JP2009128779A - Liquid crystal display device and method for manufacturing the same - Google Patents

Liquid crystal display device and method for manufacturing the same Download PDF

Info

Publication number
JP2009128779A
JP2009128779A JP2007305960A JP2007305960A JP2009128779A JP 2009128779 A JP2009128779 A JP 2009128779A JP 2007305960 A JP2007305960 A JP 2007305960A JP 2007305960 A JP2007305960 A JP 2007305960A JP 2009128779 A JP2009128779 A JP 2009128779A
Authority
JP
Japan
Prior art keywords
silicon substrate
electrode terminal
flexible circuit
terminal pad
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007305960A
Other languages
Japanese (ja)
Inventor
Yoshihisa Kabaya
欣尚 蒲谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2007305960A priority Critical patent/JP2009128779A/en
Publication of JP2009128779A publication Critical patent/JP2009128779A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid crystal display device with which a short circuit between an electrode terminal pad of a flexible circuit substrate and an edge etc. of a silicon substrate is prevented without using any insulating member. <P>SOLUTION: The liquid crystal display device has the silicon substrate 2 having a pixel electrode, a transparent substrate 1 having a transparent electrode, and a liquid crystal 2 interposed between the silicon substrate 2 and the transparent substrate 1. Also an electrode terminal pad 6 of the silicon substrate 2 and that of the flexible circuit substrate 3 are electrically connected with an anisotropic conductive adhesive 7. In this case, when a distance between the electrode terminal pad of the silicon substrate and the electrode terminal pad of the flexible circuit substrate is represented by d1, and a distance between the silicon substrate surface and the electrode terminal pad of the flexible circuit substrate is represented by d2, inequality d2>d1 holds with respect to the distance d1 and the distance d2. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、異方性導電接着剤(ACF)を用いた液晶表示装置及びその製造方法、特に、基板の接続方法に関するものである。   The present invention relates to a liquid crystal display device using an anisotropic conductive adhesive (ACF) and a method for manufacturing the same, and more particularly to a method for connecting substrates.

従来、対向する透明基板とシリコン基板で構成された液晶パネルにおいては、シリコン基板上の電極端子パッドとフレキシブル回路基板上の電極端子を異方性導電接着剤(ACFという)で接続している。本願出願人は、その場合のシリコン基板のエッジとフレキシブル回路基板上の電極端子パッドとのショート対策として、例えば、特開平11−125830号公報で提案している(特許文献1)。   Conventionally, in a liquid crystal panel composed of an opposing transparent substrate and a silicon substrate, electrode terminal pads on the silicon substrate and electrode terminals on the flexible circuit substrate are connected by an anisotropic conductive adhesive (referred to as ACF). The applicant of the present application has proposed, for example, in Japanese Patent Laid-Open No. 11-125830 as a countermeasure against a short circuit between the edge of the silicon substrate and the electrode terminal pad on the flexible circuit board (Patent Document 1).

図7を用いて同公報の接続方法を説明する。図中1は透明基板、2はシリコン基板、3はフレキシブル回路基板である。対向する透明基板1とシリコン基板2で液晶パネルが構成されている。フレキシブル回路基板3は配線5の周囲が絶縁性保護フィルム4で覆われており、その一端がシリコン基板2と接続されている。   The connection method of the publication will be described with reference to FIG. In the figure, 1 is a transparent substrate, 2 is a silicon substrate, and 3 is a flexible circuit board. A liquid crystal panel is constituted by the transparent substrate 1 and the silicon substrate 2 facing each other. The flexible circuit board 3 is covered with an insulating protective film 4 around the wiring 5, and one end of the flexible circuit board 3 is connected to the silicon substrate 2.

即ち、シリコン基板2上の電極端子パッド6とフレキシブル回路基板3上の電極端子パッド(配線5の絶縁性フィルム4が覆われていない領域)とが異方性導電接着剤(ACF)7で電気的に接続されている。その際、ACF7に隣接してシリコン基板2のエッジに近い方の一部に絶縁性部材15を設置することで、シリコン基板2のエッジとフレキシブル回路基板3上の電極端子パッドとのショート不良の発生を防止している。   That is, the electrode terminal pad 6 on the silicon substrate 2 and the electrode terminal pad on the flexible circuit board 3 (area where the insulating film 4 of the wiring 5 is not covered) are electrically connected by the anisotropic conductive adhesive (ACF) 7. Connected. At that time, by installing the insulating member 15 in a part near the edge of the silicon substrate 2 adjacent to the ACF 7, a short circuit defect between the edge of the silicon substrate 2 and the electrode terminal pad on the flexible circuit board 3 is prevented. Occurrence is prevented.

ACF7は絶縁性の母材と金属メッキされた絶縁物粒子とで構成され、電極パッド間で圧着した時に金属メッキされた絶縁物粒子を介して電極パッド間を電気的に接続するものである。絶縁性部材15はACF7に対して絶縁性の母材と金属メッキされていない絶縁物とで構成されており、圧着されても電気的接続はされない。金属メッキの有無のみの相違で、他は同一の材料及び寸法である。
特開平11−125830号公報
The ACF 7 is composed of an insulating base material and metal-plated insulator particles, and electrically connects the electrode pads via the metal-plated insulator particles when pressed between the electrode pads. The insulating member 15 is composed of a base material that is insulative with respect to the ACF 7 and an insulator that is not metal-plated, and is not electrically connected even if it is crimped. The other is the same material and dimensions, with the only difference being the presence or absence of metal plating.
JP-A-11-125830

シリコン基板の電極端子パッドとフレキシブル回路基板上の電極端子パッドをACFで接続する場合、シリコン基板のエッジとフレキシブル回路基板の電極端子パッドとのショート対策には以下の問題点があった。   When the electrode terminal pads on the silicon substrate and the electrode terminal pads on the flexible circuit board are connected by the ACF, the following problems have been encountered in measures against shorting between the edge of the silicon substrate and the electrode terminal pads on the flexible circuit board.

(1)ACF以外に絶縁性部材を置くため工数が多くなる。   (1) Since an insulating member is placed in addition to the ACF, man-hours increase.

