JP2009132960A - Separation and refining process by chloride volatilization - Google Patents

Separation and refining process by chloride volatilization Download PDF

Info

Publication number
JP2009132960A
JP2009132960A JP2007308915A JP2007308915A JP2009132960A JP 2009132960 A JP2009132960 A JP 2009132960A JP 2007308915 A JP2007308915 A JP 2007308915A JP 2007308915 A JP2007308915 A JP 2007308915A JP 2009132960 A JP2009132960 A JP 2009132960A
Authority
JP
Japan
Prior art keywords
separation
concentration
chloride
indium
volatilization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007308915A
Other languages
Japanese (ja)
Inventor
Katsuyasu Sugawara
勝康 菅原
Takuo Sugawara
拓男 菅原
Risehiro Nonaka
利瀬弘 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akita University NUC
Original Assignee
Akita University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akita University NUC filed Critical Akita University NUC
Priority to JP2007308915A priority Critical patent/JP2009132960A/en
Publication of JP2009132960A publication Critical patent/JP2009132960A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Extraction Or Liquid Replacement (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a separation and refining process by chloride volatilization by which a process capable of producing an unconventionally high separation efficiency can be provided by combining a control of a cooling temperature field and an extraction step with chloride volatilization. <P>SOLUTION: A first step is a chlorination treatment step where raw materials are heated in a chlorine-air flow and respective elements are chlorinated to undergo separation and volatilization to produce a high-concentration chloride vapor. A second step is a separation and concentration step where the elements released as chlorides are isolated using changes in the boiling point and the chlorides separated from raw material powder are precipitated by the regulation of temperature in a cooling section to carry out separation of simple substances with respect to the respective elements. A third step is an extraction step where the high-concentration solid chlorides after the separation of simple substances are immersed in a solvent such as ether to perform selective separation of indium. The second step and/or the third step can be combined with the first step. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、レアメタルを含む原料、すなわち複数の化合物が混在するスクラップなどに含まれるインジウムなどの元素を金属塩化物に転換して分離する方法であって、温度制御や溶剤抽出処理を併用した塩化揮発法による分離精製方法に関するものである。   The present invention is a method for converting an element such as indium contained in a raw material containing a rare metal, that is, scrap containing a plurality of compounds into metal chloride, and separating the element by using temperature control and solvent extraction treatment in combination. The present invention relates to a separation and purification method by a volatilization method.

現在、機能性材料の原料として必要不可欠となっているインジウムなどのレアメタルは、その絶対量が少なく高価であることから、ITOターゲット屑やスクラップ、加工時の切削粉のような種々の二次資源からの回収を目的とした、湿式法による分離抽出が試みられている。
一般的な湿式処理法としては、塩酸や硝酸による溶解と溶媒抽出を組み合わせた手法、そして酸による溶解とアルカリによる沈殿を繰り返すことでインジウムなどの元素の濃度を上昇させる方法がある。
具体的には、例えば原料を塩酸や硝酸で溶解した後に強アルカリにすることでインジウム含有澱物を生成させ、これを固液分離した後に硫酸や混酸で溶解し、金属種を加えて析出させたインジウムを回収する方法などが検討されている(特許文献1と2を参照)。
Currently, rare metals such as indium, which are indispensable as raw materials for functional materials, are low in absolute amount and are expensive, so various secondary resources such as ITO target scraps, scraps, and cutting powder during processing. Attempts have been made to separate and extract by a wet method for the purpose of recovery from sewage.
As a general wet processing method, there are a method in which dissolution with hydrochloric acid or nitric acid and solvent extraction are combined, and a method in which the concentration of elements such as indium is increased by repeating dissolution with acid and precipitation with alkali.
Specifically, for example, an indium-containing starch is produced by dissolving the raw material with hydrochloric acid or nitric acid and then making it a strong alkali, and after solid-liquid separation, this is dissolved with sulfuric acid or mixed acid, and added with a metal species to precipitate. A method of recovering indium has been studied (see Patent Documents 1 and 2).

