provided in upper and lower molds 118 and 119 (FIG. 18 (1)). , (2)), placing the semi-solid metal 117 in the mold directly without forming the runner part or the compression part (FIGS. 19 (1), (2)), moving up and down to the upper mold 118 A possible second mold 132 or piston is installed, and partial pressurization is performed as required (FIGS. 20 (1) and (2)). However, in the method of FIG. 18, the semi-solid metal first comes into contact with the compression portion, and further, the metal flows into the cavity 112 via the biscuit portion 134 and the runner portion 114, so the metal rapidly Problems such as mixing of the solidified layer due to heat deprivation, variation in mechanical properties due to mixing of the air layer, and a high ratio of the non-product portion to the total casting weight, and increasing the product price still remain.

また、図19の方法によれば、上型の下降に伴い半凝固材は金型に熱を奪われて流動性が急激に低下し所定の製品形状を得る前に凝固する。また、キャビティ内に半凝固金属のビレットを置いて成形するから、安定させるため下型上面と密着性の良い部分に載置する結果、半凝固金属の底面は凝固層を早期に形成しやすい、等の問題がある。 Further, according to the method of FIG. 19, as the upper die is lowered, the semi-solid material is deprived of heat by the die, and the fluidity is drastically lowered to solidify before obtaining a predetermined product shape. In addition, because the semi-solid metal billet is placed in the cavity and molded, the bottom surface of the semi-solid metal is easy to form a solidified layer at an early stage as a result of being placed on the lower mold upper surface and a good adhesion to stabilize. There are problems such as.

一方、図20の方法では、最終成形品の厚さが薄肉でしかも中央部で深く絞られた形状であり、さらに下端部に側方に向けた突設部Tを有するような複雑な製品形状であるが、この図20の方法では加圧部から該突設部T部分までの半凝固金属の圧縮時の流動長が長くなり、抵抗も大きくなって十分な充填量を確保しにくい結果、微細な内部欠陥などによる成形不良を生じさせるおそれがあり、現実にはこのような半凝固金属の成形による複雑な形状の製品製造は実用化するのが困難であった。なお、図18、図19の場合においても、製品の成形時の上下方向の高低が大きい部分には上記の図20におけると同様の問題が生じうるものであった。 On the other hand, in the method of FIG. 20, the final molded product is thin and has a shape that is deeply squeezed at the center, and further has a complicated product shape having a projecting portion T directed laterally at the lower end. However, in the method of FIG. 20, the flow length at the time of compression of the semi-solid metal from the pressurizing part to the projecting part T is increased, the resistance is increased, and it is difficult to ensure a sufficient filling amount. There is a risk of forming defects due to minute internal defects and the like, and in reality, it is difficult to put a product having a complicated shape by forming such a semi-solid metal into practical use. In the case of FIGS. 18 and 19 as well, the same problem as in FIG. 20 described above may occur in a portion where the height in the vertical direction during product molding is large.

本発明は、上記従来の課題に鑑みてなされたものであり、その目的は、例えば薄肉でフランジ部を有するような複雑な形状の製品を半凝固金属の成形により確実に成形することができ、高品質の成形品を得るとともに材料、製作コストの低減を図ることのできる半凝固金属製品の成形金型構造および半凝固金属製品の成形方法ならびにそれらにより成形される半凝固金属製品を提供することにある。 The present invention has been made in view of the above-described conventional problems, and its purpose is to be able to reliably form a product having a complicated shape such as a thin wall having a flange portion by molding a semi-solid metal, To provide a mold structure of a semi-solid metal product, a method for forming a semi-solid metal product, and a semi-solid metal product formed by the same, capable of obtaining a high-quality molded product and reducing material and manufacturing cost. It is in.

上記の目的を達成するために、本発明は、上面側に半凝固金属を載置させる固定下型12と、固定下型に向けて押圧下降動作する可動上型14と、固定下型12の側部に配置されて固定下型12と可動上型14とともに製品キャビティ22,60を形成する側部型16であって、該固定下型12に対して上下摺動自在に設けられ可動上型14の下降押圧力P1よりも小さな力P2で押圧上昇作動する側部型16と、を含む半凝固金属製品の成形金型構造10−1,10−2から構成される。成型金型装置自体は、耐熱、耐摩耗性を有する金属から構成される。本発明による成型金型構造で成型する製品は、上下に外周形状が変化しない単なる柱状の物体の成型にはむしろ不向きであり、絞りの深い筒状製品、形状が複雑で特に薄肉で絞りが深い製品、フランジ部分がある製品、あるいは左右に背面を対向させたコ字状の凹部を有する製品などの成型について有効である。例えば、自動車用のホイール、ハブ、ミッションケースなどがあげられるが、そのほか任意の金属製品の成形についても適用可能である。可動上型は半凝固あるいは半溶融状態の金属の圧縮を行うものであり、能力的には通常のプレスマシンを用いることができる。側部型16は、最終的には固定下型上の半凝固金属の周側部を規定するものであり、したがって、少なくとも固定下型の側部から上方について上下動するように駆動可能に設けられる。側部型16は、単に固定下型の周側部から上方にかけて上下動するタイプのものとして構成できる。また、側部型16は、製品の周側部を複数に分割して分割割形とし、それぞれの割型がスライド移動して圧縮開始位置に向けて進退駆動可能に設けたスライド割型50タイプのものとしても構成できる。可動上型の第1駆動装置、側部型の上昇押圧駆動装置としての第2駆動装置、スライド割型のスライド進退駆動装置(シリンダ装置)の具体的な駆動力発生メカニズムは任意の構造のものを用いることができる。側部型の上昇押圧駆動装置としての第2駆動装置は、可動上型14の下降押圧力P1よりも小さな上昇押圧力により上昇駆動させるもので、それによって、下型上の半凝固金属に圧縮力を加えながら可動上型14と側部型を同期して下降移動させるものであり、したがって、ばね機構やその他制御により所定の上昇押圧力を維持しながら下降押圧に降伏して下降する圧力維持型の上昇押圧駆動装置が適用される。   In order to achieve the above object, the present invention includes a fixed lower mold 12 on which a semi-solid metal is placed on the upper surface side, a movable upper mold 14 that presses down toward the fixed lower mold, and a fixed lower mold 12. A side mold 16 which is disposed on the side and forms product cavities 22 and 60 together with a fixed lower mold 12 and a movable upper mold 14, and is provided so as to be slidable up and down with respect to the fixed lower mold 12. 14 and the side mold 16 that is pressed and raised by a force P2 smaller than the downward pressing force P1, and the molding mold structures 10-1 and 10-2 for semi-solid metal products. The molding die apparatus itself is made of a metal having heat resistance and wear resistance. The product molded with the molding die structure according to the present invention is rather unsuitable for molding a simple columnar object whose outer peripheral shape does not change up and down, and is a cylindrical product with a deep drawing, complicated in shape, particularly thin and deep in drawing. It is effective for molding a product, a product having a flange portion, or a product having a U-shaped concave portion facing the back on the left and right. For example, automobile wheels, hubs, mission cases, and the like can be mentioned, but any other metal product can be formed. The movable upper die performs compression of a semi-solid or semi-molten metal, and a normal press machine can be used in terms of ability. The side mold 16 ultimately defines a peripheral side portion of the semi-solid metal on the fixed lower mold, and therefore is provided so as to be movable up and down at least from the side of the fixed lower mold. It is done. The side mold 16 can be configured as a type that simply moves up and down from the peripheral side of the fixed lower mold. Further, the side mold 16 is divided into a plurality of split side sections by dividing the peripheral side portion of the product, and the split mold 50 type provided so that each split mold can slide and move forward and backward toward the compression start position. Can also be configured. The specific driving force generation mechanism of the movable upper type first driving device, the second driving device as the side type ascending pressure driving device, and the slide split type slide advance / retreat driving device (cylinder device) has an arbitrary structure. Can be used. The second driving device as the side-type rising press driving device is driven to be lifted by an upward pressing force smaller than the downward pressing force P1 of the movable upper die 14, thereby compressing the semi-solid metal on the lower die. While the force is applied, the movable upper die 14 and the side die are moved downward synchronously. Therefore, the pressure is lowered by falling to the downward pressure while maintaining a predetermined upward pressing force by a spring mechanism or other control. A mold raising and pressing drive is applied.

その際、側部型16の上昇押圧力P2に勝る可動上型14の下降押圧力P1と同等の力で押し下げられる側部型16の下降限位置L0より上方位置で、下降押圧する可動上型14と上昇押圧する側部型16と固定下型12とによる半凝固金属18の圧縮が行われるようにするとよい。   At that time, the movable upper die that presses down at a position above the lower limit position L0 of the side die 16 that is pushed down with a force equivalent to the downward pressing force P1 of the movable upper die 14 that exceeds the upward pressing force P2 of the side die 16. The semi-solid metal 18 may be compressed by the side mold 16 and the fixed lower mold 12 that are pressed upward.

