JP2009135539A - 固体素子デバイスの製造方法 - Google Patents

固体素子デバイスの製造方法 Download PDF

Info

Publication number
JP2009135539A
JP2009135539A JP2009063663A JP2009063663A JP2009135539A JP 2009135539 A JP2009135539 A JP 2009135539A JP 2009063663 A JP2009063663 A JP 2009063663A JP 2009063663 A JP2009063663 A JP 2009063663A JP 2009135539 A JP2009135539 A JP 2009135539A
Authority
JP
Japan
Prior art keywords
electrode
glass
solid element
led
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009063663A
Other languages
English (en)
Inventor
Yoshinobu Suehiro
好伸 末広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2009063663A priority Critical patent/JP2009135539A/ja
Publication of JP2009135539A publication Critical patent/JP2009135539A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

【課題】無機材料封止加工を具現化するための課題を抽出、解決し、ガラス封止を行うことで期待できる効果を実際に得ることができ、さらに実装性に優れ、電気接続性、放熱性に優れる固体素子デバイスの製造方法を提供する。
【解決手段】 LED素子2のp電極24およびn電極25の実装面が回路パターン4に対して略同一面化するようにマウントされるので、LED素子2と回路パターン4との間に高粘度のガラスが回り込むことがなく、ガラスの回り込みによる電極へのダメージに基づく電気接続性の低下やクラックの発生を防ぐことができる。
【選択図】図1