しかしこれらの方法は、主に錫やインジウムを高濃度で含有するITOスパッタリングターゲットを主な処理対象としており、鉱石や研磨粉のように多くの金属種を含み、かつインジウム含有量が低い原料に対応しているものではない。加えて、液処理工程を多く繰り返す必要があるために排水処理コストの増大が問題となる。
また別の方法として、最終的に高純度の金属インジウムを回収することを目的として、インジウム含有原料を塩酸で溶解し、アルカリを加えて水酸化物として析出させた後に硫化水素を吹き込むことで共存元素、すなわち電解工程に有害な金属種を除去する方法が開示されている(特許文献3を参照)。
しかしながら、いずれの方法も数種の溶媒を用いた多段階の抽出工程を必要とするものであり、したがって原料の多様化に伴うプロセスの多段階化や廃液処理コストの増大は不可避の課題である。
However, these methods mainly deal with ITO sputtering targets containing tin and indium at a high concentration, and include many metal species such as ores and polishing powders, and are used as raw materials with low indium content. It is not compatible. In addition, since it is necessary to repeat the liquid treatment process many times, an increase in wastewater treatment cost becomes a problem.
As another method, in order to finally recover high-purity metallic indium, the indium-containing raw material is dissolved in hydrochloric acid, added with alkali, precipitated as a hydroxide, and then coexisted by blowing hydrogen sulfide. A method for removing elements, that is, metal species harmful to the electrolytic process is disclosed (see Patent Document 3).
However, each method requires a multi-stage extraction process using several kinds of solvents. Therefore, the multi-stage process accompanying the diversification of raw materials and the increase in waste liquid treatment costs are inevitable issues. .

一方、塩化揮発反応を利用したレアメタルの乾式分離方法について、いくつか報告が為されているが、その殆どが酸化物を対象としたモデル実験や単純な揮発挙動の追跡に留まっており、鉱石やスクラップに関する実験も単純な揮発挙動の追跡に留まっている(非特許文献1と2を参照)。また近年注目を集めはじめたインジウムについて、その乾式分離に関する研究報告は見られない。
そのため、乾式プロセスによるインジウムの効率的な分離精製方法は未だ実用化に至っていないのが現状である。
On the other hand, there have been some reports on dry separation methods of rare metals using chloride volatilization reaction, but most of them have been limited to model experiments for oxides and simple tracking of volatilization behavior. Experiments related to scrap are also simply tracking the volatilization behavior (see Non-Patent Documents 1 and 2). In addition, there has been no research report on dry separation of indium that has begun to attract attention in recent years.
For this reason, an efficient method for separating and purifying indium by a dry process has not yet been put into practical use.

特開2007−39798号公報JP 2007-39798 A 特開2002−69684号公報JP 2002-69684 A 特開2007−131953号公報JP 2007-131953 A F.Yung, V.Hlavacek: Powder Technology 102(1999)177-183F. Yung, V. Hlavacek: Powder Technology 102 (1999) 177-183 N.V.Manukyan, V.H.Martirosyan: Journal of Materials Processing Technology 142(2003)145-151N.V.Manukyan, V.H.Martirosyan: Journal of Materials Processing Technology 142 (2003) 145-151

本発明は、塩化揮発法によるインジウムの抽出効率と収率を高めるために、冷却温度場の制御とエーテルなどの溶媒による抽出工程を組み合わせることで、従来法では対象とされてこなかった低濃度の原料にも対応し、かつて無い分離効率を出すことが可能なプロセスを提供する塩化揮発法による分離精製方法である。   In order to increase the extraction efficiency and yield of indium by the chloride volatilization method, the present invention combines the control of the cooling temperature field and the extraction step with a solvent such as ether, to achieve a low concentration that has not been targeted by the conventional method. This is a separation and purification method based on the chloride volatilization method that provides a process that can handle unprecedented separation efficiencies.

請求項1記載の発明は、複数の化合物が混在する原料を塩素気流中で加熱し、沸点の変化を利用して揮発分離を行い、高濃度塩化物蒸気を作製する塩化揮発処理工程と、前記高濃度塩化物蒸気を凝固点の違いを利用して冷却区間の温度調整により沈積させ、各元素を高濃度固体塩化物として単体分離を行う分離濃縮工程とを有する塩化揮発法による分離精製方法に係るものであり、塩素化剤との反応性の違いを利用した高濃度塩化物蒸気の生成方法と、凝固点の違いを利用した冷却温度場の制御による塩化物の分離濃縮方法である。   The invention according to claim 1 is a chloride volatilization treatment step of heating a raw material in which a plurality of compounds are mixed in a chlorine stream, performing volatilization separation using a change in boiling point, and producing a high concentration chloride vapor, It relates to a separation and purification method by a chlorination volatilization method having a separation and concentration step in which high-concentration chloride vapor is deposited by adjusting the temperature of the cooling zone using the difference in freezing point and each element is separated as a high-concentration solid chloride. These are a method for producing high-concentration chloride vapor using the difference in reactivity with the chlorinating agent, and a method for separating and concentrating chloride by controlling the cooling temperature field using the difference in freezing point.

また請求項2記載の発明は、前記分離濃縮工程において単体分離した高濃度固体塩化物をさらに溶剤で浸積することにより各元素の選択分離を行う抽出工程を有する請求項1に記載の塩化揮発法による分離精製方法であり、凝固点の違いを利用した冷却温度場の制御による塩化物の分離濃縮工程、そしてエーテルなどの溶媒に対する溶解度の違いを利用して塩化物の選択分離を行う抽出工程を経て成る分離生成方法である。   The invention according to claim 2 further includes an extraction step of selectively separating each element by immersing the high-concentration solid chloride separated in the separation and concentration step with a solvent. This is a separation and purification method based on the method, separation and concentration of chloride by controlling the cooling temperature field using the difference in freezing point, and extraction process that performs selective separation of chloride using the difference in solubility in ethers and other solvents. This is a separation and production method.

