JP2009133001A - Austenitic stainless steel having excellent hydrogen embrittlement resistance - Google Patents

Austenitic stainless steel having excellent hydrogen embrittlement resistance Download PDF

Info

Publication number
JP2009133001A
JP2009133001A JP2008277687A JP2008277687A JP2009133001A JP 2009133001 A JP2009133001 A JP 2009133001A JP 2008277687 A JP2008277687 A JP 2008277687A JP 2008277687 A JP2008277687 A JP 2008277687A JP 2009133001 A JP2009133001 A JP 2009133001A
Authority
JP
Japan
Prior art keywords
hydrogen
stainless steel
less
austenitic stainless
hydrogen embrittlement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008277687A
Other languages
Japanese (ja)
Other versions
JP5372467B2 (en
Inventor
Yasumune Kamiyoshi
保宗 神吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2008277687A priority Critical patent/JP5372467B2/en
Publication of JP2009133001A publication Critical patent/JP2009133001A/en
Application granted granted Critical
Publication of JP5372467B2 publication Critical patent/JP5372467B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive austenitic stainless steel applicable to a member used in an environment where a hydrogen gas is used. <P>SOLUTION: The austenitic stainless steel having excellent hydrogen embrittlement resistance has a composition comprising, by mass, 0.03 to 0.10% C, 0.20 to 1.00% Si, 0.50 to 2.00% Mn, ≤0.050% P, ≤0.030% S, 7.0 to 12.0% Ni, 16.0 to 20.0% Cr, ≤1.0% Mo, ≤0.10% N and ≤0.01% P, and also comprising one or two kinds selected from 0.1 to 1.0% Ti and 0.2 to 1.0% Nb, and the balance Fe with inevitable impurities, and in which one or more kinds selected from Ti carbide, Ti carbonitride and Nb carbonitride of ≥1 μm in 1 mm<SP>2</SP>cross-sectional area are present by ≥20 pieces. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、水素ガスが使用される環境下でも脆化が起こり難い安価なオーステナイト系ステンレス鋼に関し、特に水素ガスが使用される環境下において使用されるバルブ、配管、継手、圧縮機、蓄圧機および計測機器などの部材に適用される安価なオーステナイト系ステンレス鋼に関するものである。   The present invention relates to an inexpensive austenitic stainless steel that does not easily embrittle even in an environment where hydrogen gas is used, and particularly relates to valves, pipes, joints, compressors, and accumulators used in an environment where hydrogen gas is used. Further, the present invention relates to an inexpensive austenitic stainless steel applied to members such as measuring instruments.

近年、燃料電池自動車を中心とした水素エネルギーの技術開発が進められ、燃料電池自動車用高圧水素燃料タンクのライナー材や高圧水素ガス配管など、高圧水素ガス雰囲気下にて使用される金属材料に関しても研究開発が行われている。これら高圧水素ガスに曝される部位に使用される材料は、水素脆化感受性が低いことは勿論、工業的に利用しやすい材料であることが強く要求される。   In recent years, technological development of hydrogen energy centered on fuel cell vehicles has been promoted, and metal materials used in high-pressure hydrogen gas atmosphere such as liner materials and high-pressure hydrogen gas piping for high-pressure hydrogen fuel tanks for fuel cell vehicles Research and development is in progress. The materials used for the parts exposed to these high-pressure hydrogen gases are strongly required to be industrially easy-to-use materials as well as low hydrogen embrittlement sensitivity.

上述のような観点から、耐食性材料としてのSUS304等のオーステナイト系ステンレス鋼が提案されているが、SUS304では水素ガスが使用された後の脆化が著しく、この適用材としてSUS316Lステンレス鋼が提唱されている。しかし、この鋼はNiやMo合金の添加量が多く高価となる。また、低Cであるために強度も低くなるという問題がある。   From the above viewpoint, austenitic stainless steel such as SUS304 as a corrosion resistant material has been proposed, but in SUS304, embrittlement after using hydrogen gas is remarkable, and SUS316L stainless steel is proposed as an applicable material. ing. However, this steel is expensive due to the large amount of Ni or Mo alloy added. Moreover, since it is low C, there exists a problem that intensity | strength also becomes low.

そこで、例えば特開2007−126688号公報(特許文献1)に開示されているように、SUS316系を上回る耐水素脆化感受性を維持し、低温水素環境へ適応されるオーステナイトステンレス系Mnステンレス鋼が提案されている。また、国際公開WO2004−83477号公報(特許文献2)には、質量%で、C:0.04%以下、Si:1.0%以下、Mn:7〜30%、Cr:15〜22%、Ni:5〜20%、V:0.001〜1.0%、N:0.20〜0.50%およびAl:0.10%以下を含有し、残部Feおよび不純物からなり、不純物中のPが0.030%以下、Sが0.005%以下、Ti、ZrおよびHfがそれぞれ0.01%以下であり、かつ、Cr、MnおよびNの含有量が2.5Cr+3.4Mn≦300Nを満たす条件により、高圧水素ガス環境下で優れた機械的性質と耐食性を有する高強度ステンレス鋼が提案されている。
特開2007−126688号公報 国際公開WO2004−83477号公報
Therefore, as disclosed in, for example, Japanese Patent Application Laid-Open No. 2007-126688 (Patent Document 1), an austenitic stainless steel Mn stainless steel that maintains resistance to hydrogen embrittlement superior to that of SUS316 and is applicable to a low-temperature hydrogen environment is provided. Proposed. In addition, International Publication WO 2004-83477 (Patent Document 2) includes, in mass%, C: 0.04% or less, Si: 1.0% or less, Mn: 7-30%, Cr: 15-22%. Ni: 5 to 20%, V: 0.001 to 1.0%, N: 0.20 to 0.50%, and Al: 0.10% or less, the balance being Fe and impurities, P is 0.030% or less, S is 0.005% or less, Ti, Zr and Hf are each 0.01% or less, and the contents of Cr, Mn and N are 2.5Cr + 3.4Mn ≦ 300N High-strength stainless steel having excellent mechanical properties and corrosion resistance under a high-pressure hydrogen gas environment has been proposed.
JP 2007-126688 A International Publication WO2004-83477