Description

本発明は、固体素子をガラス材料で封止した固体素子デバイスの製造方法に関し、特に、無機材料封止加工を具現化するための課題を抽出、解決し、ガラス封止を行うことで期待できる効果を実際に得ることができ、さらに固体素子の実装性、封止加工性、電気接続性、放熱性に優れる固体素子デバイスの製造方法に関する。
従来、発光ダイオード(Light Emitting Diode:LED)等の固体素子をエポキシ樹脂等の透光性樹脂材料で封止した固体素子デバイスがある。このような固体素子デバイスにおいて、透光性樹脂が光によって劣化を生じることが知られている。特に、短波長光を放出するIII族窒化物系化合物半導体発光素子を用いる場合には、当該素子から放出される高エネルギーの光と素子自体の発熱によって素子近傍の透光性樹脂が黄変し、そのことにより光取り出し効率が無視できないほどに低下することがある。
このような封止部材の劣化を防止するものとして、封止部材に低融点ガラスを用いた発光デバイスが提案されている(例えば、特許文献1,2参照。)。
特許文献1に記載された発光デバイスは、LED素子、ワイヤボンディング部、およびリード部の上端の周囲を低融点ガラスからなる透明の封止体で覆って構成されている。低融点ガラスには、例えば、セレン、タリウム、ヒ素、硫黄等を加えて融点を摂氏130〜350度としたものが使用される。この場合、好ましくは、融点が摂氏200度以下(より好ましくは150度以下)の低融点ガラスが使用される。
特許文献1に記載される発光デバイスによれば、エポキシ系樹脂等の透光性樹脂材料の紫外線に対する悪特性あるいは弱特性に起因して、時間経過とともにその封止体が光劣化するといった不具合を回避できる。
また、特許文献2に記載された発光デバイスは、LED発光素子を覆う封止体として、GaN系LED発光素子の屈折率2.3程度に近い屈折率2程度の低融点ガラスを用いている。
特許文献2に記載された発光デバイスによれば、GaN系LED発光素子の屈折率に近い低融点ガラスでLED発光素子を封止することによって、LED発光素子と低融点ガラスとの界面で全反射される光が少なくなり、LED発光素子から外部放射されて低融点ガラスに入射する光の量が多くなる。その結果、発光効率は、LED発光素子をエポキシ樹脂で封止している従来のものよりも高くなる。
特開平8−102553号公報 特開平11−177129号公報
しかし、従来の低融点ガラスを封止部材に用いた固体素子デバイスによると、低融点ガラスとはいえ高温加工を行う必要があり、かつガラスが硬質材料であるため、樹脂封止加工の延長ではデバイスを具現化することができないという問題があった。
従って、本発明の目的は、光学素子をガラス材料で封止した固体素子デバイスの製造方法に関し、特に、無機材料封止加工を具現化するための課題を抽出、解決し、ガラス封止を行うことで期待できる効果を実際に得ることができ、さらに固体素子の実装性、封止加工性、電気接続性、放熱性に優れる固体素子デバイスの製造方法を提供することにある。
本発明は、上記目的を達成するため、実装面にp電極及びn電極を有する固体素子を、導電パターンが形成された無機材料基板の素子実装面にフリップ実装して、前記p電極及び前記n電極と前記素子実装面を直に密着させ、前記固体素子がマウントされた前記無機材料基板に対してホットプレス加工による低融点ガラスの封止加工を行い、前記p電極及び前記n電極と前記素子実装面が密着していることで前記固体素子と前記素子実装面の間に前記低融点ガラスが回り込むことなく前記固体素子を前記低融点ガラスにより封止する固体素子デバイスの製造方法を提供する。
本発明の固体素子デバイスによると、光学素子をガラス材料で封止した固体素子デバイスの製造方法に関し、特に、無機材料封止加工を具現化するための課題を抽出、解決し、ガラス封止を行うことで期待できる効果を実際に得ることができ、さらに固体素子の実装性、封止加工性、電気接続性、放熱性を向上させることができる。
本発明の第1の実施の形態に係る固体素子デバイスとしてのLEDを示す縦断面図である。 本発明の第2の実施の形態に係る固体素子デバイスとしてのLEDを示す縦断面図である。 本発明の第3の実施の形態に係る固体素子デバイスとしてのLEDを示す縦断面図である。 本発明の第4の実施の形態に係る固体素子デバイスとしてのLEDを示す縦断面図である。 本発明の第5の実施の形態に係る固体素子デバイスとしてのLEDを示す縦断面図である。 本発明の第6の実施の形態に係る固体素子デバイスとしてのLEDを示す縦断面図である。
(第1の実施の形態)
図1は、本発明の第1の実施の形態に係る固体素子デバイスとしてのLEDを示す縦断面図である。
このLED1は、フリップチップ型のGaN系半導体材料からなるLED素子(熱膨張率α:5〜7×10−6/℃)2と、LED素子2をマウントする無機材料基板としてのガラス含有Al基板3と、タングステン(W)−ニッケル(Ni)−金(Au)で構成されてガラス含有Al基板3に形成される回路パターン4と、LED素子2のp電極24およびn電極25と回路パターンとを電気的に接続するAgペーストからなる導電性接着剤5と、LED素子2を封止するとともにガラス含有Al基板3と接着される透明なガラスからなるガラス封止部6とを有する。本実施の形態において、ガラス含有Al基板3および回路パターン4は、電力受供給部を形成しており、LED素子2のp電極24およびn電極25の接合面は、回路パターン4の表面と略同一面化するように電気的に接続されている。