(2)液晶パネルへACFと絶縁性部材の両者を貼り付けるとき、ACFと絶縁性部材の一部が重なり、重なった部分が厚みムラとなって加圧が不充分となるため、オープン不良を発生し易い。   (2) When both the ACF and the insulating member are attached to the liquid crystal panel, a part of the ACF and the insulating member overlaps, and the overlapped portion becomes uneven in thickness, resulting in insufficient pressurization. It is easy to generate.

(3)フレキシブル回路基板はポリイミド等の樹脂フィルムとCu配線で構成され、そのフレキシブルさが特徴であるが、逆にソリ、ウネリがあり、平坦性は悪いという欠点もある。そのため、絶縁性部材がない場合には、シリコン基板の電極端子パッドとフレキシブル基板上の電極端子パッドをACFで電気的に接続する際にフレキシブル回路基板のソリやウネリが悪影響を及ぼす。   (3) The flexible circuit board is composed of a resin film such as polyimide and Cu wiring, and is characterized by its flexibility, but conversely, there are also defects such as warpage and undulation and poor flatness. For this reason, when there is no insulating member, warping or undulation of the flexible circuit board adversely affects when the electrode terminal pads on the silicon substrate and the electrode terminal pads on the flexible substrate are electrically connected by the ACF.

即ち、フレキシブル回路基板のソリやウネリによってフレキシブル回路基板の電極端子パッドがシリコン基板のエッジ等に触れてしまい、ショート不良やリーク不良を発生することがある。特に、シリコン基板の端面にダイシングによるシリコン残渣等があれば不良発生の確率は益々高くなる。   In other words, the electrode terminal pad of the flexible circuit board may touch the edge of the silicon substrate or the like due to warping or undulation of the flexible circuit board, which may cause a short circuit or a leak. In particular, if there is silicon residue or the like due to dicing on the end surface of the silicon substrate, the probability of occurrence of defects becomes higher.

本発明の目的は、絶縁性部材を用いることなくフレキシブル回路基板の電極端子パッドとシリコン基板のエッジ等とのショートを防止することが可能な液晶表示装置及びその製造方法を提供することにある。   An object of the present invention is to provide a liquid crystal display device capable of preventing a short circuit between an electrode terminal pad of a flexible circuit board and an edge of a silicon substrate without using an insulating member, and a manufacturing method thereof.

本発明は、画素電極を有するシリコン基板と、透明電極を有する透明基板とを有し、前記シリコン基板と透明基板との間に液晶が挟持され、前記シリコン基板の電極端子パッドと、前記フレキシブル回路基板の電極端子パッドとを異方性導電接着剤によって電気的に接続する液晶表示装置において、前記シリコン基板の電極端子パッドと前記フレキシブル回路基板の電極端子パッドとの間隔をd1、前記シリコン基板の表面と前記フレキシブル回路基板の電極端子パッドとの間隔をd2とする場合、前記間隔d1と間隔d2とが、d2>d1の関係であることを特徴とする。   The present invention includes a silicon substrate having a pixel electrode and a transparent substrate having a transparent electrode, wherein a liquid crystal is sandwiched between the silicon substrate and the transparent substrate, an electrode terminal pad of the silicon substrate, and the flexible circuit In the liquid crystal display device in which the electrode terminal pad of the substrate is electrically connected by an anisotropic conductive adhesive, the distance between the electrode terminal pad of the silicon substrate and the electrode terminal pad of the flexible circuit substrate is d1, and When the distance between the surface and the electrode terminal pad of the flexible circuit board is d2, the distance d1 and the distance d2 have a relationship of d2> d1.

また、本発明は、画素電極を有するシリコン基板と、透明電極を有する透明基板との間に液晶が挟持され、前記シリコン基板の電極端子パッドと、前記フレキシブル回路基板の電極端子パッドとを、異方性導電接着剤を用いて電気的に接続する液晶表示装置の製造方法において、前記フレキシブル回路基板の電極端子パッドと前記シリコン基板の電極端子パッドとを前記異方性導電接着剤を挟持した状態で加熱圧着用の熱源を用いて加熱圧着することによって電気的に接続する工程を含み、前記加熱圧着工程において、前記シリコン基板の電極端子パッドと前記フレキシブル回路基板の電極端子パッドとの間隔d1と、前記シリコン基板の表面と前記フレキシブル回路基板の電極端子パッドとの間隔d2とが、d2>d1の関係となることを特徴とする。   In the present invention, a liquid crystal is sandwiched between a silicon substrate having pixel electrodes and a transparent substrate having transparent electrodes, and the electrode terminal pads of the silicon substrate and the electrode terminal pads of the flexible circuit substrate are different from each other. In a method of manufacturing a liquid crystal display device that is electrically connected using an isotropic conductive adhesive, a state in which the anisotropic conductive adhesive is sandwiched between the electrode terminal pad of the flexible circuit board and the electrode terminal pad of the silicon substrate In the thermocompression bonding step, and in the thermocompression bonding step, an interval d1 between the electrode terminal pad of the silicon substrate and the electrode terminal pad of the flexible circuit substrate; The distance d2 between the surface of the silicon substrate and the electrode terminal pad of the flexible circuit board satisfies the relationship d2> d1. And butterflies.

本発明においては、シリコン基板とフレキシブル回路基板の接続をすると同時にシリコン基板の端部表面とフレキシブル回路基板の間に両電極端子パッド間よりも大きな隙間を形成する。そうすることでチッピングや取り扱い時に発生するパッシベーション膜の一部欠落に起因するショート不良を防止する。   In the present invention, the silicon substrate and the flexible circuit board are connected, and at the same time, a larger gap is formed between the end surface of the silicon substrate and the flexible circuit board than between the electrode terminal pads. By doing so, a short circuit failure caused by a part of the passivation film missing during chipping or handling is prevented.

また、狭い隙間においてのみ導通特性が生じるというACFの特徴を利用し、大きな隙間にACFを充填することで、絶縁効果を生み出す。更に、フレキシブル回路基板をシリコン基板から離すように反らせることで絶縁効果を高めることができる。また、ACFのみの使用なので、工数削減できると共に、均一性良く加圧が可能で加圧ムラによる接続不良も防止することが可能となる。   In addition, by utilizing the characteristic of ACF that a conduction characteristic is generated only in a narrow gap, an insulation effect is produced by filling ACF in a large gap. Furthermore, the insulating effect can be enhanced by warping the flexible circuit board away from the silicon substrate. In addition, since only the ACF is used, the number of steps can be reduced, the pressure can be applied with good uniformity, and the connection failure due to the pressure unevenness can be prevented.