上述した特許文献1や2に開示されたものは、いずれも、オーステナイトステンレス系Mnステンレス鋼として、Mnを利用して、SUS316系を上回る耐水素脆化感受性を維持し、低温水素環境へ適応されるオーステナイトステンレス鋼であるが、しかしながら、いずれも、Mn,Nが高く熱間での製造性が劣ること並びにSUS316Lと比べて強度水準が大幅に高くなるため切削加工が困難となり、かつ溶接性も劣る問題がある。   All of those disclosed in Patent Documents 1 and 2 described above are austenitic stainless steel Mn stainless steels that use Mn to maintain hydrogen embrittlement resistance exceeding that of SUS316, and are adapted to low temperature hydrogen environments. However, both of them are high in Mn and N, are inferior in hot manufacturability, and have a significantly higher strength level than SUS316L, making it difficult to cut and weldability. There is an inferior problem.

上述したような問題を解消するために、発明者らは鋭意開発を進めた結果、SUS304を基本とした安価な材料に、炭窒化物の形成元素であるTiやNbを単独まはた複合添加し、断面積1mm2 における1μm以上の炭窒化物が20個以上存在させることで、水素ガス環境下の引張試験における伸びや絞りの低下を防止し、SUS316Lよりも高価なNiやMo量の添加量の少ない安価な耐水素脆化特性に優れたオーステナイト系ステンレス鋼を提供するものである。 In order to solve the above-mentioned problems, the inventors have intensively developed, and as a result, Ti or Nb, which is an element forming carbonitride, is added alone or in combination to an inexpensive material based on SUS304. In addition, the presence of 20 or more carbonitrides with a cross-sectional area of 1 mm 2 of 1 μm or more prevents elongation and reduction of drawing in a tensile test under a hydrogen gas environment, and the addition of Ni and Mo amounts that are more expensive than SUS316L It is an object of the present invention to provide an austenitic stainless steel with a small amount and an excellent resistance to hydrogen embrittlement.

その発明の要旨とするところは、
(1)質量%で、C:0.03〜0.10%、Si:0.20〜1.00%、Mn:0.50〜2.00%、P:0.050%以下、S:0.030%以下、Ni:7.0〜12.0%、Cr:16.0〜20.0%、Mo:1.0%以下、N:0.10%以下、O:0.01%以下を含有し、かつ、Ti:0.1〜1.0%、Nb:0.2〜1.0%の1種または2種を含有し、残部Feおよび不可避的不純物からなり、かつ、(Ti+Nb)/(C+N):3以上、および断面積1mm2 における1μm以上のTi炭化物、Ti炭窒化物またはNb炭窒化物の内の1種または2種以上が20個以上存在することを特徴とする耐水素脆化特性に優れたオーステナイト系ステンレス鋼。
(2)前記(1)に記載のNiまたはCrが、それぞれ、Ni:8.0〜10.0%、またはCr:18.0〜20.0%であることを特徴とする耐水素脆化特性に優れたオーステナイト系ステンレス鋼にある。
The gist of the invention is that
(1) In mass%, C: 0.03-0.10%, Si: 0.20-1.00%, Mn: 0.50-2.00%, P: 0.050% or less, S: 0.030% or less, Ni: 7.0 to 12.0%, Cr: 16.0 to 20.0%, Mo: 1.0% or less, N: 0.10% or less, O: 0.01% And containing one or two of Ti: 0.1 to 1.0% and Nb: 0.2 to 1.0%, the balance being Fe and inevitable impurities, and ( Ti + Nb) / (C + N): 3 or more, and 20 or more of 1 type or 2 types or more of Ti carbide, Ti carbonitride or Nb carbonitride having a cross-sectional area of 1 mm 2 or more. Austenitic stainless steel with excellent hydrogen embrittlement resistance.
(2) Ni or Cr described in (1) above is Ni: 8.0 to 10.0% or Cr: 18.0 to 20.0%, respectively, hydrogen embrittlement resistance Austenitic stainless steel with excellent properties.

以上述べたように、本発明により、水素ガスが使用される環境下でも脆化が起こり難い現在推奨されているSUS316Lより安価なオーステナイト系ステンレス鋼、特に水素ガスが使用される環境下において使用されるバルブ、配管、継手、圧縮機、蓄圧機および計測機器などの部材に適用される安価なオーステナイト系ステンレス鋼を提供するものである。   As described above, according to the present invention, the austenitic stainless steel, which is less expensive than the currently recommended SUS316L, which is unlikely to be brittle even in an environment where hydrogen gas is used, particularly used in an environment where hydrogen gas is used. It provides an inexpensive austenitic stainless steel that is applied to members such as valves, pipes, joints, compressors, accumulators, and measuring instruments.