また請求項3記載の発明は、請求項1における塩化揮発処理工程において揮発分離した高濃度塩化物蒸気をさらに溶剤で浸積することにより各元素の選択分離を行う抽出工程を有する請求項1に記載の塩化揮発法による分離精製方法であり、塩素化剤との反応性の違いを利用した高濃度塩化物蒸気に対し直接エーテルなどの溶媒に対する溶解度の違いを利用して塩化物の選択分離を行う抽出工程を経て成る分離生成方法である。   The invention described in claim 3 further includes an extraction step of selectively separating each element by immersing the high-concentration chloride vapor volatilely separated in the chlorination volatilization treatment step of claim 1 with a solvent. This is a separation and purification method based on the chlorination volatilization method described above. Selective separation of chloride is performed using the difference in solubility in a solvent such as ether directly against high-concentration chloride vapor utilizing the difference in reactivity with the chlorinating agent. This is a separation and production method that includes an extraction process.

また請求項4記載の発明は、インジウムを含む複数の化合物が混在する原料を塩素気流中で加熱し、インジウム、チタン、クロム、鉄の揮発分離を行い、高濃度塩化物蒸気を作製する塩化揮発処理工程と、凝固点の違いを利用して冷却区間の温度調整により沈積させ、各元素を高濃度固体塩化物として単体分離を行う分離濃縮工程とを有する塩化揮発法による分離精製方法であり、塩素化剤との反応性の違いを利用した高濃度塩化物蒸気の生成方法と、凝固点の違いを利用した冷却温度場の制御による塩化物としてインジウムを効率的に分離濃縮する方法である。   Further, the invention according to claim 4 is a chlorinated volatile solution in which a raw material in which a plurality of compounds containing indium are mixed is heated in a chlorine stream, and volatile separation of indium, titanium, chromium and iron is performed to produce a high concentration chloride vapor. This is a separation and purification method by a chlorination volatilization method comprising a treatment step and a separation and concentration step in which each element is separated as a high-concentration solid chloride by depositing by adjusting the temperature of the cooling zone using the difference in freezing point, This is a method for producing high-concentration chloride vapor using the difference in reactivity with the agent, and a method for efficiently separating and concentrating indium as chloride by controlling the cooling temperature field using the difference in freezing point.

また請求項5記載の発明は、前記分離濃縮工程において単体分離した高濃度固体塩化物をさらにエーテルで浸積することによりインジウムの選択分離を行う抽出工程を有する請求項4に記載の塩化揮発法による分離精製方法であり、凝固点の違いを利用した冷却温度場の制御による塩化物の分離濃縮工程、そしてエーテルに対する溶解度の違いを利用してインジウム塩化物の選択分離を行う抽出工程を経て成る分離生成方法である。   The invention according to claim 5 further comprises an extraction step in which selective separation of indium is performed by further immersing the high-concentration solid chloride separated in the separation and concentration step with ether. Separation and purification method by the separation of the chloride by the control of the cooling temperature field using the difference in freezing point, and the extraction process that performs the selective separation of indium chloride using the difference in solubility in ether It is a generation method.

また請求項6記載の発明は、請求項4における塩化揮発処理工程において揮発分離した高濃度塩化物蒸気をさらにエーテルで浸積することによりインジウムの選択分離を行う抽出工程を有する請求項4に記載の塩化揮発法による分離精製方法であり、塩素化剤との反応性の違いを利用した高濃度塩化物蒸気に対し直接エーテルに対する溶解度の違いを利用してインジウム塩化物の選択分離を行う抽出工程を経て成る分離生成方法である。   The invention described in claim 6 further includes an extraction step for selectively separating indium by further immersing the high-concentration chloride vapor volatilely separated in the chlorination volatilization treatment step in claim 4 with ether. Extraction process that separates and purifies indium chloride using the difference in solubility in ether directly against high-concentration chloride vapor using the difference in reactivity with the chlorinating agent. It is the separation production method which goes through.

以上のように、本発明によれば、インジウムを含む種々の原料に対して、塩素を含むガスを反応させた後に、冷却温度場の制御やエーテル抽出を併用することで、共存する金属種の中からインジウムなどの元素を選択的に分離精製することができる。これによりプロセス数が少なくなり、種々の原料からインジウムなどの元素を製造する際の設備コストの削減や、多様な未利用資源を活用することが可能となる。   As described above, according to the present invention, after reacting a chlorine-containing gas with various raw materials containing indium, by using the control of the cooling temperature field and the ether extraction together, Elements such as indium can be selectively separated and purified from the inside. As a result, the number of processes is reduced, and it is possible to reduce equipment costs when utilizing elements such as indium from various raw materials and to utilize various unused resources.