また、固定下型12上に載置した半凝固金属18の圧縮開始時の側部型16の高さ位置が、環壁Awを含む製品Mの本体部Yから突設した部分の体積Vと製品キャビティ22,60を形成した状態での固定下型12と側部型16の内側部分との最短距離長さKでの隙間の面積Sとの相関を1つの要素として決まる高さ位置であって、下降限位置L0から側部型16を上昇させて半凝固金属18の流動路Pfを形成する位置であるようにするとよい。可動上型14による圧縮開始後、側部型16が押し下げ下降され始めるタイミングは、具体的には半凝固金属18が固定下型12と側部型16の内側部分との隙間から下方側に流入し始めると同時あるいはその後であるとよい。   Further, the height position of the side mold 16 at the start of compression of the semi-solid metal 18 placed on the fixed lower mold 12 is the volume V of the portion protruding from the main body Y of the product M including the ring wall Aw. The height position is determined by the correlation between the area S of the gap at the shortest distance length K between the fixed lower mold 12 and the inner part of the side mold 16 in the state in which the product cavities 22 and 60 are formed. Thus, the side mold 16 may be raised from the lower limit position L0 so that the flow path Pf of the semi-solid metal 18 is formed. When the side mold 16 starts to be pushed down after the compression by the movable upper mold 14 is started, specifically, the semi-solid metal 18 flows downward from the gap between the fixed lower mold 12 and the inner portion of the side mold 16. It may be at the same time as or after that.

また、側部型16は、可動上型14による半凝固金属18の圧縮開始位置に向けて進退自在に横方向に移動する複数のスライド割型50(50A、50B)を含むこととするとよい。   Further, the side mold 16 may include a plurality of slide split molds 50 (50A, 50B) that move laterally in a movable manner toward the compression start position of the semi-solid metal 18 by the movable upper mold 14.

また、本発明は、固定下型12と、固定下型上の半凝固金属18に向けて押圧下降動作する可動上型14と、製品Mの側部を規定し、かつ、上下動自在に設けられた側部型16と、を用意し、可動上型14の押圧下降時に固定下型12上に載置した半凝固金属18の流動路Pfとなる側部型16と固定下型12との間に十分な隙間Kを形成するように、側部型16を押圧上昇させた位置L1で可動上型14による半凝固金属18の圧縮を開始し、その後の側部型16の上昇押圧力P2に勝る可動上型の下降押圧P1により半凝固金属18を成形する半凝固金属製品の成形方法から構成される。   In addition, the present invention defines the fixed lower mold 12, the movable upper mold 14 that is pressed down toward the semi-solid metal 18 on the fixed lower mold, the side of the product M, and is provided so as to be movable up and down. Side mold 16 is prepared, and when the movable upper mold 14 is pressed down, the side mold 16 and the fixed lower mold 12 that serve as a flow path Pf of the semi-solid metal 18 placed on the fixed lower mold 12 are provided. The semi-solid metal 18 starts to be compressed by the movable upper die 14 at a position L1 where the side die 16 is pushed up so as to form a sufficient gap K therebetween, and then the raising pressure P2 of the side die 16 is increased. It is comprised from the shaping | molding method of the semi-solid metal product which shape | molds the semi-solid metal 18 by the downward | lower pressure P1 of the movable upper mold | type which surpasses.

また、本発明は、上記の成形方法を用いて成形された半凝固金属製品から構成される。   Moreover, this invention is comprised from the semi-solid metal product shape | molded using said shaping | molding method.

本発明の半凝固金属製品の成形金型構造によれば、上面側に半凝固金属を載置させる固定下型と、固定下型に向けて押圧下降動作する可動上型と、固定下型の側部に配置されて固定下型と可動上型とともに製品キャビティを形成する側部型であって、該固定下型に対して上下摺動自在に設けられ可動上型の下降押圧力よりも小さな力で押圧上昇作動する側部型と、を含む構成であるから、薄肉で絞りが深い略円筒形状製品、それらの半径方向に突起部を有する製品、さらに左右に背面を対向させたコ字状の凹部を有する製品、その他形状が複雑で成形に複雑な機構、制御装置を必要とする製品を半凝固金属成形により良好な成形性を確保して具体的に成形することができ、同時に比較的に簡単な構成、低コストで製造することが可能である。また、半凝固金属の圧縮成形により比較的小型のプレスマシン等での成形が可能で装置構成を簡素化でき、さらに鋳込みに必要な材料の適正量管理を確実に行え、材料コスト節約、成形後の仕上げ処理の簡易化を実現することが可能である。   According to the molding die structure of the semi-solid metal product of the present invention, a fixed lower die for placing the semi-solid metal on the upper surface side, a movable upper die that moves downwardly toward the fixed lower die, and a fixed lower die A side mold that is disposed on the side and forms a product cavity together with a fixed lower mold and a movable upper mold, and is slidable up and down with respect to the fixed lower mold and smaller than the downward pressing force of the movable upper mold This is a structure that includes a side mold that presses and lifts by force, so that it is a thin cylindrical product with a deep aperture, a product with protrusions in the radial direction, and a U-shape with the back facing left and right It is possible to concretely shape products with concave parts and other products that have complicated shapes and complicated mechanisms, and require a control device with semi-solid metal forming to ensure good formability. It is possible to manufacture with a simple configuration and low cost. In addition, compression molding of semi-solid metal enables molding with a relatively small press machine, which simplifies the equipment configuration, and ensures proper management of the amount of material required for casting, saving material costs and post-molding. It is possible to simplify the finishing process.

また、側部型の上昇押圧力に勝る可動上型の下降押圧力と同等の力で押し下げられる側部型の下降限位置より上方位置で、下降押圧する可動上型と上昇押圧する側部型と固定下型とによる半凝固金属の圧縮が行われる構成とすることにより、可動上型で圧縮成形しながら同時に側部型を下降させて、製品キャビティ形状にしだいに近づけていき、さらに製品キャビティを形成した状態で最終成形圧で成形完了させるから、半凝固金属の流動路確保と材料の充填量の偏位、あるいは成形圧の製品への偏りがなく良好な成形性を確保しうる。   In addition, the movable upper mold that is pressed down and the side mold that is pressed upward are positioned above the lower limit position of the side mold that is pushed down with a force equivalent to the downward pressing force of the movable upper mold that is superior to the upward pressing force of the side mold. And the fixed lower mold are used to compress semi-solid metal, while the movable upper mold is compression-molded, the side mold is lowered at the same time to make it closer to the product cavity shape. Since the molding is completed at the final molding pressure in a state where the is formed, good moldability can be secured without securing the flow path of the semi-solid metal and the deviation of the filling amount of the material or the molding pressure.

また、固定下型上に載置した半凝固金属の圧縮開始時の側部型の高さ位置が、環壁を含む製品の本体部から突設した部分の体積と製品キャビティを形成した状態での固定下型と側部型の内側部分との最短距離長さでの隙間の面積との相関を1つの要素として決まる高さ位置であって、下降限位置から側部型を上昇させて半凝固金属の流動路を形成する位置である構成とすることにより、圧縮成形開始時に半凝固金属の充分な開口を有する流動路を形成して製品の環壁部分や、脚部分、あるいはそれらから伸びるフランジ部分等の製品の隅々まで満遍なく均等に材料の充填、充填圧の付加を行って、高品質の成形品製造を実現しうる。なお、環壁を含む製品の本体部から突設した部分の体積は重量とすることもできる。   In addition, the height position of the side mold at the start of compression of the semi-solid metal placed on the fixed lower mold is such that the volume of the part protruding from the main body of the product including the annular wall and the product cavity are formed. This is a height position where the correlation between the area of the gap at the shortest distance length between the fixed lower mold and the inner part of the side mold is determined as one element, and the side mold is raised from the descending limit position to the half By forming the flow path of the solidified metal, a flow path having a sufficient opening of the semi-solid metal is formed at the start of compression molding to extend from the annular wall portion of the product, the leg portion, or from them. High-quality molded products can be manufactured by filling the material evenly to every corner of the product such as the flange portion and applying a filling pressure. In addition, the volume of the part which protruded from the main-body part of the product containing an annular wall can also be made into a weight.

また、側部型は、可動上型による半凝固金属の圧縮開始位置に向けて進退自在に横方向に移動する複数のスライド割型を含む構成であるから、上下方向の型の移動のみでは成形終了後の型抜きが困難な複雑な製品についても、横方向移動による型抜きを確実に行える。   In addition, the side mold has a structure including a plurality of slide split molds that move in the lateral direction so as to be movable back and forth toward the compression start position of the semi-solid metal by the movable upper mold. Even complex products that are difficult to die after completion can be reliably die-cut by lateral movement.