以下、本発明に係る成分組成の限定した理由を説明する。
C:0.03〜0.10%
Cは、オーステナイト生成元素であり、かつ強度の向上に必要な元素であり、炭窒化物の形成に役立つが、0.03%未満ではその効果が十分でなく、また0.10%を超えると熱間加工性を低下させることから、その範囲を0.03〜0.10%とした。
Hereinafter, the reasons for limiting the component composition according to the present invention will be described.
C: 0.03-0.10%
C is an austenite generating element and is an element necessary for improving the strength, and is useful for forming carbonitrides. However, if it is less than 0.03%, the effect is not sufficient, and if it exceeds 0.10% Since the hot workability is lowered, the range is set to 0.03 to 0.10%.

Si:0.20〜1.00%
Siは、脱酸元素として有用な元素であり、酸化物を低融点化し軟化させる。しかし、0.20%未満では酸化物の低融点化に不十分で、また、1.00%を超えるとフェライトが生成し熱間加工性が悪化することから、その範囲を0.20〜1.00%とした。
Si: 0.20 to 1.00%
Si is an element useful as a deoxidizing element, and lowers the melting point of the oxide to soften it. However, if it is less than 0.20%, it is insufficient for lowering the melting point of the oxide, and if it exceeds 1.00%, ferrite is generated and hot workability deteriorates, so the range is 0.20 to 1%. 0.000%.

Mn:0.50〜2.00%
Mnは、脱酸元素および硫化物生成元素として有用な元素である。しかし、0.50%未満では硫化物中のCr濃度が増大して被削性が悪化する。また、2.00%を超えると耐食性が悪化することから、その範囲を0.50〜2.00%とした。
Mn: 0.50 to 2.00%
Mn is an element useful as a deoxidizing element and a sulfide-forming element. However, if it is less than 0.50%, the Cr concentration in the sulfide increases and the machinability deteriorates. Moreover, since corrosion resistance will deteriorate when it exceeds 2.00%, the range was 0.50 to 2.00%.

P:0.050%以下、S:0.030%以下
P、およびSは、いずれも鋼の靱性等に悪影響を及ぼす元素である。従って、可及的に少ない方がよいが、それぞれ0.050%以下、0.030%以下であれば、本発明鋼の特性に顕著な劣化は認められない。
P: 0.050% or less, S: 0.030% or less P and S are elements that adversely affect the toughness of steel. Accordingly, it is preferable that the amount be as small as possible. However, if the content is 0.050% or less and 0.030% or less, significant deterioration in the properties of the steel of the present invention is not recognized.

Ni:7.0〜12.0%
Niは、オーステナイト相を安定化する元素であり、鋼の靱性の向上をもたらす。また、γ生成元素である。しかし、7.0%未満では、これらの効果が十分でなく、また、12.0%を超えるとその効果が飽和しコスト高となることから、その範囲を7.0〜12.0%とした。好ましくは8.0〜10.0%とする。
Ni: 7.0 to 12.0%
Ni is an element that stabilizes the austenite phase and improves the toughness of the steel. It is also a γ-generating element. However, if it is less than 7.0%, these effects are not sufficient, and if it exceeds 12.0%, the effect is saturated and the cost is high, so the range is 7.0 to 12.0%. did. Preferably it is set to 8.0 to 10.0%.

Cr:16.0〜20.0%
Crは、フェライト生成元素であり、また、耐食性を付与する元素である。しかし、16.0%未満ではその効果が十分でない。また、20.0%を超えるとδフェライト相が増加し、熱間加工性が悪化することから、その範囲を16.0〜20.0%とした。好ましくは18.0〜20.0%とする。
Cr: 16.0 to 20.0%
Cr is a ferrite-forming element and is an element that imparts corrosion resistance. However, the effect is not sufficient if it is less than 16.0%. If it exceeds 20.0%, the δ ferrite phase increases and the hot workability deteriorates, so the range was made 16.0 to 20.0%. Preferably it is 18.0 to 20.0%.

Mo:1.0%以下
Moは、ステンレス鋼の耐食性の改善に大きく効果を有する。しかし、0.1%未満では耐食性確保に不十分である。また、1.0%を超えると熱間加工性が低下すること並びに、δフェライト相が増加することから、その範囲を1.0%以下、好ましくは0.1〜1.0%とした。より好ましくは0.1〜0.5%とする。
Mo: 1.0% or less Mo has a great effect on improving the corrosion resistance of stainless steel. However, less than 0.1% is insufficient to ensure corrosion resistance. On the other hand, if it exceeds 1.0%, the hot workability deteriorates and the δ ferrite phase increases, so the range is made 1.0% or less, preferably 0.1-1.0%. More preferably, it is 0.1 to 0.5%.

Ti:0.1〜1.0%
Tiは、炭化物または炭窒化物を形成し、鋼中のCを固定させ、鋼中に炭化物または炭窒化物を多数分散し、侵入した水素のトラップサイトとすることで延性の低下を防ぐ。しかし、0.1%未満ではその効果が得られず、また、1.0%を超えると熱間加工性が低下することから、その範囲を0.1〜1.0%とした。
Ti: 0.1 to 1.0%
Ti forms carbides or carbonitrides, fixes C in steel, disperses a large number of carbides or carbonitrides in steel, and prevents trapped hydrogen from entering, thereby preventing deterioration of ductility. However, if it is less than 0.1%, the effect cannot be obtained, and if it exceeds 1.0%, the hot workability deteriorates, so the range was made 0.1 to 1.0%.