本発明者は、前述の課題を解決することを目的として、種々の方法について検討を行った。
その結果、(1)原料粉末を塩素気流中で加熱した場合、熱力学的にはインジウムの揮発形態は高温域で三塩化インジウムであり、それ以下の低温域では異なる価数の塩化物として揮発すること、(2)原料中に含まれる共存元素はその形態により塩素化剤との反応性が異なり、一部の金属種のみが塩化揮発反応により分離できること、(3)揮発した金属塩化物が冷却区間の温度分布調整により単離できること、(4)塩化揮発反応により生成した高濃度塩化物固体をエーテルで浸積することで塩化インジウムを選択的に抽出できるとの知見を得て、本発明に到達したものである。
The present inventor has studied various methods for the purpose of solving the above-described problems.
As a result, (1) When the raw material powder is heated in a chlorine stream, the volatility of indium is thermodynamically indium trichloride at high temperatures, and it volatilizes as chlorides of different valences at lower temperatures. (2) The coexisting elements contained in the raw material have different reactivities with the chlorinating agent depending on the form, and only some metal species can be separated by the chlorination volatilization reaction, (3) the volatilized metal chloride is Obtaining the knowledge that it can be isolated by adjusting the temperature distribution in the cooling zone, and (4) that indium chloride can be selectively extracted by immersing the high-concentration chloride solid produced by the chloride volatilization reaction with ether. Has reached

インジウム含有原料からインジウムを効率良く抽出することを特徴とする本発明において必要な条件を以下に記載する。
(1)鉱石や試薬を含む、種々の化合物形態で存在するほぼ全てのインジウムを対象とし、とくにインジウム、チタン、鉄、クロム、珪素、アルミニウム、炭素の分離精製に利用できる。
(2)塩素化剤として用いる塩素ガスの純度は高いことが望ましいが、窒素ガスとの混合ガスも使用できる。
(3)抽出用の溶媒として、例えばジエチルエーテルのようなエーテル類を用いることが出来る。ただし、その種類により各元素に対する浸出率は異なり、一部の溶媒では浸出率が低下することがある。
The conditions necessary for the present invention, which is characterized by efficiently extracting indium from the indium-containing raw material, are described below.
(1) Almost all indium present in various compound forms including ores and reagents can be used, and in particular, it can be used for separation and purification of indium, titanium, iron, chromium, silicon, aluminum, and carbon.
(2) Although it is desirable that the purity of chlorine gas used as a chlorinating agent is high, a mixed gas with nitrogen gas can also be used.
(3) As a solvent for extraction, ethers such as diethyl ether can be used. However, the leaching rate with respect to each element differs depending on the type, and the leaching rate may decrease with some solvents.

以下に記載の実施例により、本発明をより具体的に説明する。ここでは、インジウムを種々の原料から選択的に分離する際に、効率が良く抽出率が高い実施例として、炭化物や酸化物のような単純な組成から成り、複雑な複合酸化物などを含まない電子材料の製造工程から排出される研磨粉を例とした。なお、本発明はこれらに限定されるものではない。   The present invention will be described more specifically with reference to the following examples. Here, when selectively separating indium from various raw materials, as an example of high efficiency and high extraction rate, it consists of a simple composition such as carbide and oxide, and does not include complex complex oxides. The polishing powder discharged from the manufacturing process of the electronic material was taken as an example. The present invention is not limited to these.

本発明全体のフローの一例を図1に示す。1〜3で示す各ステップからなる第一工程は、原料を塩素気流中で加熱し、インジウム、チタン、クロム、鉄の揮発分離を行い、高濃度塩化物蒸気を作成する塩化揮発処理工程熱処理工程、4で示すステップからなる第二工程は沸点の変化を利用して塩化物として放出されたレアメタル元素を単離するものであって、原料粉体から分離した金属塩化物を冷却区間の温度調整により沈積させ、各元素の単離を行う分離濃縮工程、そして5〜7で示すステップからなる第三工程は単体分離した高濃度固体塩化物をエーテルなどの溶媒で浸積することによりインジウムの選択分離を行う抽出工程である。   An example of the overall flow of the present invention is shown in FIG. The first process consisting of each step shown in 1-3 is a chloride volatilization treatment process heat treatment process in which the raw material is heated in a chlorine stream, and volatile separation of indium, titanium, chromium, and iron is performed to create a high-concentration chloride vapor. The second process consisting of the steps shown in 4 is to isolate the rare metal element released as chloride using the change in boiling point, and adjust the temperature of the cooling section of the metal chloride separated from the raw material powder. In the third step consisting of the separation and concentration step of depositing and isolating each element, and the steps shown in 5 to 7, the selection of indium is performed by immersing the single-concentrated high-concentration solid chloride with a solvent such as ether. It is an extraction process for performing separation.

