JP2009130969A - Flat brushless motor - Google Patents

Flat brushless motor Download PDF

Info

Publication number
JP2009130969A
JP2009130969A JP2007300632A JP2007300632A JP2009130969A JP 2009130969 A JP2009130969 A JP 2009130969A JP 2007300632 A JP2007300632 A JP 2007300632A JP 2007300632 A JP2007300632 A JP 2007300632A JP 2009130969 A JP2009130969 A JP 2009130969A
Authority
JP
Japan
Prior art keywords
hole
brushless motor
edge
cogging torque
magnetic pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007300632A
Other languages
Japanese (ja)
Other versions
JP5368695B2 (en
Inventor
Takeshi Yamaguchi
山口  剛
Koichiro Saito
向一郎 斎藤
Masaki Arai
正樹 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Nidec Seimitsu Corp
Original Assignee
Sanyo Electric Co Ltd
Sanyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Seimitsu Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2007300632A priority Critical patent/JP5368695B2/en
Priority to CN2008101497092A priority patent/CN101442248B/en
Publication of JP2009130969A publication Critical patent/JP2009130969A/en
Application granted granted Critical
Publication of JP5368695B2 publication Critical patent/JP5368695B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Brushless Motors (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flat brushless motor which can materialize the avoidance of a dead point surely without deteriorating its torque performance at current application. <P>SOLUTION: This flat brushless motor is equipped with a stator magnetic plate 10, which mounts drive coils 42-45 and magnetic pole detecting elements around a pivot 30, and a rotor 100, in which an annular magnet 50 having N poles and S poles alternately in its circumferential direction at a fan-shaped magnetic pole face of 60° in circular angle is arranged in face opposition to the stator magnetic plate 10 and which is supported rotatably for the pivot 30. It is equipped with holes h<SB>1</SB>-h<SB>3</SB>for generation of cogging torque, which have their hole centers C<SB>1</SB>to C<SB>3</SB>in positions excluding a detection reference line m1 and parting lines m2 and m3, in a region which opposes by face the annular magnet 50 out of the stator magnetic plate 10, and hole edges F<SB>1</SB>to F<SB>3</SB>are formed on the inner side than the peripheral side edge 50b of the annular magnet 50. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、携帯電話機などに搭載する扁平形振動モータに適用可能な扁平形ブラシレスモータに関する。   The present invention relates to a flat brushless motor applicable to a flat vibration motor mounted on a mobile phone or the like.

特開平5−146134に開示の扁平形ブラシレスモータにおいては、図11に示す如く、4磁極を有する円環状磁石1と、これと対向して設けられて円環状磁石1のヨークとしても機能する磁性材プレート2と、このプレート2上に搭載されてロータ磁極の回転位置を検出するホール素子3及び通電時にロータ磁極に回転力を与える2個の駆動コイル4と、磁性材プレート2の外周縁においてホール素子3の位置及びこれを基準に90°で等分割された位置を除く位置に形成された切り欠き部5とを有している。ロータ磁極が仮に駆動コイル4の真上で停止した場合、即ち、扇状の磁極面間の磁極境界線(磁気中性点)Lがホール素子3の真上で停止した場合は自起動が不可能なデッドポイントとなるが、ロータが停止する際は、磁極境界線Lがコギングトルクを発生する切り欠き部5の切り欠き中心線(対称軸)O上で停止するため、ホール素子3の真上には磁極面が位置することになるので、ホール素子3の磁極検出が可能となり、再通電によりロータを順方向に自起動でき、デッドポイントを回避できる。   In the flat brushless motor disclosed in Japanese Patent Laid-Open No. 5-146134, as shown in FIG. 11, an annular magnet 1 having four magnetic poles and a magnet that is provided opposite to the magnet and functions as a yoke of the annular magnet 1. At the outer peripheral edge of the magnetic material plate 2, the Hall element 3 mounted on the plate 2 for detecting the rotational position of the rotor magnetic pole, the two drive coils 4 for applying rotational force to the rotor magnetic pole when energized, It has a notch portion 5 formed at a position excluding the position of the Hall element 3 and the position equally divided at 90 ° with respect to this. If the rotor magnetic pole stops just above the drive coil 4, that is, if the magnetic pole boundary (magnetic neutral point) L between the fan-shaped magnetic pole faces stops right above the Hall element 3, self-starting is impossible. However, when the rotor stops, the magnetic pole boundary L stops on the notch center line (symmetry axis) O of the notch 5 that generates the cogging torque. Since the magnetic pole face is located at the front end, the magnetic pole of the Hall element 3 can be detected, the rotor can be automatically started in the forward direction by re-energization, and a dead point can be avoided.

なお、ホール素子3の位置から切り欠き中心線Oまでのズレ角θは切り欠き占有角度φの半分よりも2倍以上大きくなっている。
特開平5−146134(図3、図4)
The shift angle θ from the position of the Hall element 3 to the notch center line O is twice or more larger than half of the notch occupation angle φ.
JP-A-5-146134 (FIGS. 3 and 4)

しかしながら、上記のデッドポイントの回避技術にあっては次のような問題点がある。即ち、ロータが停止する直前、磁極境界線Lが切り欠き部5の上に来た状態では、切り欠き部5の縁に集中する磁力線の磁気吸引力が丁度釣り合うようになるまで磁極境界線Lが動き、磁極境界線Lが切り欠き部5の切り欠き中心線O上にほぼ整合して停止するものの、ロータが停止する直前、扇状の磁極面の主要磁気である中央部分が切り欠き部5の上に来た状態では、磁極境界線Lがホール素子3のほぼ真上でたまたま停止してしまう場合もあり、デッドポイントの回避策が確率論的になお不十分である。特に、この扁平形ブラシレスモータをロータに偏心錘を設けた扁平形振動モータとして利用する携帯電話機においては、停止時におけるモータ姿勢に伴う偏心錘の重力方向如何によって、磁極境界線Lが切り欠き部5の上に至らないことがまま起る。   However, the dead point avoidance technique has the following problems. That is, immediately before the rotor stops, in the state where the magnetic pole boundary line L is on the cutout portion 5, the magnetic pole boundary line L is kept until the magnetic attractive force of the magnetic force lines concentrated on the edge of the cutout portion 5 is just balanced. The magnetic pole boundary L stops substantially in alignment with the notch center line O of the notch 5, but immediately before the rotor stops, the central portion that is the main magnetism of the fan-shaped magnetic pole surface is the notch 5. In the state where the magnetic pole boundary L is located above, the magnetic pole boundary line L may happen to stop almost directly above the Hall element 3, and the dead point avoidance measure is still insufficient in terms of probability. In particular, in a mobile phone using this flat brushless motor as a flat vibration motor having an eccentric weight on the rotor, the magnetic pole boundary L is notched depending on the gravity direction of the eccentric weight accompanying the motor posture at the time of stoppage. Things that do not reach the top of 5 happen.