また、本発明の半凝固金属製品の成形方法によれば、固定下型と、固定下型上の半凝固金属に向けて押圧下降動作する可動上型と、製品の側部を規定し、かつ、上下動自在に設けられた側部型と、を用意し、可動上型の押圧下降時に固定下型上に載置した半凝固金属の流動路となる側部型と固定下型との間に十分な隙間を形成するように、側部型を押圧上昇させた位置で可動上型による半凝固金属の圧縮を開始し、その後の側部型の上昇押圧力に勝る可動上型の下降押圧により半凝固金属を成形する構成であるから、薄肉で絞りが深い略円筒形状製品、それらの半径方向に突起部を有する製品、さらに左右に背面を対向させたコ字状の凹部を有する製品、その他形状が複雑で成形に複雑な機構、制御装置を必要とする製品について比較的に簡単な構成、低コストで高品質の成形品を製造することが可能である。   Further, according to the method for forming a semi-solid metal product of the present invention, the fixed lower mold, the movable upper mold that presses and lowers toward the semi-solid metal on the fixed lower mold, the side portion of the product is defined, and A side mold provided so as to be movable up and down, and between the side mold and the fixed lower mold, which serve as a flow path for the semi-solid metal placed on the fixed lower mold when the movable upper mold is pressed down In order to form a sufficient gap, the compression of the semi-solid metal by the movable upper mold is started at the position where the side mold is pushed up, and then the movable upper mold is pressed down to overcome the upward pressing force of the side mold. Because it is a structure that forms a semi-solid metal by means of a thin cylindrical and deeply drawn cylindrical product, a product having protrusions in the radial direction thereof, and a product having U-shaped recesses facing the back on the left and right, Other products with complex shapes that require complicated mechanisms and control devices for molding are relatively easy. Do arrangement, it is possible to produce high-quality molded article at a low cost.

以下、添付図面を参照しつつ本発明を実施するための最良の形態について説明する。図1ないし図8は、本発明の第1の実施形態を示している。本実施形態の半凝固金属製品の成型金型構造は、例えば図3の二輪自動車用のハブを成形製品Mとする例を示す。図3のように製品Mは、表面側となる上部に平坦な凹凸を形成し外縁に薄肉つば部Rを有する本体部Yと、本体部Yの裏面側においてつば部Rの基部から直角方向に突設した環壁Awと、中心部から直角状に突設した筒部Nと、を含む。環壁Awは、本体部Yを底とするように深く絞った側壁を形成しており、いわゆる薄肉の深絞りタイプの製品形状である。   The best mode for carrying out the present invention will be described below with reference to the accompanying drawings. 1 to 8 show a first embodiment of the present invention. The mold structure of the semi-solid metal product of the present embodiment shows an example in which the hub for a two-wheeled vehicle shown in FIG. As shown in FIG. 3, the product M has a main body Y having a flat unevenness on the upper surface side and a thin collar R on the outer edge, and a perpendicular direction from the base of the collar R on the back side of the main body Y. A projecting annular wall Aw and a cylindrical part N projecting perpendicularly from the central part are included. The annular wall Aw forms a side wall that is deeply squeezed so that the main body portion Y is the bottom, and has a so-called thin-walled deep-drawn type product shape.

図1は、第1実施形態の半凝固金属製品の成型金型構造10−1の圧縮開始直前位置での縦断面図である。図1において、本実施形態の半凝固金属製品の成型金型構造10−1は、固定下型12と、可動上型14と、側部型16と、を含む。固定下型12上には半凝固金属18が載置され、この載置された半凝固金属18を圧縮するように可動上型14が上方側から押圧下降移動する。側部型16は圧縮成形する際の製品の周側部を規定するものであり、しかもこの側部型16は、上下動自在に設けられて所定の押圧力で上昇駆動される。側部型16の上昇押圧力は、可動上型14の下降押圧力よりもはるかに小さく設定されている。この側部型16を所定高さ位置に上昇させた状態で固定下型12上に載置した半凝固金属18を側部型16の上昇押圧力に勝る可動上型14の下降押圧力で圧縮し、そのまま可動上型14の押し下げ力で側部型16を押し下げて上型と下型間の成形空隙を圧縮方向に変化させながら上型で圧縮成形し、側部型16の最終下降限位置で充分な圧縮成形を行って、成形を完了させる。   FIG. 1 is a longitudinal sectional view of a semi-solid metal product molding die structure 10-1 according to the first embodiment at a position immediately before the start of compression. In FIG. 1, the mold structure 10-1 for a semi-solid metal product of the present embodiment includes a fixed lower mold 12, a movable upper mold 14, and a side mold 16. A semi-solid metal 18 is placed on the fixed lower die 12, and the movable upper die 14 is pressed and moved downward from above so as to compress the placed semi-solid metal 18. The side mold 16 defines a peripheral side portion of a product when compression molding is performed, and the side mold 16 is provided so as to be movable up and down and is driven up by a predetermined pressing force. The upward pressing force of the side mold 16 is set to be much smaller than the downward pressing force of the movable upper mold 14. The semi-solid metal 18 placed on the fixed lower die 12 in a state where the side die 16 is raised to a predetermined height position is compressed by the lowering pressing force of the movable upper die 14 which exceeds the rising pressing force of the side die 16. Then, the side mold 16 is pushed down by the pressing force of the movable upper mold 14 to perform compression molding with the upper mold while changing the molding gap between the upper mold and the lower mold in the compression direction. To complete compression molding to complete the molding.

詳しくは、本実施形態の成形金型構造10−1は、油圧プレス等の駆動装置20により駆動されて上下直線状に移動可能な可動上型14と、固定下型12と、上型と下型の型閉め状態で形成される製品キャビティ22(図5参照)の周側部を規定し第2の駆動装置24に駆動されて上下直線状に移動可能な側部型16と、を含む。第2の駆動装置24の上昇押圧力は可動上型14の下降押圧力より小さく、しかも、その下降押圧力を受けて上昇力を降伏させ、該側部型16を下降させる降伏開放型の駆動装置であり、例えば押しばねやジャッキ装置あるいはそれらの組合せなどの弾発付勢装置を用いることができる。これらの駆動装置20、24は、図示しない作業手順のシーケンス制御あるいは記憶装置によるプログラム制御等を行う制御装置26の制御に基づいてタイミングを合わせながら駆動される。なお、図4、図5については、駆動装置、制御装置の図示は省略して示している。   Specifically, the molding die structure 10-1 of the present embodiment includes a movable upper die 14, a fixed lower die 12, an upper die, and a lower die that are driven by a drive device 20 such as a hydraulic press and are movable in a straight line. And a side mold 16 that defines a peripheral side portion of a product cavity 22 (see FIG. 5) formed in a mold closed state and is driven by a second driving device 24 and is movable in a straight line. The raising pressing force of the second driving device 24 is smaller than the lowering pressing force of the movable upper die 14, and the yielding open type drive that lowers the side die 16 by receiving the lowering pressing force to yield the raising force. For example, a bullet urging device such as a push spring, a jack device, or a combination thereof can be used. These drive devices 20 and 24 are driven while matching the timing based on the control of the control device 26 that performs sequence control of a work procedure (not shown) or program control by a storage device. 4 and 5, the illustration of the drive device and the control device is omitted.

固定下型12上に載置させる半凝固金属18は、凝固開始温度と凝固終了温度の範囲の半凝固(半溶融)状態の特性の金属であり、それぞれの合金組成に対応する半凝固温度範囲を有している。半凝固金属は、温度の上昇(固相率の低下)に伴い結晶(固相成分)が球状化し、それが次第に分離する。アルミニウム合金では、固相率が30%から70%ではその内部組織は球状の固相粒が液相中に浮遊した状態となっており、適度の軟質性、流動性とともに、粒状の均一な組織を得ることができる。この性質から、半凝固金属による成形では、さらに、(イ)低温の半凝固状態で金型に鋳込むため凝固収縮量が減少し引け傾向が減少する。(ロ)冷却速度が速まり微細な組織が得られ内部欠陥を低減でき、機械的性質に優れた製品を製造できる。(ハ)半凝固状態で鋳こむため、粒状の均一な組織を得ることができる。本実施形態では、成形前の半凝固金属材料18は図1に示すように、側部型16の内向き凸部の先端を最大径とする例えば段付扁平円盤形状あるいは円筒状の半溶融金属が固定下型12上に載置され、これを上方から可動上型14が下方に向けて押圧圧縮する。   The semi-solid metal 18 to be placed on the fixed lower mold 12 is a metal having a characteristic of a semi-solid (semi-molten) state between a solidification start temperature and a solidification end temperature, and a semi-solid temperature range corresponding to each alloy composition. have. The semi-solid metal crystal spheroidizes with increasing temperature (decreasing the solid phase ratio) and gradually separates. In an aluminum alloy, when the solid phase ratio is 30% to 70%, the internal structure is a state in which spherical solid particles are suspended in the liquid phase. Can be obtained. Due to this property, in molding with a semi-solid metal, (a) since it is cast into a mold in a low-temperature semi-solid state, the amount of solidification shrinkage is reduced and the tendency to shrink is reduced. (B) The cooling rate is increased, a fine structure can be obtained, internal defects can be reduced, and a product excellent in mechanical properties can be manufactured. (C) Since casting is performed in a semi-solidified state, a uniform granular structure can be obtained. In the present embodiment, as shown in FIG. 1, the semi-solid metal material 18 before molding has, for example, a stepped flat disk shape or a cylindrical semi-molten metal having a maximum diameter at the tip of the inward convex portion of the side mold 16. Is placed on the fixed lower mold 12, and the movable upper mold 14 is pressed and compressed downward from above.