Nb:0.2〜1.0%
Nbは、炭窒化物を形成し、鋼中のCを固定させ、鋼中に炭窒化物を多数分散し、侵入した水素のトラップサイトとすることで延性の低下を防ぐ。しかし、0.2%未満ではその効果が得られず、また、1.0%を超えると熱間加工性が低下することから、その範囲を0.2〜1.0%とした。
Nb: 0.2-1.0%
Nb forms carbonitride, fixes C in the steel, disperses a large number of carbonitrides in the steel, and prevents trapped hydrogen from entering, thereby preventing deterioration of ductility. However, if it is less than 0.2%, the effect cannot be obtained, and if it exceeds 1.0%, the hot workability deteriorates, so the range was made 0.2 to 1.0%.

N:0.10%以下、O:0.01%以下
Nは、強度の面から有効な元素である。N含有量が高いと強度は上昇するが、切削や溶接等の加工性や熱間加工性に著しく影響を与えるため、その上限を0.10%に規制した。また、Oは、δフェライトが共存する材料では、熱間加工性に著しく影響を与える。0.10%を超えると熱間での延性が著しく低下し、健全な熱間加工品が得られなくなる。従って、O含有量の上限を0.01%に規制した。
N: 0.10% or less, O: 0.01% or less N is an element effective from the viewpoint of strength. When the N content is high, the strength is increased, but the workability such as cutting and welding and the hot workability are significantly affected. Therefore, the upper limit is regulated to 0.10%. Further, O significantly affects hot workability in a material in which δ ferrite coexists. If it exceeds 0.10%, the hot ductility is remarkably lowered, and a sound hot-worked product cannot be obtained. Therefore, the upper limit of the O content is regulated to 0.01%.

(Ti+Nb)/(C+N):3以上
(Ti+Nb)/(C+N)は、Ti炭化物、TiやNbの炭窒化物を生成するのに必要な指標である。3より小さいと浸入した水素のトラップサイトとなる炭化物や窒化物の個数が不十分となり、延性の低下を防ぐことができないため、これを下限とした。
(Ti + Nb) / (C + N): 3 or more (Ti + Nb) / (C + N) is an index necessary for producing Ti carbide, Ti or Nb carbonitride. If it is smaller than 3, the number of carbides and nitrides that become trapped hydrogen trap sites becomes insufficient, and it is not possible to prevent a decrease in ductility.

断面積1mm2 における1μm以上のTi炭化物、Ti炭窒化物またはNb炭窒化物の内の1種または2種以上が20個以上存在することで、水素チャージ後の引張試験における伸びや絞りの低下を防止する。また、SUS316Lと比べて高価なNiやMo量の添加も抑えることができる効果がある。しかし、顕微鏡レベルで観察不可である微細なものは効果が低く、1μm以上の大きさが必要である。また、Ti炭化物、Ti炭窒化物またはNb炭窒化物の多数分散を必要とし、20個未満では、その効果を不十分である。なお、これらのTi炭化物、Ti炭窒化物またはNb炭窒化物は同等の効果を有するので、特に種別を区別せず、単に合計の個数を確保すればよい。従って、その範囲を断面積1mm2 における1μm以上のTi炭化物、Ti炭窒化物またはNb炭窒化物の内の1種または2種以上が20個以上とした。 The presence of 20 or more of one or more of Ti carbide, Ti carbonitride, or Nb carbonitride having a cross-sectional area of 1 mm 2 or more, resulting in a decrease in elongation and drawing in a tensile test after hydrogen charging. To prevent. Moreover, compared with SUS316L, there exists an effect which can also suppress addition of expensive Ni and Mo amount. However, fine objects that cannot be observed at the microscopic level are ineffective and require a size of 1 μm or more. Further, a large number of dispersions of Ti carbide, Ti carbonitride, or Nb carbonitride are required, and if less than 20, the effect is insufficient. Note that these Ti carbides, Ti carbonitrides, or Nb carbonitrides have the same effect, and therefore, it is only necessary to ensure the total number without distinguishing the types. Therefore, the range was set to 20 or more of one or more of Ti carbide, Ti carbonitride, or Nb carbonitride having a cross-sectional area of 1 mm 2 of 1 μm or more.

以下、本発明について実施例によって具体的に説明する。
表1に示す化学組成の合金からなる供試材を真空誘導溶解炉で100kgづつを溶製し、得られた鋼塊を1250℃に加熱し、径20mmに鍛伸し、1050℃で20分後水冷による固溶化熱処理を行って、各種試料を作製した。その試験片をミクロ組織として、L面中周部の炭窒化物を観察した。また、引張試験片として、平行部径6mm、#600仕上げを用い、ストローク速度1.0mm/分の低歪速度引張試験を行った。
Hereinafter, the present invention will be specifically described with reference to examples.
Samples made of an alloy having the chemical composition shown in Table 1 were melted in 100 kg units in a vacuum induction melting furnace, the resulting steel ingot was heated to 1250 ° C., forged to a diameter of 20 mm, and 1050 ° C. for 20 minutes. Various samples were prepared by a solution heat treatment by post-water cooling. Using the test piece as a microstructure, carbonitrides in the L surface middle periphery were observed. Moreover, the parallel part diameter 6mm and # 600 finish were used as a tensile test piece, and the low strain rate tensile test was done for the stroke rate of 1.0 mm / min.