図12は磁極境界線Lが切り欠き部5の真上で停止した状態を示す部分平面図である。この切り欠き部5は扇状であるが、磁極(例えばN極)面上の点Pから出た磁力線は切り欠き部5の径線縁5a上の最短点Qに平面視で弦経路Wとして到達してから磁性材プレート2内を通るため、有効なコギングトルク成分の発生に寄与しているものの、他方、磁極面上の点Pから出た磁力線の方は切り欠き部5の径線縁5a上の最短点Qに平面視で弦経路Wとして到達する場合と切り欠き部5の弦線縁5b上の最短点Rに平面視で径線経路Wとして到達する場合とが存在する。この事情は上記点と左右対称なS極上の点でも同様である。このため、扇状の切り欠き部5のうち、平面視で径線経路が弦経路よりも概ね短い領域Eでは磁力線が弦線縁5bへ飛ぶだけになるので、この領域Eはコギングトルクの発生に実質上寄与していない。 FIG. 12 is a partial plan view showing a state where the magnetic pole boundary line L is stopped just above the notch 5. This cutout portion 5 is fan-shaped magnetic pole (e.g., N pole) magnetic force lines emitted from the point P 1 on the surface notches 5 of the meridian string path W to minimum point Q 1 in a plan view of the upper edge 5a after reaching a 1 for passing through the magnetic material plate 2, but contributes to the generation of active cogging torque component, while the direction of lines of magnetic force emitted from the point P 2 on the pole face of the notch 5 arriving as a longitude line path W 3 in the shortest point R 2 on the chord line edge 5b of the notch 5 in the case to reach the string path W 2 in a plan view in a plan view the shortest point Q 2 on the diameter line edge 5a There are cases. This situation is the same for a point on the S pole that is symmetrical to the above point. For this reason, in the fan-shaped cutout portion 5, in the region E in which the radial path is substantially shorter than the chord path in plan view, the magnetic field lines only fly to the chord line edge 5b. It does not contribute substantially.

ここで、コギングトルクの発生を強めるため、切り欠き部5を中心側へより深く形成して径線縁5aを長くすることが考えられる。しかしながら、切り欠き面積の拡大はさほどではなく、また磁極境界線Lの近傍部分では起磁力が弱く、しかも中心側の弦経路を介する磁力線が多少増えても、トルク発生の要因である腕の長さが短くなる分、コギングトルクの増強には殆ど結び付かない。他方、切り欠き部5を円弧方向に幅広に形成し、切り欠き占有角度φを大きくした場合でも、コギングトルクの発生に寄与しない領域Eが依然と存在し、また漏洩磁束も多くなる分、通電時のトルク性能が悪化する。従って、扇状の切り欠き部5ではその空部の広さを拡大しても、コギングトルクを増強することが困難である。   Here, in order to increase the generation of cogging torque, it is conceivable that the notch 5 is formed deeper toward the center to lengthen the radial edge 5a. However, the enlargement of the notch area is not so large, and the magnetomotive force is weak in the vicinity of the magnetic pole boundary L, and even if the magnetic field lines through the chord path on the center side are slightly increased, the length of the arm that is the cause of torque generation As the length becomes shorter, the cogging torque is hardly increased. On the other hand, even when the notch 5 is formed wide in the arc direction and the notch occupying angle φ is increased, the region E that does not contribute to the generation of cogging torque still exists and the amount of leakage magnetic flux increases. The torque performance at the time deteriorates. Therefore, it is difficult to increase the cogging torque in the fan-shaped cutout portion 5 even if the width of the empty portion is enlarged.

そこで上記問題点に鑑み、本発明の課題は通電時のトルク性能を悪化させずにデッドポイントの回避を確実に実現できる扁平形ブラシレスモータを提供することにある。   Therefore, in view of the above problems, an object of the present invention is to provide a flat brushless motor that can reliably avoid a dead point without deteriorating torque performance during energization.

本発明に係る扁平形ブラシレスモータは、nを自然数とし、支軸の周りに並んで回転磁界を発生する複数の駆動コイル及び磁極検出素子を搭載したステータ磁性板と、円弧角180°/nの扇状磁極面でN極とS極を周回方向に交互に持つ円環状磁石をステータ磁性板に面対向で配置し、支軸に対し回転自在に支持されたロータとを備える。ステータ磁性板のうち円環状磁石に面対向する領域において、ロータの回転中心を通る孔中心線に関し左右対称の平面形状であって、磁極検出素子の位置及びこれを基準に180°/nで等分割した位置を除く位置に孔中心線を持つコギングトルク発生用孔を備えており、回転中心からコギングトルク発生用孔の孔縁に接する一対の接線の成す孔占有角度(α)が180°/n以下であり、孔縁が円環状磁石の外周縁よりも内側に形成されている。   A flat brushless motor according to the present invention includes a stator magnetic plate on which a plurality of drive coils and magnetic pole detection elements that generate a rotating magnetic field are arranged side by side around a support shaft, where n is a natural number, and an arc angle of 180 ° / n An annular magnet having N-poles and S-poles alternately in the circumferential direction on the fan-shaped magnetic pole surface is disposed on the stator magnetic plate so as to face the surface, and includes a rotor that is rotatably supported with respect to the support shaft. In the region of the stator magnetic plate facing the annular magnet, the plane shape is bilaterally symmetric with respect to the hole center line passing through the rotation center of the rotor, and the position of the magnetic pole detection element and 180 ° / n with respect to this position A cogging torque generating hole having a hole center line at a position other than the divided position is provided, and a hole occupying angle (α) formed by a pair of tangent lines contacting the edge of the cogging torque generating hole from the rotation center is 180 ° / n or less, and the hole edge is formed inside the outer peripheral edge of the annular magnet.