より詳細には、図1において、図示しない支持台に固定された下型ベース28上に固定下型12が固定され、成形する製品Mの筒部Nや環壁Awに対応する切欠き30,32を形成した型形状を上方に向けて設置されている。一方、固定下型12の下部側から上下動可能で降伏開放自在に駆動するジャッキ装置等からなる第2駆動装置24が設けられており、このジャッキのピン34に支持されて側部型16が上下直線状に移動自在に設けられている。   More specifically, in FIG. 1, a fixed lower mold 12 is fixed on a lower mold base 28 fixed to a support base (not shown), and notches 30 corresponding to the cylindrical portion N and the ring wall Aw of the product M to be molded. It is installed with the mold shape forming 32 directed upward. On the other hand, there is provided a second drive device 24 comprising a jack device or the like that can be moved up and down from the lower side of the fixed lower die 12 and driven to yield free, and the side die 16 is supported by a pin 34 of this jack. It is movably provided in a vertical line.

側部型16は、製品の周側部を規定するものであり、縦筒形で固定下型12の外径より大きな内周輪郭大きさを有している。そして、その側部型16の内側が固定下型12と向き合うように配置されている。側部型16は、上端側の外周がテーパ状に切り欠かれており、この切欠き38に上型支持台40側が当接して可動上型14と同じ押し下げ力で側部型16を下降押動させる。側部型16の内側と固定下型12とで挟まれる空隙は上下型の型閉め状態では製品キャビティ22を構成するとともに、上型による圧縮途中では流動路Pfとなり、上型の圧縮下降にしたがって形状を変化させる空隙である。したがって、側部型16は、中央部の固定下型の外縁に近接して固定下型の側ぶと対向配置された固定下型の外縁部分に相当する製品形状を形成する型である。 The side mold 16 defines the peripheral side of the product, and has a vertical cylindrical shape and an inner peripheral contour size larger than the outer diameter of the fixed lower mold 12. The inner side of the side mold 16 is arranged so as to face the fixed lower mold 12. The outer periphery of the side mold 16 is notched in a tapered shape, and the upper mold support base 40 abuts against the notch 38 so that the side mold 16 is pushed down by the same pressing force as the movable upper mold 14. Move. The gap sandwiched between the inside of the side mold 16 and the fixed lower mold 12 constitutes a product cavity 22 when the upper and lower molds are closed, and becomes a flow path Pf during compression by the upper mold, and as the upper mold is compressed and lowered. It is a gap that changes its shape. Accordingly, the side mold 16 is a mold that forms a product shape corresponding to the outer edge portion of the fixed lower mold that is disposed in the vicinity of the outer edge of the fixed lower mold at the center and opposed to the side of the fixed lower mold.

第2駆動装置24のジャッキのピン34の上部には環状の側部型ベース36が固定されており、該側部型ベース36上に側部型16が固定支持されている。側部型ベース36は、第2駆動装置24と側部型16との中間に介設されて側部型16を可動上型の下降押圧力より小さな上昇押圧力で上昇駆動させる際の支持を行うとともに、下降動作時に下型ベース28に当たって側部型16の下降限を決める。 An annular side mold base 36 is fixed to the upper portion of the jack pin 34 of the second driving device 24, and the side mold 16 is fixedly supported on the side mold base 36. The side mold base 36 is interposed between the second drive unit 24 and the side mold 16 and supports the side mold 16 when it is driven to rise with a lower pressing force than the lower pressing force of the movable upper mold. In addition, the lower limit of the side mold 16 is determined by hitting the lower mold base 28 during the lowering operation.

固定下型12に上下に対向配置される可動上型14が上型支持台40により固定支持されている。上型支持台40は油圧プレス等の第1駆動装置20に連結されて上下移動自在に駆動され、特に半凝固金属の圧縮成形時に下方に押圧駆動させるものであり、これに固定された可動上型14が同期して上下動し、圧縮時に直接に半凝固金属を圧縮成形する。また、上型支持台40には下降時に側部型16の切欠き38に当接する押さえ部材42が固定されている。これによって、可動上型14が下降して固定下型上の半凝固金属を圧縮し始め、それと同時あるいはその後に、同じ圧力で押さえ部材42が側部型16の上端側を押さえて側部型16をその上昇押圧力に勝って下降させる。   A movable upper die 14 that is vertically opposed to the fixed lower die 12 is fixedly supported by an upper die support base 40. The upper die support base 40 is connected to a first drive device 20 such as a hydraulic press and is driven to move up and down. In particular, the upper die support base 40 is pressed downward when a semi-solid metal is compression-molded. The mold 14 moves up and down synchronously, and directly compresses the semi-solid metal during compression. Further, a pressing member 42 that is in contact with the notch 38 of the side mold 16 when being lowered is fixed to the upper mold support base 40. As a result, the movable upper die 14 descends to start compressing the semi-solid metal on the fixed lower die, and at the same time or thereafter, the holding member 42 presses the upper end side of the side die 16 with the same pressure, and the side die. Decrease 16 by overcoming its upward pressing force.

固定下型12上に載置した半凝固金属18の圧縮開始時の側部型16の高さ位置は、製品形状、製品の厚み、環壁の高さ、製品のサイズ等により異なりそれぞれについて流動抵抗も異なってくるので一概に決定するのは困難であり、数回の経験的な試行成形が必要である。そのうち、側部型16の下降限位置からの成形開始位置高さを決める要素として、環壁Awを含む製品Mの本体部Yから突設した部分の体積Vと製品キャビティを形成した状態での固定下型と側部型の内側部分との最短距離長さKでの隙間の面積Sとの相関がある。この突設部体積Vに対しての長さKでの隙間の面積Sとの関係で最も半凝固金属の隙間からの流動性が確保しやすい範囲をテスト成形により取得し、これらのデータより側部型16の下降限位置L0からの成形開始位置高さを決めることができる。一方、圧縮開始時の側部型16の上昇位置、すなわち上下高さ位置が高すぎて面積Sが大きすぎても成形時の製品上部側となる製品の本体部Yに充填量不足や充填圧の偏位を生じて適正な成形性が損なわれる。したがって、この点についても、上記のように、環壁Awを含む製品Mの本体部Yから突設した部分の体積Vと製品キャビティを形成した状態での固定下型と側部型の内側部分との最短距離長さKでの隙間の面積Sとの相関により、テスト成形により最適な範囲を求めて設定される。そして、図6に示すように、側部型16は、第2駆動装置24により固定下型と側部型の内側部分との最短距離長さKでの隙間の面積Sを形成する上昇位置L1まで上昇駆動される。この状態で半溶融状態の半凝固金属の充分な流動路42を形成させて、可動上型により圧縮開始する。さらに、第1駆動装置20による可動上型14の下降押圧力P1は第2駆動装置24による側部型16の上昇押圧力P2よりもはるかに大きい(P1>>P2)から(例えば2倍〜10倍程度)、下降押圧力P1で側部型16を下降押圧させて周側部を規定しながら上型14で圧縮し、最終的に下降限位置L0で停止させ最終圧を加えて圧縮を完了させる。   The height position of the side mold 16 at the start of compression of the semi-solid metal 18 placed on the fixed lower mold 12 varies depending on the product shape, product thickness, ring wall height, product size, etc. Since the resistances are also different, it is difficult to determine them in general, and several empirical trial moldings are required. Among them, as an element for determining the molding start position height from the lower limit position of the side mold 16, the volume V of the part protruding from the main body Y of the product M including the annular wall Aw and the product cavity are formed. There is a correlation with the area S of the gap at the shortest distance length K between the fixed lower mold and the inner part of the side mold. The range where the fluidity from the gap of the semi-solid metal is most easily secured by the test molding is obtained in relation to the area S of the gap with the length K with respect to the protruding portion volume V. The molding start position height from the lower limit position L0 of the part die 16 can be determined. On the other hand, if the side mold 16 is raised at the start of compression, that is, if the vertical height position is too high and the area S is too large, the main body Y of the product on the upper side of the product at the time of molding is insufficiently filled or filled. The proper formability is impaired. Therefore, also in this respect, as described above, the volume V of the portion projecting from the main body portion Y of the product M including the annular wall Aw and the inner portion of the fixed lower die and the side die in the state where the product cavity is formed. The optimum range is obtained by test molding based on the correlation with the area S of the gap at the shortest distance length K. Then, as shown in FIG. 6, the side mold 16 is raised by the second driving device 24 so as to form an area S of the gap with the shortest distance length K between the fixed lower mold and the inner part of the side mold. Driven up to. In this state, a sufficient flow path 42 of the semi-solid metal in the semi-molten state is formed, and compression is started by the movable upper die. Further, the downward pressing force P1 of the movable upper die 14 by the first driving device 20 is much larger than the upward pressing force P2 of the side die 16 by the second driving device 24 (P1 >> P2) (for example, twice to About 10 times), the side mold 16 is pressed downward by the downward pressing force P1 to compress the upper mold 14 while defining the peripheral side part, and finally stops at the lower limit position L0 and applies the final pressure to compress. Complete.