LED素子2は、サファイア(Al)基板20の表面に、図示しないAlNバッファ層を介してn−GaN層21と、発光層22と、p−GaN層23を順次結晶成長させることによって形成されており、p−GaN層23の表面に設けられるp電極24と、p−GaN層23からn−GaN層21の一部にかけてエッチングすることにより除去して露出したn−GaN層21に形成されるn電極25とを有し、p電極24およびn電極25の形成される実装面には、電気的接続を行う部分を除いて絶縁層30が設けられている。このLED素子2は700℃以上でエピタキシャル成長され、耐熱温度は600℃以上であり、後述する低融点ガラスを用いて封止加工を行うときの温度に対して安定である。p電極24は、Rhによって形成されて発光層22から発せられる光をサファイア基板20の方向に反射する下面反射鏡としても機能する。そして、サイズは0.34mm0.34mm×厚さ0.09mmである。
ガラス含有Al基板3は、熱膨張率:12.3×10−6/℃であり、複数のビアホール3Aを有する。このビアホール3Aは、基板の表面および裏面にメタライズされた回路パターン4を導通させている。回路パターン4は、LED素子2をマウントする側に設けられる第1の導電パターンと、その裏面側に設けられる第2の導電パターンと、その両側を電気的に接続するW(タングステン)からなる第3の導電パターンとを有する。
ガラス封止部6は、P−ZnO−LiO系の低融点ガラス(熱膨張率:11.4×10−6/℃、屈伏点:415℃、屈折率:1.59、内部透過率:99%(470nm))によって形成されており、金型によるホットプレス加工によってガラス含有Al基板3と接着された後、上面6Aおよびダイサー(dicer)でカットされることに基づいて形成される側面6Bを有する矩形状に形成されている。
低融点ガラスは、一般に、樹脂において高粘度といわれるレベルより、桁違いに高い粘度で加工される。また、ガラスの場合には、屈伏点を数十℃超えても粘度が一般の樹脂封止レベルまで低くはならない。また、一般の樹脂成型時レベルの粘度にしようとすると、LED素子の結晶成長温度を超える温度を要するもの、あるいは金型に付着するものとなり、封止・成形加工が困難になる。このため、10〜10ポアズで加工するのが好ましい。
(LED1の製造方法)
このLED1の製造方法について、以下に説明する。まず、ビアホール3Aを有したガラス含有Al基板3を用意し、ガラス含有Al基板3の表面に回路パターン4に応じてWペーストをスクリーン印刷する。
次に、Wペーストを印刷されたガラス含有Al基板3を1000℃余で熱処理することによりWをガラス含有Al基板3に焼き付け、さらに、W上にNiめっき、Auめっきを施すことで回路パターン4を形成する。
次に、ガラス含有Al基板3の回路パターン4表面(素子実装面側)に導電性接着剤5として高粘度タイプのAgペーストをスクリーン印刷する。このAgペーストを印刷された回路パターン4に対してLED素子2を位置決めし、150℃で加熱処理することによってAgペーストを硬化させる。LED素子2は、p電極24およびn電極25の実装面が回路パターン4表面に対して略同一面化するようにマウントされる。
次に、LED素子2をマウントしたガラス含有Al基板3に対して板状のP−ZnO−LiO系の低融点ガラスを平行にセットし、窒素雰囲気中で500℃の温度でホットプレス加工を行う。この条件での低融点ガラスの粘度は10〜10ポアズであり、低融点ガラスはガラス含有Al基板3とそれらに含まれる酸化物を介して接着される。
次に、低融点ガラスと一体化されたガラス含有Al基板3をダイサーにセットしてダイシングすることにより、LED1を個別に分離する。
なお、LED素子2は、スクライブ加工に基づいて形成したものを使用することができる。この場合、スクライブ加工により形成されたLED素子2は、切断部である側面に尖った凹凸を有することがあり、LED素子2の側面を素子コート材でコーティングすることが望ましい。この素子コート材として、例えば、光透過性を有するSiO系コート材を用いることができる。素子コート材を用いることにより、樹脂オーバーモールドする際などのクラックやボイド発生を防止することができる。
(第1の実施の形態の効果)
上記した第1の実施の形態によると、以下の効果が得られる。
(1)P−ZnO−LiO系の低融点ガラスを用い、高粘度状態でホットプレス加工を行うことで、結晶成長温度に対し充分に低い加工が可能になり、封止加工性が向上する。
(2)ガラス含有Al基板3とガラス封止部6とが酸化物を介した化学結合に基づいて接着することにより強固な封着強度が得られる。そのため、接合面積が小さい小形パッケージであってもガラス封止を具現化できる。
(3)封止ガラスとガラス含有Al基板とは熱膨張率が同等であるため、高温で接着された後、常温あるいは低温状態としても内部応力が小であり、剥離、クラック等の接着不良が生じにくい。しかも、ガラスは引っ張り応力にはクラックが生じ易いが、圧縮応力にはクラックは生じにくく、封止ガラスはガラス含有Al基板に対しやや熱膨張率が小さいものとしてある。発明者の確認では、−40℃←→100℃の液相冷熱衝激試験1000サイクルでも剥離、クラックは生じていない。また、5mm×5mmサイズのガラス片のセラミック基板への接合基礎確認として、ガラス、セラミック基板とも種々の熱膨張率の組み合わせで実験を行ったところ、熱膨張率が高い方の部材に対する低い方の部材の熱膨張率の比が0.85以上ではクラックを生じることなく接合が行えることを確認した。部材の剛性やサイズ等にも依存するが、熱膨張率が同等というのは、この程度の範囲を示す。
(4)フリップチップ接合によりワイヤを不要できるので、高粘度状態での加工に対しても電極の不具合を生じない。封止加工時の低融点ガラスの粘度は10から10ポアズと硬く、熱硬化処理前のエポキシ樹脂が5ポアズ程度の液状であることと比較して物性が大きく異なるため、素子表面の電極とリード等の給電部材とをワイヤで電気的に接続するフェイスアップ型のLED素子を封止する場合、ガラス封止加工時にワイヤの潰れや変形を生じることがあるが、このような問題を生じない。また、素子表面の電極を金(Au)等のバンプを介してリード等の給電部材にフリップチップ接合するフリップチップ型のLED素子を封止する場合、ガラスの粘度に基づいてLED素子に給電部材方向への圧力が付加され、そのことによるバンプの潰れやバンプ間での短絡が生じるが、これも防ぐことができる。
(5)低融点ガラスとガラス含有Al基板3とを平行にセットし、高粘度状態でホットプレス加工することで、低融点ガラスがガラス含有Al基板の表面に平行移動して面状に密着するので、GaN系LED素子2を封止するためにボイドが生じない。
(6)ガラス含有Al基板3の配線用回路パターン4は、ビアホール3Aにて裏面に引き出されるため、ガラスが不必要な箇所へ入り込むことや、電気端子が覆われること等への特別な対策を要することなく、製造工程を簡略化できる。また、板状の低融点ガラスを複数デバイスに対して一括封止加工できるので、ダイサーカットに基づいて複数のLED1を容易に量産することができる。なお、低融点ガラスは高粘度状態で加工されるため、樹脂のように充分な対策をとる必要はなく、ビアホールによらなくても外部端子が裏面に引き出されていれば充分に量産対応可能である。
(7)GaN系LED素子2をフリップ実装とすることで、ガラス封止を具現化するにあたっての問題点を克服するとともに0.5mm角といった超小型のLED1を具現化できるという効果もある。これは、ワイヤのボンディングスペースが不要で、かつ、熱膨張率部材が同等のガラス封止部6とガラス含有Al基板3とが選択されるとともに、化学結合に基づく強固な接着によって、わずかなスペースでの接着でも界面剥離が生じないことによる。
(8)LED素子2のp電極24およびn電極25の実装面が回路パターン4に対して略同一面化するようにマウントされるので、LED素子2と回路パターン4との間に高粘度のガラスが回り込むことがなく、ガラスの回り込みによる電極へのダメージに基づく電気接続性の低下やクラックの発生を防ぐことができ、実装性の向上を図ることができる。
(9)LED素子2の素子面積に占める実装面積が大になるので、放熱性が向上し、LED素子2に温度むらが生じることを防げる。また、導電面積の拡大により電気接続性が向上し、LED1の大光量化、高出力化に余裕をもって対応することができる。
(10)LED素子2の実装面以外の部分を絶縁層30で覆っているので、AgペーストがLED素子2の実装面以外の部分に付着しても漏電流が流れることを防げる。
なお、第1の実施の形態では、導電性接着剤5としてAgペーストを用いた構成を説明したが、ガラス封止時の加圧によってLED素子2の実装性が損なわれない物性を有するものであれば、Agペースト以外の他の導電性接着剤5であっても良い。
また、LED素子2についても、フリップ実装可能なLED素子であれば、GaN系LED素子以外の他のLED素子についても適用することができる。また、LED素子以外の光学素子として、例えば、受光素子であっても良い。
(第2の実施の形態)
図2は、本発明の第2の実施の形態に係る固体素子デバイスとしてのLEDを示す縦断面図である。以下の説明において、第1の実施の形態と同一の構成および機能を有する部分については同一の引用数字を付している。
このLED1は、第1の実施の形態で説明したLED素子2のn電極25に位置する部分に導電性接着剤5として高粘度タイプのAgペーストをスクリーン印刷し、p電極24についてはAgペーストを介さずに回路パターン4に直に密着させた構成において第1の実施の形態と相違している。
(第2の実施の形態の効果)
上記した第2の実施の形態によると、以下の効果が得られる。
(1)ガラス加工時の高温状態ではガラスに内部応力は生じないが、ガラスが冷却されるにつれて収縮し、その結果、LED素子2はガラス封止部6やサファイア基板20から圧縮応力を受けるので、p電極24の実装面が回路パターン4の素子実装面に略同一面化するように密着する。このため、Agペーストを用いなくとも信頼性に優れる電気的接続性が得られる。
なお、エポキシ樹脂や、シリコン樹脂によるAuスタッドバンプを用いたフリップ実装では、半田リフロー炉処理等で樹脂の引張応力に起因する断線が生じることがある。樹脂硬化温度より高温の雰囲気で、LED素子2より熱膨張率の大きい樹脂が相対的に大きく膨張するためである。これに対し、本発明の固体素子デバイスでは、300℃程度の鉛フリー半田のリフロー炉処理雰囲気でも、ガラス封止の加工温度より低いので、LED素子2へは圧縮応力がかかった状態のままであり、断線は生じない。
ここで、LED素子2が回路パターン4に対して位置ずれを生じることがなければ、n電極25についてもAgペーストで固定せず、回路パターン4上の所定の位置に配置した状態で低融点ガラスによるガラス封止を行っても良い。また、接着による位置決めを行う場合でも、実装面以外の部分を導電性接着剤でなく耐熱性接着剤によって仮止めするようにしても良い。
(第3の実施の形態)
図3は、本発明の第3の実施の形態に係る固体素子デバイスとしてのLEDを示す縦断面図である。
このLED1は、素子側面での電気的接合および半導体層側での面実装を可能とするために、素子側面からpコンタクト層240表面にかけての素子周縁に露出するように形成されたp電極24およびn電極25とを有するLED素子2をAl基板(熱膨張率:7×10−6/℃)300に設けられる回路パターン4にマウントし、SiO−Nb系の低融点ガラス(熱膨張率:7×10−6/℃、屈折率:1.7)からなるガラス封止部6で封止した構成において第1の実施の形態と相違している。ここでいう素子周縁とは、例えば、図3
に示すLED素子2の側面、および絶縁層31の設けられるGaN系半導体層実装面の縁である。
LED素子2は、サファイア基板20上にAlNバッファ層200と、n−GaN層21と、発光層22と、p−GaN層23と、p−GaN層23に電流を拡散させるpコンタクト層240とを順次積層し、GaN系半導体層の側面に光透過性を有する絶縁層30と、p−GaN層23からn−GaN層21にかけてエッチングで除去することにより露出したn−GaN層21に設けられるn電極25と、サファイア基板20上のAlNバッファ層200からpコンタクト層240にかけてのGaN系半導体層の側面に設けられるp電極25と、n電極24からp電極25にかけての素子表面を覆う光透過性を有する絶縁層31とを有する。
Al基板300は、回路パターン4の表面に電解めっきによって半田からなる薄膜の導電めっき層40が形成されている。
(LED1の製造方法)
このLED1の製造方法するには、まず、Al基板300に設けられて素子実装面となる回路パターン4の表面に半田の電解めっきによって導電めっき層40を形成する。次に、回路パターン4の所定の位置に絶縁層31の形成面が密着するようにLED素子2を位置決めする。次に、LED素子2を位置決めされたAl基板300をリフロー炉に入れて加熱する。この加熱に基づいて導電めっき層40が溶融し、n電極24およびp電極25の実装面が回路パターン4の素子実装面に略同一面化するように半田接合される。
次に、LED素子2をマウントしたAl基板300に対して板状のSiO−Nb系の低融点ガラスを平行にセットし、窒素雰囲気中で500℃の温度でホットプレス加工を行う。この条件での低融点ガラスの粘度は10〜10ポアズであり、低融点ガラスはAl基板300とそれらに含まれる酸化物を介して接着される。
次に、低融点ガラスと一体化されたAl基板300をダイサーにセットしてダイシングすることにより、LED1を個別に分離する。
(第3の実施の形態の効果)
上記した第3の実施の形態によると、以下の効果が得られる。
(1)実装面から側面にかけてn電極24およびp電極25が露出したLED素子2を回路パターン4に密着するようにマウントしているので、ガラス封止時に実装面へのガラス回り込みを阻止して有効な接合面積が得られる。このことにより、発光層22の発光に基づいて生じる熱を速やかにAl基板300に熱伝導させることができ、放熱性を向上させることができる。
(2)n電極24およびp電極25が回路パターン4に対して半田からなる導電めっき層40を介して接合されるので、電極以外の他の部分に半田が付着することがなく、漏電流による電気的特性の低下を防ぐことができる。
(3)素子周縁に露出するように電極形成されたLED素子2を面実装することによって、素子全体に占める発光エリアを大にでき、高輝度化を図ることができる。
(4)めっき処理により、はんだが薄膜形成されているので、n電極24とp電極25との間隔を狭くでき、かつ、短絡が生じにくいものとできる。
なお、第3の実施の形態では、素子周縁に露出した電極を有するLED素子2を面実装したLED1を説明したが、第1の実施の形態で説明したLED素子2を導電めっき層40を介して回路パターン4に接合しても良い。この場合には、半田が実装面以外の部分に回り込むことがないので、漏電流による電気的特性の低下は生じない。
また、第1の実施の形態で説明したLED素子2を用いる場合には、n電極24およびp電極25の短絡を防ぐ絶縁層30を省いたものであっても良い。
(第4の実施の形態)
図4は、本発明の第4の実施の形態に係る固体素子デバイスとしてのLEDを示す縦断面図である。
このLED1は、発光ピーク波長380nm程度のLED素子2を有するとともに、LED素子2のn電極24およびp電極25にNi層41とAu層42からなる導電めっき層40を設けた構成において第3の実施の形態と相違している。
導電めっき層40は、n電極24およびp電極25の表面に厚さ20μmでNi層41を形成し、その表面にフラッシュめっきによってAu層42を形成することにより構成されている。この導電めっき層40によると、超音波併用熱圧着によってAu層42が溶融し、n電極24およびp電極25の実装面が回路パターン4の素子実装面に略同一面化するように接合される。
(第4の実施の形態の効果)
上記した第4の実施の形態によると、以下の効果が得られる。
(1)導電めっき層40がNiおよびAuによって構成されているので、LED素子2のマウント時に溶融した導電めっき層40がガラス封止時の熱によって再度溶融することがなく、一度固定されたLED素子2がガラス封止時に位置ずれを生じることなく固定状態が安定し、封止加工性および信頼性の向上を図ることができる。
(2)LED素子2から放射される380nm程度の光に対して耐性を有するガラス封止部6で封止しているので、長期にわたって安定した発光特性を有する近紫外光LED1を容易に具現化することができる。
(3)LED素子2の実装時に仮接着ができれば、その後のガラス封止によって圧縮応力によるLED素子2とAl基板300との電極間の接合を図ることができる。これは、LED素子2に対してガラス封止部6の熱膨張率が大きい場合のみでなく、同等であっても、LED素子2が固体素子デバイスの中央部に位置しているという形状的効果によるものである。但し、一方で、LED素子2に対してガラス封止部6の熱膨張率が4倍以上あると、LED素子2のサイズやガラス物性にもよるが、ガラスにクラックが生じ、サンプル成立しなくなる。
(第5の実施の形態)
図5は、本発明の第5の実施の形態に係る固体素子デバイスとしてのLEDを示す縦断面図である。
このLED1は、第4の実施の形態で説明した導電めっき層40を回路パターン4の素子実装面に設けた構成において第5の実施の形態と相違している。
(第5の実施の形態の効果)
第5の実施の形態によると、LED素子2に導電めっき層40を設けることなく、超音波併用熱圧着によって電極24およびp電極25の実装面を回路パターン4の素子実装面に略同一面化するように接合できるので、第4の実施の形態の好ましい効果に加えて既成のLED素子2に対してめっき加工を施すことなく、安定した素子固定を実現でき、封止加工性および信頼性の向上を図ることができる。
(第6の実施の形態)
図6は、本発明の第6の実施の形態に係る固体素子デバイスとしてのLEDを示す縦断面図である。
このLED1は、第4の実施の形態で説明したLED1のガラス封止部6の表面に、アナターゼ構造のTiOからなるコーティング層10を施したものであり、LED素子2から放射される380nm程度をピーク波長とする光によって励起されたTiOの光触媒作用によって空気中の有機物を捕獲して分解する構成において第4の実施の形態と相違している。
(第6の実施の形態の効果)
第6の実施の形態によると、ガラス封止部6の表面にコーティング層10を設けているので、LED素子2から放射される光がコーティング層10を構成するTiOに均一に照射されることにより、光触媒作用を促進させることができる。また、樹脂封止によるものでは、光触媒作用によってLED素子2の封止樹脂自体が劣化するが、ガラス封止部6が安定な無機材料で形成されることにより、光劣化を生じることなく光触媒装置としての機能を長期にわたって安定的に発揮させることができる。
ガラス封止部6は、光に対して安定であるが、有機物の分解によって生じた水分が表面に長期間付着すると白濁を生じる材料もある。この場合、これを防ぐため、ガラス封止部6の表面に、例えば、MgF等の光透過性を有するコーティングを施し、さらにその表面にコーティング層10を形成しても良い。
なお、第6の実施の形態では、LED1の表面に光触媒部としてコーティング層10を設ける構成を説明したが、ビーズ状のTiO粒子からなり、ビーズ間に通気性を有する光触媒部をLED1の周囲に配置する構成としても良い。
上記した実施の形態では、LED素子2の封止材料をガラスとして説明したが、用途によってはガラスの一部が結晶化して白濁したものであっても良く、化学的に安定な無機材料で電力受供給部との良好な接合ができるものであれば、ガラス状態の材料に限るものではない。また、固体素子としてLED素子を用いたLEDを説明したが、固体素子はLED素子に限定されず、例えば、受光素子、太陽電池等の他の光学素子であっても良い。
1…LED、2…LED素子、3A…ビアホール、3…ガラス含有Al基板、4…回路パターン、5…導電性接着剤、6…ガラス封止部、6A…上面、6B…側面、10…コーティング層、20…サファイア基板、21…n−GaN層、22…発光層、23…p−GaN層、24…p電極、25…n電極、30…絶縁層、31…絶縁層、40…導電めっき層、41…Ni層、42…Au層、200…AlNバッファ層、240…コンタクト層、300…Al基板

Claims (7)

  1. 実装面にp電極及びn電極を有する固体素子を、導電パターンが形成された無機材料基板の素子実装面にフリップ実装して、前記p電極及び前記n電極と前記素子実装面を直に密着させ、
    前記固体素子がマウントされた前記無機材料基板に対してホットプレス加工による低融点ガラスの封止加工を行い、前記p電極及び前記n電極と前記素子実装面が密着していることで前記固体素子と前記素子実装面の間に前記低融点ガラスが回り込むことなく前記固体素子を前記低融点ガラスにより封止する固体素子デバイスの製造方法。
  2. 前記固体素子は、前記n電極から前記p電極にかけての素子表面を覆う光透過性の絶縁層を有する請求項1に記載の固体素子デバイスの製造方法。
  3. 前記固体素子は、前記p電極及び前記n電極が形成される半導体層の側面に光透過性を有する絶縁層を有する請求項2に記載の固体素子デバイスの製造方法。
  4. 前記低融点ガラスの封止加工は、板状の前記低融点ガラスによるホットプレス加工である請求項2または3に記載の固体素子デバイスの製造方法。
  5. 前記ホットプレス加工において10〜10ポアズの高粘度条件で加圧接合加工される請求項2から4のいずれか1項に記載の固体素子デバイスの製造方法。
  6. 前記ホットプレス加工は、前記固体素子の結晶成長温度よりも低い温度で行われる請求項2から5のいずれか1項に記載の固体素子デバイスの製造方法。
  7. 前記無機材料基板は、前記固体素子をマウントする側に設けられる第1の導電パターンと、その裏面側に設けられる第2の導電パターンと、その両側を電気的に接続する第3の導電パターンとを有する請求項2から6のいずれか1項に記載の固体素子デバイスの製造方法。
JP2009063663A 2009-03-16 2009-03-16 固体素子デバイスの製造方法 Pending JP2009135539A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009063663A JP2009135539A (ja) 2009-03-16 2009-03-16 固体素子デバイスの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009063663A JP2009135539A (ja) 2009-03-16 2009-03-16 固体素子デバイスの製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004263097A Division JP4367299B2 (ja) 2004-09-09 2004-09-09 発光素子デバイス及び発光素子デバイスの製造方法

Publications (1)

Publication Number Publication Date
JP2009135539A true JP2009135539A (ja) 2009-06-18

Family

ID=40867045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009063663A Pending JP2009135539A (ja) 2009-03-16 2009-03-16 固体素子デバイスの製造方法

Country Status (1)

Country Link
JP (1) JP2009135539A (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06244458A (ja) * 1993-02-19 1994-09-02 Nichia Chem Ind Ltd 青色発光ダイオード
JP2001223391A (ja) * 2000-02-08 2001-08-17 Nichia Chem Ind Ltd 発光ダイオードの形成方法
WO2003021691A1 (en) * 2001-09-03 2003-03-13 Matsushita Electric Industrial Co., Ltd. Semiconductor light emitting device, light emitting apparatus and production method for semiconductor light emitting device
JP2004022612A (ja) * 2002-06-12 2004-01-22 Yoshida Dental Mfg Co Ltd 歯科用光照射器
JP2004031945A (ja) * 2003-06-02 2004-01-29 Nichia Chem Ind Ltd 窒化物半導体発光チップ
WO2004056939A1 (ja) * 2002-12-20 2004-07-08 Toyoda Gosei Co., Ltd. 発光体およびこれを用いた光デバイス
JP2004203740A (ja) * 1997-05-20 2004-07-22 Hoya Corp ガラス光学素子の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06244458A (ja) * 1993-02-19 1994-09-02 Nichia Chem Ind Ltd 青色発光ダイオード
JP2004203740A (ja) * 1997-05-20 2004-07-22 Hoya Corp ガラス光学素子の製造方法
JP2001223391A (ja) * 2000-02-08 2001-08-17 Nichia Chem Ind Ltd 発光ダイオードの形成方法
WO2003021691A1 (en) * 2001-09-03 2003-03-13 Matsushita Electric Industrial Co., Ltd. Semiconductor light emitting device, light emitting apparatus and production method for semiconductor light emitting device
JP2004022612A (ja) * 2002-06-12 2004-01-22 Yoshida Dental Mfg Co Ltd 歯科用光照射器
WO2004056939A1 (ja) * 2002-12-20 2004-07-08 Toyoda Gosei Co., Ltd. 発光体およびこれを用いた光デバイス
JP2004031945A (ja) * 2003-06-02 2004-01-29 Nichia Chem Ind Ltd 窒化物半導体発光チップ

Similar Documents

Publication Publication Date Title
EP2596948B1 (en) Method of making a semiconductor device
JP5251038B2 (ja) 発光装置
TWI422069B (zh) 半導體裝置及其製造方法
TWI544662B (zh) 半導體裝置及其製造方法
JP4979299B2 (ja) 光学装置及びその製造方法
TWI535077B (zh) 發光單元及其發光模組
US7417220B2 (en) Solid state device and light-emitting element
JP4961887B2 (ja) 固体素子デバイス
JP4394036B2 (ja) 固体素子デバイス
JP4142080B2 (ja) 発光素子デバイス
US9755121B2 (en) Method of detaching sealing member of light emitting device
JP5307364B2 (ja) 蛍光体含有ガラスの製造方法及び固体素子デバイスの製造方法
US9660148B2 (en) Method for manufacturing light emitting device, and light emitting device
JP2006216753A (ja) 発光装置およびその製造方法
JP2005223222A (ja) 固体素子パッケージ
JP4637160B2 (ja) 固体素子デバイスの製造方法
JP4367299B2 (ja) 発光素子デバイス及び発光素子デバイスの製造方法
JPWO2004082036A1 (ja) 固体素子デバイスおよびその製造方法
JP2016092016A (ja) 発光体
JP2006100472A (ja) 半導体発光装置
JP2009135539A (ja) 固体素子デバイスの製造方法
JP4678392B2 (ja) 発光装置およびその製造方法
JP6409457B2 (ja) 半導体発光素子及び発光装置
JP5457325B6 (ja) 固体素子デバイス
JP2008270389A (ja) 半導体装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120307

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120515