JP2009136868A - Photocatalyst-coated body and photocatalyst coating liquid therefor - Google Patents

Photocatalyst-coated body and photocatalyst coating liquid therefor Download PDF

Info

Publication number
JP2009136868A
JP2009136868A JP2008323152A JP2008323152A JP2009136868A JP 2009136868 A JP2009136868 A JP 2009136868A JP 2008323152 A JP2008323152 A JP 2008323152A JP 2008323152 A JP2008323152 A JP 2008323152A JP 2009136868 A JP2009136868 A JP 2009136868A
Authority
JP
Japan
Prior art keywords
photocatalyst
mass
particles
inorganic oxide
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008323152A
Other languages
Japanese (ja)
Inventor
Satoshi Kitazaki
聡 北崎
Junji Kameshima
順次 亀島
Koji Hyofu
浩二 表敷
Yoji Takagi
洋二 高木
Yukiko Kodama
佑希子 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2008323152A priority Critical patent/JP2009136868A/en
Publication of JP2009136868A publication Critical patent/JP2009136868A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0004Compounds chosen for the nature of their cations
    • C04B2103/0015Noble metal or copper compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0004Compounds chosen for the nature of their cations
    • C04B2103/0015Noble metal or copper compounds
    • C04B2103/0016Cu
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/2038Resistance against physical degradation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/2038Resistance against physical degradation
    • C04B2111/2061Materials containing photocatalysts, e.g. TiO2, for avoiding staining by air pollutants or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/2092Resistance against biological degradation

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photocatalyst composite material having an excellent alga-proof property, good performance when used for decomposing toxic gasses such as NOx, and also excellent weatherability. <P>SOLUTION: A photocatalyst-coated body being the photocatalyst composite material has such a structure that an organic mildewproofing agent-containing intermediate layer and a photocatalyst layer are formed on a base material. The photocatalyst layer comprises a photocatalyst particle of ≥1 part mass and <20 parts mass, an inorganic oxide particle of >70 parts mass and ≤99 parts mass, a copper element, a silver element and, as an optional component, dried hydrolyzable silicone of ≥0 and <10 parts mass in terms of silica so that the total amount of the photocatalyst particle, the inorganic oxide particle and the dried hydrolyzable silicone in terms of silica is 100 parts mass. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は防汚性、有害物質分解性、カビや藻の繁殖抑制などに優れた効果を発現する光触媒塗装体に関する。   The present invention relates to a photocatalyst-coated body that exhibits excellent effects such as antifouling properties, decomposability of harmful substances, and inhibition of mold and algae growth.

酸化チタンなどの光触媒が、近年建築物の外装材など多くの用途に利用されている。基材表面に光触媒を塗装することにより、光エネルギーを利用してセルフクリーニング機能、NOx、SOx等有害物質の分解機能、カビや藻などの繁殖を抑制する機能を付与することが可能となる。このような光触媒塗装体を得る場合、ベースとなる基材と光触媒の間に、接着および/または光触媒による基材表面の劣化抑制を目的とした中間層を設けることが行われる。この中間層には、光触媒によるカビや藻の繁殖を抑制する機能を補完するため、特に日陰など光触媒機能が発現しにくい部位においても、カビや藻の繁殖を抑制する性能を確保する目的で、有機防カビ剤を添加する例が見られる。このような光触媒を塗装した光触媒塗装体を得る技術としては、以下のものが知られている。   In recent years, photocatalysts such as titanium oxide have been used in many applications such as exterior materials for buildings. By coating a photocatalyst on the surface of the substrate, it is possible to provide a self-cleaning function, a function of decomposing harmful substances such as NOx and SOx, and a function of suppressing the growth of fungi and algae using light energy. When obtaining such a photocatalyst-coated body, an intermediate layer is provided between the base material serving as the base and the photocatalyst for the purpose of adhesion and / or suppression of deterioration of the base material surface due to the photocatalyst. In this intermediate layer, in order to supplement the function to suppress the growth of mold and algae by photocatalyst, in order to ensure the ability to suppress the growth of mold and algae, especially in areas where the photocatalytic function is difficult to express, such as shade, An example of adding an organic fungicide can be seen. The following are known as techniques for obtaining a photocatalyst-coated body coated with such a photocatalyst.

ベースとなる基材と光触媒の間に、接着および/または光触媒による基材表面の劣化抑制を目的としたシリコーン変性樹脂などの中間層を設ける技術が知られている。(例えば、特許文献1(国際公開第97/00134号パンフレット)参照)。   A technique is known in which an intermediate layer such as a silicone-modified resin is provided between a base material serving as a base and a photocatalyst for the purpose of adhesion and / or suppression of deterioration of the base material surface by the photocatalyst. (For example, refer to Patent Document 1 (International Publication No. 97/00134 pamphlet)).

またこのような中間層に、光触媒のカビや藻の繁殖を抑制する機能を補完するため、有機防カビ剤を添加する技術が知られている(特許文献2(特開2001−232215号公報)参照))。   In addition, a technique for adding an organic antifungal agent to such an intermediate layer in order to complement the function of suppressing the growth of mold and algae of the photocatalyst is known (Patent Document 2 (Japanese Patent Laid-Open No. 2001-232215)). reference)).

光触媒層に金属銀および金属銅またはそれらのイオンを添加し消臭、抗菌、防カビ機能を付与する技術が知られている(特許文献3(特許第3559892号公報)参照)。   A technique is known in which metallic silver and metallic copper or ions thereof are added to a photocatalyst layer to impart a deodorizing, antibacterial, and antifungal function (see Patent Document 3 (Japanese Patent No. 3559892)).

光触媒層に銀、銅、亜鉛、白金などを添加し光触媒活性を高める技術が知られている(特許文献4(特開平11−169726号公報)参照)、(特許文献5(国際公開第00/06300号パンフレット)参照)。   A technique for increasing the photocatalytic activity by adding silver, copper, zinc, platinum or the like to the photocatalyst layer is known (see Patent Document 4 (Japanese Patent Laid-Open No. 11-169726)), (Patent Document 5 (International Publication No. 00 / No. 06300 pamphlet)).

また当該塗装体の耐久性を高める目的で、光触媒層に加水分解性シリコーン等のバインダー成分を添加する技術が知られている。(特許文献6(特開2000−212510号公報)参照),(特許文献7(特開2002−137322号公報)参照)。   A technique for adding a binder component such as hydrolyzable silicone to the photocatalyst layer is known for the purpose of enhancing the durability of the coated body. (See Patent Document 6 (Japanese Patent Laid-Open No. 2000-212510)), (See Patent Document 7 (Japanese Patent Laid-Open No. 2002-137322)).

国際公開第97/00134号パンフレットWO97 / 00134 pamphlet 特開2001−232215号公報JP 2001-232215 A 特許第3559892号公報Japanese Patent No. 355992 特開平11−169726号公報JP-A-11-169726 国際公開第00/06300号パンフレットInternational Publication No. 00/06300 Pamphlet 特開2000−212510号公報Japanese Patent Laid-Open No. 2000-212510 特開2002−137322号公報JP 2002-137322 A

光触媒層にバインダー成分として加水分解性シリコーンを添加した場合、加水分解性シリコーンが緻密な膜を形成するため、光触媒層を構成する粒子間の空隙を塞ぐ。その結果、中間層に添加した防カビ剤の溶出速度が小さくなり、防藻、防カビ機能を補完する目的が果たせなくなる不具合が発生する懸念がある。さらには加水分解性シリコーンの添加量によっては、光触媒層を透過するガスの拡散速度が小さくなり、光触媒による有害ガス分解機能が低下するなど、光触媒が本来有する機能をも喪失する懸念がある。   When hydrolyzable silicone is added as a binder component to the photocatalyst layer, the hydrolyzable silicone forms a dense film, so that the voids between the particles constituting the photocatalyst layer are blocked. As a result, the elution rate of the fungicide added to the intermediate layer is reduced, and there is a concern that a problem that the purpose of supplementing the anti-algae and fungicide functions cannot be achieved. Furthermore, depending on the amount of hydrolyzable silicone added, there is a concern that the function inherent to the photocatalyst may be lost, for example, the diffusion rate of the gas that permeates the photocatalyst layer decreases and the harmful gas decomposition function of the photocatalyst decreases.

また、充分な光触媒活性を得るために、光触媒層に含まれる光触媒を増量することが従来より行われているが、そのような塗膜構成にした場合、中間層が光触媒によって劣化する恐れがあり、さらには、中間層に含まれる有機防カビ剤が分解され、光触媒による防藻、防カビ機能を補完する目的が果たせなくなることなどの不具合を発生する懸念があった。   In order to obtain sufficient photocatalytic activity, the amount of photocatalyst contained in the photocatalyst layer has been conventionally increased. However, in such a coating film structure, the intermediate layer may be deteriorated by the photocatalyst. In addition, there is a concern that the organic antifungal agent contained in the intermediate layer is decomposed, causing problems such as the algae prevention by the photocatalyst and the purpose of complementing the antifungal function cannot be achieved.

したがって、本発明は、防藻性、防カビ性、有害ガス分解性、超親水性など光触媒本来の機能と、塗膜の耐候性および塗膜の強度を両立させるとともに、防藻、防カビ性能を補完する有機防藻剤の溶出も妨げない、光触媒を有する複合材を提供することを目的とする。   Therefore, the present invention achieves both the original functions of a photocatalyst such as antialgae, antifungal, harmful gas decomposability, super hydrophilicity, the weather resistance of the coating and the strength of the coating, as well as antialgae and antifungal performance. It aims at providing the composite material which has a photocatalyst which does not prevent the elution of the organic algaeproofing agent which complements.

上記課題を解決するため、本発明による光触媒塗装体は、
基材と、該基材上に設けられた中間層と、該中間層上に設けられた光触媒層とを備えた光触媒塗装体であって、
前記中間層は有機防カビ剤を含んでなり、
前記光触媒層が、
1質量部以上20質量部未満の光触媒粒子と、
70質量部超え99質量部以下の無機酸化物粒子と、
シリカ換算で0質量部以上10質量部未満の加水分解性シリコーンの乾燥物と
を、前記光触媒粒子、前記無機酸化物粒子、および前記加水分解性シリコーンのシリカ換算量の合計量が100質量部となるように含み、
さらに銅元素および銀元素を含み、
前記光触媒層には粒子間の隙間が存在してなるものである。
In order to solve the above problems, the photocatalyst-coated body according to the present invention is:
A photocatalyst-coated body comprising a base material, an intermediate layer provided on the base material, and a photocatalyst layer provided on the intermediate layer,
The intermediate layer comprises an organic antifungal agent;
The photocatalytic layer is
1 to 20 parts by mass of photocatalyst particles,
70 to 99 parts by mass of inorganic oxide particles,
A hydrolyzable silicone dry matter having a weight of 0 to less than 10 parts by weight in terms of silica, and the total amount of silica equivalents of the photocatalyst particles, the inorganic oxide particles, and the hydrolyzable silicone is 100 parts by weight. Including
In addition, containing copper element and silver element,
The photocatalyst layer has gaps between particles.

さらに、本発明の好ましい態様は、光触媒コーティング液と、中間層を形成するためのコーティング液とのセットである。コーティング液を組み合わせることで、容易に塗装体の形成が可能である。   Furthermore, the preferable aspect of this invention is a set of the photocatalyst coating liquid and the coating liquid for forming an intermediate | middle layer. By combining the coating liquid, it is possible to easily form a painted body.

本発明によると、中間層に添加した有機防カビ剤の溶出が妨げられないため、光触媒の防藻、防カビ機能を補完するという目的を充分に果たすことができる。また光触媒層を透過するガス成分の拡散が妨げられないので、光触媒による有害ガス分解機能が有効に作用する。さらに本発明の塗膜は、耐候性および強度にも優れ、銅元素と銀元素により高度の防藻、防カビ性を発現することができる。   According to the present invention, since the elution of the organic antifungal agent added to the intermediate layer is not hindered, the purpose of supplementing the photocatalytic antialgal and antifungal functions can be sufficiently achieved. Further, since the diffusion of the gas component that permeates the photocatalyst layer is not hindered, the harmful gas decomposition function by the photocatalyst works effectively. Furthermore, the coating film of the present invention is also excellent in weather resistance and strength, and can exhibit a high degree of antialgae and antifungal properties due to the copper element and the silver element.

光触媒塗装体
本発明による光触媒塗装体は、基材と、該基材上に設けられた中間層と、該中間層上に設けられた光触媒層とを備えた光触媒塗装体であって、前記中間層は有機防カビ剤を含んでなり、
前記光触媒層が、
1質量部以上20質量部未満の光触媒粒子と、
70質量部超え99質量部以下の無機酸化物粒子と、
シリカ換算で0質量部以上10質量部未満の加水分解性シリコーンの乾燥物とを、
前記光触媒粒子、前記無機酸化物粒子、および前記加水分解性シリコーンのシリカ換算量の合計量が100質量部となるように含んでなり、さらに銅元素および銀元素を含んでなり、光触媒層には粒子間の隙間が存在することを特徴とする。
Photocatalyst-coated body A photocatalyst-coated body according to the present invention is a photocatalyst-coated body comprising a base material, an intermediate layer provided on the base material, and a photocatalyst layer provided on the intermediate layer. The layer comprises an organic fungicide and
The photocatalytic layer is
1 to 20 parts by mass of photocatalyst particles,
70 to 99 parts by mass of inorganic oxide particles,
A hydrolyzable silicone dry product of 0 to 10 parts by mass in terms of silica,
The total amount of the photocatalyst particles, the inorganic oxide particles, and the hydrolyzable silicone in terms of silica is 100 parts by mass, and further contains copper element and silver element. It is characterized by the presence of gaps between particles.