本発明は、第1に、ステータ磁性板のうち円環状磁石に面対向する領域において、ステータ磁性板の外周側に切り欠き部が形成されているのではなく、ステータ磁性板の地板で取り囲まれた孔縁のあるコギングトルク発生用孔が形成され、反回転中心側の外側孔縁を有しているため、ロータの停止時にN極とS極間の磁極境界線がコギングトルク発生用孔の孔中心線の上に合致した状態では、磁極面に由来する磁力線の一部は外側孔縁の最短点に到達できるので、コギングトルクの発生が増強する。このため、コギングトルク発生用孔を拡大して孔占有角度(α)を180°/nの近くまで大きく設定すると、有効なコギングトルクを得ることができる。扇状磁極面がコギングトルク発生用孔を完全に覆った状態では、扇状磁極面のうち磁力が一番強い中央部分がコギングトルク発生用孔の中心付近に重なり、コギングトルクが極大となるものであるが、コギングトルク発生用孔を大きく形成し、その孔の両側で扇状磁性面に重なる地板部分を幅狭にすることができるため、コギングトルク極大付近がロータの僅少な回転角に対して急峻に大きく変化し、極大点として先鋭化でき、それ故、ロータの思案を有効に排除できる。このため、デッドポイントの回避を確実に実現できる。   In the present invention, firstly, in the region of the stator magnetic plate facing the annular magnet, a notch is not formed on the outer peripheral side of the stator magnetic plate, but is surrounded by the ground plate of the stator magnetic plate. A cogging torque generating hole with a sharp hole edge is formed and an outer hole edge on the counter-rotating center side is formed. Therefore, when the rotor is stopped, the magnetic pole boundary line between the N pole and the S pole is In a state of being matched with the hole center line, a part of the magnetic force lines derived from the magnetic pole surface can reach the shortest point of the outer hole edge, so that the generation of cogging torque is enhanced. Therefore, effective cogging torque can be obtained by enlarging the cogging torque generating hole and setting the hole occupying angle (α) to a value close to 180 ° / n. In the state where the fan-shaped magnetic pole surface completely covers the cogging torque generating hole, the central portion of the fan-shaped magnetic pole surface where the magnetic force is the strongest overlaps with the vicinity of the center of the cogging torque generating hole, and the cogging torque is maximized. However, since the cogging torque generating hole can be made large and the ground plate part that overlaps the fan-shaped magnetic surface on both sides of the hole can be narrowed, the vicinity of the cogging torque maximum is steep with respect to the slight rotation angle of the rotor. It changes greatly and can be sharpened as a maximal point, thus effectively eliminating the idea of the rotor. For this reason, it is possible to reliably avoid the dead point.

第2に、孔縁が円環状磁石の外周縁よりも内側に形成されていることを特徴とする。円環状磁石の外周面から出る磁力線も反回転中心側の外側孔縁に集中するため、磁束漏洩を抑制でき、通電時のトルク性能の悪化を招かずに済む。   Second, the hole edge is formed inside the outer peripheral edge of the annular magnet. Magnetic field lines coming out from the outer peripheral surface of the annular magnet are also concentrated on the outer hole edge on the counter-rotation center side, so that leakage of magnetic flux can be suppressed and torque performance during energization does not deteriorate.

なお、駆動コイルや磁極検出素子の下にコギングトルク発生用孔を大きく形成した場合でも、非通電時にコギングトルクが発生するので構わない。スペース効率を高めることができる。   Even when the cogging torque generating hole is formed large under the drive coil or the magnetic pole detection element, the cogging torque may be generated when no power is supplied. Space efficiency can be increased.

回転中心周りの角度で磁極検出素子の位置とこれから一番近いコギングトルク発生用孔の孔中心線とが成すズレ角(β)は孔占有角度(α)の半分以下であることが望ましい。ロータ停止の際は、磁極境界線が孔縁の一方の接線に重なった状態から孔中心線に重なって止まるため、孔占有角度(α)の半分の間はロータがコギングトルクで確実に回される。それ故、孔占有角度(α)の半分の間にズレ角(β)が収まっているので、磁極境界線は磁極検出素子の位置で停止することがない。なお、180°/n−α<βでもある。   It is desirable that the deviation angle (β) formed by the position of the magnetic pole detection element and the hole center line of the cogging torque generating hole nearest to the angle around the rotation center is not more than half of the hole occupation angle (α). When the rotor stops, the pole boundary line overlaps with the hole center line from the state where the magnetic pole boundary line overlaps one of the tangents of the hole edge, so that the rotor is reliably rotated with cogging torque for half the hole occupation angle (α). The Therefore, since the deviation angle (β) falls within half of the hole occupation angle (α), the magnetic pole boundary line does not stop at the position of the magnetic pole detection element. Note that 180 ° / n−α <β.

ここで更に、磁極面のうちコギングトルク発生用孔内に収まる点からの磁力線が孔縁の1点のみの最短点に到達するようにするのは、孔縁が回転中心側の内側円弧縁と反回転中心側の外側円弧縁とを含むことが望ましく、同半径の内側円弧縁と外側円弧縁とを直接接続した円周縁でも、同半径の内側円弧縁と外側円弧縁とを直線縁で接続した長円状縁でも、小半径の内側円弧縁と大半径の外側円弧縁とを直線縁で接続した扇状縁でも良い。コギングトルク発生用孔内の各点に基づく磁気吸引力の磁極境界線の法線方向成分がコギングトルクの発生に確実に寄与し、コギングトルクの発生に寄与しない領域を殆ど無くすことができ、コギングトルクを増強できる。   Furthermore, the reason why the magnetic field lines from the point of the magnetic pole face that falls within the cogging torque generating hole reach the shortest point of only one point of the hole edge is that the hole edge is the inner arc edge on the rotation center side. It is desirable to include the outer arc edge on the counter-rotation center side, and the inner arc edge and outer arc edge of the same radius are connected by a straight edge even at the circumference of the circle where the inner arc edge and outer arc edge of the same radius are directly connected The oval edge may be a fan-shaped edge in which a small radius inner arc edge and a large radius outer arc edge are connected by a straight edge. The normal direction component of the magnetic pole boundary of the magnetic attractive force based on each point in the cogging torque generation hole contributes reliably to the generation of cogging torque, and almost no region that does not contribute to the generation of cogging torque can be eliminated. Torque can be increased.

ステータ磁性板においてコギングトルク発生用孔が1箇所だけであると、コギングトルクがなおも不足する場合もあり、また1磁極だけが過度に偏って磁気吸引されるため、通電時に回転するロータにとってはアンバランスになる。特に、ロータが偏心錘を持つ場合には面ブレのおそれが増す。そこで、ステータ磁性板は回転中心に関し360°/nの回転対称の位置毎に孔中心線を持つ同形n個のコギングトルク発生用孔を備えることが望ましい。1つおきの磁極にコギングトルクがバランス良く発生し、またコギングトルクの増強に繋がる。   If there is only one cogging torque generating hole in the stator magnetic plate, the cogging torque may still be insufficient, and only one magnetic pole is excessively biased and magnetically attracted. It becomes unbalanced. In particular, when the rotor has an eccentric weight, the risk of surface blurring increases. Therefore, it is desirable that the stator magnetic plate is provided with n cogging torque generating holes having the same shape and having a hole center line at each rotationally symmetric position of 360 ° / n with respect to the rotation center. Cogging torque is generated in every other magnetic pole in a well-balanced manner, and the cogging torque is increased.