試験方法としては、炭窒化物個数は光学顕微鏡写真を任意3箇所撮影し、その個数を平均し、使用した写真の面積を1mm2 に算出し、その比率を個数に乗掛けすることで行う。また、引張試験は、引張試験片の端部にNi線を電気溶接し、平行部以外を樹脂被膜で水素侵入を遮断させる。この試験片を0.01N硫酸+0.5g/lのチオシアン酸アンモニウム溶液内に浸漬し、陰極チャージ法にて68A/mm2 で24hr水素チャージを行う(30℃)。水素チャージ後、直ぐに引張試験を行う(常温、大気圧、ストローク速度1.0mm/分)。引張試験後の伸び、絞りの変化を水素チャージの有無の比率で評価した。 As a test method, the number of carbonitrides is measured by taking optical micrographs at arbitrary three locations, averaging the numbers, calculating the area of the used photo to 1 mm 2 , and multiplying the number by the ratio. In the tensile test, Ni wire is electrically welded to the end of the tensile test piece, and the hydrogen intrusion is blocked by the resin coating at the other part than the parallel part. This test piece is immersed in 0.01N sulfuric acid + 0.5 g / l ammonium thiocyanate solution, and charged with hydrogen at 68 A / mm 2 by cathode charging method (30 ° C.). A tensile test is performed immediately after hydrogen charging (room temperature, atmospheric pressure, stroke speed 1.0 mm / min). Changes in elongation and drawing after the tensile test were evaluated by the ratio of presence or absence of hydrogen charge.

なお、水素チャージ条件としては、上述したように、試験液:硫酸(0.01N)+チオシアン酸アンモニウム(0.5g/l)、温度:30℃、電流密度:68A/m2 、時間:24hrで行う。水素チャージ後の増減比率としては、低歪速度(ストローク速度1.0mm/分)にて、平行部径6mm引張試験片を用いた引張試験を行い、(水素チャージ後の試験値)/(水素チャージ前の測定値)の比率を用いた。なお、引張試験は大気中で行うが、水素チャージ後30分以内で試験完了とすることとした。引張試験結果のバラツキも配慮して0.95以上は水素脆化がないと判断した。また、価格は、SUS316L(No.16)に対して高価なものは×で評価した。 As described above, the hydrogen charging conditions are as follows: test solution: sulfuric acid (0.01 N) + ammonium thiocyanate (0.5 g / l), temperature: 30 ° C., current density: 68 A / m 2 , time: 24 hr To do. As the rate of increase / decrease after hydrogen charging, a tensile test using a tensile specimen with a parallel part diameter of 6 mm was performed at a low strain rate (stroke speed: 1.0 mm / min), and (test value after hydrogen charging) / (hydrogen The ratio of the measured value before charging) was used. The tensile test was conducted in the atmosphere, but the test was completed within 30 minutes after the hydrogen charge. Considering the variation in the tensile test results, it was judged that hydrogen embrittlement was not observed for 0.95 or more. Also, the price was evaluated as x for those that were expensive relative to SUS316L (No. 16).

Figure 2009133001
表1に示すように、No.1〜14は本発明例であり、No.15〜23は比較例である。
Figure 2009133001
As shown in Table 1, no. 1 to 14 are examples of the present invention. 15-23 are comparative examples.

図1は、(Ti+Nb)/(C+N)とTi炭化物ないしTi,Nbの炭窒化物個数との関係を示す図である。この図に示すように、(Ti+Nb)/(C+N)が3以上であって、Ti炭化物、Ti炭窒化物またはNb炭窒化物の内の1種または2種以上の合計が20個以上の場合に本発明となり、例えば本発明No.8がその例である。また、図2は、Ti炭化物ないしTi,Nbの炭窒化物個数と水素チャージ後の増減比率との関係を示す図である。この図に示すように、Ti炭化物、Ti炭窒化物またはNb炭窒化物の内の1種または2種以上の合計が20個以上の場合に、伸び、絞りおよび引張強さについての水素チャージ後の増減比率は1.00の値を示していることが分かる。   FIG. 1 is a diagram showing the relationship between (Ti + Nb) / (C + N) and the number of Ti carbides or carbonitrides of Ti and Nb. As shown in this figure, when (Ti + Nb) / (C + N) is 3 or more and the total of one or more of Ti carbide, Ti carbonitride or Nb carbonitride is 20 or more The present invention, for example, the present invention No. 8 is an example. FIG. 2 is a graph showing the relationship between the number of Ti carbides or carbonitrides of Ti and Nb and the increase / decrease ratio after hydrogen charging. As shown in this figure, after hydrogen charge for elongation, drawing and tensile strength when the total of one or more of Ti carbide, Ti carbonitride or Nb carbonitride is 20 or more. It can be seen that the increase / decrease ratio of 1.00 shows a value of 1.00.

表1に示すように、比較例No.15はTiおよびNbの含有量が低く、(Ti+Nb)/(C+N)の値が低い。また、TiおよびNbの炭窒化物個数が少ないために、水素チャージ後の増減比率が小さく、水素脆化が生じている。比較例No.16はSUS316Lに相当するもので、TiおよびNbの含有量が低く、(Ti+Nb)/(C+N)の値が低いものの水素チャージ後の増減比率は0.95を超え、水素脆化は起こっていない。また、Ni、Moの含有量が高く、価格のベースとした。比較例No.17はTiおよびNbの含有量が低く、(Ti+Nb)/(C+N)の値が低いものの、比較例No.16と同様に水素チャージ後の増減比率は0.95を超え、水素脆化は起こっていないが、Ni、Crの含有量が高いため価格が高くなる。   As shown in Table 1, Comparative Example No. No. 15 has a low content of Ti and Nb and a low value of (Ti + Nb) / (C + N). Further, since the number of Ti and Nb carbonitrides is small, the increase / decrease ratio after hydrogen charging is small, and hydrogen embrittlement occurs. Comparative Example No. 16 is equivalent to SUS316L, the content of Ti and Nb is low, and the value of (Ti + Nb) / (C + N) is low, but the increase / decrease ratio after hydrogen charge exceeds 0.95, and hydrogen embrittlement does not occur . In addition, the contents of Ni and Mo are high, and the price base is used. Comparative Example No. No. 17 has a low Ti and Nb content and a low value of (Ti + Nb) / (C + N). Similar to 16, the increase / decrease ratio after hydrogen charge exceeds 0.95 and hydrogen embrittlement has not occurred, but the price increases due to the high content of Ni and Cr.