光触媒層が加水分解性シリコーンを少量しか含まず、実質的に粒子のみから形成されるため、中間層に添加した有機防カビ剤の溶出を妨げないことから、光触媒の機能を補完する目的を充分に果たすことができる。また、ガス成分の拡散が妨げられることが無いため、光触媒が少量であるにもかかわらず、NOxやSOxなど有害ガス分解機能も有効に作用する。   Since the photocatalyst layer contains only a small amount of hydrolyzable silicone and is substantially composed of particles, it does not hinder the elution of the organic antifungal agent added to the intermediate layer. Can be fulfilled. In addition, since the diffusion of gas components is not hindered, the function of decomposing harmful gases such as NOx and SOx also works effectively despite the small amount of photocatalyst.

本発明において、これらの幾つもの優れた効果が同時に実現される理由は定かではないか、以下のようなものではないかと考えられる。ただし、以下の説明はあくまで仮説にすぎず、本発明は何ら以下の仮説によって限定されるものではない。まず、光触媒層は、光触媒粒子および無機酸化物粒子の二種類の粒子から基本的に構成されるため、粒子間の隙間が豊富に存在する。光触媒層のバインダーとして広く用いられる加水分解性シリコーンを多量に使用した場合にはそのような粒子間の隙間を緻密に埋めてしまうため、ガスの拡散を妨げるものと考えられる。しかし、本発明の光触媒層は加水分解性シリコーンを含まないか、含むとしても光触媒粒子、無機酸化物粒子、および加水分解性シリコーンの合計量100質量部に対して10質量部未満としているため、粒子間の隙間を十分に確保することができると考えられる。そして、そのような隙間によって中間層に含まれる有機防カビ剤、NOxやSOx等の有害ガスが光触媒層中に拡散しやすい構造が実現され、その結果、有機カビ剤が有効に作用したり、有害ガスが光触媒粒子と効率良く接触して光触媒活性により分解されるのでないかと考えられる。   In the present invention, the reason why these several excellent effects are realized at the same time is not clear or is considered as follows. However, the following description is merely a hypothesis, and the present invention is not limited by the following hypothesis. First, since the photocatalyst layer is basically composed of two types of particles, photocatalyst particles and inorganic oxide particles, there are abundant gaps between the particles. When a large amount of hydrolyzable silicone widely used as a binder for the photocatalyst layer is used, it is considered that the gap between the particles is densely filled, and thus gas diffusion is hindered. However, the photocatalyst layer of the present invention does not contain hydrolyzable silicone or even if it contains less than 10 parts by mass with respect to 100 parts by mass of the total amount of photocatalyst particles, inorganic oxide particles, and hydrolyzable silicone, It is considered that a sufficient gap between particles can be secured. And by such a gap, an organic antifungal agent contained in the intermediate layer, a structure in which noxious gases such as NOx and SOx easily diffuse into the photocatalyst layer is realized, and as a result, the organic mold agent acts effectively, It is thought that harmful gas is efficiently contacted with the photocatalyst particles and decomposed by the photocatalytic activity.

同時に、光触媒粒子の配合割合が無機酸化物粒子よりもかなり少ないことで、光触媒粒子の中間層との直接的な接触を最小限に抑えることができ、それにより中間層を浸食しにくくなるものと考えられる。   At the same time, the proportion of photocatalyst particles is considerably smaller than that of inorganic oxide particles, so that direct contact of the photocatalyst particles with the intermediate layer can be minimized, thereby making it difficult to erode the intermediate layer. Conceivable.

基材
本発明に用いる基材は、その上に中間層が形成可能な材料であれば無機材料、有機材料を問わず種々の材料であってよく、その形状も限定されない。材料の観点からみた基材の好ましい例としては、金属、セラミック、ガラス、プラスチック、ゴム、石、セメント、コンクリ−ト、繊維、布帛、木、紙、それらの組合せ、それらの積層体、それらの表面に少なくとも一層の被膜を有するものが挙げられる。用途の観点からみた基材の好ましい例としては、建材、建物外装、窓枠、窓ガラス、構造部材、乗物の外装及び塗装、機械装置や物品の外装、防塵カバー及び塗装、交通標識、各種表示装置、広告塔、道路用遮音壁、鉄道用遮音壁、橋梁、ガードレ−ルの外装及び塗装、トンネル内装及び塗装、碍子、太陽電池カバー、太陽熱温水器集熱カバー、ビニールハウス、車両用照明灯のカバー、屋外用照明器具、台及び上記物品表面に貼着させるためのフィルム、シート、シール等といった外装材全般が挙げられる。
Base Material The base material used in the present invention may be any material, regardless of inorganic material or organic material, as long as the intermediate layer can be formed thereon, and the shape is not limited. Preferred examples of the substrate from the viewpoint of materials include metals, ceramics, glass, plastics, rubber, stones, cement, concrete, fibers, fabrics, wood, paper, combinations thereof, laminates thereof, Examples thereof include those having at least one layer of coating on the surface. Preferred examples of base materials from the viewpoint of applications include building materials, building exteriors, window frames, window glass, structural members, exteriors and coatings of vehicles, exteriors of machinery and articles, dust covers and coatings, traffic signs, and various displays Equipment, advertising towers, sound insulation walls for roads, sound insulation walls for railways, bridges, guard rail exteriors and paintings, tunnel interiors and paintings, insulators, solar cell covers, solar water heater heat collection covers, plastic houses, vehicle lighting covers General exterior materials such as outdoor lighting fixtures, stands, and films, sheets, seals and the like for attaching to the article surface.

中間層およびそのための中間層コーティング液
中間層に用いられる樹脂は、有機防カビ剤の相溶性が良好で、基材との接着性、光触媒との接着性を有し、光触媒による基材表面の劣化を抑制できるものであれば特に限定されず、樹脂中にポリシロキサンを含むシリコーン変性アクリル樹脂、シリコーン変性エポキシ樹脂、シリコーン変性ウレタン樹脂、シリコーン変性ポリエステル等のシリコーン変性樹脂が好適である。シリコーン変性樹脂は耐候性が高く、基材、特に有機基材または表面に有機塗膜を塗装した基材との密着性に優れる。外装用建材に適用する場合には、シリコーン変性アクリル樹脂が耐候性の点からより好適である。
The resin used for the intermediate layer and the intermediate layer coating liquid intermediate layer has good compatibility with the organic antifungal agent, has adhesion to the substrate, and adhesion to the photocatalyst. Any silicone-modified resin such as silicone-modified acrylic resin, silicone-modified epoxy resin, silicone-modified urethane resin, and silicone-modified polyester containing polysiloxane in the resin is suitable as long as it can suppress deterioration. The silicone-modified resin has high weather resistance, and is excellent in adhesion to a substrate, particularly an organic substrate or a substrate whose surface is coated with an organic coating film. When applied to exterior building materials, silicone-modified acrylic resins are more suitable from the viewpoint of weather resistance.

シリコーン変性樹脂は、ケイ素原子含有量が、シリコーン変性樹脂の固形分に対して0.2質量%以上16.5質量%未満であることが好ましい。シリコーン変性樹脂に含有されるケイ素原子含有量が0.2質量%未満の場合、すなわち有機樹脂成分が多い場合、中間層の耐候性が低下し、光触媒に侵食される可能性がある。またシリコーン変性樹脂に含有されるケイ素原子含有量が16.5質量%以上の場合すなわちシリコーン成分が多い場合、中間層の性質が無機物により近づくため、耐候性は向上するが、逆に可とう性に乏しくなり、中間層にクラックが発生する場合がある。   The silicone-modified resin preferably has a silicon atom content of 0.2% by mass or more and less than 16.5% by mass with respect to the solid content of the silicone-modified resin. When the silicon atom content contained in the silicone-modified resin is less than 0.2% by mass, that is, when the amount of the organic resin component is large, the weather resistance of the intermediate layer is lowered and the photocatalyst may be eroded. In addition, when the silicon atom content contained in the silicone-modified resin is 16.5% by mass or more, that is, when the silicone component is large, the properties of the intermediate layer are closer to the inorganic substance, so that the weather resistance is improved. The crack may occur in the intermediate layer.

前記シリコーン変性樹脂中のケイ素原子含有量は、X線光電子分光分析装置(XPS)による化学分析によって測定することができる。測定機器および条件は当業者によって適宜選択できる。   The silicon atom content in the silicone-modified resin can be measured by chemical analysis using an X-ray photoelectron spectrometer (XPS). Measuring instruments and conditions can be appropriately selected by those skilled in the art.

中間層には、有機防カビ剤が添加される。本発明においては、中間層と相溶性が良好であればどのような有機防カビ剤でも使用することができる。例として、有機窒素硫黄系化合物、ピリチオン系化合物、有機ヨウ素系化合物、トリアジン系化合物、イソチアゾリン系化合物、イミダゾール系化合物、ピリジン系化合物、ニトリル系化合物、チオカーバメート系化合物、チアゾール系化合物、有機よう素化合物、ジスルフィド系化合物が挙げられ、単独もしくは混合物として用いられる。防カビ剤は一般に藻を防ぐ効果も合わせ持つものが多いことから、防カビ剤を添加することによって、カビと藻の両方を抑制することも期待できる。   An organic antifungal agent is added to the intermediate layer. In the present invention, any organic fungicide can be used as long as it has good compatibility with the intermediate layer. Examples include organic nitrogen sulfur compounds, pyrithione compounds, organic iodine compounds, triazine compounds, isothiazoline compounds, imidazole compounds, pyridine compounds, nitrile compounds, thiocarbamate compounds, thiazole compounds, organic iodine. Compounds and disulfide compounds may be mentioned and used alone or as a mixture. Since many antifungal agents generally have an effect of preventing algae, addition of the antifungal agent can be expected to suppress both mold and algae.

また防藻効果と防カビ効果を兼ねた有機防藻防カビ剤を中間層に添加しても同様な効果が得られる。   Further, the same effect can be obtained by adding an organic algal / antifungal agent that has both an algal and fungicidal effect to the intermediate layer.

有機防カビ剤の添加重量部は、有機防カビ剤メーカーが定める最適量あるいは、模擬的な防カビ試験を実施し、適宜決めてよい。   The addition part by weight of the organic antifungal agent may be determined as appropriate by carrying out an optimum amount determined by the organic antifungal agent manufacturer or a simulated antifungal test.

中間層には、その他に有機溶剤、着色顔料、体質顔料、顔料分散剤、消泡剤、紫外線吸収剤、酸化防止剤等の塗料用添加剤、塗料に通常含まれるその他成分を含有することができる。また、艶消し剤としてシリカ微粒子を含んでもよい。
上記着色顔料としては特に限定されず、例えば、二酸化チタン、酸化鉄、カーボンブラック等の無機系顔料、フタロシアニン系、ベンズイミダゾロン系、イソインドリノン系、アゾ系、アンスラキノン系、キノフタロン系、アンスラピリジニン系、キナクリドン系、トルイジン系、ピラスロン系、ペリレン系等の有機系顔料を用いることができる。
The intermediate layer may additionally contain organic solvents, color pigments, extender pigments, pigment dispersants, antifoaming agents, UV absorbers, antioxidants and other paint additives, and other components usually included in paints. it can. Further, silica fine particles may be included as a matting agent.
The color pigment is not particularly limited, and examples thereof include inorganic pigments such as titanium dioxide, iron oxide, and carbon black, phthalocyanine series, benzimidazolone series, isoindolinone series, azo series, anthraquinone series, quinophthalone series, anthra Organic pigments such as pyridinin, quinacridone, toluidine, pyrathrone, and perylene can be used.

本発明の中間層コーティング液は、前記したシリコーン変性樹脂、有機防カビ剤を溶媒中に分散させることにより得ることができる。溶媒としては、上記構成成分を適切に分散可能なあらゆる溶媒が使用可能であり、水または有機溶媒であってよい。また、本発明の中間層塗装用液剤の固形分濃度は特に限定されないが、10〜20質量%とするのが塗布し易い点で好ましい。なお、中間層コーティング液中の構成成分の分析は、樹脂成分に関しては、赤外分光分析で、有機防カビ剤成分については希釈後あるいは硬化させた後に、適切な溶媒で抽出し、ゲルパーミエーションクロマトグラフィーにて分析、スペクトルを解析することによって評価することができる。   The intermediate layer coating solution of the present invention can be obtained by dispersing the aforementioned silicone-modified resin and organic antifungal agent in a solvent. As the solvent, any solvent capable of appropriately dispersing the above components can be used, and it may be water or an organic solvent. The solid content concentration of the intermediate layer coating solution of the present invention is not particularly limited, but it is preferably 10 to 20% by mass in terms of easy application. The analysis of the constituent components in the intermediate layer coating liquid is performed by infrared spectroscopic analysis for the resin component, and after being diluted or cured for the organic antifungal component, extracted with an appropriate solvent, and gel permeation. The analysis can be performed by chromatography and the spectrum can be analyzed.

中間層製造方法
本発明の中間層塗装体は、本発明の中間層コーティング液を、前記基材上に塗布することにより簡単に製造することができる。中間層の塗装方法は、前記液剤を刷毛塗り、ローラー、スプレー、ロールコーター、フローコーター、ディップコート、流し塗り、スクリーン印刷、電着、蒸着等、一般に広く行われている方法を利用できる。コーティング液の基材への塗布後は、常温乾燥させればよく、あるいは必要に応じて加熱乾燥してもよい。
Intermediate Layer Manufacturing Method The intermediate layer coated body of the present invention can be easily manufactured by applying the intermediate layer coating liquid of the present invention onto the substrate. As a method for coating the intermediate layer, generally used methods such as brush coating, roller, spray, roll coater, flow coater, dip coating, flow coating, screen printing, electrodeposition, vapor deposition and the like can be used. After applying the coating liquid to the substrate, it may be dried at room temperature, or may be heat-dried as necessary.

中間層の乾燥膜厚は特に限定されるものでは無いが、好ましくは1μm〜50μm、より好ましくは1μm〜10μmである。1μmより薄い場合は、光触媒による基材の劣化抑制効果が劣る可能性がある。50μmより厚い場合は、中間層の種類に依存するが、乾燥後に微細なクラックが発生する恐れがある。   Although the dry film thickness of an intermediate | middle layer is not specifically limited, Preferably they are 1 micrometer-50 micrometers, More preferably, they are 1 micrometer-10 micrometers. If it is thinner than 1 μm, the effect of suppressing deterioration of the substrate by the photocatalyst may be inferior. When it is thicker than 50 μm, although it depends on the type of the intermediate layer, there is a possibility that fine cracks may occur after drying.

光触媒層およびそのための光触媒コーティング液
本発明において、光触媒層は、前記基材上に設けられた、前記中間層上に
1質量部以上20質量部未満の光触媒粒子と、
70質量部超え99質量部以下の無機酸化物粒子と、
銅元素と、銀元素と、
シリカ換算で0質量部以上10質量部未満の加水分解性シリコーンの乾燥物とを
前記光触媒粒子、前記無機酸化物粒子、および前記加水分解性シリコーンのシリカ換算量の合計量が100質量部となるように含んでなる。
Photocatalyst layer and photocatalyst coating liquid therefor In the present invention, the photocatalyst layer is provided on the substrate, and the intermediate layer has 1 to 20 parts by mass of photocatalyst particles,
70 to 99 parts by mass of inorganic oxide particles,
Copper element, silver element,
The total amount of the photocatalyst particles, the inorganic oxide particles, and the hydrolyzable silicone in terms of silica becomes 100 parts by mass with respect to 0 to 10 parts by mass of the hydrolyzable silicone dry matter in terms of silica. As including.

光触媒層は、光触媒粒子と無機酸化物粒子から形成され、加水分解性シリコーンを全く含まないか、あるいは少量しか含まない。光触媒として使用可能なものとして、酸化チタン(TiO)、ZnO、SnO、SrTiO、WO、Bi、Feのような金属酸化物が挙げられるが、酸化チタン(TiO)が最も好ましい。酸化チタンは、無害で、化学的にも安定で、かつ、光触媒活性がある他の物質と比較し、安価に入手可能である。更に、チタニアはバンドギャップエネルギーが高く、従って、光励起には紫外線を必要とし、光励起の過程で可視光を吸収しないので、補色成分による発色が起こらない。 The photocatalyst layer is formed from photocatalyst particles and inorganic oxide particles, and contains no or only a small amount of hydrolyzable silicone. Examples of the photocatalyst that can be used include metal oxides such as titanium oxide (TiO 2 ), ZnO, SnO 2 , SrTiO 3 , WO 3 , Bi 2 O 3 , and Fe 2 O 3. 2 ) is most preferred. Titanium oxide is harmless, chemically stable, and can be obtained at a lower cost than other substances having photocatalytic activity. Furthermore, titania has a high band gap energy, and therefore requires ultraviolet light for photoexcitation and does not absorb visible light in the process of photoexcitation, so that no color formation due to complementary color components occurs.

チタニアは粉末状、ゾル状、溶液状など様々な形態で入手可能であるが、光触媒活性を示すものであれば、いずれの形態でも使用可能である。本発明の好ましい態様によれば、光触媒粒子が10nm以上100nm以下の平均粒径を有するのが好ましく、より好ましくは10nm以上60nm以下である。この範囲内であると、耐候性、有害ガス分解性、および所望の各種被膜特性(紫外線吸収性、透明性、膜強度等)が効率良く発揮される。   Although titania can be obtained in various forms such as powder, sol, and solution, any form can be used as long as it exhibits photocatalytic activity. According to a preferred embodiment of the present invention, the photocatalyst particles preferably have an average particle size of 10 nm to 100 nm, more preferably 10 nm to 60 nm. Within this range, weather resistance, harmful gas decomposability, and various desired film properties (such as ultraviolet absorption, transparency, and film strength) are efficiently exhibited.

なお、この粒径は、走査型電子顕微鏡により20万倍の視野に入る任意の100個の粒子の長さを測定した個数平均値として算出される。粒子の形状としては真球が最も好ましいが、略円形や楕円形でも好ましく、その場合の粒子の長さは((長径+短径)/2)として略算出される。   This particle size is calculated as a number average value obtained by measuring the length of any 100 particles that enter a 200,000-fold field of view with a scanning electron microscope. As the particle shape, a true sphere is most preferable, but a substantially circular or elliptical shape is also preferable. In this case, the particle length is approximately calculated as ((major axis + minor axis) / 2).

本発明の光触媒層およびコーティング液における酸化チタン粒子の好ましい含有量は、酸化チタン粒子、無機酸化物粒子、および加水分解性シリコーンのシリカ換算量の合計量100質量部に対して、1質量部以上20質量部未満であり、より好ましくは1質量部を超え15質量部以下である。このように酸化チタン粒子の配合割合を少なくすることで、酸化チタン粒子の基材との直接的な接触をできるだけ少なくして、基材(特に有機材料)に対する浸食を防止することができ、耐候性も向上すると考えられる。それにもかかわらず、有害ガス分解性といった光触媒活性に起因する機能も十分に発揮させることができる。また、酸化チタン粒子の含有量を5質量部以上15質量部以下、さらに好ましくは5質量部以上10質量部以下とすることで、前述した耐候性、光触媒活性に起因する機能のみならず、紫外線吸収性も充分に発揮させることができる。   The preferable content of titanium oxide particles in the photocatalyst layer and the coating liquid of the present invention is 1 part by mass or more with respect to 100 parts by mass as the total amount of titanium oxide particles, inorganic oxide particles, and hydrolyzable silicone in terms of silica. It is less than 20 parts by mass, more preferably more than 1 part by mass and 15 parts by mass or less. By reducing the blending ratio of the titanium oxide particles in this way, direct contact of the titanium oxide particles with the base material can be reduced as much as possible to prevent erosion of the base material (especially organic material) and weather resistance. It is thought that the property improves. Nevertheless, the functions resulting from the photocatalytic activity such as harmful gas decomposability can be sufficiently exhibited. Further, by setting the content of the titanium oxide particles to 5 parts by mass or more and 15 parts by mass or less, more preferably 5 parts by mass or more and 10 parts by mass or less, not only the functions due to the weather resistance and the photocatalytic activity described above, but also ultraviolet rays. Absorbability can also be exhibited sufficiently.

本発明に用いる無機酸化物粒子は、光触媒粒子と共に層を形成可能な無機酸化物の粒子であれば特に限定されず、あらゆる種類の無機酸化物の粒子が使用可能である。そのような無機酸化物粒子の例としては、シリカ、アルミナ、ジルコニア、セリア、イットリア、ボロニア、マグネシア、カルシア、フェライト、無定型チタニア、ハフニア等の単一酸化物に加え、チタン酸バリウム、ケイ酸カルシウム等の複合酸化物が使用可能である。これら無機酸化物は、水を分散媒とした水性コロイド、またはエチルアルコール、イソプロピルアルコールまたはエチレングリコールなどの親水性溶媒にコロイド状に分散させたオルガノゾルの形態が好ましい。
本発明の好ましい態様によれば、前記無機酸化物粒子がシリカであることが好ましい。シリカは水をはじめとした種々の溶媒に分散したコロイダルシリカを容易に入手できる。
The inorganic oxide particles used in the present invention are not particularly limited as long as they are inorganic oxide particles capable of forming a layer together with photocatalyst particles, and any kind of inorganic oxide particles can be used. Examples of such inorganic oxide particles include single oxides such as silica, alumina, zirconia, ceria, yttria, boronia, magnesia, calcia, ferrite, amorphous titania, and hafnia, as well as barium titanate and silicic acid. A complex oxide such as calcium can be used. These inorganic oxides are preferably in the form of an aqueous colloid using water as a dispersion medium or an organosol dispersed in a colloidal form in a hydrophilic solvent such as ethyl alcohol, isopropyl alcohol or ethylene glycol.
According to a preferred embodiment of the present invention, the inorganic oxide particles are preferably silica. As the silica, colloidal silica dispersed in various solvents including water can be easily obtained.

無機酸化物粒子の好ましい粒径は、水性コロイドまたはオルガノゾルの形態とされたときの平均粒径が5nmを超え40nm以下、好ましくは5nmを超え30nm以下であり、より好ましくは10nm以上30nm以下である。この範囲内であると、耐候性、有害ガス分解性、および所望の各種被膜特性(紫外線吸収性、透明性、膜強度等)が効率良く発揮される。とりわけ透明で密着性が良好な光触媒層を得ることができる。なお、この平均粒径は、走査型電子顕微鏡により20万倍の視野に入る任意の100個の粒子の長さを測定した個数平均値として算出される。粒子の形状としては真球が最も好ましいが、略円形や楕円形でも好ましく、その場合の粒子の長さは((長径+短径)/2)として略算出される。この範囲内であると、耐候性、有害ガス分解性、および所望の各種被膜特性(紫外線吸収性、透明性、膜強度等)が効率良く発揮される。とりわけ透明で密着性が良好な光触媒層を得ることができる。   The preferred particle size of the inorganic oxide particles is an average particle size of more than 5 nm and not more than 40 nm, preferably more than 5 nm and not more than 30 nm, more preferably not less than 10 nm and not more than 30 nm, when formed in the form of an aqueous colloid or an organosol. . Within this range, weather resistance, harmful gas decomposability, and various desired film properties (such as ultraviolet absorption, transparency, and film strength) are efficiently exhibited. In particular, a photocatalyst layer that is transparent and has good adhesion can be obtained. The average particle diameter is calculated as a number average value obtained by measuring the length of any 100 particles that enter a 200,000-fold field of view with a scanning electron microscope. As the particle shape, a true sphere is most preferable, but a substantially circular or elliptical shape is also preferable. In this case, the particle length is approximately calculated as ((major axis + minor axis) / 2). Within this range, weather resistance, harmful gas decomposability, and various desired film properties (such as ultraviolet absorption, transparency, and film strength) are efficiently exhibited. In particular, a photocatalyst layer that is transparent and has good adhesion can be obtained.

なお、この平均粒径は、走査型電子顕微鏡により20万倍の視野に入る任意の100個の粒子の長さを測定した個数平均値として算出される。粒子の形状としては真球が最も好ましいが、略円形や楕円形でも好ましく、その場合の粒子の長さは((長径+短径)/2)として略算出される。   The average particle diameter is calculated as a number average value obtained by measuring the length of any 100 particles that enter a 200,000-fold field of view with a scanning electron microscope. As the particle shape, a true sphere is most preferable, but a substantially circular or elliptical shape is also preferable. In this case, the particle length is approximately calculated as ((major axis + minor axis) / 2).

本発明の光触媒層およびコーティング液における無機酸化物粒子の含有量は、光触媒粒子、無機酸化物粒子、および加水分解性シリコーンのシリカ換算量の合計量100質量部に対して、70質量部を超え99質量部以下であり、好ましくは95質量部を超え99質量部未満であり、より好ましくは95.5質量部以上98質量部以下である。   The content of the inorganic oxide particles in the photocatalyst layer and the coating liquid of the present invention exceeds 70 parts by mass with respect to 100 parts by mass as the total amount of silica of the photocatalyst particles, the inorganic oxide particles, and the hydrolyzable silicone. 99 parts by mass or less, preferably more than 95 parts by mass and less than 99 parts by mass, and more preferably 95.5 parts by mass to 98 parts by mass.

本発明の光触媒層およびコーティング液は、高い光触媒能を発現するために、銅元素および銀元素を含んでなる。これらは、金属および/またはその金属からなる金属化合物を光触媒層および光触媒コーティング液に添加することができる。この添加は、前記金属または金属化合物を含有する溶液または分散体を光触媒コーティング液に混合する方法、光触媒粒子または光触媒層に金属化合物を担持する方法のいずれの方法によっても行うことができる。   The photocatalyst layer and the coating liquid of the present invention contain copper element and silver element in order to exhibit high photocatalytic ability. In these, a metal and / or a metal compound composed of the metal can be added to the photocatalyst layer and the photocatalyst coating liquid. This addition can be performed by any of the method of mixing the metal or metal compound-containing solution or dispersion into the photocatalyst coating liquid, or the method of supporting the metal compound on the photocatalyst particles or the photocatalyst layer.

銅元素および銀元素は、金属および/または金属化合物として存在する。銅元素に対する銀元素の割合は、各々AgO、およびCuOに換算して、AgO/CuOとして質量比で0/100<[Ag2O/CuO]≦60/40が好ましく、より好ましくは10/90以上60/40以下であり、さらに好ましくは10/90以上55/45以下である。また、銅元素および銀元素は、AgOおよびCuOに換算した合計量が光触媒粒子に対して0.5〜5質量%添加されたものが好ましい。銅元素に対する銀元素の割合がこのような範囲であると、銅元素や銀元素をそれぞれ単独で添加した光触媒層に比べて、紫外線などの光触媒を励起可能な光の照射下で、抗カビ性や防藻性が極めて良好な光触媒層を得ることができる。 Copper element and silver element exist as metals and / or metal compounds. The ratio of the silver element to the copper element is preferably 0/100 <[Ag 2 O / CuO] ≦ 60/40 in terms of mass ratio as Ag 2 O / CuO in terms of Ag 2 O and CuO, more preferably 10 / 90 or more and 60/40 or less, more preferably 10/90 or more and 55/45 or less. Also, elemental copper and silver elements, which total amount in terms of Ag 2 O and CuO are added 0.5 to 5 wt% with respect to the photocatalyst particles. When the ratio of the silver element to the copper element is in such a range, compared to the photocatalyst layer to which each of the copper element and the silver element is added alone, it has antifungal properties under irradiation of light capable of exciting the photocatalyst such as ultraviolet rays. And a photocatalyst layer with extremely good alga-proof properties.

光触媒と銅化合物と銀化合物が共存した状況で適当量の紫外線が照射された場合、抗カビ性に直接作用するのは光触媒と銅化合物であると考えられる。銀化合物は光触媒によって発生した電子によって還元され、電荷分離効率の向上に寄与すると考えられる。光触媒層中のAgO/CuO比率に最適値があるのは、比率が小さすぎる場合、銀化合物の共存による特異的な効果も小さくなるため、逆に大きすぎる場合は、光触媒層中の銅化合物の相対的な濃度が小さくなり、抗カビ性が小さくなること、さらには、銀による着色の影響が無視できなくなるためであると考えられる。 When an appropriate amount of ultraviolet rays is irradiated in a situation where a photocatalyst, a copper compound and a silver compound coexist, it is considered that the photocatalyst and the copper compound directly act on antifungal properties. It is considered that the silver compound is reduced by electrons generated by the photocatalyst and contributes to improvement of charge separation efficiency. The optimum value for the Ag 2 O / CuO ratio in the photocatalyst layer is that if the ratio is too small, the specific effect due to the coexistence of the silver compound is also small. This is presumably because the relative concentration of the compound is reduced, the antifungal property is reduced, and further, the influence of coloring by silver cannot be ignored.

本発明の光触媒層は、加水分解性シリコーンの乾燥物を実質的に含まないのが好ましく、より好ましくは全く含まない。加水分解性シリコーンとは、アルコキシ基を有するオルガノシロキサンおよび/またはその部分加水分解縮合物の総称である。しかしながら、本発明の有機防カビ剤の溶出や、有害ガス分解性を確保できる程度であれば加水分解性シリコーンを任意成分として含有することは許容される。したがって、加水分解性シリコーンの含有量は、シリカ(SiO)換算で、光触媒粒子、無機酸化物粒子、および加水分解性シリコーンのシリカ換算量の合計量100質量部に対して、0質量部以上10質量部未満であり、好ましくは5質量部以下、最も好ましくは0質量部である。加水分解性シリコーンとしては、4官能シリコーン化合物がよく使用され、例えば、エチルシリケート40(オリゴマー、Rがエチル基)、エチルシリケート48(オリゴマー、Rがエチル基)メチルシリケート51(オリゴマー、Rがメチル基)(いずれもコルコート社製)の形で市販されている。 The photocatalyst layer of the present invention preferably contains substantially no dried hydrolyzable silicone, and more preferably does not contain at all. The hydrolyzable silicone is a general term for an organosiloxane having an alkoxy group and / or a partially hydrolyzed condensate thereof. However, it is permissible to contain hydrolyzable silicone as an optional component as long as elution of the organic antifungal agent of the present invention and harmful gas decomposability can be ensured. Therefore, the content of hydrolyzable silicone is 0 part by mass or more with respect to 100 parts by mass of the total amount of photocatalyst particles, inorganic oxide particles, and hydrolyzable silicone in terms of silica in terms of silica (SiO 2 ). The amount is less than 10 parts by mass, preferably 5 parts by mass or less, and most preferably 0 part by mass. As the hydrolyzable silicone, a tetrafunctional silicone compound is often used. For example, ethyl silicate 40 (oligomer, R is an ethyl group), ethyl silicate 48 (oligomer, R is an ethyl group), methyl silicate 51 (oligomer, R is a methyl group) Group) (both manufactured by Colcoat Co.).

本発明の光触媒層は、光触媒粒子の含有量(a)と、無機酸化物粒子およびSiO換算での加水分解性シリコーン含有量の合算値(b)の質量比(a)/(b)は、好ましくは1/99以上20/80未満、より好ましくは3/97以上20/80未満、さらに好ましくは5/95以上20/80未満の範囲である。このような範囲にすることで、光触媒性能と耐候性に優れた光触媒塗装体が得られる。 In the photocatalyst layer of the present invention, the mass ratio (a) / (b) of the content (a) of the photocatalyst particles and the combined value (b) of the hydrolyzable silicone content in terms of inorganic oxide particles and SiO 2 is The range is preferably from 1/99 to less than 20/80, more preferably from 3/97 to less than 20/80, and still more preferably from 5/95 to less than 20/80. By setting it as such a range, the photocatalyst coating body excellent in photocatalyst performance and a weather resistance is obtained.

本発明の光触媒コーティング液は、光触媒粒子、無機酸化物粒子、銅元素、銀元素、および所望により加水分解性シリコーンおよび界面活性剤を上記特定の配合比率で溶媒中に分散させることにより得ることができる。溶媒としては、上記構成成分を適切に分散可能なあらゆる溶媒が使用可能であり、水および/または有機溶媒であってよい。また、本発明の光触媒コーティング液の固形分濃度は特に限定されないが、1〜10質量%とするのが塗布し易い点で好ましい。なお、光触媒コーティング組成物中の構成成分の分析は、コーティング液を限外ろ過によって粒子成分と濾液に分離し、それぞれを赤外分光分析、ゲルパーミエーションクロマトグラフィー、蛍光X線分光分析などで分析し、スペクトルを解析することによって評価することができる。   The photocatalyst coating liquid of the present invention can be obtained by dispersing photocatalyst particles, inorganic oxide particles, copper element, silver element, and optionally hydrolyzable silicone and surfactant in the solvent at the above specific mixing ratio. it can. As the solvent, any solvent that can appropriately disperse the above-described constituent components can be used, and water and / or an organic solvent may be used. Moreover, the solid content concentration of the photocatalyst coating liquid of the present invention is not particularly limited, but it is preferably 1 to 10% by mass because it is easy to apply. The components in the photocatalyst coating composition are analyzed by separating the coating solution into particle components and filtrate by ultrafiltration, and analyzing each by infrared spectroscopic analysis, gel permeation chromatography, fluorescent X-ray spectroscopic analysis, etc. It can be evaluated by analyzing the spectrum.

光触媒コーティング液には任意成分として界面活性剤を含んでよい。本発明に用いる界面活性剤は、任意成分として、光触媒粒子、無機酸化物粒子、および加水分解性シリコーンのシリカ換算量の合計量100質量部に対して、0質量部以上10質量部未満含有されていてもよく、好ましくは0質量部以上8質量部以下であり、より好ましくは0以上6質量部以下である。界面活性剤の効果の1つとして基材へのレベリング性があり、コーティング液と基材との組合せによって界面活性剤の量を適宜決めれば良く、その際の下限値は0.1質量部とされてよい。この界面活性剤は光触媒コーティング液の濡れ性を改善するために有効な成分であるが、塗布後に形成される光触媒層にあってはもはや本発明の光触媒塗装体の効果には寄与しない不可避不純物に相当する。したがって、光触媒コーティング液に要求される濡れ性に応じて使用されてよく、濡れ性を問題にしないのであれば界面活性剤は実質的にあるいは一切含まなくてよい。使用すべき界面活性剤は、光触媒や無機酸化物粒子の分散安定性、中間層上に塗布した際の濡れ性を勘案し適宜選択されることができるが、非イオン性界面活性剤が好ましく、より好ましくは、エーテル型非イオン性界面活性剤、エステル型非イオン性界面活性剤、ポリアルキレングリコール非イオン性界面活性剤、フッ素系非イオン性界面活性剤、シリコン系非イオン性界面活性剤が挙げられる。   The photocatalyst coating liquid may contain a surfactant as an optional component. The surfactant used in the present invention is contained as an optional component in an amount of 0 parts by mass or more and less than 10 parts by mass with respect to 100 parts by mass as a total of 100 parts by mass of photocatalyst particles, inorganic oxide particles, and hydrolyzable silicone. Preferably, they are 0 mass part or more and 8 mass parts or less, More preferably, they are 0 or more and 6 mass parts or less. One of the effects of the surfactant is leveling to the substrate, and the amount of the surfactant may be appropriately determined depending on the combination of the coating liquid and the substrate, and the lower limit in that case is 0.1 part by mass. May be. This surfactant is an effective component for improving the wettability of the photocatalyst coating solution, but in the photocatalyst layer formed after coating, it is an inevitable impurity that no longer contributes to the effect of the photocatalyst-coated body of the present invention. Equivalent to. Therefore, it may be used according to the wettability required for the photocatalyst coating solution, and if the wettability is not a problem, the surfactant may be contained substantially or not at all. The surfactant to be used can be appropriately selected in consideration of the dispersion stability of the photocatalyst and inorganic oxide particles, and wettability when applied on the intermediate layer, but a nonionic surfactant is preferable, More preferably, an ether type nonionic surfactant, an ester type nonionic surfactant, a polyalkylene glycol nonionic surfactant, a fluorine-based nonionic surfactant, or a silicon-based nonionic surfactant is used. Can be mentioned.

光触媒層製造方法
本発明の光触媒塗装体は、本発明の光触媒コーティング液を、前記中間層を有する基材上に塗布することにより簡単に製造することができる。光触媒層の塗装方法は、前記液剤を刷毛塗り、ローラー、スプレー、ロールコーター、フローコーター、ディップコート、流し塗り、スクリーン印刷、電着、蒸着等、一般に広く行われている方法を利用できる。コーティング液の基材への塗布後は、常温乾燥させればよく、あるいは必要に応じて加熱乾燥してもよい。
Photocatalyst layer manufacturing method The photocatalyst coating body of this invention can be easily manufactured by apply | coating the photocatalyst coating liquid of this invention on the base material which has the said intermediate | middle layer. As a method for coating the photocatalyst layer, generally used methods such as brush coating, roller, spray, roll coater, flow coater, dip coating, flow coating, screen printing, electrodeposition, vapor deposition and the like can be used. After applying the coating liquid to the substrate, it may be dried at room temperature, or may be heat-dried as necessary.

塗膜の乾燥膜厚は特に限定されるものでは無いが、好ましくは0.4μm〜5μm、より好ましくは0.5μm以上3μm以下である。0.4μmより薄い場合は、光触媒性能、特に有害ガス分解性が小さくなる。また5μmより厚い場合は、透明性が低下する恐れがあり、さらには添加量を増やしたほどの効果が得られず、経済的とは言えない。   Although the dry film thickness of a coating film is not specifically limited, Preferably it is 0.4 micrometer-5 micrometers, More preferably, they are 0.5 micrometer or more and 3 micrometers or less. When it is thinner than 0.4 μm, the photocatalytic performance, particularly harmful gas decomposability, is reduced. On the other hand, if it is thicker than 5 μm, the transparency may be lowered, and further, the effect of increasing the addition amount cannot be obtained, which is not economical.

本発明を以下の例に基づいて具体的に説明するが、本発明はこれらの例に限定されるものではない。
なお、以下の例において中間層コーティング液は、以下に示したいずれかのシリコーン変性アクリル樹脂材と水と造膜助剤を適宜混合して作成し、詳細を表1に示した。造膜助剤濃度は、中間層コーティング液に対し3質量%とした。
・ケイ素原子含有量が、シリコーン変性樹脂の固形分に対して10質量%のシリコーン変性アクリル樹脂ディスパージョン
・ケイ素原子含有量が、シリコーン変性樹脂の固形分に対して0.2質量%のシリコーン変性アクリル樹脂ディスパージョン
・ケイ素原子含有量が、シリコーン変性樹脂の固形分に対して16.5質量%のシリコーン変性アクリル樹脂ディスパージョン
The present invention will be specifically described based on the following examples, but the present invention is not limited to these examples.
In the following examples, the intermediate layer coating solution was prepared by appropriately mixing one of the following silicone-modified acrylic resin materials, water, and a film-forming aid, and details are shown in Table 1. The film-forming aid concentration was 3% by mass with respect to the intermediate layer coating solution.
Silicone-modified acrylic resin dispersion having a silicon atom content of 10% by mass with respect to the solid content of the silicone-modified resin. Silicone modification having a silicon atom content of 0.2% by mass with respect to the solid content of the silicone-modified resin. Acrylic resin dispersion ・ Silicone-modified acrylic resin dispersion having a silicon atom content of 16.5% by mass based on the solid content of the silicone-modified resin.

有機防カビ剤は、市販の窒素硫黄系化合物とトリアジン系化合物からなるものを用い、防カビ剤の濃度は中間層コーティング液に対し0.5質量%とした。   As the organic fungicide, a commercially available nitrogen-sulfur compound and a triazine compound were used, and the concentration of the fungicide was 0.5% by mass with respect to the intermediate layer coating solution.

Figure 2009136868
Figure 2009136868

以下の例において光触媒層コーティング液は、以下に示した光触媒粒子と、いずれかの無機酸化物と水と界面活性剤を適宜混合して作成した。詳細を表2に示した。使用した原料は以下の通りである。
光触媒粒子
・チタニア水分散体(平均粒径:42nm、塩基性)
・Ag・Cu含有チタニア水分散体:銀化合物および銅化合物を、AgOおよびCuOに換算した合計量がチタニアに対して0〜5質量%添加された光触媒性チタニア水分散体(平均粒径:48nm、塩基性)
無機酸化物粒子
・水分散型コロイダルシリカ(平均粒径:14nm、塩基性)
・水分散型コロイダルシリカ(平均粒径:26nm、塩基性)
水分散型コロイダルシリカ(平均粒径:5nm、塩基性)
水分散型コロイダルシリカ(平均粒径:51nm、塩基性)
加水分解性シリコーン
・テトラメトキシシランの重縮合物(多摩化学工業 社製、商品名:Mシリケート51)
界面活性剤
・ポリエーテル変性シリコーン系界面活性剤
In the following examples, the photocatalyst layer coating liquid was prepared by appropriately mixing the photocatalyst particles shown below, any inorganic oxide, water, and a surfactant. Details are shown in Table 2. The raw materials used are as follows.
Photocatalyst particles / titania water dispersion (average particle size: 42 nm, basic)
Ag / Cu-containing titania aqueous dispersion: photocatalytic titania aqueous dispersion in which a total amount of silver compound and copper compound converted to Ag 2 O and CuO was added in an amount of 0 to 5% by mass with respect to titania (average particle diameter : 48 nm, basic)
Inorganic oxide particles / water-dispersed colloidal silica (average particle size: 14 nm, basic)
・ Water-dispersed colloidal silica (average particle size: 26 nm, basic)
Water-dispersed colloidal silica (average particle size: 5 nm, basic)
Water-dispersed colloidal silica (average particle size: 51 nm, basic)
Hydrolyzable silicone / tetramethoxysilane polycondensate (manufactured by Tama Chemical Co., Ltd., trade name: M silicate 51)
Surfactant / polyether modified silicone surfactant

Figure 2009136868
Figure 2009136868

例1〜8:ガス分解性の評価(参考)
有機防カビ剤を含む中間層および光触媒層を備えた光触媒塗装体を以下の通り製造した。まず、基材としてフロート板ガラスを用意した。あらかじめ50℃に加熱したガラス基材上に、表1のM−1に記載の中間層コーティング液をスプレーコートし、120℃で5分乾燥し中間層を得た。このM−1液中の樹脂の固形分濃度は約20質量%であった。走査型電子顕微鏡観察により中間層の膜厚を測定したところ、例1〜8のいずれの例においても約10μmであった。
Examples 1 to 8: Evaluation of gas decomposability (reference)
The photocatalyst coating body provided with the intermediate | middle layer containing an organic fungicide and a photocatalyst layer was manufactured as follows. First, a float plate glass was prepared as a base material. The intermediate layer coating solution described in M-1 in Table 1 was spray-coated on a glass substrate previously heated to 50 ° C. and dried at 120 ° C. for 5 minutes to obtain an intermediate layer. The solid content concentration of the resin in this M-1 solution was about 20% by mass. When the film thickness of the intermediate layer was measured by observation with a scanning electron microscope, it was about 10 μm in any of Examples 1 to 8.

一方、光触媒としてのチタニア水分散体と、無機酸化物としての水分散型コロイダルシリカと、溶媒として水とを表2のT−1〜T−8に示される配合比で混合して、光触媒コーティング液を得た。光触媒コーティング液中の、光触媒、無機酸化物および加水分解性シリコーンの合計の固形分濃度は5.5質量%とした。得られた光触媒コーティング液をあらかじめ50℃に加熱した上記中間層塗装体上にスプレー塗布し、120℃で5分乾燥した。走査型電子顕微鏡観察により光触媒層の膜厚を測定したところ、例1〜8のいずれの例においても約0.5μmであった。こうして、中間層と光触媒層を形成させて、光触媒塗装体を得た。   On the other hand, a titania aqueous dispersion as a photocatalyst, a water-dispersed colloidal silica as an inorganic oxide, and water as a solvent are mixed at a blending ratio shown by T-1 to T-8 in Table 2 to form a photocatalytic coating. A liquid was obtained. The total solid content concentration of the photocatalyst, the inorganic oxide, and the hydrolyzable silicone in the photocatalyst coating liquid was 5.5% by mass. The obtained photocatalyst coating liquid was spray-coated on the intermediate layer coating body heated in advance to 50 ° C., and dried at 120 ° C. for 5 minutes. When the film thickness of the photocatalyst layer was measured by observation with a scanning electron microscope, it was about 0.5 μm in any of Examples 1 to 8. Thus, an intermediate layer and a photocatalyst layer were formed to obtain a photocatalyst-coated body.

こうして得られた50×100mmの大きさの光触媒塗装体について、以下の通りガス分解性試験を行った。光触媒塗装体に前処理として1mW/cmのBLB光で12hr以上照射した。JIS R1701に記載の反応容器内に塗装体サンプルを1枚セットした。25℃、50%RHに調整した空気に約1000ppbになるようにNOガスを混合し、遮光した反応容器内に20分導入した。その後ガスを導入したままで3mW/cmに調整したBLB光を20分間照射した。その後ガスを導入した状態で再度反応容器を遮光した。NOx除去量は、BLB光照射前後でのNO、NO濃度から下記の式に従って計算した。
NOx除去量=[NO(照射後)−NO(照射時)]−[NO(照射時)−NO(照射後)]
The photocatalyst-coated body having a size of 50 × 100 mm thus obtained was subjected to a gas decomposability test as follows. As a pretreatment, the photocatalyst-coated body was irradiated with 1 mW / cm 2 of BLB light for 12 hours or more. One coated body sample was set in the reaction vessel described in JIS R1701. NO gas was mixed with air adjusted to 25 ° C. and 50% RH so as to be about 1000 ppb, and introduced into a light-shielded reaction vessel for 20 minutes. Thereafter, BLB light adjusted to 3 mW / cm 2 was irradiated for 20 minutes while the gas was introduced. Thereafter, the reaction vessel was shielded from light again with the gas introduced. The NOx removal amount was calculated according to the following formula from the NO and NO 2 concentrations before and after the BLB light irradiation.
NOx removal amount = [NO (after irradiation) −NO (at irradiation)] − [NO 2 (at irradiation) −NO 2 (after irradiation)]

得られた結果は表3に示される通りであった。表3に示されるように、光触媒層を光触媒粒子と無機酸化物から構成し、加水分解性シリコーンを含まない構造にすると、良好なNOx分解性を示した。一方、加水分解性シリコーンが10質量部入ったものは、NOx分解性が喪失していることが分かった。また光触媒層中の光触媒比率を2.5倍に増やしてもその傾向は変わらなかった。   The obtained results were as shown in Table 3. As shown in Table 3, when the photocatalyst layer was composed of photocatalyst particles and an inorganic oxide and did not contain hydrolyzable silicone, good NOx decomposability was exhibited. On the other hand, those containing 10 parts by mass of hydrolyzable silicone were found to lose NOx decomposability. Moreover, even if the photocatalyst ratio in the photocatalyst layer was increased 2.5 times, the tendency was not changed.

Figure 2009136868
Figure 2009136868


例9、10:防藻性の評価(参考)
中間層および光触媒層を備えた光触媒塗装体を以下の通り製造した。まず、基材としてフロート板ガラスを用意した。あらかじめ50℃に加熱したガラス基材上に、表1のM−1およびM−2に記載の中間層コーティング液をスプレーコートし、120℃で5分乾燥し中間層を得た。M−1およびM−2液中の樹脂の固形分濃度は約20質量%であった。走査型電子顕微鏡観察により中間層の膜厚を測定したところ、例9、10のいずれの例においても約10μmであった。
Examples 9 and 10: Evaluation of algae resistance (reference)
The photocatalyst coating body provided with the intermediate | middle layer and the photocatalyst layer was manufactured as follows. First, a float plate glass was prepared as a base material. An intermediate layer coating solution described in M-1 and M-2 in Table 1 was spray-coated on a glass substrate previously heated to 50 ° C. and dried at 120 ° C. for 5 minutes to obtain an intermediate layer. The solid content concentration of the resin in the liquids M-1 and M-2 was about 20% by mass. When the film thickness of the intermediate layer was measured by observation with a scanning electron microscope, it was about 10 μm in any of Examples 9 and 10.

一方、光触媒としてのチタニア水分散体と、無機酸化物としての水分散型コロイダルシリカと、溶媒として水とを表2のT−4に示される配合比で混合して、光触媒コーティング液を得た。光触媒コーティング液中の光触媒および無機酸化物の合計の固形分濃度は5.5質量%とした。得られた光触媒コーティング液をあらかじめ50℃に加熱した上記中間層塗装体上にスプレー塗布し、120℃で5分乾燥した。走査型電子顕微鏡観察により光触媒層の膜厚を測定したところ、例9、10のいずれの例においても約0.5μmであった。こうして、中間層と光触媒層を形成させて、光触媒塗装体を得た。   On the other hand, a titania aqueous dispersion as a photocatalyst, a water-dispersed colloidal silica as an inorganic oxide, and water as a solvent were mixed at a mixing ratio shown by T-4 in Table 2 to obtain a photocatalyst coating solution. . The total solid concentration of the photocatalyst and the inorganic oxide in the photocatalyst coating solution was 5.5% by mass. The obtained photocatalyst coating liquid was spray-coated on the intermediate layer coating body heated in advance to 50 ° C., and dried at 120 ° C. for 5 minutes. When the film thickness of the photocatalyst layer was measured by observation with a scanning electron microscope, it was about 0.5 μm in any of Examples 9 and 10. Thus, an intermediate layer and a photocatalyst layer were formed to obtain a photocatalyst-coated body.

こうして得られた50×50mmの大きさの光触媒塗装体について、以下の通り防藻性試験を行った。藻の代用としてクロレラ(NIES−642)を用いた。試験中のクロレラの栄養源として無機塩培地を使用した。シャーレ内に、光触媒塗装体をおき一定量のクロレラと無機塩培地を含む水を投入し、蓋をして温度25℃±2℃の条件下で、照度4000lxの蛍光灯下で培養した。なおシャーレと蛍光灯の間に透明なアクリル板を挟み、紫外線を完全に遮断した。クロレラの繁殖は目視にて比較、判定した。   The photocatalyst-coated body having a size of 50 × 50 mm obtained in this way was subjected to an algal control test as follows. Chlorella (NIES-642) was used as a substitute for algae. Inorganic salt medium was used as a nutrient source for chlorella during the test. A photocatalyst-coated body was placed in the petri dish, and water containing a certain amount of chlorella and an inorganic salt medium was placed. The lid was covered and cultured under a fluorescent lamp with an illuminance of 4000 lx under a temperature of 25 ° C. ± 2 ° C. A transparent acrylic plate was sandwiched between the petri dish and the fluorescent lamp to completely block ultraviolet rays. Chlorella reproduction was compared and judged visually.

得られた結果は表4に示される通りであった。ここで、表中の○は目視で藻の発生が認められなかったもの、×は目視で藻の発生が認められたものを表す。   The obtained results were as shown in Table 4. Here, ○ in the table indicates that no algae were visually observed, and x indicates that algae was visually observed.

Figure 2009136868
Figure 2009136868


例11〜13:塗膜の透明性評価(参考)
光触媒層を備えた光触媒塗装体を以下の通り製造した。まず、基材としてフロート板ガラスを用意した。光触媒としてのチタニア水分散体と、無機酸化物としての水分散型コロイダルシリカと、溶媒として水とを表2のT−4、T−9、T−10に示される配合比で混合して、光触媒コーティング液を得た。光触媒コーティング液中の光触媒および無機酸化物の合計の固形分濃度は5.5質量%とした。得られた光触媒コーティング液を50×50mmの板ガラス上に1g滴下した後、1000rpmで10秒間スピンコートして塗膜の透明性試験体を得た。
Examples 11 to 13: Evaluation of transparency of coating film (reference)
The photocatalyst coating body provided with the photocatalyst layer was manufactured as follows. First, a float plate glass was prepared as a base material. A titania aqueous dispersion as a photocatalyst, a water-dispersed colloidal silica as an inorganic oxide, and water as a solvent are mixed in a mixing ratio shown in T-4, T-9, and T-10 in Table 2, A photocatalytic coating solution was obtained. The total solid concentration of the photocatalyst and the inorganic oxide in the photocatalyst coating solution was 5.5% by mass. After 1 g of the obtained photocatalyst coating liquid was dropped on a 50 × 50 mm plate glass, it was spin-coated at 1000 rpm for 10 seconds to obtain a coating film transparency test body.

こうして得られた50×50mmの大きさの光触媒塗装体について、BYK−Gardner社製haze−gard plusにてヘイズ値を測定した。   About the photocatalyst coating body of the magnitude | size of 50x50 mm obtained in this way, the haze value was measured in BYK-Gardner company make-gard plus.

得られた結果は表5に示される通りであった。表5より、例11、12の光触媒塗装体はヘイズ値を1%未満に抑えることができ、透明性が確保できることが分かった。   The results obtained were as shown in Table 5. From Table 5, it was found that the photocatalyst-coated bodies of Examples 11 and 12 were able to suppress the haze value to less than 1% and ensure transparency.

Figure 2009136868
Figure 2009136868


例14〜16:塗膜の密着性評価(参考)
有機防カビ剤を含む中間層および光触媒層を備えた光触媒塗装体を以下の通り製造した。まず、基材としてフロート板ガラスに汎用のエポキシ樹脂系の下塗り剤を塗装し、乾燥したものを用意した。あらかじめ50℃に加熱したガラス基材上に、表1のM−1に記載の中間層コーティング液をスプレーコートし、120℃で5分乾燥し中間層を得た。M−1液中の樹脂の固形分濃度は約20質量%であった。走査型電子顕微鏡観察により中間層の膜厚を測定したところ、例14〜16のいずれの例においても約10μmであった。
Examples 14 to 16: Evaluation of adhesion of coating film (reference)
The photocatalyst coating body provided with the intermediate | middle layer containing an organic fungicide and a photocatalyst layer was manufactured as follows. First, a general-purpose epoxy resin-based primer was applied to a float plate glass as a base material and dried. The intermediate layer coating solution described in M-1 in Table 1 was spray-coated on a glass substrate previously heated to 50 ° C. and dried at 120 ° C. for 5 minutes to obtain an intermediate layer. The solid content concentration of the resin in the M-1 solution was about 20% by mass. When the film thickness of the intermediate layer was measured by observation with a scanning electron microscope, it was about 10 μm in any of Examples 14 to 16.

一方、光触媒としてのチタニア水分散体と、無機酸化物としての水分散型コロイダルシリカと、溶媒として水とを表2のT−4、T−9、T−11に示される配合比で混合して、光触媒コーティング液を得た。光触媒コーティング液中の光触媒および無機酸化物の合計の固形分濃度は5.5質量%とした。得られた光触媒コーティング液をあらかじめ50℃に加熱した上記中間層塗装体上にスプレー塗布し、120℃で5分乾燥した。走査型電子顕微鏡観察により光触媒層の膜厚を測定したところ、例14〜16のいずれの例においても約0.5μmであった。こうして、中間層と光触媒層を形成させて、光触媒塗装体を得た。   On the other hand, a titania aqueous dispersion as a photocatalyst, a water-dispersed colloidal silica as an inorganic oxide, and water as a solvent are mixed in a mixing ratio shown in T-4, T-9, and T-11 in Table 2. Thus, a photocatalyst coating solution was obtained. The total solid concentration of the photocatalyst and the inorganic oxide in the photocatalyst coating solution was 5.5% by mass. The obtained photocatalyst coating liquid was spray-coated on the intermediate layer coating body heated in advance to 50 ° C., and dried at 120 ° C. for 5 minutes. When the film thickness of the photocatalyst layer was measured by observation with a scanning electron microscope, it was about 0.5 μm in any of Examples 14 to 16. Thus, an intermediate layer and a photocatalyst layer were formed to obtain a photocatalyst-coated body.

こうして得られた50×50mmの大きさの光触媒塗装体について、常温の飽和水酸化カルシウム水溶液中に18時間浸漬した。水洗い後、50℃で1時間乾燥させた後、塗膜表面にJIS Z1522に規定されるセロハンテープを貼り、垂直に瞬間的に剥がしたあと、剥離面を観察して、前後での膜の残存を確認した。   The photocatalyst-coated body having a size of 50 × 50 mm obtained in this way was immersed in a saturated aqueous calcium hydroxide solution at room temperature for 18 hours. After washing with water and drying at 50 ° C. for 1 hour, a cellophane tape specified in JIS Z1522 is applied to the surface of the coating film, peeled off instantaneously in a vertical direction, the peeled surface is observed, and the film remains before and after It was confirmed.

得られた結果は表6に示される通りであった。ここで表中の○は光触媒層の剥離が全く認められなかったもの、△は光触媒層の剥離が一部認められたものを表す。例14、15の光触媒塗装体は、光触媒層が中間層に対し充分な密着性を有することが分かった。   The obtained results were as shown in Table 6. Here, ○ in the table indicates that no photocatalyst layer peeling was observed, and Δ indicates that some photocatalyst layer peeling was observed. It turned out that the photocatalyst coating body of Examples 14 and 15 has sufficient adhesiveness with respect to an intermediate | middle layer.

Figure 2009136868
Figure 2009136868


例17〜23:塗膜の耐候性評価−1(参考)
有機防カビ剤を含む中間層および光触媒層を備えた光触媒塗装体を以下の通り製造した。まず、基材としてフロート板ガラスを用意した。あらかじめ50℃に加熱したガラス基材上に、表1のM−3に記載の中間層コーティング液に着色顔料を混合したものをスプレーコートし、120℃で5分乾燥し中間層を得た。
液中の樹脂の固形分濃度は約20質量%であった。走査型電子顕微鏡観察により中間層の膜厚を測定したところ、例17〜23のいずれの例においても約10μmであった。
Examples 17 to 23: Evaluation of weather resistance of coating film-1 (reference)
The photocatalyst coating body provided with the intermediate | middle layer containing an organic fungicide and a photocatalyst layer was manufactured as follows. First, a float plate glass was prepared as a base material. A glass substrate that had been heated to 50 ° C. in advance was spray-coated with the intermediate layer coating liquid described in M-3 of Table 1 mixed with a color pigment, and dried at 120 ° C. for 5 minutes to obtain an intermediate layer.
The solid content concentration of the resin in the liquid was about 20% by mass. When the film thickness of the intermediate layer was measured by observation with a scanning electron microscope, it was about 10 μm in any of Examples 17-23.

一方、光触媒としてのチタニア水分散体と、無機酸化物としての水分散型コロイダルシリカと、溶媒として水とを表2のT−1〜T−4、T−6、T−12、T−13に示される配合比で混合して、光触媒コーティング液を得た。光触媒コーティング液中の光触媒および無機酸化物の合計の固形分濃度は5.5質量%とした。得られた光触媒コーティング液をあらかじめ50℃に加熱した上記中間層塗装体上にスプレー塗布し、120℃で5分乾燥した。走査型電子顕微鏡観察により光触媒層の膜厚を測定したところ、例17〜23のいずれの例においても約0.5μmであった。こうして、中間層と光触媒層を形成させて、光触媒塗装体を得た。   On the other hand, titania aqueous dispersion as a photocatalyst, water-dispersed colloidal silica as an inorganic oxide, and water as a solvent are T-1 to T-4, T-6, T-12, and T-13 in Table 2. To obtain a photocatalyst coating liquid. The total solid concentration of the photocatalyst and the inorganic oxide in the photocatalyst coating solution was 5.5% by mass. The obtained photocatalyst coating liquid was spray-coated on the intermediate layer coating body heated in advance to 50 ° C., and dried at 120 ° C. for 5 minutes. When the film thickness of the photocatalyst layer was measured by observation with a scanning electron microscope, it was about 0.5 μm in any of Examples 17-23. Thus, an intermediate layer and a photocatalyst layer were formed to obtain a photocatalyst-coated body.

こうして得られた50×100mmの大きさの光触媒塗装体について、以下の通り耐候性試験を行った。光触媒塗装体をJIS B7753に規定されるサンシャインウェザオメーター(スガ試験機製、S−300C)に投入した。300hr経過後に試験片を取り出し、日本電色製の測色差計ZE2000にて、促進試験前後で色差を測定し、そのΔb値を比較することで変色の度合いを評価した。   About the photocatalyst coating body of a magnitude | size of 50x100 mm obtained in this way, the weather resistance test was done as follows. The photocatalyst-coated body was put into a sunshine weatherometer (S-300C, manufactured by Suga Test Instruments) defined in JIS B7753. After 300 hours, the test piece was taken out, the color difference was measured before and after the acceleration test with a color difference meter ZE2000 manufactured by Nippon Denshoku, and the degree of color change was evaluated by comparing the Δb values.

得られた結果は表7に示される通りであった。ここで、表中のGはほとんど変色しなかったことを、NGはΔb値がプラス側(黄変側)に推移したことを表す。表7に示されるように、光触媒層中の光触媒の含有量を20質量部未満にすることによって、ケイ素原子含有量が小さい中間層に光触媒層を塗装しても充分な耐候性を有することが分かった。   The obtained results were as shown in Table 7. Here, G in the table indicates that the color has hardly changed, and NG indicates that the Δb value has shifted to the plus side (yellowing side). As shown in Table 7, by making the photocatalyst content in the photocatalyst layer less than 20 parts by mass, the photocatalyst layer has sufficient weather resistance even when the photocatalyst layer is applied to the intermediate layer having a small silicon atom content. I understood.

Figure 2009136868
Figure 2009136868


例24、25:塗膜の耐候性評価−2(参考)
有機防カビ剤を含む中間層および光触媒層を備えた光触媒塗装体を以下の通り製造した。まず、基材として亜鉛メッキ鋼板に汎用のエポキシ樹脂系の下塗り剤を塗装し、乾燥したものを用意した。表1のM−1およびM−4に記載の中間層コーティング液をスプレーコートし、120℃で5分乾燥し中間層を得た。M−1およびM−4液中の樹脂の固形分濃度は約20質量%であった。走査型電子顕微鏡観察により中間層の膜厚を測定したところ、例24、25のいずれの例においても約10μmであった。
Examples 24 and 25: Evaluation of weather resistance of coating film-2 (reference)
The photocatalyst coating body provided with the intermediate | middle layer containing an organic fungicide and a photocatalyst layer was manufactured as follows. First, a general-purpose epoxy resin-based primer was applied to a galvanized steel sheet as a base material and dried. The intermediate layer coating liquid described in M-1 and M-4 of Table 1 was spray coated and dried at 120 ° C. for 5 minutes to obtain an intermediate layer. The solid content concentration of the resin in the M-1 and M-4 solutions was about 20% by mass. When the film thickness of the intermediate layer was measured by observation with a scanning electron microscope, it was about 10 μm in both Examples 24 and 25.

一方、光触媒としてのチタニア水分散体と、無機酸化物としての水分散型コロイダルシリカと、溶媒として水とを表2のT−4に示される配合比で混合して、光触媒コーティング液を得た。光触媒コーティング液中の光触媒および無機酸化物の合計の固形分濃度は5.5質量%とした。得られた光触媒コーティング液をあらかじめ50℃に加熱した上記中間層塗装体上にスプレー塗布し、120℃で5分乾燥した。走査型電子顕微鏡観察により光触媒層の膜厚を測定したところ、例24、25のいずれの例においても約0.5μmであった。こうして、中間層と光触媒層を形成させて、光触媒塗装体を得た。   On the other hand, a titania aqueous dispersion as a photocatalyst, a water-dispersed colloidal silica as an inorganic oxide, and water as a solvent were mixed at a mixing ratio shown by T-4 in Table 2 to obtain a photocatalyst coating solution. . The total solid concentration of the photocatalyst and the inorganic oxide in the photocatalyst coating solution was 5.5% by mass. The obtained photocatalyst coating liquid was spray-coated on the intermediate layer coating body heated in advance to 50 ° C., and dried at 120 ° C. for 5 minutes. When the film thickness of the photocatalyst layer was measured by observation with a scanning electron microscope, it was about 0.5 μm in both Examples 24 and 25. Thus, an intermediate layer and a photocatalyst layer were formed to obtain a photocatalyst-coated body.

こうして得られた50×100mmの大きさの光触媒塗装体について、以下の通り耐候性試験を行った。光触媒塗装体をメタリングウェザオメーター(スガ試験機製M6T)に投入した。150hr経過後に試験片を外観を確認した。   About the photocatalyst coating body of a magnitude | size of 50x100 mm obtained in this way, the weather resistance test was done as follows. The photocatalyst-coated body was put into a metering weatherometer (M6T manufactured by Suga Test Instruments). The appearance of the test piece was confirmed after 150 hours.

中間層に、シリコーン変性樹脂の固形分に対してケイ素原子含有量が10質量%のアクリル変性シリコーン樹脂を用いた例24は、クラックの発生が認められず、外観が良好で、十分な耐候性を有することがわかった。一方、ケイ素原子含有量が16.5質量%のアクリル変性シリコーン樹脂を用いた例25では、わずかではあるが、部分的にクラックの発生が認められた。   In Example 24, in which an acrylic modified silicone resin having a silicon atom content of 10% by mass with respect to the solid content of the silicone modified resin was used for the intermediate layer, no cracks were observed, the appearance was good, and sufficient weather resistance. It was found to have On the other hand, in Example 25 using an acrylic-modified silicone resin having a silicon atom content of 16.5% by mass, generation of cracks was partially observed.

例26:塗膜の耐候性評価−3(参考)
基材のサイズを150×65mmとした以外は例24と同じ条件で、光触媒塗装体を作成した。この光触媒塗装体について、以下の通り耐候性試験を行った。光触媒塗装体をJIS B7753に規定されるサンシャインウェザオメーター(スガ試験機製、S−300C)に投入した。4500hr経過後に試験片を取り出し、日本電色製の測色差計ZE2000にて色差を測定し、ΔE値を算出した。また接触角計(協和界面科学製CA−X150)にて水接触角を測定した。なおΔE値は、JIS Z8730に記載の方法に基づいて算出した。
Example 26: Weather resistance evaluation of coating film-3 (reference)
A photocatalyst-coated body was prepared under the same conditions as in Example 24 except that the size of the substrate was 150 × 65 mm. About this photocatalyst coating body, the weather resistance test was done as follows. The photocatalyst-coated body was put into a sunshine weatherometer (S-300C, manufactured by Suga Test Instruments) defined in JIS B7753. After 4500 hours had elapsed, the test piece was taken out, the color difference was measured with a color difference meter ZE2000 manufactured by Nippon Denshoku, and the ΔE value was calculated. Further, the water contact angle was measured with a contact angle meter (CA-X150, manufactured by Kyowa Interface Science). The ΔE value was calculated based on the method described in JIS Z8730.

本発明において得られた光触媒塗装体は、サンシャインウェザオメーター4500hr経過後のΔE値が0.5、水接触角は5°以下と驚異的な耐候性と、超親水性を有することが分かった。またNOxガス分解および塗膜の密着性も、初期とほとんど同等のレベルであった。   The photocatalyst-coated body obtained in the present invention was found to have surprising weather resistance and super hydrophilicity, with a ΔE value of 0.5 and a water contact angle of 5 ° or less after 4500 hours of sunshine weatherometer. . Moreover, the NOx gas decomposition and the adhesion of the coating film were almost the same level as in the initial stage.

例27:塗膜の耐候性評価−4(参考)
例26と同一条件にて作成した光触媒塗装体について、以下の通り耐候性試験を行った。光触媒塗装体を神奈川県茅ケ崎市にて、水平から上方に向け45°の傾斜をつけた状態で南の方角に向け、屋外曝露を実施した。約500日経過後に試験片を取り出し、日本電色製の測色差計ZE2000にて色差を測定した。
Example 27: Evaluation of weather resistance of coating film-4 (reference)
About the photocatalyst coating body produced on the same conditions as Example 26, the weather resistance test was done as follows. The photocatalyst-coated body was exposed outdoors in Chigasaki City, Kanagawa Prefecture, with a 45 ° slope from the horizontal to the top, facing south. After about 500 days, the test piece was taken out and the color difference was measured with a color difference meter ZE2000 manufactured by Nippon Denshoku.

本発明において得られた光触媒塗装体は、屋外曝露を実施した約500日経過後のΔE値が0.5以下と、驚異的な防汚性を有することが分かった。   The photocatalyst-coated body obtained in the present invention was found to have an amazing antifouling property, with a ΔE value of about 0.5 or less after about 500 days after outdoor exposure.

例28〜33:銀化合物および銅化合物による抗カビ性の評価−1
中間層および光触媒層を備えた光触媒塗装体を以下の通り製造した。まず、基材としてフロート板ガラスを用意した。あらかじめ50℃に加熱したガラス基材上に、表1のM−2に記載の中間層コーティング液をスプレーコートし、120℃で5分乾燥し中間層を得た。M−2液中の樹脂の固形分濃度は約20質量%であった。走査型電子顕微鏡観察により中間層の膜厚を測定したところ、例28〜33のいずれの例においても約10μmであった。
Examples 28 to 33: Evaluation of antifungal property by silver compound and copper compound-1
The photocatalyst coating body provided with the intermediate | middle layer and the photocatalyst layer was manufactured as follows. First, a float plate glass was prepared as a base material. An intermediate layer coating solution described in M-2 of Table 1 was spray-coated on a glass substrate previously heated to 50 ° C. and dried at 120 ° C. for 5 minutes to obtain an intermediate layer. The solid content concentration of the resin in the liquid M-2 was about 20% by mass. When the film thickness of the intermediate layer was measured by observation with a scanning electron microscope, it was about 10 μm in any of Examples 28 to 33.

一方、光触媒としてのチタニア水分散体と、無機酸化物としての水分散型コロイダルシリカと、溶媒として水とを表2のT−4、T−14〜T−18に示される配合比で混合して、光触媒コーティング液を得た。光触媒コーティング液中の光触媒および無機酸化物の合計の固形分濃度は5.5質量%とした。なお、例28〜32においては、銀化合物と銅化合物の配合比を調整したAg・Cu含有チタニア水分散体を使用し(ただし、例31は全て銅化合物、例32は全て銀化合物)、例33においては銀化合物および銅化合物を含まないチタニア水分散体を使用した。   On the other hand, a titania aqueous dispersion as a photocatalyst, a water-dispersed colloidal silica as an inorganic oxide, and water as a solvent are mixed at a blending ratio shown in T-4 and T-14 to T-18 in Table 2. Thus, a photocatalyst coating solution was obtained. The total solid concentration of the photocatalyst and the inorganic oxide in the photocatalyst coating solution was 5.5% by mass. In Examples 28 to 32, an Ag / Cu-containing titania aqueous dispersion in which the compounding ratio of the silver compound and the copper compound was adjusted was used (however, Example 31 was all a copper compound, and Example 32 was a silver compound). In No. 33, a titania aqueous dispersion containing no silver compound or copper compound was used.

得られた光触媒コーティング液をあらかじめ50℃に加熱した上記中間層塗装体上にスプレー塗布し、120℃で5分乾燥した。走査型電子顕微鏡観察により光触媒層の膜厚を測定したところ、例28〜33のいずれの例においても約1μmであった。こうして、中間層と光触媒層を形成させて、光触媒塗装体を得た。これら光触媒塗装体の前処理として1mW/cmのBLB光を24時間照射したのち、下記した抗カビ性試験を行った。 The obtained photocatalyst coating liquid was spray-coated on the intermediate layer coating body heated in advance to 50 ° C., and dried at 120 ° C. for 5 minutes. When the film thickness of the photocatalyst layer was measured by observation with a scanning electron microscope, it was about 1 μm in any of Examples 28 to 33. Thus, an intermediate layer and a photocatalyst layer were formed to obtain a photocatalyst-coated body. After pre-treatment of these photocatalyst-coated bodies with 1 mW / cm 2 of BLB light for 24 hours, the following antifungal test was performed.

こうして得られた50×50mmの大きさの光触媒塗装体について、以下の通り抗カビ性の評価を行った。試験菌としてポテトデキストロース寒天培地で、25℃で7〜14日前培養したAspergillus niger(NBRC6341)を用い、これを0.005重量%のスルホコハク酸ジオクチルナトリウムを含む生理食塩水中に分散させ胞子懸濁液を作成した。 The anti-fungal property of the photocatalyst-coated body having a size of 50 × 50 mm thus obtained was evaluated as follows. Aspergillus niger (NBRC6341) previously cultured at 25 ° C. for 7 to 14 days on a potato dextrose agar medium as a test bacterium, this was dispersed in physiological saline containing 0.005% by weight of dioctyl sodium sulfosuccinate, and a spore suspension It was created.

上記方法にて得られた光触媒塗装体に、前記胞子懸濁液を、試験片1枚あたり4〜6×10個/mLになるよう滴下し、抗カビ試験片とした。この試験片に、JIS R1702(2006)に記載のフィルム密着法に準じ、密着フィルムをかぶせ、保湿可能なシャーレ内に設置し、保湿ガラスを載せて試験に用いた。 The spore suspension was dropped on the photocatalyst-coated body obtained by the above method so that the amount of the spore suspension was 4 to 6 × 10 5 pieces / mL per one test piece to obtain an anti-mold test piece. In accordance with the film adhesion method described in JIS R1702 (2006), the test piece was covered with an adhesion film, placed in a petri dish capable of moisture retention, and moisturized glass was placed and used for the test.

前記試験片をシャーレごとBLB光照射下に設置し、光触媒塗装体面で0.4mW/cmになるようBLB光を24時間照射した。 The test piece was placed together with the petri dish under BLB light irradiation, and irradiated with BLB light for 24 hours so that the photocatalyst-coated body surface was 0.4 mW / cm 2 .

24時間照射後、胞子懸濁液を回収し、ポテトデキストロース寒天培地で培養し、生残菌数を計測した。抗カビ性は、例28〜33によって得られた生残菌数の対数値と、同様の試験を実施した光触媒未加工の試験体の生残菌数の対数値の差を求めることによって得た。   After 24 hours of irradiation, the spore suspension was collected and cultured on a potato dextrose agar medium, and the number of surviving bacteria was counted. The antifungal property was obtained by determining the difference between the logarithmic value of the survival cell count obtained in Examples 28 to 33 and the logarithmic value of the survival cell count of the photocatalyst-unprocessed specimen subjected to the same test. .

試験結果を表8に示した。ここで、表中の抗カビ活性値とは例28〜33によって得られた生残菌数の対数値と光触媒未加工の試験体の生残菌数の対数値との差の値であり、数値が大きいほど抗カビ性が高いことを示している。抗カビ活性値が、Ag・Cu含有チタニア水分散体を用いて作製した例において、銀化合物のみや銅化合物のみを添加した例に比べて高い値となっており、銀化合物と銅化合物とを混合することで高い抗カビ性能を得ることが確認できた。 The test results are shown in Table 8. Here, the antifungal activity value in the table is the value of the difference between the logarithmic value of the survival cell count obtained in Examples 28 to 33 and the logarithmic value of the survival cell count of the photocatalyst untreated specimen, The larger the value, the higher the antifungal property. In the example produced using the Ag / Cu-containing titania aqueous dispersion, the antifungal activity value is higher than the example in which only the silver compound or only the copper compound is added. It was confirmed that high antifungal performance was obtained by mixing.

Figure 2009136868
Figure 2009136868


例34、35:銀化合物および銅化合物による抗カビ性の評価−2
中間層および光触媒層を備えた光触媒塗装体を以下の通り製造した。まず、基材としてフロート板ガラスを用意した。あらかじめ50℃に加熱したガラス基材上に、表1のM−2に記載の中間層コーティング液をスプレーコートし、120℃で5分乾燥し中間層を得た。M−2液中の樹脂の固形分濃度は約20質量%であった。走査型電子顕微鏡観察により中間層の膜厚を測定したところ、例34および例35のいずれにおいても約10μmであった。
Examples 34 and 35: Evaluation of antifungal property by silver compound and copper compound-2
The photocatalyst coating body provided with the intermediate | middle layer and the photocatalyst layer was manufactured as follows. First, a float plate glass was prepared as a base material. An intermediate layer coating solution described in M-2 of Table 1 was spray-coated on a glass substrate previously heated to 50 ° C. and dried at 120 ° C. for 5 minutes to obtain an intermediate layer. The solid content concentration of the resin in the liquid M-2 was about 20% by mass. When the film thickness of the intermediate layer was measured by observation with a scanning electron microscope, it was about 10 μm in both Example 34 and Example 35.

一方、光触媒としてのAg・Cu含有チタニア水分散体と、無機酸化物としての水分散型コロイダルシリカと、溶媒として水とを表2のT−19およびT−21に示される配合比で混合して、光触媒コーティング液を得た。光触媒コーティング液中の光触媒および無機酸化物の合計の固形分濃度は5.5質量%とした。   On the other hand, an Ag / Cu-containing titania aqueous dispersion as a photocatalyst, water-dispersed colloidal silica as an inorganic oxide, and water as a solvent are mixed in a mixing ratio shown by T-19 and T-21 in Table 2. Thus, a photocatalyst coating solution was obtained. The total solid concentration of the photocatalyst and the inorganic oxide in the photocatalyst coating solution was 5.5% by mass.

得られた光触媒コーティング液を、例28〜33と同様の方法で製膜し、例34および例35の光触媒体を得た。走査型電子顕微鏡観察により光触媒層の膜厚を測定したところ、例34および例35のいずれの例においても約1μmであった。この光触媒体について、例28〜33と同様の方法にて抗カビ性の評価を行った。   The obtained photocatalyst coating liquid was formed into a film by the method similar to Examples 28-33, and the photocatalyst body of Example 34 and Example 35 was obtained. When the film thickness of the photocatalyst layer was measured by observation with a scanning electron microscope, it was about 1 μm in both Examples 34 and 35. About this photocatalyst body, antifungal evaluation was performed by the method similar to Examples 28-33.

試験結果を表9に示した。また例29の抗カビ活性値も表9にしめした。酸化チタン粒子に対して[AgO+CuO]量が0.5質量%、3質量%および5質量%のいずれにおいても、高い抗カビ性能を得ることが確認できた。 The test results are shown in Table 9. The antifungal activity values of Example 29 are also shown in Table 9. It was confirmed that high antifungal performance was obtained when the amount of [Ag 2 O + CuO] was 0.5% by mass, 3% by mass, and 5% by mass with respect to the titanium oxide particles.

Figure 2009136868
Figure 2009136868


例36、37:銀化合物および銅化合物による抗カビ性の評価−3
中間層および光触媒層を備えた光触媒塗装体を以下の通り製造した。まず、基材としてフロート板ガラスを用意した。あらかじめ50℃に加熱したガラス基材上に、表1のM−1およびM−2に記載の中間層コーティング液をスプレーコートし、120℃で5分乾燥し中間層を得た。M−1またはM−2液中の樹脂の固形分濃度は約20質量%であった。走査型電子顕微鏡観察により中間層の膜厚を測定したところ、例36および例37のいずれにおいても約10μmであった。
Examples 36 and 37: Evaluation of antifungal property by silver compound and copper compound-3
The photocatalyst coating body provided with the intermediate | middle layer and the photocatalyst layer was manufactured as follows. First, a float plate glass was prepared as a base material. An intermediate layer coating solution described in M-1 and M-2 in Table 1 was spray-coated on a glass substrate previously heated to 50 ° C. and dried at 120 ° C. for 5 minutes to obtain an intermediate layer. The solid content concentration of the resin in the liquid M-1 or M-2 was about 20% by mass. When the film thickness of the intermediate layer was measured by observation with a scanning electron microscope, it was about 10 μm in both Example 36 and Example 37.

一方、光触媒としてのAg・Cu含有チタニア水分散体と、無機酸化物としての水分散型コロイダルシリカと、溶媒として水とを表2のT−20に示される配合比で混合して、光触媒コーティング液を得た。光触媒コーティング液中の光触媒および無機酸化物の合計の固形分濃度は5.5質量%とした。   On the other hand, an Ag / Cu-containing titania aqueous dispersion as a photocatalyst, a water-dispersed colloidal silica as an inorganic oxide, and water as a solvent are mixed in a mixing ratio shown by T-20 in Table 2 to obtain a photocatalytic coating. A liquid was obtained. The total solid concentration of the photocatalyst and the inorganic oxide in the photocatalyst coating solution was 5.5% by mass.

得られた光触媒コーティング液を、例28〜33と同様の方法で製膜し、例36の光触媒体を得た。走査型電子顕微鏡観察により光触媒層の膜厚を測定したところ、例36および例37のいずれにおいても約1μmであった。この光触媒体について、例28〜33と同様の方法にて抗カビ性の評価を行った。   The obtained photocatalyst coating liquid was formed into a film in the same manner as in Examples 28 to 33, and the photocatalyst of Example 36 was obtained. When the film thickness of the photocatalyst layer was measured by observation with a scanning electron microscope, it was about 1 μm in both Example 36 and Example 37. About this photocatalyst body, antifungal evaluation was performed by the method similar to Examples 28-33.

試験結果を表10に示した。中間層に有機防カビ剤が含まれている例37においては、防カビ剤による効果が相乗され、抗カビ活性値がさらに大きくなった。   The test results are shown in Table 10. In Example 37 in which the organic antifungal agent was included in the intermediate layer, the effect of the antifungal agent was synergized, and the antifungal activity value was further increased.

Figure 2009136868
Figure 2009136868

Claims (12)

基材と、該基材上に設けられた中間層と、該中間層上に設けられた光触媒層とを備えた光触媒塗装体であって、
前記中間層は有機防カビ剤を含んでなり、
前記光触媒層が、
1質量部以上20質量部未満の光触媒粒子と、
70質量部超え99質量部以下の無機酸化物粒子と、
シリカ換算で0質量部以上10質量部未満の加水分解性シリコーンの乾燥物と
を、前記光触媒粒子、前記無機酸化物粒子、および前記加水分解性シリコーンのシリカ換算量の合計量が100質量部となるように含み、
さらに銅元素および銀元素を含み、
前記光触媒層には粒子間の隙間が存在してなる、光触媒塗装体。
A photocatalyst-coated body comprising a base material, an intermediate layer provided on the base material, and a photocatalyst layer provided on the intermediate layer,
The intermediate layer comprises an organic antifungal agent;
The photocatalytic layer is
1 to 20 parts by mass of photocatalyst particles,
70 to 99 parts by mass of inorganic oxide particles,
A hydrolyzable silicone dry matter having a weight of 0 to less than 10 parts by weight in terms of silica, and the total amount of silica equivalents of the photocatalyst particles, the inorganic oxide particles, and the hydrolyzable silicone is 100 parts by weight. Including
In addition, containing copper element and silver element,
A photocatalyst-coated body in which gaps between particles exist in the photocatalyst layer.
前記無機酸化物の平均粒子径が、走査型電子顕微鏡により20万倍の視野に入る任意の100個の粒子の長さを測定することにより算出される、5nmを超え40nm未満の個数平均粒径を有する、請求項1に記載の光触媒塗装体。   The average particle diameter of the inorganic oxide is calculated by measuring the length of any 100 particles that enter a 200,000-fold field of view with a scanning electron microscope. The number average particle diameter of more than 5 nm and less than 40 nm The photocatalyst coating body of Claim 1 which has these. 前記光触媒粒子が酸化チタンである、請求項1または2に記載の光触媒塗装体。   The photocatalyst-coated body according to claim 1 or 2, wherein the photocatalyst particles are titanium oxide. 前記無機酸化物粒子がシリカである、請求項1〜3のいずれか一項に記載の光触媒塗装体。   The photocatalyst coating body as described in any one of Claims 1-3 whose said inorganic oxide particle is a silica. 前記中間層がシリコーン変性樹脂を含んでなる、請求項1〜4のいずれか一項に記載の光触媒塗装体。   The photocatalyst coating body as described in any one of Claims 1-4 in which the said intermediate | middle layer comprises a silicone modified resin. 外装材として用いられる、請求項1〜5のいずれか一項に記載の光触媒塗装体。   The photocatalyst coating body as described in any one of Claims 1-5 used as an exterior material. 請求項1〜6のいずれか一項に記載の光触媒塗装体の製造に用いられる光触媒コーティング液であって、
溶媒と、
1質量部以上20質量部未満の光触媒粒子と、
70質量部超え99質量部以下の無機酸化物粒子と
シリカ換算で0質量部以上10質量部未満の加水分解性シリコーンとを、
前記光触媒粒子、前記無機酸化物粒子、および前記加水分解性シリコーンのシリカ換算量の合計量が100質量部となるように含み、さらに銅元素および銀元素を含んでなる、光触媒コーティング液。
It is a photocatalyst coating liquid used for manufacture of the photocatalyst coating body as described in any one of Claims 1-6,
A solvent,
1 to 20 parts by mass of photocatalyst particles,
70 parts by mass or more and 99 parts by mass or less of inorganic oxide particles and 0 to 10 parts by mass of hydrolyzable silicone in terms of silica,
A photocatalyst coating liquid comprising a total amount of the photocatalyst particles, the inorganic oxide particles, and the hydrolyzable silicone in an amount equivalent to silica of 100 parts by mass, and further containing a copper element and a silver element.
前記無機酸化物の平均粒子径が、走査型電子顕微鏡により20万倍の視野に入る任意の100個の粒子の長さを測定することにより算出される、5nmを超え40nm未満の個数平均粒径を有する、請求項7に記載の光触媒コーティング液。   The average particle diameter of the inorganic oxide is calculated by measuring the length of any 100 particles that enter a 200,000-fold field of view with a scanning electron microscope. The number average particle diameter of more than 5 nm and less than 40 nm The photocatalyst coating liquid according to claim 7, comprising: 前記光触媒粒子が酸化チタン粒子である、請求項7または8に記載の光触媒コーティング液。   The photocatalyst coating liquid according to claim 7 or 8, wherein the photocatalyst particles are titanium oxide particles. 前記無機酸化物粒子が、シリカ粒子である、請求項7〜9のいずれか一項に記載の光触媒コーティング液。   The photocatalyst coating liquid as described in any one of Claims 7-9 whose said inorganic oxide particle is a silica particle. 請求項1〜6のいずれか一項に記載された光触媒塗装体の製造に用いられる中間層を形成するためのコーティング液であって、溶媒と、シリコーン変性樹脂と、有機防カビ剤とを含んでなる、コーティング液。   It is a coating liquid for forming the intermediate | middle layer used for manufacture of the photocatalyst coating body as described in any one of Claims 1-6, Comprising: A solvent, silicone modified resin, and an organic antifungal agent are included. A coating solution consisting of 請求項1〜6のいずれか一項に記載された光触媒塗装体の製造に用いられるコーティング液の組み合わせであって、請求項7〜10のいずれか一項に記載の光触媒コーティング液と、請求項11に記載の中間層を形成するためのコーティング液との組み合わせ。   It is a combination of the coating liquid used for manufacture of the photocatalyst coating body as described in any one of Claims 1-6, Comprising: The photocatalyst coating liquid as described in any one of Claims 7-10, The combination with the coating liquid for forming the intermediate | middle layer of 11.
JP2008323152A 2007-03-30 2008-12-19 Photocatalyst-coated body and photocatalyst coating liquid therefor Pending JP2009136868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008323152A JP2009136868A (en) 2007-03-30 2008-12-19 Photocatalyst-coated body and photocatalyst coating liquid therefor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007095540 2007-03-30
JP2007128574 2007-05-14
JP2008323152A JP2009136868A (en) 2007-03-30 2008-12-19 Photocatalyst-coated body and photocatalyst coating liquid therefor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008088791A Division JP2008307527A (en) 2007-03-30 2008-03-28 Coated-photocatalyst object and photocatalyst coating solution therefor

Publications (1)

Publication Number Publication Date
JP2009136868A true JP2009136868A (en) 2009-06-25

Family

ID=40235626

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2008088792A Pending JP2008307528A (en) 2007-03-30 2008-03-28 Coated-photocatalyst object and photocatalyst coating liquid therefor
JP2008088791A Pending JP2008307527A (en) 2007-03-30 2008-03-28 Coated-photocatalyst object and photocatalyst coating solution therefor
JP2008323152A Pending JP2009136868A (en) 2007-03-30 2008-12-19 Photocatalyst-coated body and photocatalyst coating liquid therefor
JP2009237116A Pending JP2010042414A (en) 2007-03-30 2009-10-14 Photocatalyst-coated body and photocatalyst coating liquid therefor

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2008088792A Pending JP2008307528A (en) 2007-03-30 2008-03-28 Coated-photocatalyst object and photocatalyst coating liquid therefor
JP2008088791A Pending JP2008307527A (en) 2007-03-30 2008-03-28 Coated-photocatalyst object and photocatalyst coating solution therefor

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2009237116A Pending JP2010042414A (en) 2007-03-30 2009-10-14 Photocatalyst-coated body and photocatalyst coating liquid therefor

Country Status (1)

Country Link
JP (4) JP2008307528A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015098015A (en) * 2013-10-15 2015-05-28 本田技研工業株式会社 Exhaust gas purification filter
JP2015129081A (en) * 2009-08-17 2015-07-16 日本板硝子株式会社 Glass article having photocatalyst film
CN109251599A (en) * 2018-07-28 2019-01-22 南京昊铭远科信息科技有限公司 A kind of weatherability fungus resistant coating material and preparation method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5305231B2 (en) * 2009-01-28 2013-10-02 Toto株式会社 Photocatalyst paint
WO2011118781A1 (en) * 2010-03-25 2011-09-29 Toto株式会社 Photocatalyst-coated body
JP6351469B2 (en) * 2014-03-24 2018-07-04 Toto株式会社 Photocatalyst-coated body and photocatalyst coating liquid therefor
JP6830756B2 (en) * 2015-08-19 2021-02-17 東京インキ株式会社 Coating agent for forming antibacterial layer, antibacterial laminate, manufacturing method of antibacterial laminate, film or sheet using antibacterial laminate, packaging container, packaging bag, lid material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4112661B2 (en) * 1997-12-11 2008-07-02 住友化学株式会社 Photocatalyst and its use
JP3559892B2 (en) * 1998-08-10 2004-09-02 昭和電工株式会社 Photocatalytic film and method for forming the same
JP4549477B2 (en) * 2000-02-25 2010-09-22 日本曹達株式会社 Photocatalyst carrying structure having antibacterial and antifungal effects
JP4017030B2 (en) * 2001-08-10 2007-12-05 平岡織染株式会社 Aesthetic-sustainable laminated film material
JP2004359902A (en) * 2003-06-06 2004-12-24 Matsushita Electric Works Ltd Photocatalytic coating material
JP4050207B2 (en) * 2003-09-05 2008-02-20 有限会社ケイ・ビー・エル営繕センター Water-based photocatalyst paint
JP4092434B1 (en) * 2007-03-30 2008-05-28 Toto株式会社 Photocatalyst-coated body and photocatalyst coating liquid therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015129081A (en) * 2009-08-17 2015-07-16 日本板硝子株式会社 Glass article having photocatalyst film
JP2015098015A (en) * 2013-10-15 2015-05-28 本田技研工業株式会社 Exhaust gas purification filter
CN109251599A (en) * 2018-07-28 2019-01-22 南京昊铭远科信息科技有限公司 A kind of weatherability fungus resistant coating material and preparation method thereof

Also Published As

Publication number Publication date
JP2010042414A (en) 2010-02-25
JP2008307527A (en) 2008-12-25
JP2008307528A (en) 2008-12-25

Similar Documents

Publication Publication Date Title
JP4092434B1 (en) Photocatalyst-coated body and photocatalyst coating liquid therefor
JP4092714B1 (en) Photocatalyst-coated body and photocatalyst coating liquid therefor
TWI440505B (en) Photocatalyst coating
JP2009136868A (en) Photocatalyst-coated body and photocatalyst coating liquid therefor
JP2012250134A (en) Photocatalyst-coated object, and photocatalyst coating liquid therefor
JP2010099647A (en) Photocatalyst-coated body and photocatalytic coating liquid for the same
WO2011118780A1 (en) Photocatalyst-coated body and photocatalyst coating liquid
JP4933568B2 (en) Photocatalyst-coated body and photocatalyst coating liquid therefor
JP2008307526A (en) Photocatalytic coated body and photocatalytic coating liquid for the same
JP2009263651A (en) Photocatalyst coating composition
JP2009286838A (en) Photocatalyst-coated item and photocatalyst coating liquid therefor
JP2010149005A (en) Article coated with photocatalyst, and photocatalytic coating liquid therefor
CN110408243B (en) Visible light photocatalytic function base coat containing quantum dots and preparation method thereof
JP2009285534A (en) Photocatalyst-coated body and photocatalytic coating liquid therefor
JP2010150768A (en) Building material
JP2010150767A (en) Building material
JP2009255571A (en) Photocatalyst-applied object, and photocatalyst coating liquid therefor
JP2009285882A (en) Photocatalyst coated body and photocatalyst coating liquid therefor
JP2010149321A (en) Photocatalyst coated object and photocatalyst coating solution therefor
JP2010149004A (en) Article coated with photocatalyst, and photocatalytic coating liquid therefor
JP2010149099A (en) Article coated with photocatalyst, and photocatalytic coating liquid therefor
JP2009262139A (en) Photocatalyst-coated body and photocatalyst coating liquid therefor
JP2009285535A (en) Photocatalyst-coated body and photocatalytic coating liquid therefor
JP2009262140A (en) Photocatalyst-coated body and photocatalyst coating liquid therefor
JP2010099645A (en) Photocatalyst-coated body and photocatalytic coating liquid for the same