ステップ1〜3では、原料の塩素化処理及び高濃度塩化物蒸気の生成を行う。原料として、電子材料の製造工程から排出される研磨粉を用いた。原料中には、Inのほか、Ti、Fe、Cr、Al、Siが含まれている。また、原料中には研磨剤に由来するAlやSiCが含まれており、これら安定な形態で存在する共存元素は塩素化剤との反応性が低いため、この第一工程において塩素気流中で加熱することにより、AlやSiなどは固相中へ濃縮分離できる。 In Steps 1 to 3, the raw material is chlorinated and high-concentration chloride vapor is generated. As the raw material, polishing powder discharged from the manufacturing process of the electronic material was used. In addition to In, the raw material contains Ti, Fe, Cr, Al, and Si. In addition, Al 2 O 3 and SiC derived from the abrasive are contained in the raw material, and these coexisting elements present in a stable form have low reactivity with the chlorinating agent, so in this first step, chlorine By heating in an air stream, Al, Si and the like can be concentrated and separated into a solid phase.

試料を塩素ガス気流中、昇温速度30℃/min,最高到達温度200〜700℃で加熱することで、例えばIn、Ti、Cr、Feの大部分を気相中へ揮発分離することができた。塩化物へ転換され、気相中に放出されるIn、Cr、Ti、Feの揮発挙動の一例を図2に示す。ここでは、原料粉体から放出し得る各金属の最大量を1.0として、昇温に伴い気相中へ移行した割合をそれぞれ示した。
このとき気相中へ放出されるTi、Fe、Cr、Inは塩化物蒸気として反応器内を移動し、温度の低下と共に一定の分布をもって沈積する。
熱力学的には、気相中へ放出される各元素の形態はそれぞれInCl,FeCl,TiCl,そしてCrClと推定でき、沈積温度の違いを利用することにより、塩化物の沈積分布を明確にし、各元素を選択的に分離可能であることがわかる。
For example, most of In, Ti, Cr, and Fe can be volatilized and separated into the gas phase by heating the sample in a chlorine gas stream at a heating rate of 30 ° C / min and a maximum temperature of 200 to 700 ° C. It was. An example of volatilization behavior of In, Cr, Ti, and Fe converted into chloride and released into the gas phase is shown in FIG. Here, assuming that the maximum amount of each metal that can be released from the raw material powder is 1.0, the ratio of the transition to the gas phase as the temperature rises is shown.
At this time, Ti, Fe, Cr, and In released into the gas phase move in the reactor as chloride vapor, and deposit with a certain distribution as the temperature decreases.
Thermodynamically, the form of each element released into the gas phase can be estimated as InCl 3 , FeCl 3 , TiCl 4 , and CrCl 3 , respectively, and by utilizing the difference in the deposition temperature, the chloride deposition distribution can be estimated. It is clear that each element can be selectively separated.

ステップ4では、高濃度塩化物蒸気の分離濃縮を行う。ステップ2の塩素化処理で気相中へ放出された各元素の塩化物は、ガスの冷却過程において粒子を析出して沈積する。各塩化物の沈積温度は元素により異なるため、冷却温度場を調整することで図1の例で言えば、CrはCrCl、InはInCl、FeはFeClそしてTi塩化物はTiClというようにそれぞれを単離できる。 In step 4, high concentration chloride vapor is separated and concentrated. The chloride of each element released into the gas phase by the chlorination treatment in Step 2 precipitates and deposits particles in the gas cooling process. Since the deposition temperature of each chloride differs depending on the element, in the example of FIG. 1 by adjusting the cooling temperature field, Cr is CrCl 3 , In is InCl 3 , Fe is FeCl 3, and Ti chloride is TiCl 4. Each can be isolated as follows.

すなわち冷却区間において、例えば沸点の高いクロムはCrClとして比較的高温領域へ単体で沈積し、またチタン塩化物は沸点が低く、低温領域において沈積もしくはガス状のまま移行するため、インジウム塩化物と分離可能である。以上の操作を経ることにより、原料粉体に含まれるインジウムの少なくとも90%以上を塩化物として選択的に分離することができる。 That is, in the cooling section, for example, chromium having a high boiling point is deposited as CrCl 3 alone in a relatively high temperature region, and titanium chloride has a low boiling point and migrates in the low temperature region as deposited or in a gaseous state. Separable. Through the above operation, at least 90% or more of indium contained in the raw material powder can be selectively separated as chloride.

なお、ステップ4の冷却温度場の制御を行わずに塩素化処理を行った場合、3で示すステップにおいて、例えばインジウムを最大で78%ほど含む濃縮固体を得ることができる。この場合、ステップ4の冷却温度場の制御をした工程と比べて各元素の沈積領域が広く重なるために共存元素との分離率は低下し、6で示すステップのエーテル抽出工程を組み合わせて回収できるインジウムは63%程となる。   In addition, when the chlorination process is performed without controlling the cooling temperature field in step 4, a concentrated solid containing, for example, about 78% of indium at the maximum can be obtained in the step indicated by 3. In this case, compared with the process in which the cooling temperature field in step 4 is controlled, the deposition region of each element overlaps widely, so that the separation rate from the coexisting elements decreases, and the ether extraction process in step 6 can be combined and recovered. Indium is about 63%.

これに対して、4で示すステップの冷却温度場の制御を行うことで各塩化物の沈積領域の重なりは少なくなり、分離率の向上に伴いインジウムの回収率を20%以上増大できる。同時に、本実施例の原料に含まれるクロムの大部分も塩化物として回収が可能である。また、本工程は塩素ガス流量を変えた場合にも有効であり、ガス流速の増大や前述の操作との組合せにより、分離率をさらに向上できる。   On the other hand, by controlling the cooling temperature field in the step indicated by 4, the overlap of the chloride deposition regions is reduced, and the indium recovery rate can be increased by 20% or more as the separation rate is improved. At the same time, most of the chromium contained in the raw material of this example can also be recovered as chloride. This process is also effective when the chlorine gas flow rate is changed, and the separation rate can be further improved by increasing the gas flow rate or combining it with the aforementioned operation.

5で示すステップでは、エーテル抽出による固体塩化物のさらなる分離濃縮を行う。4で示すステップの冷却温度場の制御による分離工程で得られた濃縮固体塩化物は、エーテルなどの溶媒で浸積することによりIn塩化物を選択的に抽出することができる。すなわち抽出工程において、例えばジエチルエーテルを溶媒として用いた場合には、塩化インジウムの抽出率は85%以上に達するが、その他の塩化物は鉄の一部が溶解するのみで、塩化チタンや塩化クロムは溶解しない。   In the step indicated by 5, the solid chloride is further separated and concentrated by ether extraction. The concentrated solid chloride obtained in the separation step by controlling the cooling temperature field in step 4 can be selectively extracted by immersing it in a solvent such as ether. That is, in the extraction process, for example, when diethyl ether is used as a solvent, the extraction rate of indium chloride reaches 85% or more, but other chlorides only dissolve a part of iron, and titanium chloride or chromium chloride. Does not dissolve.

すなわち、エーテルに対する塩化物の溶解度の違いを利用することで、ステップ5で得られる濃縮固体塩化物からIn塩化物を選択的に分離抽出することができる。600℃で塩素化処理を行い、気相中へ放出された塩化物を400℃前後で沈積分離し、高温領域と低温領域に沈積したそれぞれの固体塩化物をジエチルエーテルで抽出することにより、原料粉体からチタンやクロムなどの共存元素を分離し、インジウムを少なくとも90%以上含む濃縮固体を得ることができる。   That is, by utilizing the difference in solubility of chloride with respect to ether, In chloride can be selectively separated and extracted from the concentrated solid chloride obtained in Step 5. Chlorination treatment is performed at 600 ° C, chloride released into the gas phase is deposited and separated at around 400 ° C, and each solid chloride deposited in the high temperature region and the low temperature region is extracted with diethyl ether. By separating coexisting elements such as titanium and chromium from the powder, a concentrated solid containing at least 90% indium can be obtained.

以上のように、本発明によれば、種々のインジウム化合物を含む二次資源などに対して、塩素気流中で加熱して得られる高濃度塩化物蒸気について、冷却温度場の制御やエーテルなどを用いた抽出工程を併用することで、種々のインジウム化合物を選択的に分離精製することができる。本発明は、塩化揮発法によるインジウムの分離精製方法に適用するものである。詳しく述べると、本発明は冷却温度場の制御やエーテル抽出を併用した塩素化処理工程を含む方法であり、種々の二次資源などに含まれるインジウム化合物を金属塩化物に転換して効率的に分離精製するための方法である。   As described above, according to the present invention, for a high concentration chloride vapor obtained by heating in a chlorine stream against secondary resources including various indium compounds, control of the cooling temperature field, ether, etc. By using the extraction process used together, various indium compounds can be selectively separated and purified. The present invention is applied to a method for separating and purifying indium by the chloride volatilization method. More specifically, the present invention is a method including a chlorination treatment step in combination with control of the cooling temperature field and ether extraction, and efficiently converts indium compounds contained in various secondary resources into metal chlorides. This is a method for separation and purification.