比較例No.18はMoの含有量が高く、TiおよびNbの含有量が低く、(Ti+Nb)/(C+N)の値が低い。また、TiおよびNbの炭窒化物個数が少ないために、水素チャージ後の水素脆化が生じた。比較例No.19はC、Nbの含有量が低く、また、TiおよびNbの炭窒化物個数が少ないために、水素チャージ後の水素脆化が生じた。比較例No.20はTiまたはNbの含有量が低く、(Ti+Nb)/(C+N)の値が低い。また、TiおよびNbの炭窒化物個数が少ないために、水素チャージ後の水素脆化が生じた。   Comparative Example No. No. 18 has a high Mo content, a low Ti and Nb content, and a low (Ti + Nb) / (C + N) value. Further, since the number of Ti and Nb carbonitrides was small, hydrogen embrittlement after hydrogen charging occurred. Comparative Example No. No. 19 had a low C and Nb content and a small number of carbonitrides of Ti and Nb, resulting in hydrogen embrittlement after hydrogen charging. Comparative Example No. No. 20 has a low Ti or Nb content and a low value of (Ti + Nb) / (C + N). Further, since the number of Ti and Nb carbonitrides was small, hydrogen embrittlement after hydrogen charging occurred.

比較例No.21はC、Tiの含有量が低く、TiおよびNbの炭窒化物個数が少ないために、水素チャージ後の水素脆化が生じた。比較例No.22はTiの含有量が低く、(Ti+Nb)/(C+N)の値が低い。また、TiおよびNbの炭窒化物個数が少ないために、水素チャージ後の水素脆化が生じた。比較例No.23はTiおよびNbの含有量が低く、(Ti+Nb)/(C+N)の値が低い。また、TiおよびNbの炭窒化物個数が少ないために、水素チャージ後の水素脆化が生じた。これに対し、本発明例であるNo.1〜14はいずれの条件も満たしていることから、水素チャージ後の水素脆化は全く見られなかったことが分かる。   Comparative Example No. No. 21 had a low content of C and Ti, and a small number of carbonitrides of Ti and Nb, resulting in hydrogen embrittlement after hydrogen charging. Comparative Example No. No. 22 has a low Ti content and a low value of (Ti + Nb) / (C + N). Further, since the number of Ti and Nb carbonitrides was small, hydrogen embrittlement after hydrogen charging occurred. Comparative Example No. No. 23 has a low content of Ti and Nb and a low value of (Ti + Nb) / (C + N). Further, since the number of Ti and Nb carbonitrides was small, hydrogen embrittlement after hydrogen charging occurred. On the other hand, No. which is an example of the present invention. Since 1-14 satisfy | fills all conditions, it turns out that the hydrogen embrittlement after hydrogen charge was not seen at all.

以上のように、SUS304相当の鋼に炭窒化物の形成元素であるTiやNbを単独または複合添加し、断面積1mm2 における1μm以上の炭窒化物が20個以上存在させることで、水素チャージ後の引張試験における伸びや絞りの低下を防止でき、高価なNiやMo量を削減することができ、安価なオーステナイト系ステンレス鋼を提供することが出来る極めて工業的に有利なものである。 As described above, by adding Ti or Nb, which is a carbonitride-forming element, to steel corresponding to SUS304 alone or in combination, 20 or more carbonitrides having a cross-sectional area of 1 mm 2 and having a diameter of 1 μm or more are present in 20 hydrogen charges. This is extremely industrially advantageous because it can prevent elongation and reduction of drawing in a later tensile test, can reduce the amount of expensive Ni and Mo, and can provide inexpensive austenitic stainless steel.

(Ti+Nb)/(C+N)とTi炭化物ないしTi,Nbの炭窒化物個数との関係を示す図である。It is a figure which shows the relationship between (Ti + Nb) / (C + N) and the number of carbonitrides of Ti carbide | carbonized_material or Ti and Nb. Ti炭化物ないしTi,Nbの炭窒化物個数と水素チャージ後の増減比率との関係を示す図である。It is a figure which shows the relationship between the number of carbonized nitride of Ti carbide | carbonized_material or Ti, Nb, and the increase / decrease ratio after hydrogen charge.

Claims (2)

質量%で、
C:0.03〜0.10%、
Si:0.20〜1.00%、
Mn:0.50〜2.00%、
P:0.050%以下、
S:0.030%以下、
Ni:7.0〜12.0%、
Cr:16.0〜20.0%、
Mo:1.0%以下、
N:0.10%以下、
O:0.01%以下
を含有し、かつ、
Ti:0.1〜1.0%、
Nb:0.2〜1.0%
の1種または2種を含有し、残部Feおよび不可避的不純物からなり、かつ、(Ti+Nb)/(C+N):3以上、および断面積1mm2 における1μm以上のTi炭化物、Ti炭窒化物またはNb炭窒化物の内の1種または2種以上が20個以上存在することを特徴とする耐水素脆化特性に優れたオーステナイト系ステンレス鋼。
% By mass
C: 0.03-0.10%,
Si: 0.20 to 1.00%,
Mn: 0.50 to 2.00%,
P: 0.050% or less,
S: 0.030% or less,
Ni: 7.0 to 12.0%,
Cr: 16.0 to 20.0%,
Mo: 1.0% or less,
N: 0.10% or less,
O: 0.01% or less, and
Ti: 0.1 to 1.0%,
Nb: 0.2-1.0%
1 or 2 of the following, comprising the balance Fe and inevitable impurities, and (Ti + Nb) / (C + N): 3 or more, and 1 μm or more of Ti carbide, Ti carbonitride or Nb at a cross-sectional area of 1 mm 2 An austenitic stainless steel having excellent hydrogen embrittlement resistance, wherein 20 or more of one or more of carbonitrides are present.
請求項1に記載のNiまたはCrが、それぞれ、Ni:8.0〜10.0%、またはCr:18.0〜20.0%であることを特徴とする耐水素脆化特性に優れたオーステナイト系ステンレス鋼。 Ni or Cr according to claim 1 is excellent in hydrogen embrittlement resistance, characterized by being Ni: 8.0 to 10.0% or Cr: 18.0 to 20.0%, respectively. Austenitic stainless steel.
JP2008277687A 2007-10-29 2008-10-29 Austenitic stainless steel with excellent hydrogen embrittlement resistance Expired - Fee Related JP5372467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008277687A JP5372467B2 (en) 2007-10-29 2008-10-29 Austenitic stainless steel with excellent hydrogen embrittlement resistance

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007280191 2007-10-29
JP2007280191 2007-10-29
JP2008277687A JP5372467B2 (en) 2007-10-29 2008-10-29 Austenitic stainless steel with excellent hydrogen embrittlement resistance

Publications (2)

Publication Number Publication Date
JP2009133001A true JP2009133001A (en) 2009-06-18
JP5372467B2 JP5372467B2 (en) 2013-12-18

Family

ID=40865144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008277687A Expired - Fee Related JP5372467B2 (en) 2007-10-29 2008-10-29 Austenitic stainless steel with excellent hydrogen embrittlement resistance

Country Status (1)

Country Link
JP (1) JP5372467B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026650A (en) * 2009-07-23 2011-02-10 Nippon Seisen Co Ltd High-strength stainless-steel wire superior in hydrogen embrittlement resistance and formed product of stainless steel using the same
JP2016183412A (en) * 2015-03-26 2016-10-20 新日鐵住金ステンレス株式会社 High strength austenitic stainless steel excellent in hydrogen embrittlement resistance, manufacturing method therefor, and device for hydrogen used in high pressure hydrogen gas and liquid hydrogen environment
KR20170107067A (en) 2015-03-06 2017-09-22 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 High strength austenitic stainless steel excellent in hydrogen embrittlement resistance and manufacturing method thereof
WO2018180788A1 (en) 2017-03-30 2018-10-04 新日鐵住金ステンレス株式会社 HIGH-Mn AUSTENITIC STAINLESS STEEL FOR HYDROGEN HAVING EXCELLENT WELDABILITY, WELDED JOINT USING SAME, DEVICE FOR HYDROGEN USING SAME, AND METHOD FOR PRODUCING WELDED JOINT
US11149324B2 (en) 2015-03-26 2021-10-19 Nippon Steel Stainless Steel Corporation High strength austenitic stainless steel having excellent resistance to hydrogen embrittlement, method for manufacturing the same, and hydrogen equipment used for high-pressure hydrogen gas and liquid hydrogen environment
US11268177B2 (en) 2015-09-30 2022-03-08 Nippon Steel Corporation Austenitic stainless steel
CN118028701A (en) * 2024-04-11 2024-05-14 江西理工大学 Hydrogen embrittlement resistant austenitic stainless steel and method for producing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109136785B (en) * 2018-09-13 2021-06-22 南京理工大学 Austenitic stainless steel suitable for additive manufacturing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004111291A1 (en) * 2003-06-10 2004-12-23 Sumitomo Metal Industries, Ltd. Steel for hydrogen gas environment, structural hardware member and method for producing same
JP2007186795A (en) * 2007-02-08 2007-07-26 Kobe Steel Ltd High-strength martensitic steel
JP2007217718A (en) * 2006-02-14 2007-08-30 Jfe Steel Kk Steel material having high strength and superior delayed fracture resistance after having been tempered
JP2007270350A (en) * 2006-03-07 2007-10-18 Kyushu Univ High strength stainless steel and method for manufacturing high strength stainless steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004111291A1 (en) * 2003-06-10 2004-12-23 Sumitomo Metal Industries, Ltd. Steel for hydrogen gas environment, structural hardware member and method for producing same
JP2007217718A (en) * 2006-02-14 2007-08-30 Jfe Steel Kk Steel material having high strength and superior delayed fracture resistance after having been tempered
JP2007270350A (en) * 2006-03-07 2007-10-18 Kyushu Univ High strength stainless steel and method for manufacturing high strength stainless steel
JP2007186795A (en) * 2007-02-08 2007-07-26 Kobe Steel Ltd High-strength martensitic steel

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026650A (en) * 2009-07-23 2011-02-10 Nippon Seisen Co Ltd High-strength stainless-steel wire superior in hydrogen embrittlement resistance and formed product of stainless steel using the same
KR20170107067A (en) 2015-03-06 2017-09-22 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 High strength austenitic stainless steel excellent in hydrogen embrittlement resistance and manufacturing method thereof
US10501819B2 (en) 2015-03-06 2019-12-10 Nippon Steel & Sumikin Stainless Steel Corporation High-strength austenitic stainless steel having excellent hydrogen embrittlement resistance characteristics and method for producing same
US11149324B2 (en) 2015-03-26 2021-10-19 Nippon Steel Stainless Steel Corporation High strength austenitic stainless steel having excellent resistance to hydrogen embrittlement, method for manufacturing the same, and hydrogen equipment used for high-pressure hydrogen gas and liquid hydrogen environment
JP2016183412A (en) * 2015-03-26 2016-10-20 新日鐵住金ステンレス株式会社 High strength austenitic stainless steel excellent in hydrogen embrittlement resistance, manufacturing method therefor, and device for hydrogen used in high pressure hydrogen gas and liquid hydrogen environment
US11603573B2 (en) 2015-03-26 2023-03-14 Nippon Steel Stainless Steel Corporation High strength austenitic stainless steel having excellent resistance to hydrogen embrittlement, method for manufacturing the same, and hydrogen equipment used for high-pressure hydrogen gas and liquid hydrogen environment
US11268177B2 (en) 2015-09-30 2022-03-08 Nippon Steel Corporation Austenitic stainless steel
WO2018180788A1 (en) 2017-03-30 2018-10-04 新日鐵住金ステンレス株式会社 HIGH-Mn AUSTENITIC STAINLESS STEEL FOR HYDROGEN HAVING EXCELLENT WELDABILITY, WELDED JOINT USING SAME, DEVICE FOR HYDROGEN USING SAME, AND METHOD FOR PRODUCING WELDED JOINT
US11225705B2 (en) 2017-03-30 2022-01-18 Nippon Steel Stainless Steel Corporation High-Mn austenitic stainless steel for hydrogen having excellent weldability, welded joint using same, device for hydrogen using same, and method for producing welded joint
EP3604595A4 (en) * 2017-03-30 2020-03-18 Nippon Steel Stainless Steel Corporation HIGH-Mn AUSTENITIC STAINLESS STEEL FOR HYDROGEN HAVING EXCELLENT WELDABILITY, WELDED JOINT USING SAME, DEVICE FOR HYDROGEN USING SAME, AND METHOD FOR PRODUCING WELDED JOINT
KR20190121800A (en) 2017-03-30 2019-10-28 닛테츠 스테인레스 가부시키가이샤 High Mn austenitic stainless steel for weldability, weld joints and devices for hydrogen, and methods for producing weld joints
CN118028701A (en) * 2024-04-11 2024-05-14 江西理工大学 Hydrogen embrittlement resistant austenitic stainless steel and method for producing the same
CN118028701B (en) * 2024-04-11 2024-06-11 江西理工大学 Hydrogen embrittlement resistant austenitic stainless steel and method for producing the same

Also Published As

Publication number Publication date
JP5372467B2 (en) 2013-12-18

Similar Documents

Publication Publication Date Title
JP4907151B2 (en) Austenitic high Mn stainless steel for high-pressure hydrogen gas
JP5372467B2 (en) Austenitic stainless steel with excellent hydrogen embrittlement resistance
EP1930461B1 (en) Ferritic stainless steel for automobile exhaust gas passage components and welded steel pipe
CA2717104C (en) Stainless steel used for oil country tubular goods
JP6520516B2 (en) Austenitic heat-resistant alloy members
JP7059357B2 (en) Duplex stainless clad steel sheet and its manufacturing method
JP4462005B2 (en) High strength stainless steel pipe for line pipe with excellent corrosion resistance and method for producing the same
WO2005045082A1 (en) AUSTENITIC HIGH Mn STAINLESS STEEL EXCELLENT IN WORKABILITY
WO2005017222A1 (en) High strength stainless steel pipe excellent in corrosion resistance for use in oil well and method for production thereof
WO2012043877A1 (en) Austenite high-manganese stainless steel, manufacturing method therefor, and member using said steel
WO2014156188A1 (en) Steel structure for hydrogen, and method for manufacturing pressure accumulator for hydrogen and line pipe for hydrogen
WO2005042793A1 (en) High strength stainless steel pipe for line pipe excellent in corrosion resistance and method for production thereof
JP6648647B2 (en) Low alloy steel material, low alloy steel pipe and container, and method of manufacturing the container
WO2017056619A1 (en) Austenitic stainless steel and method for producing austenitic stainless steel
WO2006109664A1 (en) Ferritic heat-resistant steel
EP1930460B1 (en) Low alloy steel
JP6018364B2 (en) Duplex stainless steel for chemical tankers with excellent linear heatability
JP7135649B2 (en) Welding consumables for austenitic stainless steel
JP2017202494A (en) Austenitic heat-resistant steel weld metal and weld joint having the same
EP2803741B1 (en) Method of post weld heat treatment of a low alloy steel pipe
JP2016172909A (en) Container for high pressure hydrogen and method for producing the same
KR20130133030A (en) Duplex stainless steel sheet
JP2009084597A (en) Hydrogen resistant stainless steel spring wire, and hydrogen resistant spring product using the same
JP6320202B2 (en) Hydrogen embrittlement resistant high strength steel
JP2011068957A (en) Duplex stainless steel of high-strength alloy-saving type having excellent corrosion resistance in weld heat-affected zone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130918

R150 Certificate of patent or registration of utility model

Ref document number: 5372467

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees