JP2009131041A - Power-generator stator - Google Patents

Power-generator stator Download PDF

Info

Publication number
JP2009131041A
JP2009131041A JP2007303066A JP2007303066A JP2009131041A JP 2009131041 A JP2009131041 A JP 2009131041A JP 2007303066 A JP2007303066 A JP 2007303066A JP 2007303066 A JP2007303066 A JP 2007303066A JP 2009131041 A JP2009131041 A JP 2009131041A
Authority
JP
Japan
Prior art keywords
coil
stator
generator
rotor
slot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007303066A
Other languages
Japanese (ja)
Inventor
Jun Shiina
名 淳 椎
Mikio Kakiuchi
内 幹 雄 垣
Masashi Fujita
田 真 史 藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007303066A priority Critical patent/JP2009131041A/en
Publication of JP2009131041A publication Critical patent/JP2009131041A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power-generator stator that achieves reduction in field current and reduction in loss. <P>SOLUTION: The power-generator stator is configured such that a rotor 1 is placed at the center. The stator has a core 2. The core is provided with a plurality of coil slots 5 respectively extending along the axial center of a rotary shaft of the rotor so as to store each stator coil. The stator coil is composed of solid and hollow strand conductors that are directly or indirectly cooled by a refrigerant. The stator coil includes a half-turn coil comprising an upper coil 4a and a lower coil 4b mutually connected with each other at each end part protruding from both side faces of the stator core. The strand conductor is formed so as to be dislocated by being continuously twisted toward the extending direction of the coil slot at a part where the strand conductor is stored inside the coil slot. A proportionality coefficient α obtained by dividing the number of solid strands 4c constituting the half-turn coil by the number of hollow strands 4d is ≥2 while current density β of the stator coil is within a range of 8A/mm<SP>2</SP>≤β≤11A/mm<SP>2</SP>. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、発電機の固定子に係わり、とくに冷媒を用いて冷却する巻線構造を持った固定子に関する。   The present invention relates to a stator of a generator, and more particularly to a stator having a winding structure that is cooled using a refrigerant.

発電機、とくに大容量発電機の小型化を図る上では、固定子コイルおよび回転子コイルの冷却が重要である。発電機のコイルを冷却する方法は種々ある。とくに大容量発電機では、固定子コイルには大電流が流れるため高い冷却能力が必要とされ、コイルを冷媒により直接冷却する方法が採られる。冷媒の流路として、固定子コイルを構成する素線の内部もしくは隣接する部分に空間を設けた構造となっており、中空素線もしくは中実素線を混合させて構成される。   In order to reduce the size of a generator, particularly a large-capacity generator, it is important to cool the stator coil and the rotor coil. There are various ways of cooling the generator coil. Particularly in a large-capacity generator, a large current flows through the stator coil, so that a high cooling capacity is required, and a method of directly cooling the coil with a refrigerant is adopted. The refrigerant flow path has a structure in which a space is provided in or adjacent to the strands constituting the stator coil, and is configured by mixing hollow strands or solid strands.

一方、大容量発電機における回転子コイルは、回転子鉄心の周方向に沿って配されたスロットの内部に収められ、回転子楔がスロットの上部に挿入されることによって保持され、一般に機内冷媒で直接冷却される。これに対し、固定子コイルの冷媒には、機内ガスや外部から供給される冷却媒体が使用される。   On the other hand, a rotor coil in a large-capacity generator is housed in a slot arranged along the circumferential direction of the rotor core, and is held by inserting a rotor wedge into the upper portion of the slot. Cooled directly at. On the other hand, in-machine gas or a cooling medium supplied from the outside is used for the refrigerant of the stator coil.

また、回転子については、回転体であるため、回転子および回転子コイルに供給される冷媒が限定され、一般には回転子コイルの冷却媒体として機内ガスが選択されることとなり、大容量発電機においては回転子コイルの温度が設計上の制約となる場合が多い。   In addition, since the rotor is a rotor, the refrigerant supplied to the rotor and the rotor coil is limited. Generally, the in-machine gas is selected as a cooling medium for the rotor coil, and the large-capacity generator In many cases, the temperature of the rotor coil is a design constraint.

界磁電流による回転子コイルの温度上昇を抑えるために回転子コイルの導体断面積の確保を図ると、回転子強度および磁路の飽和といった制約から、あるいは界磁電流の低減を図り回転子径を大きくする結果、回転子の体格が大型化することとなる。換言すれば、発電機の体格を小型化するには、いかに回転子コイルの温度上昇を抑えるかが課題となる。   In order to suppress the temperature rise of the rotor coil due to the field current, if the conductor cross-sectional area of the rotor coil is secured, the rotor diameter can be reduced due to restrictions such as rotor strength and magnetic path saturation, or by reducing the field current. As a result, the physique of the rotor is enlarged. In other words, how to suppress the temperature rise of the rotor coil is a problem in reducing the size of the generator.

上述した課題の直接的対策として、回転子および回転子コイルの通風形状を最適化しコイルの温度上昇を抑えるようにした技術(例えば特許文献1、特許文献2)や、回転子のスロット形状を最適化して界磁電流を低減し、コイルの温度上昇を抑えるようにした技術(例えば特許文献3)が報告されている。
特開2006-81367号公報 特開2000-50576号公報 特開平11-355993号公報
As a direct countermeasure for the above-mentioned problems, a technique (for example, Patent Document 1 and Patent Document 2) that optimizes the ventilation shape of the rotor and the rotor coil and suppresses the temperature rise of the coil, and optimizes the slot shape of the rotor. A technique (for example, Patent Document 3) that reduces the field current and suppresses the temperature rise of the coil has been reported.
JP 2006-81367 A JP 2000-50576 Japanese Patent Laid-Open No. 11-355993

上記各特許文献の開示例は、何れも回転子構造を最適化することにより、温度低減を図っている。   In each of the disclosed examples of the above patent documents, the temperature is reduced by optimizing the rotor structure.

しかしながら、回転子の構造的対策だけでは限度があり、発電機全体としての冷却効果が十分ではない。そこで、回転子についての対策だけではなく、固定子による冷却対策で界磁電流および損失を低減することが望まれている。   However, the structural measures of the rotor alone are limited, and the cooling effect as a whole generator is not sufficient. Therefore, it is desired to reduce the field current and loss not only by measures for the rotor but also by cooling measures by the stator.

本発明は、上述の点を考慮してなされたもので、界磁電流の低減、ならびに損失の低減を図ることができる発電機の固定子を提供することを目的とする。   The present invention has been made in consideration of the above-described points, and an object of the present invention is to provide a generator stator capable of reducing field current and loss.

上記目的達成のため、本発明は、
回転子に対し、エアーギャップを介して同心状に配置された発電機の固定子であって、前記固定子は鉄心を有し、この鉄心に前記回転子の回転軸の軸心に沿うように延在して固定子コイルを格納する複数のコイルスロットが設けられ、前記固定子コイルは、冷媒により直接または間接に冷却される中実および中空の素線導体で構成され、前記固定子鉄心の両側面から突出した端部で相互に接続される上コイルおよび下コイルにより構成されるハーフターンコイルを含み、前記素線導体は、前記コイルスロット内に格納された部分で、前記コイルスロットの延在方向に向かって連続的に捩られて転位するように形成された発電機の固定子において、
前記ハーフターンコイルを構成する中実素線の数を中空素線の数で除して得た比例係数αが2以上で、当該コイルの電流密度βが8A/mm2≦β≦11A/mm2の範囲にある
ことを特徴とする。
To achieve the above object, the present invention provides:
A stator of a generator arranged concentrically with respect to a rotor via an air gap, the stator having an iron core so that the iron core follows the axis of the rotation axis of the rotor. A plurality of coil slots extending to store the stator coil are provided, and the stator coil is formed of solid and hollow wire conductors that are cooled directly or indirectly by a refrigerant, and the stator core A half-turn coil composed of an upper coil and a lower coil connected to each other at ends protruding from both side surfaces, wherein the wire conductor is a portion housed in the coil slot and extends from the coil slot. In the stator of the generator formed so as to be continuously twisted and shifted toward the current direction,
The proportionality coefficient α obtained by dividing the number of solid wires constituting the half-turn coil by the number of hollow wires is 2 or more, and the current density β of the coil is 8 A / mm 2 ≦ β ≦ 11 A / mm It is in the range of 2 .

本発明は上述のように比例係数αおよび電流密度βを所定値となるように構成したため、界磁電流の低減による回転子巻線の温度上昇を抑えかつ発電機効率を向上させて同一出力で体格を小型化した発電機を得ることができる。   Since the present invention is configured so that the proportionality coefficient α and the current density β have predetermined values as described above, the temperature increase of the rotor winding due to the reduction of the field current is suppressed, and the generator efficiency is improved to achieve the same output. A generator with a small size can be obtained.

本発明は、図1に示す固定子スロット内に収められた固定子コイルを形成するハーフターンコイルの構成が、コイルを構成する中実素線の数を中空素線の数で除して得た比例係数αが2以上で、かつ当該コイルの電流密度βが8A/mm2≦β≦11A/mm2の範囲にあることを特徴とする。 In the present invention, the configuration of the half-turn coil forming the stator coil housed in the stator slot shown in FIG. 1 is obtained by dividing the number of solid wires constituting the coil by the number of hollow wires. The proportionality coefficient α is 2 or more, and the current density β of the coil is in the range of 8 A / mm 2 ≦ β ≦ 11 A / mm 2 .

以下、添付図面を参照して本発明の実施例につき説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

(実施例1)
図1は、本発明の第1の実施例に係る大容量発電機の固定子の拡大断面図であり、また図2は、本発明に係る大容量発電機の横断面を示している。図1において、上コイル4aおよび下コイル4bは亀甲形コイルをコイルエンド部分で2分割してハーフターンコイルに形成されたものであり、相互間にスペーサ14を挟んで固定子スロット5内に挿入され、それぞれのコイル側面にはリップルスプリング12が配される。また、下コイル4bの下部には下敷板15が挿入され、上コイル4aの上部に固定子楔7が挿入されることにより、コイル4a,4bがスロット5内に固定される。
(Example 1)
FIG. 1 is an enlarged sectional view of a stator of a large-capacity generator according to a first embodiment of the present invention, and FIG. 2 shows a transverse section of the large-capacity generator according to the present invention. In FIG. 1, an upper coil 4a and a lower coil 4b are formed into half-turn coils by dividing a tortoiseshell-shaped coil into two at the coil end portion, and are inserted into the stator slot 5 with a spacer 14 between them. A ripple spring 12 is disposed on each coil side surface. In addition, the base plate 15 is inserted in the lower part of the lower coil 4b, and the stator wedge 7 is inserted in the upper part of the upper coil 4a, whereby the coils 4a and 4b are fixed in the slot 5.

上コイル4aおよび下コイル4bは、図示省略されているガラス被覆絶縁が施された中実素線4cおよび中空素線4dにより構成され、素線はそれぞれ回転軸心方向に沿って連続的に捩られて、代表的には1回転半、つまり540度転位される。   The upper coil 4a and the lower coil 4b are constituted by a solid wire 4c and a hollow wire 4d, which are not shown in the figure, with glass coating insulation, and the wires are continuously twisted along the rotational axis direction. Thus, typically, it is shifted by one and a half revolutions, that is, 540 degrees.

そして、上コイル4aおよび下コイル4bは、フィラー11およびセパレータ13によって形状が適宜調整された上でその外周を固定子主絶縁層6によって絶縁されている。なお図1においては、素線の列数は2列であるが、4列、6列等、他の列数とした構成としてもよい。   The upper coil 4 a and the lower coil 4 b are appropriately adjusted in shape by the filler 11 and the separator 13, and the outer periphery thereof is insulated by the stator main insulating layer 6. In FIG. 1, the number of strands of the strands is two, but a configuration may be adopted in which the number of other rows is four, six, or the like.

図2は、回転界磁形の発電機の横断面を示したもので、発電機は回転子1と固定子鉄心2とをそなえ、これら両者はエアーギャップ3を挟んで径方向の内、外に同心的に配置されている。固定子鉄心2のスロット5内には、中実素線4cおよび中空素線4dにより構成された上コイル4aおよび下コイル4bが固定子主絶縁層6を介して挿入され、固定子の内径側に挿入された固定子楔7によって保持される。   FIG. 2 shows a cross section of a rotating field generator. The generator includes a rotor 1 and a stator core 2, both of which are radially inward and outward with an air gap 3 therebetween. Are arranged concentrically. In the slot 5 of the stator core 2, an upper coil 4a and a lower coil 4b constituted by a solid element wire 4c and a hollow element wire 4d are inserted through a stator main insulating layer 6, and the inner diameter side of the stator Is held by a stator wedge 7 inserted into the.

回転子1には周方向に延びる回転子スロット9が設けられ、回転子スロット9内に収められた界磁コイル8は回転子外径側に挿入された回転子楔10により保持される。   The rotor 1 is provided with a rotor slot 9 extending in the circumferential direction, and the field coil 8 housed in the rotor slot 9 is held by a rotor wedge 10 inserted on the rotor outer diameter side.

本実施形態では、ハーフターンコイルによる上コイル4aおよび下コイル4bを、次のように構成することにより冷却効果を挙げることができる。すなわち、上コイル4a、下コイル4bを構成する中実素線4cの数を中空素線4dの数で除して得た比例係数α=2とし、かつ当該コイルの電流密度βを一般的な設計例にしたがって8A/mm2≦β≦11A/mm2の範囲にする。比例係数αは2を下限とし、上限は素線を設計する上での制約により自ずと定まる。 In the present embodiment, the cooling effect can be obtained by configuring the upper coil 4a and the lower coil 4b of the half-turn coil as follows. That is, the proportionality coefficient α = 2 obtained by dividing the number of the solid wires 4c constituting the upper coil 4a and the lower coil 4b by the number of the hollow wires 4d, and the current density β of the coils is a general value. According to the design example, the range is 8 A / mm 2 ≦ β ≦ 11 A / mm 2 . The proportionality coefficient α has a lower limit of 2, and the upper limit is naturally determined by constraints in designing the strands.

固定子コイルは、冷媒により直接または間接に冷却される中実素線4cおよび中空素線4dで構成され、上コイルおよび下コイルとして構成される。そして、上コイルおよび下コイルとして構成されるハーフターンコイル4a,4bは、固定子鉄心の両側面から突出した端部で相互に接続される。   The stator coil is composed of a solid wire 4c and a hollow wire 4d that are directly or indirectly cooled by a refrigerant, and is configured as an upper coil and a lower coil. And the half turn coils 4a and 4b comprised as an upper coil and a lower coil are mutually connected by the edge part which protruded from the both sides | surfaces of the stator core.

図3に、500MVAクラスのタービン発電機についてα=2として設計したときの、電流密度βと定格負荷時における界磁巻線の温度上昇値ΔTfとの関係を示す。鉄心外形および上コイルと下コイルとの素線構成は同一とし、素線数を変化させて磁界解析により評価した結果である。これにより、電流密度β≧8A/mm2の範囲において、界磁巻線の温度上昇値ΔTfが抑えられていることが分かる。 FIG. 3 shows the relationship between the current density β and the temperature rise value ΔTf of the field winding at the rated load when the 500 MVA class turbine generator is designed with α = 2. This is a result of evaluation by magnetic field analysis with the core outer shape and the wire configuration of the upper coil and the lower coil being the same and changing the number of wires. Thus, it can be seen that the temperature increase value ΔTf of the field winding is suppressed in the range of current density β ≧ 8 A / mm 2 .

これは、電流密度βを多くすることにより、固定子のスロット寸法が小さくなるため、固定子のスロット背面すなわち鉄心外径側の磁気抵抗が減少し、同一出力に対する所要界磁電流が減少するためである。   This is because, by increasing the current density β, the slot size of the stator is reduced, so that the magnetic resistance on the back side of the stator slot, that is, the iron core outer diameter side is reduced, and the required field current for the same output is reduced. It is.

図4は、電流密度βと回転子巻線および固定子巻線に発生する合計損失との関係についての特性を示す。この特性上で、8A/mm2≦β≦11A/mm2の範囲を見ると、回転子巻線および固定子巻線に発生する合計損失が8A/mm2と9A/mm2との間で最小となり、その両側で徐々に増加していくものであることが分かる。 FIG. 4 shows characteristics regarding the relationship between the current density β and the total loss generated in the rotor winding and the stator winding. On the basis of this characteristic, looking at the range of 8A / mm 2 ≤ β ≤ 11A / mm 2 , the total loss generated in the rotor and stator windings is between 8A / mm 2 and 9A / mm 2 It can be seen that it is the smallest and gradually increases on both sides.

このことから、電流密度βを8A/mm2≦β≦11A/mm2の範囲に選べば、発電機損失を低減できると言える。これは、図3に示したように、電流密度βに対して界磁電流が減少して回転子巻線に発生する損失が減少する一方、主に固定子巻線に発生するジュール損失が増加するためである。 From this, it can be said that the generator loss can be reduced if the current density β is selected within the range of 8 A / mm 2 ≦ β ≦ 11 A / mm 2 . As shown in FIG. 3, the field current decreases with respect to the current density β and the loss generated in the rotor winding decreases, while the Joule loss generated mainly in the stator winding increases. It is to do.

以上のように、図1に示す固定子スロット5内に収められた固定子コイルを形成するハーフターンコイル4a,4bにおいて、ハーフターンコイルを構成する中実素線4cの数を中空素線4dの数で除して得た比例係数αについてα=2とし、かつ当該コイルの電流密度βを8A/mm2≦β≦11A/mm2の範囲に選ぶことにより、界磁電流の低減ならびに損失の低減を図ることができる。 As described above, in the half-turn coils 4a and 4b forming the stator coil housed in the stator slot 5 shown in FIG. 1, the number of the solid strands 4c constituting the half-turn coil is set to the hollow strand 4d. By reducing the proportionality coefficient α obtained by dividing by the number of α and α = 2, and selecting the current density β of the coil in the range of 8 A / mm 2 ≦ β ≦ 11 A / mm 2 , field current can be reduced and lost. Can be reduced.

この第1の実施例において、上下コイル4a,4bの寸法、または素線4c,4dの構成もしくは寸法が異なる場合においても、α,βが適当に選ばれていれば上述した効果が得られる。   In the first embodiment, even when the dimensions of the upper and lower coils 4a and 4b or the configurations or dimensions of the strands 4c and 4d are different, the above-described effects can be obtained if α and β are appropriately selected.

(実施例2)
図5は、本発明の第2の実施例の構成を示す断面図である。この図5に示すように、α=3の場合の固定子スロットの横断面を示す。なお、実施例1と同一の構成部品には同一符号を付している。
(Example 2)
FIG. 5 is a sectional view showing the configuration of the second embodiment of the present invention. As shown in FIG. 5, the cross section of the stator slot when α = 3 is shown. In addition, the same code | symbol is attached | subjected to the component same as Example 1. FIG.

この第2の実施例では、ハーフターンコイルを構成する中実素線の数を中空素線の数で除して得た比例係数αがα=3となる以外、固定子スロットの構成は第1の実施例と同じである。   In the second embodiment, the configuration of the stator slot is the same as that of the stator slot except that the proportionality coefficient α obtained by dividing the number of solid wires constituting the half-turn coil by the number of hollow wires is α = 3. This is the same as the first embodiment.

このような構成としても、第1の実施例と同等以上の効果が得られる。このとき、上下コイルの寸法、または上下コイルの素線の構成もしくは寸法が異なる場合においても、第1の実施例で述べた以上の効果が得られる。   Even with such a configuration, an effect equal to or greater than that of the first embodiment can be obtained. At this time, even when the dimensions of the upper and lower coils, or the configuration or dimensions of the strands of the upper and lower coils are different, the advantages described above in the first embodiment can be obtained.

また、この第2の実施例の変形例として、上コイルのみをα=4とした場合、下コイルのみをα=1とした場合においては、第2の実施例で述べた以上の効果が得られる。   As a modification of the second embodiment, when only the upper coil is set to α = 4 and only the lower coil is set to α = 1, the above-described effects can be obtained. It is done.

本発明の第1の実施例における固定子スロットの基本構成を示す横断面図。FIG. 3 is a cross-sectional view showing a basic configuration of a stator slot in the first embodiment of the present invention. 本発明に係る発電機の基本構成を示す横断面図。The cross-sectional view which shows the basic composition of the generator which concerns on this invention. 本発明の第1の実施例における電流密度βと定格負荷時における界磁巻線の温度上昇値ΔTfとの関係を示す特性図。The characteristic view which shows the relationship between the current density (beta) in the 1st Example of this invention, and the temperature rise value (DELTA) Tf of the field winding at the time of a rated load. 本発明の第1の実施例における電流密度βと回転子巻線および固定子巻線に発生する合計損失との関係を示す特性図。The characteristic view which shows the relationship between the current density (beta) in the 1st Example of this invention, and the total loss which generate | occur | produces in a rotor winding and a stator winding. 本発明の第2の実施例における固定子スロットの基本構成を示す横断面図。The cross-sectional view which shows the basic composition of the stator slot in the 2nd Example of this invention.

符号の説明Explanation of symbols

1:回転子、2:固定子鉄心、4a:上コイル、4b:下コイル、4c:中実素線、4d:中空素線、5:固定子スロット。   1: rotor, 2: stator core, 4a: upper coil, 4b: lower coil, 4c: solid wire, 4d: hollow wire, 5: stator slot.

Claims (6)

回転子に対し、エアーギャップを介して同心状に配置された発電機の固定子であって、前記固定子は鉄心を有し、この鉄心に前記回転子の回転軸の軸心に沿うように延在して固定子コイルを格納する複数のコイルスロットが設けられ、前記固定子コイルは、冷媒により直接または間接に冷却される中実および中空の素線導体で構成され、前記固定子鉄心の両側面から突出した端部で相互に接続される上コイルおよび下コイルにより構成されるハーフターンコイルを含み、前記素線導体は、前記コイルスロット内に格納された部分で、前記コイルスロットの延在方向に向かって連続的に捩られて転位するように形成された発電機の固定子において、
前記ハーフターンコイルを構成する中実素線の数を中空素線の数で除して得た比例係数αが2以上で、当該コイルの電流密度βが8A/mm2≦β≦11A/mm2の範囲にある
ことを特徴とする発電機の固定子。
A stator of a generator arranged concentrically with respect to a rotor via an air gap, the stator having an iron core so that the iron core follows the axis of the rotation axis of the rotor. A plurality of coil slots extending to store the stator coil are provided, and the stator coil is formed of solid and hollow wire conductors that are cooled directly or indirectly by a refrigerant, and the stator core A half-turn coil composed of an upper coil and a lower coil connected to each other at ends protruding from both side surfaces, wherein the wire conductor is a portion housed in the coil slot and extends from the coil slot. In the stator of the generator formed so as to be continuously twisted and shifted toward the current direction,
The proportionality coefficient α obtained by dividing the number of solid wires constituting the half-turn coil by the number of hollow wires is 2 or more, and the current density β of the coil is 8 A / mm 2 ≦ β ≦ 11 A / mm A generator stator characterized by being in the range of 2 .
請求項1記載の発電機の固定子において、
前記比例係数αが、3以上であることを特徴とする発電機の固定子。
In the stator of the generator according to claim 1,
The generator stator, wherein the proportionality coefficient α is 3 or more.
請求項1記載の発電機の固定子において、
前記上コイルと前記下コイルとは、前記比例係数αが同一であることを特徴とする発電機の固定子。
In the stator of the generator according to claim 1,
The generator stator, wherein the upper coil and the lower coil have the same proportionality coefficient α.
請求項1に記載の発電機の固定子において、
前記上コイルと前記下コイルとは、前記比例係数αが異なることを特徴とする発電機の固定子。
In the stator of the generator according to claim 1,
The generator stator, wherein the upper coil and the lower coil have different proportionality coefficients α.
請求項4記載の発電機の固定子において、
前記比例係数αが、前記上コイルのみα=4である
ことを特徴とする発電機の固定子。
In the stator of the generator according to claim 4,
The generator stator, wherein the proportional coefficient α is α = 4 only for the upper coil.
請求項4記載の発電機において、
前記比例係数αが、前記下コイルのみα=1である
ことを特徴とする発電機の固定子。
The generator according to claim 4,
The proportional coefficient α is α = 1 only for the lower coil.
JP2007303066A 2007-11-22 2007-11-22 Power-generator stator Pending JP2009131041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007303066A JP2009131041A (en) 2007-11-22 2007-11-22 Power-generator stator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007303066A JP2009131041A (en) 2007-11-22 2007-11-22 Power-generator stator

Publications (1)

Publication Number Publication Date
JP2009131041A true JP2009131041A (en) 2009-06-11

Family

ID=40821421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007303066A Pending JP2009131041A (en) 2007-11-22 2007-11-22 Power-generator stator

Country Status (1)

Country Link
JP (1) JP2009131041A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011061898A (en) * 2009-09-07 2011-03-24 Toshiba Corp Generator
CN105761917A (en) * 2016-05-23 2016-07-13 王喜平 Rotary transformer stator coil bobbin structure and winding method
JP2018129975A (en) * 2017-02-10 2018-08-16 三菱電機株式会社 Rotary electric machine, and manufacturing method and manufacturing device for tortoiseshell-shaped coil

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005160261A (en) * 2003-11-28 2005-06-16 Hitachi Ltd Armature winding and rotating electric machine using same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005160261A (en) * 2003-11-28 2005-06-16 Hitachi Ltd Armature winding and rotating electric machine using same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011061898A (en) * 2009-09-07 2011-03-24 Toshiba Corp Generator
CN105761917A (en) * 2016-05-23 2016-07-13 王喜平 Rotary transformer stator coil bobbin structure and winding method
CN105761917B (en) * 2016-05-23 2024-04-02 北京维通利电气有限公司 Stator coil framework structure of rotary transformer and winding method
JP2018129975A (en) * 2017-02-10 2018-08-16 三菱電機株式会社 Rotary electric machine, and manufacturing method and manufacturing device for tortoiseshell-shaped coil

Similar Documents

Publication Publication Date Title
EP2362524B1 (en) Rotating electrical machine
US7893575B2 (en) Rotor with field coils in optimized flux space slots
US20040095035A1 (en) Electric motor
EP2362526B1 (en) Method for manufacturing a stator for an energy converting apparatus
CN111917203B (en) Motor with a motor housing
US10079517B2 (en) Outer rotor-type rotating electric machine
JP7257602B2 (en) coil
US20120086288A1 (en) Electric rotating machine
US7812499B2 (en) Armature winding of electric rotating machine, stator of electric rotating machine and electric rotating machine
US11309749B2 (en) Stator assembly with teeth having different cross-sectional profiles with stem and head portions
JP2009131041A (en) Power-generator stator
US8138653B2 (en) Rotating electric machine
JP2008253014A (en) Rotating electrical machine for high voltage
JP5066820B2 (en) Magnet structure
JP2009106005A (en) Stator of rotating electric machine
JP2003333772A (en) Stator core having laminate made of iron-aluminum alloy and method for using the same
JP2007166796A (en) Dynamo-electric machine and its control method, and compressor, blower, and air conditioner
JP2006340488A (en) Rotating electric machine
JP5884464B2 (en) Rotating electric machine
CN111564915A (en) Stator
US11411448B2 (en) Motor stator core design with integral cooling duct within teeth
JP7372128B2 (en) Electric motor and electric motor manufacturing method
WO2022080200A1 (en) Stator of dynamo-electric machine
JP2006014471A (en) Motor
JPH0880000A (en) Rotor for dynamo-electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100310

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120215

A131 Notification of reasons for refusal

Effective date: 20120217

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20120904

Free format text: JAPANESE INTERMEDIATE CODE: A02