次に、本実施形態の作用について説明する。半凝固金属の成形に際しては、まず側部型16を第2駆動装置24を駆動させて上昇させ、停止させる。この側部型16の上昇位置は、数回の経験的な試行成形により、環壁Awを含む製品Mの本体部Yから突設した部分の体積Vと製品キャビティを形成した状態での固定下型と側部型の内側部分との最短距離長さKでの隙間の面積Sとの相関を要素として決定すると良い。この状態で、図1のような予め半溶融状態のプレフォームによる扁平円盤体の半凝固金属を固定下型12上に載置する。このとき、該半凝固金属18の周側部は側部型16の内周壁面により規定されている。この状態では、隙間(S)が側部型16と固定下型12との間に形成されているから、これが半溶融金属の流動路として充分な開口となる。この状態から第1駆動装置20を介して可動上型14を押圧下降させ、半凝固金属を圧縮させると、固定下型12と側部型16の内側部分との開口から圧送されて円滑に環壁Aw側に進入する。一方、第1、第2駆動装置20、24の駆動により、可動上型14の下降押圧力P1は側部型16の上昇押圧力P2よりもはるかに大きい(P1>>P2)から(例えば10倍程度)、下降押圧力P1が上昇押圧力P2に勝って強制的に側部型16を押し下げる。この押し下げ途中で半凝固金属18は可動上型14と固定下型12との加圧面により圧接されて、例えば図4、図7の下降途中位置L2での状態のように、断面長さがKに等しい流動路Pfから固定下型12と側部型16の内面との間に円滑に進入する。この途中でも可動上型14による圧縮は維持し続けられ経時的に可動上型14の下端加圧面と固定下型12の上端加圧面との距離は接近する。このように、成形空隙の変化と圧縮を同時に行わせる。そして、図5、図8のように最終的に側部型ベース36が下型ベース28に当着して停止し、その状態でさらに充分な加圧圧縮を行うことにより製品キャビティ22内の成形品の隅々まで万遍のないかつ均等な金属の充填が行われ、良好な成形性を保持することができる。   Next, the operation of this embodiment will be described. In forming the semi-solid metal, first, the side mold 16 is raised by driving the second driving device 24 and stopped. The raised position of the side mold 16 is fixed under a state in which the volume V of the portion protruding from the main body Y of the product M including the ring wall Aw and the product cavity are formed by empirical trial molding several times. The correlation with the area S of the gap at the shortest distance length K between the mold and the inner part of the side mold may be determined as an element. In this state, a semi-solid metal of a flat disk body made of a preform in a semi-molten state as shown in FIG. 1 is placed on the fixed lower mold 12. At this time, the peripheral side portion of the semi-solid metal 18 is defined by the inner peripheral wall surface of the side mold 16. In this state, since the gap (S) is formed between the side mold 16 and the fixed lower mold 12, this is a sufficient opening as a flow path for the semi-molten metal. From this state, when the movable upper die 14 is pressed down through the first driving device 20 and the semi-solid metal is compressed, the movable upper die 14 is compressed from the opening of the fixed lower die 12 and the inner portion of the side die 16 to smoothly circulate. Enter the wall Aw. On the other hand, when the first and second driving devices 20 and 24 are driven, the downward pressing force P1 of the movable upper die 14 is much larger than the upward pressing force P2 of the side die 16 (P1 >> P2) (for example, 10 Double pressure), the downward pressing force P1 overcomes the upward pressing force P2, and the side mold 16 is forcibly pressed down. During this depression, the semi-solid metal 18 is brought into pressure contact with the pressure surfaces of the movable upper die 14 and the fixed lower die 12, and the cross-sectional length is K, as in the state at the lowering position L2 in FIGS. Smoothly enters between the fixed lower mold 12 and the inner surface of the side mold 16 from the flow path Pf equal to. Even in the middle of this, the compression by the movable upper mold 14 continues to be maintained, and the distance between the lower end pressure surface of the movable upper mold 14 and the upper end pressure surface of the fixed lower mold 12 approaches with time. In this way, the change in the molding gap and the compression are performed simultaneously. Then, as shown in FIGS. 5 and 8, finally, the side mold base 36 comes into contact with the lower mold base 28 and stops. Uniform and uniform metal filling is performed to every corner of the product, and good moldability can be maintained.

次に、図9ないし図16により、本発明の第2実施形態の半凝固金属製品の成型金型構造10−2について説明するが、第1実施形態と同一部材には同一符号を付し、その詳細な説明は省略する。   Next, with reference to FIG. 9 to FIG. 16, the mold structure 10-2 for a semi-solid metal product according to the second embodiment of the present invention will be described. Detailed description thereof is omitted.

第2実施形態の金型構造10−2が、第1実施形態と異なる点は、側部型16は、横方向に水平移動する複数のスライド割型50A、50Bを含み、それぞれのスライド割型は横方向駆動装置としてのシリンダ装置に連結されて可動上型14による半凝固金属18の圧縮開始位置に向けて進退自在に進出駆動され、成形終了後は側部型16を横方向に移動させて型を開くことができることである。   The mold structure 10-2 of the second embodiment is different from the first embodiment in that the side mold 16 includes a plurality of slide split molds 50A and 50B that horizontally move in the horizontal direction, and each of the slide split molds. Is connected to a cylinder device as a lateral drive device, and is driven to advance and retract toward the compression start position of the semi-solid metal 18 by the movable upper die 14, and after the molding is completed, the side die 16 is moved laterally. The mold can be opened.

詳細には、図10に示すように側部型16は、固定下型上の半凝固金属と対面する側に製品外形の半割れ凹部51を形成した2個のスライド割型50A、50Bを含み、これらのスライド割型50A、50Bのそれぞれはシリンダ装置56に連結支持されている。そして、第2駆動装置のジャッキの4本の上昇押圧ピン52で上下駆動させ、該ピン52の上端部に固定された側部型ベース54はある程度の広さの面積を有する厚板部材から構成され、さらにその側部型ベース54上を断面縦形の2個のスライド割型50A、50Bがシリンダ装置56を介して半凝固金属18に向けて進退自在に進出駆動される。2個のスライド割型50A、50Bは、側部型ベース54上に水平方向に摺動自在に載置され、案内されて直線状に側部型ベース上を移動する。例えば、このシリンダ装置56は第1、第2駆動装置20,24とともにタイミングを取りながら予め設定されたシーケンサやプログラムにより制御装置を介して駆動される。スライド割型50A、50Bはシリンダ装置の駆動ロッド58に固定されており、第2駆動装置の上下動に同期して同スライド割型ならびにシリンダ装置が上下動する。   More specifically, as shown in FIG. 10, the side mold 16 includes two slide split molds 50A and 50B in which a half crack recess 51 of the product outer shape is formed on the side facing the semi-solid metal on the fixed lower mold. Each of these slide split dies 50A and 50B is connected and supported by a cylinder device 56. Then, the side mold base 54 fixed up to the upper end of the pin 52 is constituted by a thick plate member having a certain area, which is driven up and down by the four ascending pressing pins 52 of the jack of the second driving device. Further, two slide split dies 50A and 50B having a vertical cross section are driven to advance and retract toward the semi-solid metal 18 through the cylinder device 56 on the side die base 54. The two slide split dies 50A and 50B are placed on the side die base 54 so as to be slidable in the horizontal direction, and are guided to move on the side die base. For example, the cylinder device 56 is driven via a control device by a preset sequencer or program while taking timing together with the first and second drive devices 20 and 24. The slide split molds 50A and 50B are fixed to the drive rod 58 of the cylinder device, and the slide split mold and the cylinder device move up and down in synchronization with the vertical movement of the second drive device.

この第2実施形態では、成形される製品は図11に示すように、環壁Awの下端からさらに外方に向けて突出するフランジFを有している。このような複雑な製品形状の場合にはフランジ部分までの半凝固金属製品の流動長はさらに長くなり、また、抵抗も大幅に増加する。しかしながら、上記の第1実施形態と同様の側部型の圧縮開始位置設定と、下降時の圧縮と、最終圧縮により、良好な成形性を得ることができる。   In the second embodiment, the product to be molded has a flange F that protrudes further outward from the lower end of the ring wall Aw, as shown in FIG. In the case of such a complicated product shape, the flow length of the semi-solid metal product to the flange portion is further increased, and the resistance is greatly increased. However, good moldability can be obtained by setting the compression start position of the side mold as in the first embodiment, compression at the time of lowering, and final compression.