本発明によれば、フレキシブル回路基板の電極端子パッドとシリコン基板側エッジとのショート不良をACFのみの使用で防止できる。特に、フレキシブル回路基板をシリコン基板上の電極端子パッドにACFで接続した部分よりもシリコン基板のエッジ側でシリコン基板より離れるように折り曲げることにより安定してショートを防止できる。更に、特別な付加工程・部材無しにショート防止を実施でき、コストダウンも可能となる。   According to the present invention, a short circuit failure between the electrode terminal pad of the flexible circuit board and the edge on the silicon substrate side can be prevented by using only the ACF. In particular, it is possible to stably prevent a short circuit by bending the flexible circuit board so that it is separated from the silicon substrate on the edge side of the silicon substrate with respect to the electrode terminal pad on the silicon substrate by the ACF. Furthermore, short-circuit prevention can be carried out without any special additional steps / members, and costs can be reduced.

次に、発明を実施するための最良の形態について図面を参照して詳細に説明する。   Next, the best mode for carrying out the invention will be described in detail with reference to the drawings.

(実施形態1)
図1は本発明に係る反射型液晶表示装置の実施形態1を示す断面図、図2はその一部を拡大して示す拡大図である。図1では図7の従来装置と同一部分には同一符号を付している。図中1は透明電極を有する透明基板、2は画素電極を有するシリコン基板である。透明基板1とシリコン基板2との間に液晶層が挟持され、シール部材14により密栓されている。
(Embodiment 1)
FIG. 1 is a sectional view showing Embodiment 1 of a reflective liquid crystal display device according to the present invention, and FIG. 2 is an enlarged view showing a part thereof. In FIG. 1, the same parts as those of the conventional apparatus of FIG. In the figure, 1 is a transparent substrate having a transparent electrode, and 2 is a silicon substrate having a pixel electrode. A liquid crystal layer is sandwiched between the transparent substrate 1 and the silicon substrate 2 and sealed with a seal member 14.

これら透明基板1、シリコン基板2、その間に挟持された液晶層等で液晶パネルが構成されている。そして、透明電極と画素電極間に駆動電圧を印加することにより液晶分子を動かし、光の偏光状態を制御する。液晶表示装置の詳細に関しては周知であるので説明を省略する。3はフレキシブル回路基板である。   A liquid crystal panel is composed of the transparent substrate 1, the silicon substrate 2, and a liquid crystal layer sandwiched between the transparent substrate 1 and the silicon substrate 2. Then, by applying a driving voltage between the transparent electrode and the pixel electrode, the liquid crystal molecules are moved to control the polarization state of the light. The details of the liquid crystal display device are well known and will not be described. 3 is a flexible circuit board.

シリコン基板2には透明基板1との貼り合わせしない領域に突起状の電極端子パッド6が設けられている。フレキシブル回路基板3は配線5が絶縁性保護フィルム4で保護された構造である。フレキシブル回路基板3の電極端子パッドがシリコン基板2の電極端子パッド6に異方性導電接着剤(ACF)7によって電気的に接続されている。   The silicon substrate 2 is provided with a protruding electrode terminal pad 6 in a region where the transparent substrate 1 is not bonded. The flexible circuit board 3 has a structure in which the wiring 5 is protected by an insulating protective film 4. The electrode terminal pad of the flexible circuit board 3 is electrically connected to the electrode terminal pad 6 of the silicon substrate 2 by an anisotropic conductive adhesive (ACF) 7.

図2は異方性導電接着剤(ACF)7による接続部の拡大図を示す。上述のようにシリコン基板2の電極端子パッド6とフレキシブル回路基板3の電極端子パッド(配線5の絶縁性保護フィルム4で覆われていない領域)とが異方性導電接着剤(ACF)7中の導電性粒子8を介して電気的に接続されている。   FIG. 2 shows an enlarged view of a connection portion using anisotropic conductive adhesive (ACF) 7. As described above, the electrode terminal pads 6 of the silicon substrate 2 and the electrode terminal pads of the flexible circuit board 3 (regions not covered with the insulating protective film 4 of the wiring 5) are in the anisotropic conductive adhesive (ACF) 7. Are electrically connected through the conductive particles 8.

その際、図2に示すようにシリコン基板2の電極端子パッド6とフレキシブル回路基板3の電極端子パッド(配線5の絶縁性保護フィルム4に覆われていない領域)との間隔をd1とする。また、シリコン基板2の表面とフレキシブル基板3の電極端子パッド(配線5の絶縁性保護フィルム4で覆われていない領域)との間隔をd2とする。   At this time, as shown in FIG. 2, the distance between the electrode terminal pad 6 of the silicon substrate 2 and the electrode terminal pad of the flexible circuit board 3 (a region not covered with the insulating protective film 4 of the wiring 5) is defined as d1. Further, the distance between the surface of the silicon substrate 2 and the electrode terminal pad of the flexible substrate 3 (region not covered with the insulating protective film 4 of the wiring 5) is defined as d2.

図2に示すように間隔d1と間隔d2は、d2>d1の関係となっており、間隔d1より間隔d2の方が広い状態となっている。このような構成では、絶縁性部材がない場合でも加熱圧着後、導電性粒子8によってシリコン基板2のエッジや側面とフレキシブル回路基板3の電極端子パッド間がショートすることがない。つまり、従来の絶縁性部材が無い場合でもACF7のみでショートを防止でき、工数を削減することが可能となる。   As shown in FIG. 2, the distance d1 and the distance d2 have a relationship of d2> d1, and the distance d2 is wider than the distance d1. In such a configuration, even when there is no insulating member, the conductive particles 8 do not cause a short circuit between the edges and side surfaces of the silicon substrate 2 and the electrode terminal pads of the flexible circuit board 3 after thermocompression bonding. That is, even when there is no conventional insulating member, it is possible to prevent a short circuit with only the ACF 7 and to reduce man-hours.

また、異方性導電接着剤(ACF)7の位置ずれ等に起因してACF7がシリコン基板2の端部からはみ出してシリコン基板2の側面へ回り込んでもショート不良を発生することがない。更に、従来の絶縁性部材がないため、ACF7と絶縁性部材の重なりによる品質不良も解消でき、品質向上や歩留改善にも寄与することが可能となる。   Further, even if the ACF 7 protrudes from the end portion of the silicon substrate 2 due to the displacement of the anisotropic conductive adhesive (ACF) 7 or the like and goes around the side surface of the silicon substrate 2, no short-circuit defect occurs. Furthermore, since there is no conventional insulating member, quality defects due to the overlap between the ACF 7 and the insulating member can be eliminated, which can contribute to quality improvement and yield improvement.

(実施形態2)
図3は本発明の実施形態2を示す図であり、本発明の反射型液晶表示装置の製造途中の断面図を示す。即ち、シリコン基板2上の電極端子パッド6とフレキシブル回路基板3の電極端子パッド(配線5の絶縁性保護フィルム4で覆われていない領域)とを異方性導電接着剤(ACF)7を介して貼り合わせる工程を示す。なお、図3では図1と同一部分には同一符号を付している。
(Embodiment 2)
FIG. 3 is a diagram showing Embodiment 2 of the present invention, and shows a cross-sectional view in the middle of manufacturing the reflective liquid crystal display device of the present invention. That is, the electrode terminal pad 6 on the silicon substrate 2 and the electrode terminal pad of the flexible circuit board 3 (regions not covered with the insulating protective film 4 of the wiring 5) are connected via an anisotropic conductive adhesive (ACF) 7. Shows the process of bonding. In FIG. 3, the same parts as those in FIG.

即ち、1は透明電極を有する透明基板、2は画素電極を有するシリコン基板である。透明基板1とシリコン基板2との間に液晶層が挟持され、シール部材14により密栓されている。これら透明基板1、シリコン基板2等で液晶パネルが構成されている。3はフレキシブル回路基板である。9は加熱圧着用の熱源、10はバックアップ用のヒータ、11はフレキシブル回路基板3を保持する保持用ステージである。   That is, 1 is a transparent substrate having a transparent electrode, and 2 is a silicon substrate having a pixel electrode. A liquid crystal layer is sandwiched between the transparent substrate 1 and the silicon substrate 2 and sealed with a seal member 14. These transparent substrate 1, silicon substrate 2 and the like constitute a liquid crystal panel. 3 is a flexible circuit board. 9 is a heat source for thermocompression bonding, 10 is a backup heater, and 11 is a holding stage for holding the flexible circuit board 3.

シリコン基板2とフレキシブル回路基板3の保持用ステージ11の間においてシリコン基板2の表面より高い位置にストッパー12が配置されている。シリコン基板2とフレキシブル回路基板3との加熱圧着時にはフレキシブル回路基板3がストッパー12の位置で止められる。この時、加熱圧着用の熱源(ヒータツール)9をフレキシブル回路基板3がたるまないようにシリコン基板2の突起電極6側に押し当てる。   A stopper 12 is disposed between the silicon substrate 2 and the holding stage 11 for the flexible circuit board 3 at a position higher than the surface of the silicon substrate 2. When the silicon substrate 2 and the flexible circuit board 3 are thermocompression bonded, the flexible circuit board 3 is stopped at the position of the stopper 12. At this time, a heat source (heater tool) 9 for thermocompression bonding is pressed against the protruding electrode 6 side of the silicon substrate 2 so that the flexible circuit board 3 does not sag.

シリコン基板2のエッジ側では図3に示すようにフレキシブル回路基板3はシリコン基板2とは反対方向に折り曲げられ、即ち、シリコン基板2の電極端子パッド6から外側に向けて折り曲げられている。その折り曲げられた隙間部分に余剰の異方性導電接着剤(ACF)7が流れ込む。そして、フレキシブル回路基板3がシリコン基板2から離れるように折り曲げられた状態で固定される。更に、熱源9とは反対側のシリコン基板2の裏面側にシリコン基板2の端部に掛かる様にバックアップ用のヒータ10が設置されており、熱源9に直接触れない隙間部のACF7も硬化を促進することができる。   On the edge side of the silicon substrate 2, as shown in FIG. 3, the flexible circuit board 3 is bent in the opposite direction to the silicon substrate 2, that is, is bent outward from the electrode terminal pads 6 of the silicon substrate 2. Excess anisotropic conductive adhesive (ACF) 7 flows into the bent gap portion. Then, the flexible circuit board 3 is fixed in a state of being bent away from the silicon substrate 2. Further, a backup heater 10 is installed on the back side of the silicon substrate 2 opposite to the heat source 9 so as to be applied to the end of the silicon substrate 2, and the ACF 7 in the gap not directly touching the heat source 9 is also cured. Can be promoted.

ここで、シリコン基板の電極サイズが小さいときフレキシブル回路基板との接続で必要な接続抵抗を得るためシリコン基板の電極はフレキシブル回路基板に完全に覆われ(接続され)なければならない。従って、フレキシブル回路基板の折り曲げはシリコン基板の電極とシリコン基板のエッジの間になる。シリコン基板の電極サイズが充分大きいときはフレキシブル回路基板に完全に覆われる必要が無いため電極途中からフレキシブル回路基板を折り曲げても構わない。   Here, when the electrode size of the silicon substrate is small, the electrode of the silicon substrate must be completely covered (connected) to the flexible circuit board in order to obtain a connection resistance necessary for connection with the flexible circuit board. Therefore, the flexible circuit board is bent between the electrode of the silicon substrate and the edge of the silicon substrate. When the electrode size of the silicon substrate is sufficiently large, it is not necessary to be completely covered with the flexible circuit board, and the flexible circuit board may be bent from the middle of the electrode.