本発明に係る原料からのインジウムの塩化揮発による分離精製方法の代表的な実施形態を示すフロー図である。It is a flowchart which shows typical embodiment of the separation and purification method by the chlorination volatilization of the indium from the raw material which concerns on this invention. 本発明の実施例1において、原料を塩素気流中で加熱したときのIn、Ti、Cr及びFeの揮発挙動の一例を示す図である。In Example 1 of this invention, it is a figure which shows an example of the volatilization behavior of In, Ti, Cr, and Fe when a raw material is heated in a chlorine airflow.

符号の説明Explanation of symbols

1 原料(種々のインジウム化合物を含む二次資源などの原料供給工程)
2 第一工程(塩素化および塩化揮発処理工程)
3 高濃度塩化物蒸気(任意の元素が濃縮された高濃度塩化物蒸気の移行・析出工程)
4 第二工程(冷却温度場を利用した塩化物の分離濃縮工程)
5 第三工程(エーテルによるインジウム塩化物の抽出工程)
6 インジウム化合物(第三工程により抽出されたインジウム化合物貯留工程)
7 エーテル(エーテルなどの抽出剤供給工程)
1 Raw materials (raw material supply process for secondary resources including various indium compounds)
2 First step (chlorination and chloride volatilization process)
3 High-concentration chloride vapor (Transition / precipitation process of high-concentration chloride vapor enriched with any element)
4 Second step (Separation and concentration step of chloride using cooling temperature field)
5 Third step (Extraction step of indium chloride with ether)
6 Indium compounds (indium compound storage step extracted in the third step)
7 Ether (extractant supply process such as ether)

Claims (6)

複数の化合物が混在する原料を塩素気流中で加熱し、沸点の変化を利用して揮発分離を行い、高濃度塩化物蒸気を作製する塩化揮発処理工程と、前記高濃度塩化物蒸気を凝固点の違いを利用して冷却区間の温度調整により沈積させ、各元素を高濃度固体塩化物として単体分離を行う分離濃縮工程とを有する塩化揮発法による分離精製方法。   A raw material containing a plurality of compounds is heated in a chlorine stream and volatile separation is performed using the change in boiling point to produce a high-concentration chloride vapor, and the high-concentration chloride vapor is converted into a freezing point. Separation and purification method by the chlorination volatilization method, which has a separation and concentration step in which the elements are separated as a high-concentration solid chloride by depositing by adjusting the temperature of the cooling section using the difference. 前記分離濃縮工程において単体分離した高濃度固体塩化物をさらに溶剤で浸積することにより各元素の選択分離を行う抽出工程を有する請求項1に記載の塩化揮発法による分離精製方法。   The separation and purification method according to the chlorination volatilization method according to claim 1, further comprising an extraction step of selectively separating each element by immersing the high-concentration solid chloride separated in the separation and concentration step with a solvent. 請求項1における塩化揮発処理工程において揮発分離した高濃度塩化物蒸気をさらに溶剤で浸積することにより各元素の選択分離を行う抽出工程を有する請求項1に記載の塩化揮発法による分離精製方法。   The separation purification method by the chlorination volatilization method according to claim 1, further comprising an extraction step of selectively separating each element by immersing the high concentration chloride vapor volatilely separated in the chlorination volatilization treatment step according to claim 1 with a solvent. . インジウムを含む複数の化合物が混在する原料を塩素気流中で加熱し、インジウム、チタン、クロム、鉄の揮発分離を行い、高濃度塩化物蒸気を作製する塩化揮発処理工程と、凝固点の違いを利用して冷却区間の温度調整により沈積させ、各元素を高濃度固体塩化物として単体分離を行う分離濃縮工程とを有する塩化揮発法による分離精製方法。   Utilizing the difference between the freezing point and the chlorination volatilization process, which heats a raw material in which multiple compounds containing indium are mixed in a chlorine stream and performs volatile separation of indium, titanium, chromium and iron to produce high-concentration chloride vapor. And a separation / concentration method using a chlorination volatilization method, wherein the element is deposited by adjusting the temperature of the cooling section, and each element is separated as a high-concentration solid chloride. 前記分離濃縮工程において単体分離した高濃度固体塩化物をさらにエーテルで浸積することによりインジウムの選択分離を行う抽出工程を有する請求項4に記載の塩化揮発法による分離精製方法。   The separation and purification method according to the chloride volatilization method according to claim 4, further comprising an extraction step of selectively separating indium by immersing the high-concentration solid chloride separated in the separation and concentration step with ether. 請求項4における塩化揮発処理工程において揮発分離した高濃度塩化物蒸気をさらにエーテルで浸積することによりインジウムの選択分離を行う抽出工程を有する請求項4に記載の塩化揮発法による分離精製方法。   5. The separation and purification method by the chlorination volatilization method according to claim 4, further comprising an extraction step of selectively separating indium by immersing the high-concentration chloride vapor volatilely separated in the chlorination volatilization treatment step according to claim 4 with ether.
JP2007308915A 2007-11-29 2007-11-29 Separation and refining process by chloride volatilization Pending JP2009132960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007308915A JP2009132960A (en) 2007-11-29 2007-11-29 Separation and refining process by chloride volatilization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007308915A JP2009132960A (en) 2007-11-29 2007-11-29 Separation and refining process by chloride volatilization

Publications (1)

Publication Number Publication Date
JP2009132960A true JP2009132960A (en) 2009-06-18

Family

ID=40865111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007308915A Pending JP2009132960A (en) 2007-11-29 2007-11-29 Separation and refining process by chloride volatilization

Country Status (1)

Country Link
JP (1) JP2009132960A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011074408A (en) * 2009-09-29 2011-04-14 Akita Univ Method for separating metal element, and separating device
CN103706145A (en) * 2012-10-01 2014-04-09 青岛科技大学 Subcritical CO2 based method used for low-temperature removing of residual solvents from thermal sensitive solid medicines
US8920535B2 (en) 2012-04-27 2014-12-30 Mitsubishi Heavy Industries, Ltd. Method of separating and recovering metal elements
US9114391B2 (en) 2011-03-29 2015-08-25 Mitsubishi Hitachi Power Systems, Ltd. Method for removing arsenic compound, method for regenerating NOx removal catalyst, and NOx removal catalyst

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011074408A (en) * 2009-09-29 2011-04-14 Akita Univ Method for separating metal element, and separating device
US9114391B2 (en) 2011-03-29 2015-08-25 Mitsubishi Hitachi Power Systems, Ltd. Method for removing arsenic compound, method for regenerating NOx removal catalyst, and NOx removal catalyst
US9399213B2 (en) 2011-03-29 2016-07-26 Mitsubishi Hitachi Power Systems, Ltd. Apparatus for removing arsenic compound
US8920535B2 (en) 2012-04-27 2014-12-30 Mitsubishi Heavy Industries, Ltd. Method of separating and recovering metal elements
CN103706145A (en) * 2012-10-01 2014-04-09 青岛科技大学 Subcritical CO2 based method used for low-temperature removing of residual solvents from thermal sensitive solid medicines
CN103706145B (en) * 2012-10-01 2016-08-10 青岛科技大学 A kind of based on subcritical CO2the technique of residual solvent in low temperature removing thermal sensitivity solid drugs

Similar Documents

Publication Publication Date Title
Xu et al. Production of nuclear grade zirconium: A review
Yang et al. Sustainable extraction of lead and re-use of valuable metals from lead-rich secondary materials
Ayanda et al. A review of niobium-tantalum separation in hydrometallurgy
RU2615527C2 (en) Method for concentrating and separating metal chlorides in/from iron(iii) chloride-containing hydrochloric acid solution
Jena et al. Metal extraction through chlorine metallurgy
Yu et al. One-step extraction of high-purity CuCl2· 2H2O from copper-containing electroplating sludge based on the directional phase conversion
JP2010180480A (en) High-purity hafnium, target and thin film comprising the same, and method for producing the high-purity hafnium
Schreier et al. Separation of Ir, Pd and Rh from secondary Pt scrap by precipitation and calcination
JP5913639B2 (en) Method for producing indium oxide-tin oxide powder, method for producing ITO target, and method for producing indium hydroxide-metastannic acid mixture
JP5935098B2 (en) Zinc production method
JP2014173107A (en) Method for recovering platinum group elements
CN105637105A (en) Zinc production method using electric furnace dust as raw material
JP2009203486A (en) Method for recovering ruthenium from scrap containing ruthenium
JP2017119901A (en) Recovery method of titanium oxide for metal titanium production from ilmenite ore
JP2020532425A (en) Methods for refining waste materials or industrial by-products containing chlorine
JP2009132960A (en) Separation and refining process by chloride volatilization
JP5223085B2 (en) Separation and purification of rare metals by chloride volatilization method
CN102634668A (en) Roasting-free evaporation-free method for producing cupric sulfate from zinc hydrometallurgy acid-wash copper dross
CN109136578A (en) Method for separating antimony and bismuth from hydrochloric acid leaching solution of Kaldo slag
MX2011007454A (en) Metal recovery from metallurgical waste by chloridising.
JP2002316822A (en) Method for recovering tantalum/niobium from carbide- base raw material containing tantalum/niobium
JP2016530986A (en) A method for separating and extracting industrially important products from bauxite, from red mud resulting from the processing of bauxite and from chemically similar substances
JP2021172845A (en) Method for recovering rare metal
CN111020237A (en) Method for recovering waste mercury acetate reagent
Liu et al. Efficient separation and recovery of gallium from GaAs scraps by alkaline oxidative leaching, cooling crystallization and cyclone electrowinning