n=1の場合は、円弧角は180°の扇状磁極面を持つ円環状磁石となるため、孔占有角度(α)をこの円弧角に近づけて設定するには小型化の上で困難となる。n=2の場合の円弧角は90°で、孔占有角度(α)を円弧角90°にまで原理的に設定できるが、コギングトルクによる脈動周期がまだ長い。n=3の場合の円弧角は60°で、孔占有角度(α)を円弧角60°にまで原理的に設定できる。なお、nが4以上の場合も同様に原理的に設定できるが、ズレ角度(β)が僅少になるため、磁極検出素子の位置が磁極境界線の近傍になって磁気が弱くなる。衝撃等により磁極境界線が孔中心の正逆方向に微振動しただけでも、ロータが誤って逆方向に自起動されるおそれも起こり得る。n=3の場合が最も望ましい。   In the case of n = 1, since the arc angle is an annular magnet having a fan-shaped magnetic pole surface of 180 °, it is difficult to make the hole occupation angle (α) close to the arc angle in terms of miniaturization. . In the case of n = 2, the arc angle is 90 °, and the hole occupation angle (α) can be theoretically set to 90 °, but the pulsation period due to the cogging torque is still long. In the case of n = 3, the arc angle is 60 °, and the hole occupation angle (α) can be theoretically set up to the arc angle of 60 °. In the case where n is 4 or more, the same principle can be set. However, since the deviation angle (β) is small, the position of the magnetic pole detection element is close to the magnetic pole boundary and the magnetism is weakened. Even if the magnetic pole boundary line vibrates slightly in the forward / reverse direction of the hole center due to impact or the like, there is a possibility that the rotor may be erroneously self-started in the reverse direction. The case where n = 3 is most desirable.

ロータが偏心錘を有して成る場合は、扁平形振動モータとして用いるに好適である。上記のようにデッドポイントの回避に有効であるばかりか、停止時にはロータの慣性動が強いものの、強力なコギングトルクの発生により制動作用が働き、慣性回転の持続時間を短縮できる。   When the rotor has an eccentric weight, it is suitable for use as a flat vibration motor. As described above, not only is it effective in avoiding a dead point, but the inertial motion of the rotor is strong at the time of stopping, but the braking action is activated by the generation of a strong cogging torque, and the duration of the inertial rotation can be shortened.

本発明の扁平形ブラシレスモータによれば、通電時のトルク性能を悪化させずにデッドポイントの回避を確実に実現できる。   According to the flat brushless motor of the present invention, it is possible to reliably avoid the dead point without deteriorating the torque performance during energization.

次に、本発明の実施形態を添付図面に基づいて説明する。図1は本発明の実施例に係る扁平形振動モータを示す斜視図、図2は同扁平形振動モータの組立斜視図、図3は同扁平形振動モータにおけるステータ磁性板を示す平面図、図4は同ステータ磁性板の斜視図、図5は同ステータ磁性板に給電用フレキシブル基板を重ねた状態を示す平面図である。   Next, embodiments of the present invention will be described with reference to the accompanying drawings. 1 is a perspective view showing a flat vibration motor according to an embodiment of the present invention, FIG. 2 is an assembly perspective view of the flat vibration motor, and FIG. 3 is a plan view showing a stator magnetic plate in the flat vibration motor. 4 is a perspective view of the stator magnetic plate, and FIG. 5 is a plan view showing a state where a flexible substrate for power feeding is superimposed on the stator magnetic plate.

本例の扁平形(コイン形)振動モータはブラシレスモータであり、シャフト受け11を持ちヨークとして機能するステータ磁性板10と、シャフト受け11の上にワッシャー20を重ねて一端を圧入した支軸30と、ステータ磁性板10上に熱溶着されており、中央孔41を有しこの周りに4個の駆動用の空心扁平コイル42〜45,ホール素子(図示せず)を内蔵するスイッチング用集積回路46及びコンデンサ47を並べて搭載した給電用フレキシブル基板40と、円弧角60°の扇状磁極面でN極とS極を周回方向に交互に持つ円環状マグネット50を下面側に、円弧状の偏心錘60を外周縁に、中央部にラジアル軸受70をそれぞれ持ち、支軸30に回転自在に支持されたロータ板80と、支軸30の他端に圧入固定されてステータ磁性板10に下端が固定したヨークとしての磁性材のカバー90とを備えている。ロータ板80と円環状ロータマグネット50とがステータ磁性板10に面対応するロータ100を構成している。   The flat (coin-shaped) vibration motor of this example is a brushless motor, and includes a stator magnetic plate 10 having a shaft receiver 11 and functioning as a yoke, and a support shaft 30 in which a washer 20 is stacked on the shaft receiver 11 and one end is press-fitted. And an integrated circuit for switching, which is thermally welded onto the stator magnetic plate 10 and has a central hole 41 and includes four air-core flat coils 42 to 45 for driving and a hall element (not shown) around the central hole 41. 46 and the capacitor 47 are mounted side by side, and a circular magnet 50 having a fan-shaped magnetic pole surface with an arc angle of 60 ° and alternately having N and S poles in the circumferential direction is arranged on the lower surface side, and an arc-shaped eccentric weight. 60 has an outer peripheral edge 60 and a radial bearing 70 at the center, and a rotor plate 80 that is rotatably supported by the support shaft 30 and a press-fitted and fixed to the other end of the support shaft 30. The lower end sexual plate 10 and a cover 90 of a magnetic material as a fixed yoke. The rotor plate 80 and the annular rotor magnet 50 constitute the rotor 100 corresponding to the stator magnetic plate 10.

給電用フレキシブル基板40は外部にリード線(図示せず)を半田接続する給電パターン(図示せず)を持つ突片部48を有し、コンデンサ47,スイッチング用集積回路46及び空心扁平コイル42〜45の端子を接続するための所定の回路配線(図示せず)が形成されている。   The power supply flexible board 40 has a protruding portion 48 having a power supply pattern (not shown) for soldering a lead wire (not shown) to the outside, and includes a capacitor 47, an integrated circuit for switching 46, and an air-flat coil 42 ~. Predetermined circuit wiring (not shown) for connecting the 45 terminals is formed.

ステータ磁性板10は鉄製などの磁性(強磁性)板をプレス成形した平板であって、扁平形振動モータの底板を形成するための略円形のベース板部12と、その外周側の一部から突出して給電用フレキシブル基板40の突片部48を受ける端子受け板部13とを一体的に有している。このステータ磁性板10には、シャフト受け11の中心(ロータ100の回転中心)Cに関して120°の回転対称の位置に孔中心C〜Cを持つ同形3個のコギングトルク発生用丸孔h〜hが形成されている。この丸孔h〜hは真円で円周孔縁F〜Fを有する。中心Cからコギングトルク発生用丸孔h〜hの孔縁F〜Fに接する一対の接線S,Sの成す孔占有角度αは扇状磁極面の円弧角60°以下の約50°である。 The stator magnetic plate 10 is a flat plate obtained by press-molding a magnetic (ferromagnetic) plate made of iron or the like, and includes a substantially circular base plate portion 12 for forming a bottom plate of a flat vibration motor and a part on the outer peripheral side thereof. The terminal receiving plate portion 13 that protrudes and receives the protruding piece portion 48 of the power supply flexible substrate 40 is integrally provided. This stator magnetic plate 10 has three cogging torque generating round holes h having hole centers C 1 to C 3 at rotationally symmetric positions of 120 ° with respect to the center C of the shaft receiver 11 (rotation center of the rotor 100) C. 1 to h 3 are formed. The round holes h 1 to h 3 are perfect circles and have circumferential hole edges F 1 to F 3 . The hole occupying angle α formed by the pair of tangents S 1 and S 2 that contact the edge F 1 to F 3 of the cogging torque generating round holes h 1 to h 3 from the center C is about an arc angle of 60 ° or less of the fan-shaped magnetic pole surface. 50 °.

このステータ磁性板10に支軸30を植立し、その上に給電用フレキシブル基板40を正しく重ね合わせ熱溶着した状態は、図5に示す如く、検出基準線mはスイッチング用集積回路46が内蔵するホール素子(図示せず)の磁気検出位置を通っており、この検出基準線mと一番近いコギングトルク発生用丸孔hの孔中心Cとが成すズレ角βは15°であり、このズレ角βは孔占有角度αの半分以下である。このため、スイッチング用集積回路46の下にコギングトルク発生用丸孔hがあり、また、空心扁平コイル42,43の下にコギングトルク発生用丸孔hがあり、空心扁平コイル44,45の下にコギングトルク発生用丸孔hがあるが、この検出基準線mを基準に3等分割した分割線m,mには孔中心C,Cに重なっておらず、同様にズレ角βだけ離れている。コギングトルク発生用丸孔h〜hは給電用フレキシブル基板40に覆われて塞がれている。 Erected a support shaft 30 on the stator magnetic plate 10, while heat-welded onto superimposed correctly feeding flexible substrate 40 thereon, as shown in FIG. 5, the detection reference line m 1 is the switching integrated circuits 46 The deviation angle β formed between the detection reference line m 1 and the closest hole center C 1 of the cogging torque generating round hole h 1 passes through the magnetic detection position of a built-in Hall element (not shown). The deviation angle β is less than half of the hole occupation angle α. For this reason, there is a cogging torque generating round hole h 1 under the switching integrated circuit 46, and a cogging torque generating round hole h 2 under the air core flat coils 42, 43, and the air core flat coils 44, 45. of it is cogging torque generating circular holes h 3 below, does not overlap the hole center C 2, C 3 the dividing line m 2, m 3 divided 3 etc. relative to the detection reference line m 1, Similarly, it is separated by a deviation angle β. The cogging torque generating round holes h 1 to h 3 are covered and closed by the power supply flexible substrate 40.

そして、ロータ100を支軸30に取着した状態においてロータ板80及び給電用フレキシブル基板40を除き円環状マグネット50とステータ磁性板10と空心扁平コイル42〜45との位置関係を図6乃至図8に示す。図6は、実際には起こりえないが、円環状マグネット50の磁極面が空心扁平コイル42〜45の真上で、磁気境界線Lが検出基準線m又は分割線m,mの上に重なって停止したデッドポイント状態を示す。コギングトルク発生用丸孔h〜hの孔縁F〜Fうち回転中心側の縁部分f〜fは円環状マグネット50の内周側縁50aから内側へ若干はみ出ているが、孔縁F〜Fの全体配置は円環状マグネット50の外周側縁50bから内側に位置している。 The positional relationship among the annular magnet 50, the stator magnetic plate 10, and the air flat coils 42 to 45 except for the rotor plate 80 and the power supply flexible substrate 40 with the rotor 100 attached to the support shaft 30 is shown in FIGS. It is shown in FIG. Although FIG. 6 cannot actually occur, the magnetic pole surface of the annular magnet 50 is directly above the air-core flat coils 42 to 45, and the magnetic boundary line L is the detection reference line m 1 or the dividing lines m 2 and m 3 . The dead point state where it stopped on top of it is shown. Of the hole edges F 1 to F 3 of the cogging torque generating round holes h 1 to h 3 , edge parts f 1 to f 3 on the rotation center side slightly protrude inward from the inner peripheral edge 50 a of the annular magnet 50. The entire arrangement of the hole edges F 1 to F 3 is located on the inner side from the outer peripheral edge 50 b of the annular magnet 50.

図7は、円環状マグネット50がデットポイントでの停止を回避した実際の停止位置を示し、丸孔h〜hによるコギングトルク発生で磁気境界線Lが孔中心C〜Cに重なった状態である。斯かる状態では、図9に示す如く、磁極(例えばN極)面上の点P〜Pのいずれから出た磁力線も半径経路を経て孔縁Fの唯一の最短点T〜Tに到達し、ステータ磁性板10内を通過する。コギングトルク発生用丸孔h〜h内の各点に基づく磁気吸引力の磁極境界線Lの法線方向成分がコギングトルクの発生に確実に寄与し、コギングトルクの発生に寄与しない領域を殆ど無くすことができ、コギングトルクを増強できる。 Figure 7 shows the actual stop position the annular magnet 50 is avoided arrest at dead point, the magnetic boundary line L overlaps the hole center C 1 -C 3 in the cogging torque generated by the round holes h 1 to h 3 It is in the state. In such a state, as shown in FIG. 9, the lines of magnetic force emitted from any of the points P 1 to P 3 on the magnetic pole (for example, the N pole) plane pass through the radial path and are the only shortest points T 1 to T of the hole edge F 1. 3 and passes through the stator magnetic plate 10. A region in the normal direction of the magnetic pole boundary L of the magnetic attractive force based on each point in the cogging torque generating round holes h 1 to h 3 surely contributes to the generation of the cogging torque and does not contribute to the generation of the cogging torque. It can be almost eliminated and the cogging torque can be increased.

円環状マグネット50の停止の際は、磁極境界線Lが孔縁F〜Fの一方の接線S,Sに重なった状態から孔中心C〜Cに重なって止まるため、孔占有角度(α)の半分の間は円環状マグネット50がコギングトルクで確実に回される。それ故、孔占有角度(α)の半分の間にズレ角βが収まっているので、磁極境界線Lは検出基準線m又は分割線m,mの上で停止することがない。 When the annular magnet 50 is stopped, since the magnetic pole boundary line L overlaps with one of the tangents S 1 and S 2 of the hole edges F 1 to F 3 and stops with the hole centers C 1 to C 3 , During the half of the occupation angle (α), the annular magnet 50 is reliably rotated by the cogging torque. Therefore, since the deviation angle β falls within half the hole occupation angle (α), the magnetic pole boundary L does not stop on the detection reference line m 1 or the dividing lines m 2 and m 3 .

孔縁F〜Fが円環状マグネット50の外周側縁50bよりも内側に形成されている。このため、円環状マグネット50の外周面から出る磁力線も孔縁F〜Fのうち反回転中心側の外側孔縁に集中するので、磁束漏洩を抑制でき、通電時のトルク性能の悪化を招かずに済む。 The hole edges F 1 to F 3 are formed inside the outer peripheral edge 50 b of the annular magnet 50. For this reason, the lines of magnetic force emerging from the outer peripheral surface of the annular magnet 50 are also concentrated on the outer hole edge on the counter-rotation center side of the hole edges F 1 to F 3 , so that magnetic flux leakage can be suppressed and torque performance during energization is deteriorated. You don't have to invite me.

図8は扇状磁極面がコギングトルク発生用丸孔h〜hを完全に覆った状態を示す。この状態は扇状磁極面の磁力が大勢の中央と孔中心とが重なるときであり、コギングトルクが極大となるものであるが、コギングトルク発生用丸孔h〜hを大きく形成し、孔占有角度αを大きく設定できているため、扇状磁極面に重なるステータ磁性板10の地板部分(接線S,Sと磁極境界線Lとが成す角度γ内の範囲)が5°程度の幅狭に限定されているので、コギングトルク極大付近がロータ100の僅少な回転角に対して急峻に大きく変化し、極大点として先鋭化でき、それ故、ロータの思案を有効に排除できる。孔占有角度αを大きく設定できているため、この位置での円環状マグネット50の思案点を有効的に排除できる。このため、デッドポイントの回避を確実に実現できる。ここで、2γ<βの関係が成立している。 FIG. 8 shows a state in which the fan-shaped magnetic pole surface completely covers the cogging torque generating round holes h 1 to h 3 . This state is when the center of the magnetic force of the fan-shaped magnetic pole surface and the center of the hole overlap each other, and the cogging torque is maximized, but the cogging torque generating round holes h 1 to h 3 are formed to be large and the hole Since the occupation angle α can be set large, the width of the ground plate portion of the stator magnetic plate 10 that overlaps the fan-shaped magnetic pole surface (the range within the angle γ formed by the tangents S 1 and S 2 and the magnetic pole boundary L) is about 5 °. Since it is limited to a narrow range, the vicinity of the cogging torque maximum changes sharply and greatly with respect to a small rotation angle of the rotor 100, and can be sharpened as a maximum point. Therefore, the idea of the rotor can be effectively eliminated. Since the hole occupation angle α can be set large, the thought point of the annular magnet 50 at this position can be effectively eliminated. For this reason, it is possible to reliably avoid the dead point. Here, the relationship of 2γ <β is established.

なお、コギングトルク発生用の孔の孔形状は丸孔に限らず、図10(A)に示す如く、中心Cを通る孔中心線(対称軸)Xに関して左右対称形状であって、同半径の内側円弧縁Dと外側円弧縁Dとを接線としての直線縁G,Gで接続した長円状縁でも、また図10(B)に示す如く、小半径の内側円弧縁dと大半径の外側円弧縁Dとを接線としての径線縁(直線縁)G′,G′で接続した扇状縁で構わない。 Note that the hole shape of the hole for generating the cogging torque is not limited to a round hole, and as shown in FIG. 10A, the hole shape is symmetrical with respect to the hole center line (symmetry axis) X passing through the center C and has the same radius. An elliptical edge in which the inner arc edge D 1 and the outer arc edge D 2 are connected by straight edges G 1 and G 2 as tangents, and as shown in FIG. 10B, the inner arc edge d 1 having a small radius is also provided. And an outer arc edge D 2 having a large radius may be fan-shaped edges connected by radial line edges (straight edges) G 1 ′, G 2 ′ as tangent lines.

本発明の実施例に係る扁平形振動モータを示す斜視図である。It is a perspective view which shows the flat vibration motor which concerns on the Example of this invention. 同扁平形振動モータの組立斜視図である。It is an assembly perspective view of the flat vibration motor. 同扁平形振動モータにおけるステータ磁性板を示す平面図である。It is a top view which shows the stator magnetic plate in the flat vibration motor. 同ステータ磁性板の斜視図である。It is a perspective view of the stator magnetic plate. 同ステータ磁性板に給電用フレキシブル基板を重ねた状態を示す平面図である。It is a top view which shows the state which piled up the flexible substrate for electric power feeding on the stator magnetic plate. 同扁平形振動モータにおけるロータのデッドポイントを示す平面図である。It is a top view which shows the dead point of the rotor in the same flat vibration motor. 同扁平形振動モータにおけるロータの停止位置を示す平面図である。It is a top view which shows the stop position of the rotor in the flat vibration motor. 同扁平形振動モータにおけるロータの磁極がコギングトルク発生用丸孔を覆う状態を示す平面図である。It is a top view which shows the state in which the magnetic pole of the rotor in the same flat vibration motor covers the round hole for cogging torque generation. 同ロータの停止位置においてコギングトルク発生用丸孔を拡大して示す部分平面図である。It is a partial top view which expands and shows the round hole for cogging torque generation in the stop position of the rotor. 同ステータ磁性板において別の孔形状のコギングトルク発生用孔を示す平面図である。It is a top view which shows the hole for cogging torque generation of another hole shape in the same stator magnetic plate. (A)は従来の扁平形ブラシレスモータを示す平面図、(B)はその磁性材プレートの切り欠き部を示す拡大側面図である。(A) is a top view which shows the conventional flat brushless motor, (B) is an enlarged side view which shows the notch part of the magnetic material plate. 同扁平形ブラシレスモータにおいて切り欠き部を拡大して示す部分平面図である。It is a fragmentary top view which expands and shows a notch part in the same flat brushless motor.