第2実施形態では第1実施形態と同様に、例えば、環壁Awを含む製品Mの本体部Yから突設した部分の体積Vと製品キャビティを形成した状態での固定下型と側部型の内側部分との最短距離長さKでの隙間の面積Sとの相関を要素として決定された側部型の上昇高さ位置に上昇停止させ、プレフォームした半凝固金属製品を固定下型上に載置し、図10矢示aのように、スライド割型50A、50Bを圧縮開始位置に向けて進出させ、図9のように開始準備状態とする。なお、このとき、側部型16の最適な下降限位置からの上昇位置に設定される点も第1実施形態と同様である。適性でかつ充分に大きな開口の流動路Pfを得て可動上型14の下降圧縮が開始すると円滑に製品の環壁Aw対応部分からフランジ部F対応部分に流動していく(図12、図15参照)。この途中でも可動上型14の下降押圧力により固定下型12側に向けて近接移動し続け、圧縮作用が維持される。このとき、可動上型14の下降押圧力P1は側部型16の上昇押圧力P2よりもはるかに大きい(P1>>P2)から(例えば2倍〜10倍程度)、下降押圧力P1が上昇押圧力P2に勝って強制的に側部型16を押し下げ、製品の周側部規定を維持させる。そして、図13、図16のように最終的に側部型ベース54が下型ベース28に当着して停止し、その状態でさらに充分な加圧圧縮を行うことにより製品キャビティ60内の成形品の隅々まで万遍のないかつ均等な金属の充填が行われ、良好な成形性を保持することができる。そして、成形完了後、可動上型14を上昇離開させ、シリンダ装置56の駆動ロッド58を退縮させることにより製品端部の側部側のコ字型の製品部分から側部型16を離脱させることができる。図17は、第2実施形態の成形構造における上下金型の位置と圧力の経時変化による変位状態を示した図である。   In the second embodiment, similarly to the first embodiment, for example, a fixed lower mold and a side mold in a state in which the volume V of the part protruding from the main body Y of the product M including the annular wall Aw and the product cavity are formed. The semi-solid metal product preformed on the fixed lower die is stopped at the rising height position of the side die determined based on the correlation with the area S of the gap at the shortest distance length K from the inner portion of As shown in FIG. 10 arrow a, the slide split molds 50A and 50B are advanced toward the compression start position, and a start preparation state is set as shown in FIG. Note that, at this time, the side mold 16 is set to the ascending position from the optimum descending limit position as in the first embodiment. When a suitable and sufficiently large opening flow path Pf is obtained and the downward compression of the movable upper mold 14 is started, the product smoothly flows from the corresponding portion of the product to the annular wall Aw to the corresponding portion of the flange portion F (FIGS. 12 and 15). reference). Even in the middle of this, the movable upper die 14 continues to move toward the fixed lower die 12 by the downward pressing force of the movable upper die 14, and the compression action is maintained. At this time, the downward pressing force P1 of the movable upper die 14 is much larger than the upward pressing force P2 of the side die 16 (P1 >> P2) (for example, about 2 to 10 times), so the downward pressing force P1 is increased. The side die 16 is forcibly pushed down over the pressing force P2 to maintain the peripheral side portion regulation of the product. Then, as shown in FIGS. 13 and 16, the side mold base 54 finally comes into contact with the lower mold base 28 and stops, and in this state, sufficient pressure compression is performed to form the product cavity 60. Uniform and uniform metal filling is performed to every corner of the product, and good moldability can be maintained. Then, after the molding is completed, the movable upper mold 14 is lifted and separated, and the drive rod 58 of the cylinder device 56 is retracted to release the side mold 16 from the U-shaped product portion on the side of the product end. Can do. FIG. 17 is a view showing a displacement state due to a change with time of the position and pressure of the upper and lower molds in the molding structure of the second embodiment.

また、上記の実施形態の半凝固金属の成形金型構造を用いた成形方法としては、固定下型と、固定下型上の半凝固金属に向けて押圧下降動作する可動上型と、製品の側部を規定し、かつ、上下動自在に設けられた側部型と、を用意し、可動上型の押圧下降時に固定下型上に載置した半凝固金属の流動路となる側部型と固定下型との間に十分な隙間を形成するように、側部型を押圧上昇させた位置で可動上型による半凝固金属の圧縮を開始し、その後の側部型の上昇押圧力に勝る可動上型の下降押圧により半凝固金属を成形することで良好な成形品を得ることができる。   Further, as a molding method using the semi-solid metal mold structure of the above-described embodiment, a fixed lower mold, a movable upper mold that is pressed down toward the semi-solid metal on the fixed lower mold, and a product A side mold that provides a flow path for a semi-solid metal placed on a fixed lower mold when the movable upper mold is pressed down is prepared by providing a side mold that defines the side section and is movable up and down. The compression of the semi-solid metal by the movable upper mold is started at the position where the side mold is pressed and raised so that a sufficient gap is formed between the upper mold and the fixed lower mold. A good molded product can be obtained by molding the semi-solid metal by the lowering pressing of the superior movable upper die.

次に、本発明の半凝固金属製品の成形金型構造による成形の実施例を示す。前記した実施形態のうち、第2実施形態の複数のスライド割型を有するタイプの金型構造について、側部型の上昇位置をクリアランスLとして変化させて、投入する半凝固金属材料が2kgと4.5kgそれぞれについて成形し、それらの成形状況を比較した。   Next, an example of forming the semi-solid metal product of the present invention by the forming mold structure will be shown. Among the embodiments described above, the mold structure of the type having a plurality of split molds of the second embodiment is changed so that the rising position of the side mold is changed as the clearance L, and the semi-solid metal material to be charged is 2 kg and 4 kg. Each of 5 kg was molded and their molding status was compared.

表1は、AC4CH相当合金、AC2B相当合金の半凝固金属18を用いて成形したものである。表1で用いた半凝固金属は電磁攪拌で作成した円柱状の材料をプリフォームした半凝固金属材を用いた。鋳込み製品としては二輪自動車のハブを想定して形状を簡略化したスライド型50による鼓形状に成形した。テストに用いた金型の温度は220℃〜290℃であり、成形前に上下金型14,12と側部型16で形成されるキャビティ表面に
断熱性を有する雲母系水溶性型離剤を塗布した。使用した加圧成形マシンは、ハブを想定した半凝固金属材2kgの場合、可動上型14の型締め力500トン、第2駆動装置による側部型の上昇押圧力120トンを使用した。ホイールを想定した半凝固金属材4.5kgの場合、可動上型14の型締め力1200トン、側部型の上昇押圧力120トンを使用した。

Figure 2009136888
Table 1 is formed using a semi-solid metal 18 of an AC4CH equivalent alloy and an AC2B equivalent alloy. The semi-solid metal used in Table 1 was a semi-solid metal material obtained by preforming a cylindrical material prepared by electromagnetic stirring. The cast product was formed into a drum shape by a slide mold 50 with a simplified shape assuming a hub of a motorcycle. The temperature of the mold used for the test is 220 ° C. to 290 ° C., and a mica-based water-soluble mold release agent having heat insulation is formed on the cavity surface formed by the upper and lower molds 14 and 12 and the side mold 16 before molding. Applied. When the pressure forming machine used was a semi-solid metal material 2 kg assuming a hub, the clamping force of the movable upper mold 14 was 500 tons, and the side mold ascending pressing force by the second driving device was 120 tons. In the case of a semi-solid metal material of 4.5 kg assuming a wheel, a clamping force of 1200 tons for the movable upper die 14 and an upward pressing force of 120 tons for the side die were used.
Figure 2009136888

表1の成形例において、No.1,No.5の例では、クリアランスLが0の状態のままで成形したため、側部型16は最下降限位置の状態で側部型の内側と固定下型12との間が狭く、半凝固金属18の充分な流動断面積が形成されないから、成形途中で固定下型と側部型との隙間を抜けて形成される製品フランジF部分への流動性が確保されず、いずれも製品形状の成形不良が発生した。No.4,No.10の成形例では、側部型の上昇押圧力により側部型16は可動上型14に近い高さ位置で成形され、半凝固金属18の流動断面積が大きく、初期の材料の流れ性は良好であり、例えば図12、図15の下降成形途中での下側フランジ部Fまでの流動性が向上したがいずれも製品上部外周フランジ部に材料の流れるときに生じるエアーの巻き込みが発生し、内部欠陥となった。No.3,No.7、No.8の成形例では、側部型の上昇押圧力により側部型16は適正な上下高さ位置に保持され、半凝固金属18の流動断面積が大きく、初期の材料の流れ性及び成形途中の可動下型と側部型の隙間(成形品の肉厚部分)及び、下型フランジ部Fまでの流動性が確保され、さらにその間の可動上型14と固定下型12による圧縮が維持され、加えて側部型が最下降限位置に着底した状態での最終圧で内部に充分に圧力がかかり、外観及び内部品質ともに良好な製品が得られた。これによって、側部型の上型との同期下降動により良好な成形性確保と、成形空隙変形と、圧縮成形とを同時に行うことにより、複雑な形状の製品についても確実に半凝固金属による成形が可能であることが確認された。   In the molding example of Table 1, No. 1, No. 1 In the example of 5, since the molding is performed with the clearance L being 0, the side mold 16 is in the lowest lowered position and the space between the inside of the side mold and the fixed lower mold 12 is narrow, and the semi-solid metal 18 Since a sufficient flow cross-sectional area is not formed, the fluidity to the product flange F part formed through the gap between the fixed lower mold and the side mold during the molding is not ensured, both of which have a product shape molding defect. Occurred. No. 4, no. In the molding example 10, the side mold 16 is molded at a height position close to the movable upper mold 14 due to the upward pressing force of the side mold, the flow cross-sectional area of the semi-solid metal 18 is large, and the initial material flowability is For example, the fluidity up to the lower flange portion F during the downward molding in FIGS. 12 and 15 has been improved. It became an internal defect. No. 3, No. 7, no. In the molding example 8, the side mold 16 is held at an appropriate vertical height position by the upward pressing force of the side mold, the flow cross-sectional area of the semi-solid metal 18 is large, the initial material flowability and the middle of molding Fluidity between the movable lower mold and the side mold (thick part of the molded product) and the lower mold flange F is ensured, and further compression between the movable upper mold 14 and the fixed lower mold 12 is maintained. In addition, a sufficient pressure was applied to the inside with the final pressure with the side mold bottomed to the lowest position, and a product with good appearance and internal quality was obtained. This ensures good moldability by synchronous lowering movement with the upper mold of the side mold, molding void deformation, and compression molding at the same time, so that even complex shaped products can be reliably molded with semi-solid metal. Is confirmed to be possible.

本発明の第1実施形態に係る半凝固金属製品の成形金型構造の半凝固金属を下型上に載置して上型を加圧作動させる圧縮開始直前の状態の縦断面図である。It is a longitudinal cross-sectional view of the state just before the compression start which places the semi-solid metal of the metal mold | die structure of the semi-solid metal product which concerns on 1st Embodiment of this invention on a lower mold | type, and pressurizes an upper mold | type. 図1のA−A線矢示図である。It is an AA line arrow figure of FIG. 図1の金型構造を用いて成型する製品の断面説明図である。It is a cross-sectional explanatory drawing of the product shape | molded using the metal mold | die structure of FIG. 図1の成型金型構造による圧縮途中の状態の断面説明図である。It is a cross-sectional explanatory drawing of the state in the middle of compression by the molding die structure of FIG. 図1の成形金型構造において、側部型の下降限位置の状態の断面説明図である。FIG. 3 is a cross-sectional explanatory view of the state of the lower limit position of the side mold in the molding die structure of FIG. 1. 図1の成形金型構造の状態に対応した半截縦断面作用説明図である。FIG. 3 is a half-longitudinal longitudinal section action explanatory diagram corresponding to the state of the molding die structure of FIG. 1. 図4の成形金型構造の状態に対応した半截縦断面作用説明図である。FIG. 5 is a half-longitudinal longitudinal section action explanatory diagram corresponding to the state of the molding die structure of FIG. 4. 図5の成形金型構造の状態に対応した半截縦断面作用説明図である。FIG. 6 is a half-longitudinal longitudinal section action explanatory diagram corresponding to the state of the molding die structure of FIG. 5. 本発明の第2の実施形態に係る半凝固金属製品の成形金型構造の側部型を圧縮開始位置まで前進させ半凝固金属を下型上に載置して上型を加圧作動させる圧縮開始直前の状態の縦断面図である。Compression that pressurizes the upper die by moving the side die of the mold structure of the semi-solid metal product according to the second embodiment of the present invention to the compression start position and placing the semi-solid metal on the lower die. It is a longitudinal cross-sectional view of the state immediately before the start. 図9のB−B線矢示図である。It is a BB line arrow figure of FIG. 図9の金型構造を用いて成型する製品の断面説明図である。FIG. 10 is a cross-sectional explanatory view of a product molded using the mold structure of FIG. 9. 図9の成型金型構造による圧縮途中の状態の断面説明図である。FIG. 10 is a cross-sectional explanatory diagram of a state during compression by the molding die structure of FIG. 9. 図9の成形金型構造において、側部型の下降限位置の状態の断面説明図である。FIG. 10 is a cross-sectional explanatory diagram of the side mold in the lower limit position in the molding die structure of FIG. 9. 図9の成形金型構造の状態に対応した半截縦断面作用説明図である。FIG. 10 is a half-longitudinal longitudinal section action explanatory diagram corresponding to the state of the molding die structure of FIG. 9. 図12の成形金型構造の状態に対応した半截縦断面作用説明図である。FIG. 13 is an explanatory diagram of a semi-longitudinal longitudinal cross-section corresponding to the state of the molding die structure of FIG. 12. 図13の成形金型構造の状態に対応した半截縦断面作用説明図である。FIG. 14 is an explanatory diagram of a semi-longitudinal longitudinal cross-section corresponding to the state of the molding die structure of FIG. 13. 図9の成形構造における上下金型の位置と圧力の経時変化による変位状態を示した図である。FIG. 10 is a diagram showing a displacement state due to a change with time of the position and pressure of the upper and lower molds in the molding structure of FIG. 9. 従来の半凝固金属の金型成形方法を示すである。1 shows a conventional semi-solid metal mold forming method. 従来の半凝固金属の他の金型成形方法を示すである。It shows another mold forming method of a conventional semi-solid metal. 従来の半凝固金属の他の金型成形方法を示すである。It shows another mold forming method of a conventional semi-solid metal.

符号の説明Explanation of symbols

10−1、10−2 半凝固金属製品の成形金型構造
12 固定下型
14 可動上型
16 側部型
18 半凝固金属
20 第1駆動装置
22 製品キャビティ
24 第2駆動装置
36 側部型ベース
50 スライド割型
52 上昇押圧ピン
54 側部型ベース
56 シリンダ装置
60 製品キャビティ
M 製品
Y 本体部
P1 可動上型の下降押圧力
P2 側部型の上昇押圧力
Pf 金属の流動路
K 最短距離長さ
L1 圧縮開始位置対応の側部型上昇高さ位置
L2 圧縮途中高さ位置
L0 側部型の下降限位置
10-1, 10-2 Mold structure of semi-solid metal product 12 Fixed lower mold 14 Movable upper mold 16 Side mold 18 Semi-solid metal 20 First drive device 22 Product cavity 24 Second drive device 36 Side mold base 50 Slide split mold 52 Ascending pressing pin 54 Side mold base 56 Cylinder device 60 Product cavity M Product Y Body P1 Lowering pressing force of movable upper mold P2 Ascending pressing force of side mold Pf Metal flow path K Shortest distance length L1 Side mold rising height position corresponding to compression start position L2 Compression middle height position L0 Side mold lowering limit position

Claims (6)

上面側に半凝固金属を載置させる固定下型と、
固定下型に向けて押圧下降動作する可動上型と、
固定下型の側部に配置されて固定下型と可動上型とともに製品キャビティを形成する側部型であって、該固定下型に対して上下摺動自在に設けられ可動上型の下降押圧力よりも小さな力で押圧上昇作動する側部型と、を含むことを特徴とする半凝固金属製品の成形金型構造。
A fixed lower mold for placing a semi-solid metal on the upper surface side;
A movable upper mold that presses down toward the fixed lower mold;
A side mold that is disposed on the side of the fixed lower mold to form a product cavity together with the fixed lower mold and the movable upper mold, and is provided so as to be slidable in the vertical direction with respect to the fixed lower mold. A mold structure for forming a semi-solid metal product, comprising: a side mold that presses and raises with a force smaller than the pressure.
側部型の上昇押圧力に勝る可動上型の下降押圧力と同等の力で押し下げられる側部型の下降限位置より上方位置で、下降押圧する可動上型と上昇押圧する側部型と固定下型とによる半凝固金属の圧縮が行われることを特徴とする請求項1記載の半凝固金属製品の成形金型構造。   The movable upper die that is pressed down and the side die that is pressed upward are fixed at a position above the lower limit position of the side die that is pushed down by a force equivalent to the downward pressing force of the movable upper die that exceeds the upward pressing force of the side die. 2. The mold structure of a semi-solid metal product according to claim 1, wherein the semi-solid metal is compressed by the lower mold. 固定下型上に載置した半凝固金属の圧縮開始時の側部型の高さ位置が、
環壁を含む製品の本体部から突設した部分の体積と製品キャビティを形成した状態での固定下型と側部型の内側部分との最短距離長さでの隙間の面積との相関を1つの要素として決まる高さ位置であって、下降限位置から側部型を上昇させて半凝固金属の流動路を形成する位置であることを特徴とする請求項1または2記載の半凝固金属製品の成形金型構造。
The height position of the side mold at the start of compression of the semi-solid metal placed on the fixed lower mold is
Correlation between the volume of the part protruding from the main body of the product including the ring wall and the area of the gap in the shortest distance length between the fixed lower mold and the inner part of the side mold in the state where the product cavity is formed is 1 3. A semi-solid metal product according to claim 1, wherein the metal mold is a height position determined as one element and is a position where the side mold is raised from the lower limit position to form a flow path of the semi-solid metal. Molding mold structure.
側部型は、可動上型による半凝固金属の圧縮開始位置に向けて進退自在に横方向に移動する複数のスライド割型を含むことを特徴とする請求項1ないし3のいずれかに記載の半凝固金属製品の成形金型構造。   The side part mold includes a plurality of slide split molds that move laterally in a movable manner toward a compression start position of the semi-solid metal by the movable upper mold. Mold structure for semi-solid metal products. 固定下型と、固定下型上の半凝固金属に向けて押圧下降動作する可動上型と、製品の側部を規定し、かつ、上下動自在に設けられた側部型と、を用意し、
可動上型の押圧下降時に固定下型上に載置した半凝固金属の流動路となる側部型と固定下型との間に十分な隙間を形成するように、側部型を押圧上昇させた位置で可動上型による半凝固金属の圧縮を開始し、その後の側部型の上昇押圧力に勝る可動上型の下降押圧により半凝固金属を成形することを特徴とする半凝固金属製品の成形方法。
A fixed lower mold, a movable upper mold that presses and lowers toward the semi-solid metal on the fixed lower mold, and a side mold that regulates the side of the product and that can be moved up and down are prepared. ,
When the movable upper mold is pressed down, the side mold is pushed up so that a sufficient gap is formed between the side mold that becomes the flow path of the semi-solid metal placed on the fixed lower mold and the fixed lower mold. The semi-solid metal product is characterized in that compression of the semi-solid metal by the movable upper mold is started at the above position, and then the semi-solid metal is formed by the downward pressing of the movable upper mold that exceeds the upward pressing force of the side mold. Molding method.
請求項5の成形方法を用いて成形された半凝固金属製品。
The semi-solid metal product shape | molded using the shaping | molding method of Claim 5.
JP2007314115A 2007-12-05 2007-12-05 Mold structure of semi-solid metal product and method of molding semi-solid metal product Active JP4378734B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007314115A JP4378734B2 (en) 2007-12-05 2007-12-05 Mold structure of semi-solid metal product and method of molding semi-solid metal product
PCT/JP2008/000482 WO2009072222A1 (en) 2007-12-05 2008-03-07 Semisolidified metal product molding die structure, method of molding semisolidified metal product, and semisolidified metal product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007314115A JP4378734B2 (en) 2007-12-05 2007-12-05 Mold structure of semi-solid metal product and method of molding semi-solid metal product

Publications (2)

Publication Number Publication Date
JP2009136888A true JP2009136888A (en) 2009-06-25
JP4378734B2 JP4378734B2 (en) 2009-12-09

Family

ID=40717408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007314115A Active JP4378734B2 (en) 2007-12-05 2007-12-05 Mold structure of semi-solid metal product and method of molding semi-solid metal product

Country Status (2)

Country Link
JP (1) JP4378734B2 (en)
WO (1) WO2009072222A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013165070A1 (en) * 2012-05-03 2013-11-07 (주)레오포즈 Method for manufacturing wheel hub for wide commercial vehicle
JP2015223603A (en) * 2014-05-27 2015-12-14 アイダエンジニアリング株式会社 Press molding method of semi-solidified metal material and press molding device
CN105945257A (en) * 2016-05-17 2016-09-21 洛阳秦汉精工股份有限公司 Liquid-state die forging forming method and liquid forging die for part with inner flange and outer flange
CN106001499A (en) * 2016-08-05 2016-10-12 清华大学 Local direct extrusion casting mold and technology suitable for hubs comprising special-shaped rim structures
JP2018015771A (en) * 2016-07-26 2018-02-01 アイダエンジニアリング株式会社 Press molding method of semi-solidified metal material preparation container
JP2020189313A (en) * 2019-05-22 2020-11-26 株式会社Hanaエンジニアリング Semi-solidified material forging device and semi-solidified material forging method
KR102658835B1 (en) * 2023-04-03 2024-04-18 터보파워텍(주) Mold for stainless steel pressure casting
KR102658836B1 (en) * 2023-04-03 2024-04-18 터보파워텍(주) Stainless steel pressure casting equipment
KR102658837B1 (en) * 2023-04-03 2024-04-18 터보파워텍(주) Stainless steel pressure casting method and packing ring for turbine manufactured according to the method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016028229A1 (en) * 2014-08-20 2016-02-25 Agency For Science, Technology And Research Metal article forming apparatus and methods for forming metal article
CN104550847A (en) * 2015-02-11 2015-04-29 泗阳敏于行精密机械有限公司 Low-pressure wheel hub casting mold
CN108580843A (en) * 2018-03-13 2018-09-28 中信戴卡股份有限公司 A kind of aluminum vehicle wheel continuous casting continuous forging forming technology

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2623310B2 (en) * 1988-08-23 1997-06-25 本田技研工業株式会社 Casting equipment
JP2780761B2 (en) * 1992-04-08 1998-07-30 宇部興産株式会社 Melt forging method and apparatus
JPH1192849A (en) * 1997-09-17 1999-04-06 Hitachi Metals Ltd Load wheel and its production
JP2003062651A (en) * 2001-08-28 2003-03-05 Gukon Ran Method and equipment for manufacturing wheel

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013165070A1 (en) * 2012-05-03 2013-11-07 (주)레오포즈 Method for manufacturing wheel hub for wide commercial vehicle
JP2015223603A (en) * 2014-05-27 2015-12-14 アイダエンジニアリング株式会社 Press molding method of semi-solidified metal material and press molding device
CN105945257A (en) * 2016-05-17 2016-09-21 洛阳秦汉精工股份有限公司 Liquid-state die forging forming method and liquid forging die for part with inner flange and outer flange
CN105945257B (en) * 2016-05-17 2018-05-04 洛阳秦汉精工股份有限公司 A kind of the liquid forging manufacturing process and liquid forging mould of the part with interior outward flange
JP2018015771A (en) * 2016-07-26 2018-02-01 アイダエンジニアリング株式会社 Press molding method of semi-solidified metal material preparation container
CN106001499A (en) * 2016-08-05 2016-10-12 清华大学 Local direct extrusion casting mold and technology suitable for hubs comprising special-shaped rim structures
JP2020189313A (en) * 2019-05-22 2020-11-26 株式会社Hanaエンジニアリング Semi-solidified material forging device and semi-solidified material forging method
JP7292715B2 (en) 2019-05-22 2023-06-19 株式会社Hanaエンジニアリング SEMI-SOLID MATERIAL FORGING APPARATUS AND SEMI-SOLID MATERIAL FORGING METHOD
KR102658835B1 (en) * 2023-04-03 2024-04-18 터보파워텍(주) Mold for stainless steel pressure casting
KR102658836B1 (en) * 2023-04-03 2024-04-18 터보파워텍(주) Stainless steel pressure casting equipment
KR102658837B1 (en) * 2023-04-03 2024-04-18 터보파워텍(주) Stainless steel pressure casting method and packing ring for turbine manufactured according to the method

Also Published As

Publication number Publication date
WO2009072222A1 (en) 2009-06-11
JP4378734B2 (en) 2009-12-09

Similar Documents

Publication Publication Date Title
JP4378734B2 (en) Mold structure of semi-solid metal product and method of molding semi-solid metal product
KR102232632B1 (en) Method and device for producing a metal component by using a casting-and forming-tool
CN100389904C (en) Semi-solid molding method
CN102756108B (en) Semi-solid extruding and casting molding mould of compressor crankshaft and molding process
CN101934336B (en) Method and device for semi-solid precision rheo-casting of light alloys
JP4379621B2 (en) Aluminum alloy forming method
JP5936648B2 (en) Press forming method and press forming apparatus of semi-solid metal material
CN102284664A (en) Semi-solid forming die and forming method for cavity-variable axisymmetric part
CN105834398A (en) Liquid forging forming method for welding-neck flange, forming die and forming device
CN106735065A (en) A kind of shaping dies of semi-solid rheological extrusion casint shaft sleeve parts
JP6018251B1 (en) Method and apparatus for forging semi-solid alloy
JP2015199082A (en) Sizing method and sizing device
JP6416038B2 (en) Press forming method and press forming apparatus of semi-solid metal material
CN107186160A (en) The quiet step forming process of disk two of new-energy automotive air-conditioning compressor
JP3901836B2 (en) Molds for forging products with protruding parts with different heights
TWI314883B (en)
CN115041636B (en) Extrusion casting forming die for magnesium alloy hub
CN101189083B (en) Method and apparatus for forging
CN115041664B (en) Low-pressure casting liquid die forging forming die for automobile wheels and forming method thereof
CN112496248A (en) Forging forming device for automobile hub and using method thereof
CN208800559U (en) A kind of reflectal rim for automobile wheel mold for extruding and forming
JP4378732B2 (en) Mold structure of semi-solid metal product and method of molding semi-solid metal product
CN110814123B (en) Rapid thermal forming device and method for corrugated pipe
US20040154779A1 (en) Apparatus and method for producing toe caps for safety shoes
CN218855594U (en) Metal handle production mould with supplementary demoulding mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090402

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090402

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4378734

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250