本実施形態ではシリコン基板2の電極端子パッド6とフレキシブル回路基板3の電極端子パッドとの間隔d1とシリコン基板2の表面とフレキシブル基板3の電極端子パッドとの間隔d2が、接続後においてd2>d1の関係であることは実施形態1と同様である。   In this embodiment, the distance d1 between the electrode terminal pad 6 of the silicon substrate 2 and the electrode terminal pad of the flexible circuit board 3 and the distance d2 between the surface of the silicon substrate 2 and the electrode terminal pad of the flexible board 3 are d2> after connection. The relationship of d1 is the same as in the first embodiment.

また、本実施形態では、ストッパー12の高さを変えれば、シリコン基板2とフレキシブル回路基板3との隙間も任意に選択することが可能である。そのため、ダイシング工程でブレードの磨耗が進み、シリコンエッジのチッピングが大きくなった時やフレキシブル回路基板3の電極端子パッドの高さにバラツキがある場合でもマージンの見込みを含めて対応可能である。更に、フレキシブル回路基板3のソリやウネリがある場合でも、フレキシブル回路基板3をストッパー12と熱源9との間でたるませないようにすることでショート不良に対する信頼性を格段に向上することが可能となる。   In the present embodiment, the gap between the silicon substrate 2 and the flexible circuit board 3 can be arbitrarily selected by changing the height of the stopper 12. Therefore, even when the blade wears out during the dicing process and the chipping of the silicon edge becomes large, or when the height of the electrode terminal pad of the flexible circuit board 3 varies, it is possible to cope with the possibility of margin. Furthermore, even when there is warping or undulation of the flexible circuit board 3, it is possible to remarkably improve the reliability with respect to short-circuit failure by preventing the flexible circuit board 3 from sagging between the stopper 12 and the heat source 9. It becomes.

本願発明者等は、ストッパー12の高さをシリコン基板2の最表面より100μm高い位置に設定してシリコン基板2の電極端子パッド6とフレキシブル回路基板3の配線5とのACF7による電気的接続を行った。その時、シリコン基板2のエッジとフレキシブル回路基板3の電極端子パッドとの隙間は20μmになった。導電性粒子の直径が5μmのACFを用いた場合、十分に絶縁性を確保できた。   The inventors of the present application set the height of the stopper 12 at a position 100 μm higher than the outermost surface of the silicon substrate 2 to electrically connect the electrode terminal pad 6 of the silicon substrate 2 and the wiring 5 of the flexible circuit board 3 by the ACF 7. went. At that time, the gap between the edge of the silicon substrate 2 and the electrode terminal pad of the flexible circuit board 3 was 20 μm. When ACF having a conductive particle diameter of 5 μm was used, sufficient insulation could be secured.

(実施形態3)
図4は本発明の実施形態3を示す断面図である。本実施形態では、ACFの位置ずれ、貼り位置を考慮してシリコン基板2のエッジより外側にACFをはみ出させるものである。図4(a)はACFによる接続後の状態を示す断面図、図4(b)はACFによる接続前の状態を示す斜視図である。図4では図1〜図3と同一部分には同一符号を付している。
(Embodiment 3)
FIG. 4 is a sectional view showing Embodiment 3 of the present invention. In the present embodiment, the ACF protrudes outside the edge of the silicon substrate 2 in consideration of the position shift and the attachment position of the ACF. 4A is a sectional view showing a state after connection by ACF, and FIG. 4B is a perspective view showing a state before connection by ACF. 4, the same parts as those in FIGS. 1 to 3 are denoted by the same reference numerals.

即ち、1は透明電極を有する透明基板、2は画素電極を有するシリコン基板である。透明基板1とシリコン基板2との間に液晶層が挟持され、シール部材14により密栓されている。これら透明基板1、シリコン基板2、液晶層等で液晶パネルが構成されている。3はフレキシブル回路基板である。フレキシブル回路基板3の電極端子パッド(配線5の絶縁性保護フィルム4で覆われていない領域)をシリコン基板2の電極端子パッド6にACF7を用いて電気的に接続することは実施形態1、2と同様である。   That is, 1 is a transparent substrate having a transparent electrode, and 2 is a silicon substrate having a pixel electrode. A liquid crystal layer is sandwiched between the transparent substrate 1 and the silicon substrate 2 and sealed with a seal member 14. A liquid crystal panel is composed of the transparent substrate 1, the silicon substrate 2, the liquid crystal layer, and the like. 3 is a flexible circuit board. Embodiments 1 and 2 are to electrically connect the electrode terminal pads of the flexible circuit board 3 (regions not covered with the insulating protective film 4 of the wiring 5) to the electrode terminal pads 6 of the silicon substrate 2 using the ACF 7. It is the same.

本実施形態では、図4(b)に示すようにACFによる接続前にACF(13で示す)をシリコン基板2の電極端子パッド6上に配置する。次いで、図3で説明した方法を用いて加熱圧着を行い、フレキシブル回路基板3の電極端子パッド(配線5の絶縁性保護フィルム4で覆われていない領域)とシリコン基板2の電極端子パッド6をACF7によって電気的に接続する。その結果、図4(a)に示すようにACF7がシリコン基板のエッジより外側にはみ出した状態となる。   In this embodiment, as shown in FIG. 4B, the ACF (shown by 13) is arranged on the electrode terminal pad 6 of the silicon substrate 2 before connection by the ACF. Next, thermocompression bonding is performed using the method described with reference to FIG. 3, and the electrode terminal pads of the flexible circuit board 3 (regions not covered with the insulating protective film 4 of the wiring 5) and the electrode terminal pads 6 of the silicon substrate 2 are bonded. It is electrically connected by ACF7. As a result, as shown in FIG. 4A, the ACF 7 protrudes outside the edge of the silicon substrate.

従来、製造工程でシリコン基板2の端部とフレキシブル回路基板3の配線間の隙間にゴミが入り込んでショート不良を発生させて歩留を低下させることがあったが、ACFをシリコン基板2のエッジより外側にはみ出させることで歩留を改善できる。このようにフレキシブル回路基板3とシリコン基板2をACF7を用いて電気的に接続する場合には、ACF7をシリコン基板のエッジより外側にはみ出させることが望ましい。   Conventionally, in the manufacturing process, dust has entered a gap between the end of the silicon substrate 2 and the wiring of the flexible circuit board 3 to cause a short-circuit defect, thereby reducing the yield. Yield can be improved by protruding outside. In this way, when the flexible circuit board 3 and the silicon substrate 2 are electrically connected using the ACF 7, it is desirable that the ACF 7 protrude beyond the edge of the silicon substrate.

なお、シリコン基板2の電極端子パッド6とフレキシブル回路基板3の電極端子パッドとの間隔d1とシリコン基板2の表面とフレキシブル基板3の電極端子パッドとの間隔d2が、d2>d1の関係とすることは実施形態1と同様である。   The distance d1 between the electrode terminal pad 6 of the silicon substrate 2 and the electrode terminal pad of the flexible circuit board 3 and the distance d2 between the surface of the silicon substrate 2 and the electrode terminal pad of the flexible board 3 satisfy the relationship d2> d1. This is the same as in the first embodiment.

本実施形態では、図4(b)に示すように接続前でACF幅(W)を1.0mm、厚さ(T)を25μm、ACFの長さ(L)を11.6mmに設定した。その際、図4(a)の接続後(加圧後)の幅(W′)は1.3mmなり、はみ出し幅(W″)は50μmになった。(チップ電極間距離11.7mm、フレキシブル回路基板のアライメント距離間12.09mm)。ACFの貼りずれMax100μm(片側50μm)を考慮してシリコン基板端からACF中心までの距離(D)を0.55mmに設定した。本実施形態のようにACF7がシリコン基板のエッジより外側にはみ出した状態とすることは、実施形態1、2に対しても用いることができる。   In this embodiment, as shown in FIG. 4B, the ACF width (W) is set to 1.0 mm, the thickness (T) is set to 25 μm, and the ACF length (L) is set to 11.6 mm before connection. At that time, the width (W ′) after connection (after pressurization) in FIG. 4A was 1.3 mm, and the protrusion width (W ″) was 50 μm. (Distance between chip electrodes 11.7 mm, flexible) The distance (D) between the edge of the silicon substrate and the center of the ACF was set to 0.55 mm in consideration of the ACF sticking deviation Max 100 μm (one side 50 μm). Making the ACF 7 protrude outside the edge of the silicon substrate can also be used for the first and second embodiments.

(実施形態4)
図5は本発明の実施形態4を示す断面図である。図5では、図1〜図4と同一部分には同一符号を付している。反射型液晶パネルの実装工程における工数改善策の一つに半導体ウエハに同サイズの透明基板を貼り合わせ、その後、ダイシングやスクライブで個片化する方法がある。
(Embodiment 4)
FIG. 5 is a sectional view showing Embodiment 4 of the present invention. In FIG. 5, the same parts as those in FIGS. As one of the man-hours improving measures in the mounting process of the reflective liquid crystal panel, there is a method in which a transparent substrate of the same size is bonded to a semiconductor wafer and then separated into pieces by dicing or scribing.

一般に、シリコン基板2と透明基板1の隙間は数ミクロン程度でシリコン基板2に突起状の電極6があると、前述の製造工程の達成は難しい。また、10μm前後の突起電極を形成しようとすると、半導体プロセスとは別に突起電極形成工程を準備しなければならず益々工数的に不利である。   In general, if the gap between the silicon substrate 2 and the transparent substrate 1 is about several microns and the projecting electrodes 6 are provided on the silicon substrate 2, it is difficult to achieve the above manufacturing process. Further, if a protruding electrode having a thickness of about 10 μm is to be formed, a protruding electrode forming step must be prepared separately from the semiconductor process, which is more disadvantageous in terms of man-hours.

本実施形態では、シリコン基板の電極端子パッド6をシリコン基板の表面より低い位置に配置し、通常の半導体プロセスのみで作りこみができると共に、ウエハサイズ同士の貼り合わせを可能とするものである。   In this embodiment, the electrode terminal pads 6 of the silicon substrate are arranged at a position lower than the surface of the silicon substrate, and can be formed only by a normal semiconductor process, and the wafer sizes can be bonded to each other.

具体的には、図5に示すようにシリコン基板2にその表面より低い位置に電極端子パッド6を配置する。その際、シリコン基板2の表面に凹部を形成し、その凹部内に電極端子パッド6を配置する。なお、図5は図2と同様にACFによる接続部を拡大して示すものである。その他の構成は図1と同様である。   Specifically, as shown in FIG. 5, electrode terminal pads 6 are arranged on the silicon substrate 2 at a position lower than the surface thereof. At that time, a recess is formed in the surface of the silicon substrate 2 and the electrode terminal pad 6 is disposed in the recess. FIG. 5 is an enlarged view of the ACF connection as in FIG. Other configurations are the same as those in FIG.

本実施形態では、高弾性率の5μm径プラスチックコア粒子を用い、シリコン基板2の表面より1.5μm低い位置に電極端子パッド6を配置し、図3の接続方法を用いてフレキシブル回路基板3の配線5と電極端子パッドとの接続を行った。接続後のシリコン基板2の電極とフレキシブル回路基板3の配線間の距離は3〜4μm程度になった。   In the present embodiment, high elastic modulus 5 μm diameter plastic core particles are used, electrode terminal pads 6 are arranged at a position 1.5 μm lower than the surface of the silicon substrate 2, and the flexible circuit board 3 is connected using the connection method of FIG. 3. The wiring 5 and the electrode terminal pad were connected. The distance between the electrode of the silicon substrate 2 after connection and the wiring of the flexible circuit board 3 was about 3 to 4 μm.

また、シリコン基板2の表面より0.1mm高い位置に図3のストッパー12を配置した結果、シリコン基板2の端部表面とフレキシブル回路基板3の配線5との隙間が20μm程度になった。図5はシリコン基板2の電極端子パッド6とフレキシブル回路基板3の電極端子パッドとの間隔をd1、シリコン基板2の端部表面とフレキシブル配線基板3の配線5との間隔をd2として、間隔d1と間隔d2がd1<d2の関係となることを示すものである。   Further, as a result of disposing the stopper 12 of FIG. 3 at a position 0.1 mm higher than the surface of the silicon substrate 2, the gap between the end surface of the silicon substrate 2 and the wiring 5 of the flexible circuit board 3 is about 20 μm. In FIG. 5, the distance between the electrode terminal pad 6 of the silicon substrate 2 and the electrode terminal pad of the flexible circuit board 3 is d1, and the distance between the end surface of the silicon substrate 2 and the wiring 5 of the flexible wiring board 3 is d2. This indicates that the distance d2 has a relationship of d1 <d2.

(実施形態5)
図6は本発明の実施形態5を示す断面図である。図6では図1〜図5と同一部分には同一符号を付している。シリコン基板2の電極端子パッド6をシリコン基板2の表面より低い位置に配置することは図5と同様である。また、異方性導電接着剤(ACF)7をシリコン基板2のエッジより外側にはみ出させることも図4と同様である。
(Embodiment 5)
FIG. 6 is a sectional view showing Embodiment 5 of the present invention. In FIG. 6, the same parts as those in FIGS. The electrode terminal pad 6 of the silicon substrate 2 is arranged at a position lower than the surface of the silicon substrate 2 as in FIG. Further, the anisotropic conductive adhesive (ACF) 7 is protruded outside the edge of the silicon substrate 2 as in FIG.

本実施形態では、図6に示すように加熱圧着用の熱源(ヒータツール)9の長さH2よりシリコン基板2の電極端子パッド6の長さH1を短くしている。これにより、加熱圧着時には電極端子パッド6は常に熱源9に覆われた状態、即ち、電極6上のACF7は硬化が充分な状態となるため、耐湿性等高信頼性の装置を提供することが可能となる。本実施形態の構成は図1乃至図5の実施形態にも使用することができる。また間隔d1と間隔d2がd1<d2の関係となることは上記実施形態と同様である。   In this embodiment, the length H1 of the electrode terminal pad 6 of the silicon substrate 2 is shorter than the length H2 of the heat source (heater tool) 9 for thermocompression bonding as shown in FIG. As a result, the electrode terminal pad 6 is always covered with the heat source 9 during thermocompression bonding, that is, the ACF 7 on the electrode 6 is sufficiently cured, so that a highly reliable apparatus such as moisture resistance can be provided. It becomes possible. The configuration of this embodiment can also be used in the embodiments of FIGS. Further, the distance d1 and the distance d2 are in the relationship of d1 <d2, as in the above embodiment.

本発明に係る液晶表示装置の実施形態1を示す断面図である。It is sectional drawing which shows Embodiment 1 of the liquid crystal display device which concerns on this invention. 図1の一部を拡大して示す拡大断面図である。It is an expanded sectional view which expands and shows a part of FIG. 本発明の実施形態2を示す断面図である。It is sectional drawing which shows Embodiment 2 of this invention. 本発明の実施形態3を示す断面図である。It is sectional drawing which shows Embodiment 3 of this invention. 本発明の実施形態4を示す断面図である。It is sectional drawing which shows Embodiment 4 of this invention. 本発明の実施形態5を示す断面図である。It is sectional drawing which shows Embodiment 5 of this invention. 従来例の表示装置を示す断面図である。It is sectional drawing which shows the display apparatus of a prior art example.

符号の説明Explanation of symbols

1 透明基板
2 シリコン基板
3 フレキシブル回路基板
4 絶縁性保護フィルム
5 配線
6 電極端子パッド
7 異方性導電接着剤(ACF)
8 導電性粒子
9 加熱圧着用の熱源(ヒータツール)
10 バックアップヒータ
11 フレキシブル回路基板用ステージ
12 ストッパー
13 接続前のACF
14 シール部材
15 絶縁性部材
DESCRIPTION OF SYMBOLS 1 Transparent substrate 2 Silicon substrate 3 Flexible circuit board 4 Insulating protective film 5 Wiring 6 Electrode terminal pad 7 Anisotropic conductive adhesive (ACF)
8 Conductive particles 9 Heat source for thermocompression bonding (heater tool)
10 Backup heater 11 Flexible circuit board stage 12 Stopper 13 ACF before connection
14 Sealing member 15 Insulating member

Claims (7)

画素電極を有するシリコン基板と、透明電極を有する透明基板とを有し、前記シリコン基板と透明基板との間に液晶が挟持され、前記シリコン基板の電極端子パッドと、前記フレキシブル回路基板の電極端子パッドとを異方性導電接着剤によって電気的に接続する液晶表示装置において、
前記シリコン基板の電極端子パッドと前記フレキシブル回路基板の電極端子パッドとの間隔をd1、前記シリコン基板の表面と前記フレキシブル回路基板の電極端子パッドとの間隔をd2とする場合、前記間隔d1と間隔d2とが、d2>d1の関係であることを特徴とする液晶表示装置。
A silicon substrate having a pixel electrode; and a transparent substrate having a transparent electrode, wherein a liquid crystal is sandwiched between the silicon substrate and the transparent substrate, an electrode terminal pad of the silicon substrate, and an electrode terminal of the flexible circuit substrate In a liquid crystal display device that is electrically connected to a pad by an anisotropic conductive adhesive,
When the distance between the electrode terminal pad of the silicon substrate and the electrode terminal pad of the flexible circuit board is d1, and the distance between the surface of the silicon substrate and the electrode terminal pad of the flexible circuit board is d2, the distance d1 and the distance d2 is a relationship of d2>d1;
前記フレキシブル回路基板は、前記シリコン基板の電極端子パッドから外側に向けて前記シリコン基板より離れるように折り曲げられていることを特徴とする請求項1に記載の液晶表示装置。 The liquid crystal display device according to claim 1, wherein the flexible circuit board is bent away from the silicon substrate toward an outside from an electrode terminal pad of the silicon substrate. 前記異方性導電接着剤は前記シリコン基板のエッジより外側へはみ出していることを特徴とする請求項1又は2に記載の液晶表示装置。 The liquid crystal display device according to claim 1, wherein the anisotropic conductive adhesive protrudes outward from an edge of the silicon substrate. 前記シリコン基板の電極端子パッドは、前記シリコン基板の表面より低い位置に配置されていることを特徴とする請求項1乃至3のいずれか1項に記載の液晶表示装置。 4. The liquid crystal display device according to claim 1, wherein the electrode terminal pad of the silicon substrate is disposed at a position lower than a surface of the silicon substrate. 5. 画素電極を有するシリコン基板と、透明電極を有する透明基板との間に液晶が挟持され、前記シリコン基板の電極端子パッドと、前記フレキシブル回路基板の電極端子パッドとを、異方性導電接着剤を用いて電気的に接続する液晶表示装置の製造方法において、
前記フレキシブル回路基板の電極端子パッドと前記シリコン基板の電極端子パッドとを前記異方性導電接着剤を挟持した状態で加熱圧着用の熱源を用いて加熱圧着することによって電気的に接続する工程を含み、
前記加熱圧着工程において、前記シリコン基板の電極端子パッドと前記フレキシブル回路基板の電極端子パッドとの間隔d1と、前記シリコン基板の表面と前記フレキシブル回路基板の電極端子パッドとの間隔d2とが、d2>d1の関係となることを特徴とする液晶表示装置の製造方法。
A liquid crystal is sandwiched between a silicon substrate having a pixel electrode and a transparent substrate having a transparent electrode, and the electrode terminal pad of the silicon substrate and the electrode terminal pad of the flexible circuit substrate are bonded with an anisotropic conductive adhesive. In the manufacturing method of the liquid crystal display device electrically connected using,
Electrically connecting the electrode terminal pads of the flexible circuit board and the electrode terminal pads of the silicon substrate by thermocompression bonding using a heat source for thermocompression bonding with the anisotropic conductive adhesive sandwiched therebetween. Including
In the thermocompression bonding step, an interval d1 between the electrode terminal pad of the silicon substrate and the electrode terminal pad of the flexible circuit substrate and an interval d2 between the surface of the silicon substrate and the electrode terminal pad of the flexible circuit substrate are d2. A manufacturing method of a liquid crystal display device characterized by satisfying a relationship of> d1.
前記加熱圧着用の熱源は前記シリコン基板の電極端子パッドより長いことを特徴とする請求項5に記載の液晶表示装置の製造方法。 6. The method of manufacturing a liquid crystal display device according to claim 5, wherein the heat source for thermocompression bonding is longer than an electrode terminal pad of the silicon substrate. 前記シリコン基板のエッジより外側にストッパーが配置され、前記ストッパーの高さを前記シリコン基板の表面により高く設定することによって、前記加熱圧着工程において、前記フレキシブル回路基板は前記シリコン基板の電極端子パッドから外側に向けて前記シリコン基板より離れるように折り曲げられることを特徴とする請求項5に記載の液晶表示装置の製造方法。 A stopper is disposed outside the edge of the silicon substrate, and by setting the height of the stopper higher on the surface of the silicon substrate, the flexible circuit board is separated from the electrode terminal pad of the silicon substrate in the thermocompression bonding step. 6. The method of manufacturing a liquid crystal display device according to claim 5, wherein the liquid crystal display device is bent outwardly from the silicon substrate.
JP2007305960A 2007-11-27 2007-11-27 Liquid crystal display device and method for manufacturing the same Pending JP2009128779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007305960A JP2009128779A (en) 2007-11-27 2007-11-27 Liquid crystal display device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007305960A JP2009128779A (en) 2007-11-27 2007-11-27 Liquid crystal display device and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2009128779A true JP2009128779A (en) 2009-06-11

Family

ID=40819736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007305960A Pending JP2009128779A (en) 2007-11-27 2007-11-27 Liquid crystal display device and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2009128779A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2141710A1 (en) 2008-07-04 2010-01-06 Daido Tokushuko Kabushiki Kaisha Rare earth magnet and production process thereof
US10310334B2 (en) 2015-06-16 2019-06-04 Sharp Kabushiki Kaisha Display device and method of producing display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2141710A1 (en) 2008-07-04 2010-01-06 Daido Tokushuko Kabushiki Kaisha Rare earth magnet and production process thereof
US10310334B2 (en) 2015-06-16 2019-06-04 Sharp Kabushiki Kaisha Display device and method of producing display device

Similar Documents

Publication Publication Date Title
JP5096782B2 (en) Semiconductor device
TW557522B (en) Semiconductor device
JP2003332386A (en) Integrated circuit chip, electronic device and its manufacturing method, electronic apparatus
JP2002358026A (en) Display module, flexible wiring board and connecting method for the board
JPWO2007063667A1 (en) Circuit member, electrode connection structure, and display device including the same
JP4740708B2 (en) Wiring board and semiconductor device
JP2012227480A (en) Display device and semiconductor integrated circuit device
JP5608545B2 (en) Thermocompression bonding head, mounting apparatus and mounting method
JP2005310905A (en) Connection structure of electronic component
CN112993607B (en) Display device, method for manufacturing display device, and printed wiring board
JP2009128779A (en) Liquid crystal display device and method for manufacturing the same
JPH09281520A (en) Method for connecting circuit board, liquid crystal display device and electronic apparatus
JP4631742B2 (en) ELECTRO-OPTICAL DEVICE, MOUNTING STRUCTURE, ELECTRO-OPTICAL DEVICE MANUFACTURING METHOD, AND ELECTRONIC DEVICE
TW202242497A (en) Display device
JP2008083365A (en) Liquid crystal display device
JPH10319425A (en) Liquid crystal display device and its production
JP3404446B2 (en) Tape carrier package and liquid crystal display device provided with the tape carrier package
JP2008243947A (en) Flexible circuit board and circuit mounting object using the same
WO2019127161A1 (en) Touch display screen and manufacturing method thereof, and display apparatus
TWI817805B (en) Display panel and display device
KR20080018027A (en) Tab package and method of reworking tab package
JP2010224115A (en) Liquid crystal display and method of manufacturing the same
JP3341733B2 (en) Liquid crystal device and method of manufacturing the same
JP2009186708A (en) Method of manufacturing electro-optical device and electro-optical device
JP4013070B2 (en) Integrated circuit chip, electronic device, manufacturing method thereof, and electronic apparatus

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Effective date: 20090324

Free format text: JAPANESE INTERMEDIATE CODE: A7421

RD04 Notification of resignation of power of attorney

Effective date: 20100201

Free format text: JAPANESE INTERMEDIATE CODE: A7424

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100630