符号の説明Explanation of symbols

1…円環状磁石
2…磁性材プレート
3…ホール素子
4…駆動コイル
5…切り欠き部
5a…径線縁
5b…弦線縁
10…ステータ磁性板
11…シャフト受け
12…ベース板部
13…端子受け板部
20…ワッシャー
30…支軸
40…給電用フレキシブル基板
41…中央孔
42〜45…空心扁平コイル
46…スイッチング用集積回路
47…コンデンサ
48…突片部
50…円環状マグネット
50a…内周側縁
50b…外周側縁
60…偏心錘
70…ラジアル軸受
80…ロータ板
90…カバー
100…ロータ
C…回転中心
〜C…孔中心
,d…内側円弧縁
…外側円弧縁
E…コギングトルク発生に寄与しない領域
〜F…孔縁
〜f…縁部分
,G…直線縁
′,G′…径線縁
〜h…コギングトルク発生用丸孔
L…磁極境界線(磁気中性点)
…検出基準線
,m…分割線
O…切り欠き中心線(対称軸)
〜P…磁極面上の点
,Q,R,T〜T…最短点
,S…接線
,W…弦経路
…径線経路
X…孔中心線(対称軸)
α…孔占有角度
β,θ…ズレ角
φ…切り欠き占有角度
γ…接線と磁極境界線とが成す角度
DESCRIPTION OF SYMBOLS 1 ... Toroidal magnet 2 ... Magnetic material plate 3 ... Hall element 4 ... Drive coil 5 ... Notch part 5a ... Radius edge 5b ... String line edge 10 ... Stator magnetic plate 11 ... Shaft support 12 ... Base plate part 13 ... Terminal Back plate 20 ... Washer 30 ... Support shaft 40 ... Power supply flexible substrate 41 ... Central hole 42 to 45 ... Air-core flat coil 46 ... Switching integrated circuit 47 ... Capacitor 48 ... Projection piece 50 ... Round magnet 50a ... Inner circumference side edge 50b ... outer peripheral edge 60 ... eccentric weights 70 ... radial bearing 80 ... rotor plate 90 ... cover 100 ... rotor C ... rotation center C 1 -C 3 ... hole center D 1, d 1 ... inner arc edge D 2 ... outer Arc edge E: Area F 1 to F 3 not contributing to cogging torque generation Hole edge f 1 to f 3 ... Edge portion G 1 , G 2 ... Linear edge G 1 ', G 2 ' ... Radial edge h 1 to h 3 ... cogging torque Generating round hole L ... pole boundary line (magnetic neutral point)
m 1 ... detection reference lines m 2 , m 3 ... dividing line O ... notch center line (symmetric axis)
P 1 to P 3 ... Points Q 1 , Q 2 , R 2 , T 1 to T 3 on the magnetic pole surface ... Shortest points S 1 , S 2 ... Tangential lines W 1 , W 2 ... String path W 3 ... Diameter path X ... Hole centerline (axis of symmetry)
α ... hole occupation angle β, θ ... deviation angle φ ... notch occupation angle γ ... angle formed by tangent and magnetic pole boundary line

Claims (8)

nを自然数とし、支軸の周りに並んで回転磁界を発生する複数の駆動コイル及び磁極検出素子を搭載したステータ磁性板と、円弧角180°/nの扇状磁極面でN極とS極を周回方向に交互に持つ円環状磁石を前記ステータ磁性板に面対向で配置し、前記支軸に対し回転自在に支持されたロータとを備えた扁平形ブラシレスモータにおいて、
ステータ磁性板のうち前記円環状磁石に面対向する領域において、前記ロータの回転中心を通る孔中心線に関し左右対称の平面形状であって、前記磁極検出素子の位置及びこれを基準に180°/nで等分割した位置を除く位置に前記孔中心線を持つコギングトルク発生用孔を備えており、前記回転中心から前記コギングトルク発生用孔の孔縁に接する一対の接線の成す孔占有角度(α)が180°/n以下であり、前記孔縁が前記円環状磁石の外周縁よりも内側に形成されていることを特徴とする扁平形ブラシレスモータ。
n is a natural number, a stator magnetic plate on which a plurality of drive coils and magnetic pole detection elements that generate a rotating magnetic field are arranged around a support shaft, and a fan-shaped magnetic pole surface with an arc angle of 180 ° / n. In a flat brushless motor provided with an annular magnet having alternating turns in a circumferential direction, faced to the stator magnetic plate, and a rotor supported rotatably with respect to the support shaft,
The region of the stator magnetic plate facing the annular magnet has a plane shape that is symmetrical with respect to the center line of the hole passing through the rotation center of the rotor, and the position of the magnetic pole detection element and 180 ° / a cogging torque generating hole having the hole center line at a position excluding a position equally divided by n, and a hole occupying angle formed by a pair of tangent lines contacting the edge of the cogging torque generating hole from the rotation center ( α) is 180 ° / n or less, and the hole edge is formed inside the outer peripheral edge of the annular magnet.
請求項1に記載の扁平形ブラシレスモータにおいて、前記回転中心周りの角度で前記磁極検出素子の位置とこれから一番近い前記コギングトルク発生用孔の前記孔中心線とが成すズレ角(β)は前記孔占有角度(α)の半分以下であることを特徴とする扁平形ブラシレスモータ。 2. The flat brushless motor according to claim 1, wherein a deviation angle (β) formed by the position of the magnetic pole detection element and the hole center line of the cogging torque generating hole closest thereto at an angle around the rotation center is as follows. A flat brushless motor having a hole occupation angle (α) of less than half. 請求項1又は請求項2に記載の扁平形ブラシレスモータにおいて、前記孔縁は前記回転中心側の内側円弧縁と反回転中心側の外側円弧縁とを含むことを特徴とする扁平形ブラシレスモータ。 3. The flat brushless motor according to claim 1, wherein the hole edge includes an inner arc edge on the rotation center side and an outer arc edge on the counter rotation center side. 4. 請求項3に記載の扁平形ブラシレスモータにおいて、前記孔縁は円周縁であることを特徴とする扁平形ブラシレスモータ。 4. The flat brushless motor according to claim 3, wherein the hole edge is a circular periphery. 請求項3に記載の扁平形ブラシレスモータにおいて、前記内側円弧縁と前記外側円弧縁とが直線縁で接続されていることを特徴とする扁平形ブラシレスモータ。 4. The flat brushless motor according to claim 3, wherein the inner arc edge and the outer arc edge are connected by a straight edge. 請求項1乃至請求項5のいずれか一項に記載の扁平形ブラシレスモータにおいて、前記ステータ磁性板は、前記回転中心に関し360°/nの回転対称の位置毎に前記孔中心線を持つ同形n個の前記コギングトルク発生用孔を備えていることを特徴とする扁平形ブラシレスモータ。 6. The flat brushless motor according to claim 1, wherein the stator magnetic plate has an isomorphous n having the hole center line at each rotationally symmetric position of 360 ° / n with respect to the rotation center. A flat brushless motor comprising a plurality of cogging torque generating holes. 請求項6に記載の扁平形ブラシレスモータにおいて、n=3であることを特徴とする扁平形ブラシレスモータ。 7. The flat brushless motor according to claim 6, wherein n = 3. 請求項1乃至請求項7のいずれか一項に規定する扁平形ブラシレスモータにおいて、前記ロータが偏心錘を有して成ることを特徴とする扁平形振動モータ。 The flat brushless motor as defined in any one of claims 1 to 7, wherein the rotor has an eccentric weight.
JP2007300632A 2007-11-20 2007-11-20 Flat brushless motor Expired - Fee Related JP5368695B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007300632A JP5368695B2 (en) 2007-11-20 2007-11-20 Flat brushless motor
CN2008101497092A CN101442248B (en) 2007-11-20 2008-09-19 Flat brushless motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007300632A JP5368695B2 (en) 2007-11-20 2007-11-20 Flat brushless motor

Publications (2)

Publication Number Publication Date
JP2009130969A true JP2009130969A (en) 2009-06-11
JP5368695B2 JP5368695B2 (en) 2013-12-18

Family

ID=40726542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007300632A Expired - Fee Related JP5368695B2 (en) 2007-11-20 2007-11-20 Flat brushless motor

Country Status (2)

Country Link
JP (1) JP5368695B2 (en)
CN (1) CN101442248B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101707112B1 (en) * 2016-07-19 2017-02-27 이상의 Brushless Direct Current Vibrational Motor
WO2018016839A1 (en) * 2016-07-19 2018-01-25 이상의 Brushless direct current vibration motor
US10363575B2 (en) 2016-02-26 2019-07-30 Nidec Seimitsu Corporation Vibration motor with base portion including first and second plate portions
US10523085B2 (en) 2015-08-03 2019-12-31 Nidec Seimitsu Corporation Vibration motor
US10530218B2 (en) 2015-08-03 2020-01-07 Nidec Seimitsu Corporation Vibration motor
JP2020068884A (en) * 2018-10-29 2020-05-07 ピップ株式会社 Rotary magnetic treatment device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI394352B (en) 2009-07-16 2013-04-21 Silicon Touch Tech Inc Power generating device
CN101997385B (en) * 2009-08-17 2013-07-31 点晶科技股份有限公司 Generating device
CN102005854B (en) * 2010-11-02 2013-03-20 瑞声声学科技(深圳)有限公司 Vibration motor and assembling method thereof
KR101406207B1 (en) * 2014-04-04 2014-06-16 영백씨엠 주식회사 Brushless direct current vibrational motor
CN105576902B (en) * 2016-03-07 2018-02-06 南京艾驰电子科技有限公司 Flexible PG board of motor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0370447A (en) * 1989-08-04 1991-03-26 Shicoh Eng Co Ltd Single-phase brushless vibrating motor
JP2005027484A (en) * 2003-07-04 2005-01-27 Tokyo Parts Ind Co Ltd Stator and axial-air-gap brushless motor provided therewith
JP2006166685A (en) * 2004-12-10 2006-06-22 Sony Corp Vibration generating motor and electronic apparatus provided with same
JP3125496U (en) * 2005-07-13 2006-09-21 大星電機工業株式會社 BLDC vibration motor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1244867A (en) * 1984-04-27 1988-11-15 Sanyo Electric Co., Ltd. Brushless motor
CN100384066C (en) * 2003-09-22 2008-04-23 建准电机工业股份有限公司 Combined assembly of spindle motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0370447A (en) * 1989-08-04 1991-03-26 Shicoh Eng Co Ltd Single-phase brushless vibrating motor
JP2005027484A (en) * 2003-07-04 2005-01-27 Tokyo Parts Ind Co Ltd Stator and axial-air-gap brushless motor provided therewith
JP2006166685A (en) * 2004-12-10 2006-06-22 Sony Corp Vibration generating motor and electronic apparatus provided with same
JP3125496U (en) * 2005-07-13 2006-09-21 大星電機工業株式會社 BLDC vibration motor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10523085B2 (en) 2015-08-03 2019-12-31 Nidec Seimitsu Corporation Vibration motor
US10530218B2 (en) 2015-08-03 2020-01-07 Nidec Seimitsu Corporation Vibration motor
US10363575B2 (en) 2016-02-26 2019-07-30 Nidec Seimitsu Corporation Vibration motor with base portion including first and second plate portions
KR101707112B1 (en) * 2016-07-19 2017-02-27 이상의 Brushless Direct Current Vibrational Motor
WO2018016839A1 (en) * 2016-07-19 2018-01-25 이상의 Brushless direct current vibration motor
US10862368B2 (en) 2016-07-19 2020-12-08 Sang-eui LEE Brushless direct current vibration motor having cogging plates for optimized vibrations
JP2020068884A (en) * 2018-10-29 2020-05-07 ピップ株式会社 Rotary magnetic treatment device
JP7203372B2 (en) 2018-10-29 2023-01-13 ピップ株式会社 Rotating magnetic therapy device

Also Published As

Publication number Publication date
CN101442248A (en) 2009-05-27
JP5368695B2 (en) 2013-12-18
CN101442248B (en) 2012-11-21

Similar Documents

Publication Publication Date Title
JP5368695B2 (en) Flat brushless motor
JP2007074776A (en) Rotating electric machine
JP2012110214A (en) Brushless motor
KR100739207B1 (en) Vibrator motor for Brushless Direct Current
JP2006087287A (en) Magnetic flux concentrating motor
JP2007267565A (en) Coreless motor
JP4496064B2 (en) Permanent magnet type motor and washing machine
JPWO2018190103A1 (en) Rotating electrical machine rotor
JP2007014178A (en) Rotor
JP2006025586A (en) Structure of motor
JP2002136090A (en) Brushless motor
JP2003009490A (en) Vibrating motor
JP6052994B2 (en) Rotor and brushless motor
JP2009247111A (en) Limited angle motor
JP4332024B2 (en) Vibration motor
JPH10201147A (en) Permanent magnet motor
JP2009050093A (en) Vibrating motor
JP4591152B2 (en) Motor and air conditioner
JP2003070218A (en) Reluctance motor
JP2003079126A (en) Motor
JP2006203972A (en) Axial air-gap type brushless motor
JP2010119279A (en) Vibrating motor
JP2000069733A (en) Flat vibration generating motor
JP2016127652A (en) Rotor and motor
JP5846784B2 (en) Brushless vibration motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101028

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110706

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130913

R150 Certificate of patent or registration of utility model

Ref document number: 5368695

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees