JP2009128693A - Zoom lens - Google Patents

Zoom lens Download PDF

Info

Publication number
JP2009128693A
JP2009128693A JP2007304504A JP2007304504A JP2009128693A JP 2009128693 A JP2009128693 A JP 2009128693A JP 2007304504 A JP2007304504 A JP 2007304504A JP 2007304504 A JP2007304504 A JP 2007304504A JP 2009128693 A JP2009128693 A JP 2009128693A
Authority
JP
Japan
Prior art keywords
lens
lens group
refractive power
lens unit
zoom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007304504A
Other languages
Japanese (ja)
Other versions
JP2009128693A5 (en
JP5072549B2 (en
Inventor
Takeshi Nishimura
威志 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2007304504A priority Critical patent/JP5072549B2/en
Publication of JP2009128693A publication Critical patent/JP2009128693A/en
Publication of JP2009128693A5 publication Critical patent/JP2009128693A5/ja
Application granted granted Critical
Publication of JP5072549B2 publication Critical patent/JP5072549B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)
  • Studio Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact zoom lens capable of securing sufficient backfocusing to a focal distance. <P>SOLUTION: This zoom lens has three lens groups L1-L3 having negative refractive power, positive refractive power and negative refractive power in this order from an object side toward an image side, a space between the first lens group L1 and the second lens group L2 is reduced in a telephoto-end, compared with a wide angle end, and a space between the second lens group L2 and the third lens group L3 increases therein. The respective lens groups are set with the proper refractive power arrangement, in particular, the constitution and the refractive power arrangement in the second lens group are set properly, in the zoom lens. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明はズームレンズに関し、例えば、カメラ用の撮影レンズに好適なものである。   The present invention relates to a zoom lens, and is suitable for, for example, a photographing lens for a camera.

近年、レンズシャッター方式のデジタルスチルカメラやフォーカルプレーンシャッタ方式の一眼レフカメラの撮影レンズには、小型で高画質のズームレンズが要望されている。   In recent years, a zoom lens having a small size and high image quality has been demanded as a photographing lens of a lens shutter type digital still camera or a focal plane shutter type single-lens reflex camera.

ズームレンズの小型化を図る上では、複雑なズームタイプ(例えば、多群化など)を採用すると、レンズ系全体が大型化する傾向にある。このため、小型のズームレンズを実現するためには、できるだけ簡素なズームタイプが好ましい。   In order to reduce the size of the zoom lens, when a complicated zoom type (for example, multi-group) is adopted, the entire lens system tends to be enlarged. For this reason, in order to realize a small zoom lens, a zoom type as simple as possible is preferable.

簡素で、かつ広角端におけるバックフォーカスを確保し易いズームタイプとして、物体側から順に、負、正の屈折力の2つのレンズ群で構成した2群ズームレンズが知られている。   2. Description of the Related Art As a zoom type that is simple and easily secures back focus at the wide-angle end, a two-group zoom lens that is composed of two lens groups having negative and positive refractive powers in order from the object side is known.

しかし、2群ズームレンズは簡素な構成ではあるが、小型化と高性能化(高画質化)を同時に実現することは困難である。そのため、ズーム構成には工夫が必要である。   However, although the two-group zoom lens has a simple configuration, it is difficult to simultaneously realize downsizing and high performance (high image quality). Therefore, a device is required for the zoom configuration.

小型化と高性能化の両立のために、2群ズームレンズの像面側に更に負の屈折力のレンズ群を配置した、3群ズームレンズが知られている。(特許文献1〜4)
特登録第2988031号公報 特公昭61−61655号公報 特開平6−230286号公報 特開2005−292348号公報
In order to achieve both miniaturization and high performance, a three-group zoom lens in which a lens group having a negative refractive power is further arranged on the image plane side of the two-group zoom lens is known. (Patent Documents 1 to 4)
Japanese Patent Registration No. 2988031 Japanese Examined Patent Publication No. 61-61655 JP-A-6-230286 JP 2005-292348 A

ところで、デジタル一眼レフカメラにおいては、従来の銀塩フィルム用一眼レフカメラとレンズマウントを共用しつつ、35mmフィルムに対して小さなサイズの固体撮像素子(APS−Cサイズなどと呼称される)を用いたものが製品化されている。このような小さなサイズの撮像素子を用いたデジタル一眼レフカメラにおいて銀塩フィルム用一眼レフカメラと同等の画角を実現しようとした場合、より短い焦点距離の撮影レンズが必要である。これは、レンズマウント共用の35mmフィルム用撮影レンズに比して、焦点距離比でより長いバックフォーカスが要求されることを意味する。   By the way, in a digital single-lens reflex camera, while using a lens mount in common with a conventional single-lens reflex camera for a silver salt film, a solid-state image pickup device (referred to as an APS-C size) having a small size for a 35 mm film is used. What has been commercialized. In a digital single-lens reflex camera using such a small-size image sensor, when an angle of view equivalent to that of a silver-salt film single-lens reflex camera is to be realized, a photographing lens having a shorter focal length is required. This means that a longer back focus is required in terms of a focal length ratio than a 35 mm film photographing lens shared by a lens mount.

上述の特許文献1〜4に開示されたズームレンズは、いずれも35mmフルサイズを想定したものである。このため、レンズマウントを共用する小さなサイズの撮像素子を用いたデジタル一眼レフカメラへの適用を想定した場合、広角端の焦点距離に対してバックフォーカスが十分確保されておらず、同等の画角を実現するのが困難である。   The zoom lenses disclosed in Patent Documents 1 to 4 are all assumed to be 35 mm full size. For this reason, when assuming application to a digital single-lens reflex camera using a small-size image sensor that shares a lens mount, the back focus is not sufficiently secured with respect to the focal length at the wide-angle end, and an equivalent angle of view. Is difficult to realize.

本発明は、焦点距離に対して十分なバックフォーカスを確保した小型かつ高性能なズームレンズの提供を目的とする。   An object of the present invention is to provide a compact and high-performance zoom lens that ensures a sufficient back focus with respect to a focal length.

上記目的を達成するため、本発明のズームレンズは、レンズ群を適切な屈折力配置に設定すると共に、特に第2レンズ群内の構成と屈折力配置を適切に設定する。   In order to achieve the above object, the zoom lens of the present invention sets the lens group to an appropriate refractive power arrangement, and particularly appropriately sets the configuration and refractive power arrangement in the second lens group.

具体的には、物体側より像側へ順に、負、正、負の屈折力の3つのレンズ群を有し、広角端より望遠端へのズーミングに際し、第1レンズ群と第2レンズ群の間隔が減少し、第2レンズ群と第3レンズ群の間隔が増大するズームレンズであって、第2レンズ群を、物体側より像側へ順に、正の屈折力の第2Aレンズ群、開口絞り、そして正の屈折力の第2Bレンズ群で構成する。更に、広角端における全系の焦点距離をfw、第1レンズ群、第2レンズ群、第3レンズ群の焦点距離を各々f1,f2,f3、第2Aレンズ群、第2Bレンズ群の焦点距離を各々f2A,f2Bとするとき、
−1.2< f2/f1 <−0.9
−0.2< fw/f3 <−0.01
0.5< f2A/f2B <1.1
なる条件を満足するよう設定する。
Specifically, there are three lens groups of negative, positive, and negative refractive power in order from the object side to the image side, and during zooming from the wide angle end to the telephoto end, the first lens group and the second lens group A zoom lens in which the distance is decreased and the distance between the second lens group and the third lens group is increased, and the second lens group is moved in order from the object side to the image side, the second A lens group having a positive refractive power, and an aperture It consists of a stop and a second B lens group having a positive refractive power. Further, the focal length of the entire system at the wide angle end is fw, and the focal lengths of the first lens group, the second lens group, and the third lens group are f1, f2, and f3, and the focal lengths of the second A lens group and the second B lens group, respectively. Are f2A and f2B, respectively.
-1.2 <f2 / f1 <-0.9
−0.2 <fw / f3 <−0.01
0.5 <f2A / f2B <1.1
Set to satisfy the following conditions.

本発明によれば、焦点距離に対して十分なバックフォーカスを確保した小型かつ高性能なズームレンズが実現できる。   According to the present invention, it is possible to realize a small and high-performance zoom lens that ensures a sufficient back focus with respect to the focal length.

以下、図面を用いて本発明のズームレンズの実施例の説明をする。
図1は実施例1のズームレンズの広角端におけるレンズ断面図である。図2(a),(b)はそれぞれ、実施例1のズームレンズの広角端、望遠端における縦収差図である。
Embodiments of the zoom lens according to the present invention will be described below with reference to the drawings.
FIG. 1 is a lens cross-sectional view at the wide-angle end of the zoom lens according to the first exemplary embodiment. FIGS. 2A and 2B are longitudinal aberration diagrams of the zoom lens of Example 1 at the wide-angle end and the telephoto end, respectively.

図3は実施例2のズームレンズの広角端におけるレンズ断面図である。図4(a),(b)はそれぞれ、実施例2のズームレンズの広角端、望遠端における縦収差図である。   FIG. 3 is a lens cross-sectional view at the wide-angle end of the zoom lens according to the second exemplary embodiment. 4A and 4B are longitudinal aberration diagrams of the zoom lens of Example 2 at the wide-angle end and the telephoto end, respectively.

図5は実施例3のズームレンズの広角端におけるレンズ断面図である。図6(a),(b)はそれぞれ、実施例3のズームレンズの広角端、望遠端における縦収差図である。   FIG. 5 is a lens cross-sectional view at the wide-angle end of the zoom lens according to the third exemplary embodiment. FIGS. 6A and 6B are longitudinal aberration diagrams of the zoom lens of Example 3 at the wide-angle end and the telephoto end, respectively.

図7は実施例4のズームレンズの広角端におけるレンズ断面図である。図8(a),(b)はそれぞれ、実施例4のズームレンズの広角端、望遠端における縦収差図である。   FIG. 7 is a lens cross-sectional view at the wide-angle end of the zoom lens according to the fourth exemplary embodiment. 8A and 8B are longitudinal aberration diagrams of the zoom lens of Example 4 at the wide-angle end and the telephoto end, respectively.

図9は実施例5のズームレンズの広角端におけるレンズ断面図である。図10(a),(b)はそれぞれ、実施例5のズームレンズの広角端、望遠端における縦収差図である。   FIG. 9 is a lens cross-sectional view at the wide-angle end of the zoom lens according to the fifth exemplary embodiment. FIGS. 10A and 10B are longitudinal aberration diagrams of the zoom lens of Example 5 at the wide-angle end and the telephoto end, respectively.

実施例1〜5は、それぞれ後述する数値実施例1〜5に対応する。
図1,3,5,7,9に示したレンズ断面図において、L1は負の屈折力(光学的パワー=焦点距離の逆数)の第1レンズ群、L2は正の屈折力の第2レンズ群、L3は負の屈折力の第3レンズ群である。2A,2Bは各々、第2レンズ群L2を構成する正の屈折力の第2Aレンズ群、正の屈折力の第2Bレンズ群である。各レンズ断面図における「L1(負)」等の(負)又は(正)は、そのレンズ群の屈折力の符号を表す。レンズ断面図において、左側が物体側(前方)、右側が像側(後方)であり、物体側から像側へ順に、第1レンズ群L1、第2レンズ群L2、第3レンズ群L3が配置されている。
Examples 1 to 5 correspond to Numerical Examples 1 to 5 described later, respectively.
In the lens cross-sectional views shown in FIGS. 1, 3, 5, 7, and 9, L1 is a first lens unit having negative refractive power (optical power = reciprocal of focal length), and L2 is a second lens having positive refractive power. The group L3 is a third lens group having a negative refractive power. Reference numerals 2A and 2B respectively denote a second A lens group having a positive refractive power and a second B lens group having a positive refractive power that constitute the second lens group L2. (Negative) or (positive) such as “L1 (negative)” in each lens cross-sectional view represents the sign of the refractive power of the lens group. In the lens cross-sectional view, the left side is the object side (front), the right side is the image side (rear), and the first lens group L1, the second lens group L2, and the third lens group L3 are arranged in order from the object side to the image side. Has been.

SPは開口絞り、FPはフレアカット絞りである。IPは像面である。本実施例のズームレンズをデジタル一眼レフカメラの撮影光学系として使用する場合、像面IPは、CCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)の撮像面に相当する。銀塩フィルム用カメラの撮影光学系として使用する場合、像面IPはフィルム面に相当する。   SP is an aperture stop, and FP is a flare cut stop. IP is the image plane. When the zoom lens of this embodiment is used as a photographing optical system of a digital single-lens reflex camera, the image plane IP corresponds to an imaging plane of a solid-state imaging device (photoelectric conversion device) such as a CCD sensor or a CMOS sensor. When used as a photographing optical system for a silver salt film camera, the image plane IP corresponds to a film plane.

図2,4,6,8,10に示した収差図では、各実施例のズームレンズの球面収差、非点収差、歪曲収差、倍率色収差を示している。球面収差を表す図において、縦軸はFナンバー(Fno)である。実線dはd線、二点鎖線gはg線を表す。非点収差、歪曲、倍率色収差を表す図における縦軸は、像高(Y)である。非点収差を表す図における破線ΔMはd線のメリジオナル像面、実線ΔSはサジタル像面を表す。歪曲はd線によって表し、倍率色収差はd線の結像位置を基準としてg線によって表わしている。   In the aberration diagrams shown in FIGS. 2, 4, 6, 8, and 10, spherical aberration, astigmatism, distortion, and lateral chromatic aberration of the zoom lens of each example are shown. In the diagram showing spherical aberration, the vertical axis is the F number (Fno). The solid line d represents the d line, and the two-dot chain line g represents the g line. The vertical axis in the diagram representing astigmatism, distortion, and lateral chromatic aberration is the image height (Y). In the diagram showing astigmatism, the broken line ΔM represents the meridional image plane of the d line, and the solid line ΔS represents the sagittal image plane. Distortion is represented by the d-line, and lateral chromatic aberration is represented by the g-line with reference to the imaging position of the d-line.

レンズ断面図における矢印は、広角端から望遠端へズーミングする際の各レンズ群の移動軌跡(ズーム位置に対して各レンズ群の位置をプロットしたもの)を示している。実施例1〜5のズームレンズは、ズーミングに際し、広角端に比べて望遠端での第1レンズ群L1と第2レンズ群L2との間隔が減少し、第2レンズ群L2と第3レンズ群L3との間隔が増大するように、第2レンズ群L2が物体側へ移動する。第1レンズ群L1は、主変倍群である第2レンズ群の移動に伴う像面位置の変動を補償するため、広角端から望遠端へのズーミングに際し、像側に凸の軌跡を描いて移動する。   The arrows in the lens cross-sectional view indicate the movement trajectory of each lens group (plotting the position of each lens group with respect to the zoom position) when zooming from the wide-angle end to the telephoto end. In the zoom lenses of Examples 1 to 5, the distance between the first lens unit L1 and the second lens unit L2 at the telephoto end is smaller than that at the wide angle end during zooming, and the second lens unit L2 and the third lens unit are reduced. The second lens unit L2 moves toward the object side so that the distance from L3 increases. The first lens unit L1 draws a convex locus on the image side during zooming from the wide-angle end to the telephoto end in order to compensate for fluctuations in the image plane position accompanying the movement of the second lens unit, which is the main variable power group. Moving.

なお、実施例1〜3の第3レンズ群L3は、ズーミングに際して移動しないのに対して、実施例4,5の第3レンズ群L3は、広角端から望遠端へのズーミングに際し、物体側に移動する。   The third lens unit L3 in Examples 1 to 3 does not move during zooming, whereas the third lens unit L3 in Examples 4 and 5 moves toward the object side during zooming from the wide-angle end to the telephoto end. Moving.

また、実施例1,2のフレアカット絞りFPは、ズーミングに際して、第2レンズ群L2と一体的に移動する。一方、実施例3〜5のフレアカット絞りFPは、広角端から望遠端へのズーミングに際し、第2レンズ群L2との間隔を変えながら(第2レンズ群L2と独立して)、矢印に示すように物体側に移動する。   In addition, the flare cut stop FP of Examples 1 and 2 moves integrally with the second lens unit L2 during zooming. On the other hand, the flare cut stops FP of Examples 3 to 5 are indicated by arrows while zooming from the wide-angle end to the telephoto end while changing the distance from the second lens unit L2 (independent of the second lens unit L2). Move to the object side.

フォーカシングは、第1レンズ群を光軸に沿って移動させることで行う。   Focusing is performed by moving the first lens group along the optical axis.

実施例1〜5のズームレンズは、最もバックフォーカス(レンズ最終面からガウス像面までの距離)が短くなる広角端において所望のバックフォーカスが確保できるように、像側主点ができるだけ像側に位置するような屈折力配置にしている。すなわち、レンズ系全体が広角端において、よりレトロフォーカスタイプとなるようにしている。   In the zoom lenses of Examples 1 to 5, the image-side principal point is as close to the image side as possible so that a desired back focus can be secured at the wide-angle end where the back focus (distance from the lens final surface to the Gauss image surface) is the shortest. The refractive power is arranged so as to be positioned. That is, the entire lens system is more of a retrofocus type at the wide angle end.

具体的には、広角端においては、負の屈折力の第1レンズ群L1に対して、合成屈折力が正となる第2レンズ群L2と第3レンズ群L3をできるだけ離して配置している。この際、第2レンズ群L2の像側に負の屈折力の第3レンズ群L3を設けることで、第2レンズ群L2の屈折力を適切に設定することが可能となる。この結果、ズーミングの際の第2レンズ群L2の移動量を適切にして、高い光学性能と小型化を両立している。   Specifically, at the wide-angle end, the second lens unit L2 and the third lens unit L3 having a positive combined refractive power are arranged as far as possible from the first lens unit L1 having a negative refractive power. . At this time, it is possible to appropriately set the refractive power of the second lens unit L2 by providing the third lens unit L3 having a negative refractive power on the image side of the second lens unit L2. As a result, the amount of movement of the second lens unit L2 during zooming is made appropriate to achieve both high optical performance and downsizing.

一方、望遠端においては、全系のレンズ全長を短くするために、像側主点ができるだけ物体側に位置するような屈折力配置にしている。すなわち、物体側から順に正、負の屈折力のレンズ配置とし、レンズ系全体がテレフォトタイプに近づけている。   On the other hand, at the telephoto end, in order to shorten the total lens length of the entire system, the refractive power is arranged such that the image side principal point is located as close to the object side as possible. That is, a lens arrangement with positive and negative refractive powers is arranged in order from the object side, and the entire lens system is close to a telephoto type.

具体的には、望遠端において、負の屈折力の第1レンズ群L1と正の屈折力の第2レンズ群L2を接近させて正の合成屈折力のレンズ群を形成し、第2レンズ群L2から像側に離れた位置に第3レンズ群L3を配置している。これにより、テレフォトタイプを形成して望遠端における光学全長の短縮を図っている。   Specifically, at the telephoto end, the first lens unit L1 having a negative refractive power and the second lens unit L2 having a positive refractive power are brought close to each other to form a lens unit having a positive combined refractive power, and the second lens unit. The third lens unit L3 is disposed at a position away from L2 toward the image side. Thus, a telephoto type is formed to shorten the optical total length at the telephoto end.

また、第2レンズ群L2は、正の屈折力の第2Aレンズ群L2A、開口絞りSP、正の屈折力の第2Bレンズ群L2Bで構成している。第2レンズ群L2は、広角端においては第3レンズ群L3に、望遠端においては第1レンズ群L1に接近する。このため、開口絞りSPを第2レンズ群L2の内部(第2Aレンズ群L2Aと第2Bレンズ群L2Bの間)に配置し、ズーミングに際して開口絞りSPが第1レンズ群L1や第3レンズ群L3と干渉しないようにしている。このような効率の良い開口絞りSPの空間配置は、小型化に大きく寄与している。   The second lens unit L2 includes a second A lens unit L2A having a positive refractive power, an aperture stop SP, and a second B lens unit L2B having a positive refractive power. The second lens unit L2 approaches the third lens unit L3 at the wide-angle end, and approaches the first lens unit L1 at the telephoto end. Therefore, the aperture stop SP is disposed inside the second lens unit L2 (between the second A lens unit L2A and the second B lens unit L2B), and the aperture stop SP is used for the first lens unit L1 and the third lens unit L3 during zooming. To avoid interference. Such an efficient spatial arrangement of the aperture stop SP greatly contributes to miniaturization.

更に、広角端におけるバックフォーカスを確保しつつ、小型化を図るためには各レンズ群の屈折力配置を適切に設定する必要がある。特に第2レンズ群L2内の屈折力配置は広角端におけるバックフォーカスの確保が重要である。   Furthermore, in order to reduce the size while securing the back focus at the wide angle end, it is necessary to appropriately set the refractive power arrangement of each lens group. In particular, as for the refractive power arrangement in the second lens unit L2, it is important to secure the back focus at the wide angle end.

そこで本発明のズームレンズは、
・物体側より像側へ順に、負、正、負の屈折力の3つのレンズ群L1〜L3を有すること、
・ズーミングに際し、広角端に比して望遠端で、第1レンズ群L1と第2レンズ群L2の間隔が減少し、第2レンズ群L2と第3レンズ群L3の間隔が増大すること、
・第2レンズ群L2を、物体側より像側へ順に、正の屈折力の第2Aレンズ群L2A、開口絞りSP、正の屈折力の第2Bレンズ群L2Bで構成すること、
を基本構成とし、更に、以下のような条件式を満足するように各レンズ群の屈折力配置を特定している。
−1.2< f2/f1 <−0.9 ・・・(1)
−0.2< fw/f3 <−0.01 ・・・(2)
0.5< f2A/f2B <1.1 ・・・(3)
ここで、fwは広角端における全系の焦点距離、f1,f2,f3は、それぞれ第1〜第3レンズ群の焦点距離、f2A,f2Bは、それぞれ第2Aレンズ群、第2Bレンズ群の焦点距離である。
Therefore, the zoom lens of the present invention is
Having three lens groups L1 to L3 having negative, positive, and negative refractive power in order from the object side to the image side;
In zooming, the distance between the first lens unit L1 and the second lens unit L2 is decreased at the telephoto end compared to the wide angle end, and the interval between the second lens unit L2 and the third lens unit L3 is increased.
The second lens unit L2 is composed of, in order from the object side to the image side, a second A lens unit L2A having a positive refractive power, an aperture stop SP, and a second B lens unit L2B having a positive refractive power.
And the refractive power arrangement of each lens group is specified so as to satisfy the following conditional expression.
-1.2 <f2 / f1 <-0.9 (1)
-0.2 <fw / f3 <-0.01 (2)
0.5 <f2A / f2B <1.1 (3)
Here, fw is the focal length of the entire system at the wide-angle end, f1, f2, and f3 are the focal lengths of the first to third lens groups, respectively, and f2A and f2B are the focal points of the second A lens group and the second B lens group, respectively. Distance.

条件式(1)は、第1レンズ群L1と第2レンズ群L2の焦点距離の比に関し、屈折力配置を規定することで、広角端におけるバックフォーカス確保と小型化と高性能化のバランスを図るための条件である。   Conditional expression (1) defines the refractive power arrangement with respect to the ratio of the focal lengths of the first lens unit L1 and the second lens unit L2, thereby balancing back-focusing at the wide-angle end, miniaturization, and high performance. This is a condition for the purpose of illustration.

条件式(1)の下限値を超えて、第1レンズ群L1に比して第2レンズ群L2の屈折力が弱くなり過ぎると、広角端におけるバックフォーカスの確保が困難となる。また、ズーミングの際の第2レンズ群L2の移動量が増大するため、特に望遠端における光学全長が増大する。   If the lower limit of conditional expression (1) is exceeded and the refractive power of the second lens unit L2 becomes too weak compared to the first lens unit L1, it will be difficult to ensure the back focus at the wide angle end. In addition, since the amount of movement of the second lens unit L2 during zooming increases, the total optical length particularly at the telephoto end increases.

一方、上限値を越えて、第1レンズ群L1に比して第2レンズ群L2の屈折力が強くなり過ぎると、特に第2レンズ群L2全体の球面収差補正が不足してズーム全域において球面収差がアンダーとなる。また、球面収差を補正するために第2レンズ群L2のレンズ枚数を増やすことで対応可能であるが、レンズ系の大型化、コスト増大を招くことになる。   On the other hand, if the upper limit value is exceeded and the refractive power of the second lens unit L2 becomes too strong compared to the first lens unit L1, the spherical aberration correction of the entire second lens unit L2 is insufficient and the spherical surface in the entire zoom range. Aberration is under. Further, this can be dealt with by increasing the number of lenses of the second lens unit L2 in order to correct spherical aberration, but this leads to an increase in the size and cost of the lens system.

なお、更に好ましくは、条件式(1)の下限値を−1.1とすることが望ましい。また、条件式(1)の上限値を−0.95とすることが望ましい。   More preferably, the lower limit value of conditional expression (1) is set to −1.1. Moreover, it is desirable to set the upper limit of conditional expression (1) to −0.95.

条件式(2)は、広角端における全系の焦点距離と第3レンズ群の焦点距離の比に関し、小型化と高性能化を図るためのものである。前述したように、負の屈折力の第3レンズ群L3は、高性能化と小型化に寄与している。前述の条件式(1)を満足しつつ、同時に条件式(2)を満足するように第3レンズ群L3の屈折力を適切に設定することにより、高性能化と小型化を両立できる。   Conditional expression (2) relates to the ratio of the focal length of the entire system to the focal length of the third lens group at the wide-angle end in order to reduce the size and improve the performance. As described above, the third lens unit L3 having a negative refractive power contributes to high performance and miniaturization. By satisfying the above-described conditional expression (1) and simultaneously setting the refractive power of the third lens unit L3 so as to satisfy the conditional expression (2) at the same time, both high performance and small size can be achieved.

条件式(2)の下限値を超えて第3レンズ群L3の屈折力が強くなり過ぎると、特に広角端において十分なバックフォーカス確保が困難となり、更に、ズーミングの際の像面変動が増大する。また、上限値を越えて第3レンズ群L3の屈折力が弱くなりすぎると、第2レンズ群L2、ひいては第1レンズ群L1の屈折力を適切に設定することが困難となる。この結果、レンズ系全体の屈折力配置のバランスが崩れ、レンズ系が大型化する。   If the lower limit of conditional expression (2) is exceeded and the refractive power of the third lens unit L3 becomes too strong, it becomes difficult to ensure sufficient back focus, especially at the wide-angle end, and image plane fluctuations during zooming increase. . Further, if the refractive power of the third lens unit L3 becomes too weak beyond the upper limit value, it becomes difficult to appropriately set the refractive power of the second lens unit L2, and thus the first lens unit L1. As a result, the balance of the refractive power arrangement of the entire lens system is lost, and the lens system is enlarged.

なお、更に好ましくは、条件式(2)の下限値を−0.11とすることが望ましい。また、条件式(2)の上限値を−0.02とすることが望ましい。   More preferably, the lower limit value of conditional expression (2) is desirably set to -0.11. In addition, it is desirable that the upper limit value of conditional expression (2) be −0.02.

条件式(3)は、第2Aレンズ群L2Aと第2Bレンズ群L2Bの焦点距離の比に関し、主に第2レンズ群L2を適切な屈折力配置にすることで広角端におけるバックフォーカスの確保、高性能化、小型化を両立させるためのものである。   Conditional expression (3) relates to the ratio of the focal lengths of the second A lens unit L2A and the second B lens unit L2B, mainly to ensure the back focus at the wide angle end by making the second lens unit L2 have an appropriate refractive power arrangement. This is to achieve both high performance and downsizing.

条件式(3)の下限値を越えて、第2Aレンズ群L2Aの屈折力が第2Bレンズ群L2Bに対して強くなり過ぎると、第2レンズ群L2の像側主点がより物体側に位置することになる。この結果、第2レンズ群L2のバックフォーカスが短くなり、ひいては広角端における全系のバックフォーカス確保が困難となる。また、上限値を越えて第2Aレンズ群L2Aの屈折力が第2Bレンズ群L2Bに対して弱くなり過ぎると、第2Bレンズ群L2Bのレンズ径が増大し、かつ、特に望遠端における球面収差の補正が困難となる。   If the lower limit of conditional expression (3) is exceeded and the refractive power of the second A lens unit L2A becomes too strong with respect to the second B lens unit L2B, the image-side principal point of the second lens unit L2 is positioned closer to the object side. Will do. As a result, the back focus of the second lens unit L2 is shortened, and as a result, it is difficult to ensure the back focus of the entire system at the wide angle end. If the refractive power of the second A lens unit L2A exceeds the upper limit and becomes too weak with respect to the second B lens unit L2B, the lens diameter of the second B lens unit L2B increases and the spherical aberration particularly at the telephoto end increases. Correction becomes difficult.

なお、更に好ましくは、条件式(3)の下限値を0.54とすることが望ましい。また、上限値は0.90とすることが望ましい。   More preferably, the lower limit value of conditional expression (3) is desirably set to 0.54. The upper limit value is desirably 0.90.

以上のごとく構成することで本発明の当初の目的は実現可能である。以下にズームレンズに要求される様々な技術課題を解決する上で、更に好ましい条件について説明する。   By configuring as described above, the original object of the present invention can be realized. Hereinafter, more preferable conditions for solving various technical problems required for the zoom lens will be described.

まず第1に、第2Aレンズ群L2Aは、正の屈折力の単レンズ(正レンズ)のみで構成することが好ましい。第2レンズ群L2内の屈折力配置を適切に設定すれば、このように第2Aレンズ群L2Aを正レンズのみで構成することができ、小型化と低コスト化に寄与する。   First, it is preferable that the second A lens unit L2A is composed of only a single lens having a positive refractive power (positive lens). If the refractive power arrangement in the second lens unit L2 is appropriately set, the second A lens unit L2A can be configured with only a positive lens in this way, which contributes to downsizing and cost reduction.

第2に、第2Bレンズ群L2Bは、物体側から像側へ順に、正レンズ、負レンズ、正レンズで構成することが好ましい。このように、第2Bレンズ群L2Bをトリプレット構成とすることで、少ないレンズ枚数でありながら、特に球面収差が良好に補正できる。   Secondly, it is preferable that the second B lens unit L2B includes a positive lens, a negative lens, and a positive lens in order from the object side to the image side. In this way, by setting the second B lens unit L2B to a triplet configuration, it is possible to particularly favorably correct spherical aberration while the number of lenses is small.

第3に、第2Aレンズ群L2Aと第2Bレンズ群L2Bの間隔(軸上空気間隔)をD2AB、第2レンズ群L2の最も物体側のレンズ面頂点から第2レンズ群L2の最も像側のレンズ面頂点までの距離をD2とするとき、
0.03< D2AB/D2 <0.3 ・・・(4)
なる条件を満足することが好ましい。
Third, the distance (axial air space) between the second A lens unit L2A and the second B lens unit L2B is D2AB, and the most object side lens surface vertex of the second lens unit L2 is closest to the image side of the second lens unit L2. When the distance to the lens surface vertex is D2,
0.03 <D2AB / D2 <0.3 (4)
It is preferable to satisfy the following conditions.

条件式(4)は、第2Aレンズ群L2Aと第2Bレンズ群L2Bとの軸上空気間隔と、第2レンズ群L2の全長(軸上厚)の比に関し、特に開口絞りSPの配置を考慮しつつ、小型化を図るためのものである。   Conditional expression (4) relates to the ratio of the axial air space between the second A lens unit L2A and the second B lens unit L2B to the total length (axial thickness) of the second lens unit L2, and particularly considers the arrangement of the aperture stop SP. However, this is to reduce the size.

条件式(4)の下限値を超えて第2Aレンズ群L2Aと第2Bレンズ群L2Bが近づき過ぎると、開口絞りSPの開閉機構を配置することが困難となる。また、上限値を越えると、第2Bレンズ群L2Bのレンズ径が増大し、特に望遠端におけるレンズ全長も増大する。   If the second A lens unit L2A and the second B lens unit L2B are too close to each other beyond the lower limit value of the conditional expression (4), it is difficult to arrange an opening / closing mechanism for the aperture stop SP. When the upper limit is exceeded, the lens diameter of the second B lens unit L2B increases, and the total lens length at the telephoto end also increases.

なお、更に好ましくは、条件式(4)の下限値を0.05とすることが望ましい。また、条件式(4)の上限値を0.15とすることが望ましい。   More preferably, it is desirable to set the lower limit of conditional expression (4) to 0.05. Moreover, it is desirable to set the upper limit of conditional expression (4) to 0.15.

第4に、広角端におけるバックフォーカスをbfwとするとき、
0.45< fw/bfw <0.9 ・・・(5)
なる条件を満足することが好ましい。
Fourth, when the back focus at the wide angle end is bfw,
0.45 <fw / bfw <0.9 (5)
It is preferable to satisfy the following conditions.

条件式(5)は、広角端における焦点距離とバックフォーカスの比であり、十分なバックフォーカスの確保と小型化のバランスを図るためのものである。   Conditional expression (5) is the ratio of the focal length to the back focus at the wide-angle end, and is intended to achieve a balance between ensuring sufficient back focus and miniaturization.

条件式(5)の下限値を越えると、広角端におけるバックフォーカスが短くなり過ぎる。また、上限値を越えると広角端における光学全長が増大し、前玉径が大型化する。   When the lower limit of conditional expression (5) is exceeded, the back focus at the wide angle end becomes too short. When the upper limit is exceeded, the optical total length at the wide angle end increases, and the front lens diameter increases.

第5に、第1レンズ群L1は、正レンズを最も物体側に有することが好ましい。   Fifth, it is preferable that the first lens unit L1 has a positive lens closest to the object side.

十分なバックフォーカスを確保すると光学全長が長くなり易く、前玉径が増大する傾向ある。特に広角端において軸外光束が光軸から離れた所を通過するので、負の屈折力の第1レンズ群L1で発生する負の歪曲収差の補正が困難となり易い。そこで、第1レンズ群L1の最も物体側に正レンズを配置することで、十分なバックフォーカスを確保しつつ歪曲収差を補正することができる。   If sufficient back focus is secured, the total optical length tends to be long, and the front lens diameter tends to increase. In particular, since the off-axis light beam passes away from the optical axis at the wide-angle end, it is difficult to correct negative distortion occurring in the first lens unit L1 having negative refractive power. Therefore, by disposing the positive lens on the most object side of the first lens unit L1, it is possible to correct distortion while ensuring sufficient back focus.

第6に、広角端における第2レンズ群L2の近軸横倍率をβ2w、望遠端における第2レンズ群L2の近軸横倍率をβ2t、望遠端における全系の焦点距離をftとするとき、
0.8< (β2t・fw)/(β2w・ft) <1.1 ・・・(6)
なる条件を満足することが好ましい。
Sixth, when the paraxial lateral magnification of the second lens unit L2 at the wide-angle end is β2w, the paraxial lateral magnification of the second lens unit L2 at the telephoto end is β2t, and the focal length of the entire system at the telephoto end is ft,
0.8 <(β2t · fw) / (β2w · ft) <1.1 (6)
It is preferable to satisfy the following conditions.

条件式(6)は、広角端、望遠端における第2レンズ群L2の近軸横倍率と広角端、望遠端の焦点距離の比であり、第2レンズ群L2の変倍分担を規定したものである。   Conditional expression (6) is the ratio between the paraxial lateral magnification of the second lens unit L2 at the wide-angle end and the telephoto end and the focal length at the wide-angle end and the telephoto end, and defines the variable magnification sharing of the second lens unit L2. It is.

条件式(6)の下限値を超えて第2レンズ群L2の変倍分担が減少し、第3レンズ群L3の変倍分担が増大し過ぎると、第3レンズ群L3のズーミングの際の移動量が増大し、機構が複雑になる。また、上限値を越えると第2レンズ群L2の変倍分担が増大し、ズーミングに伴う球面収差変動の補正が困難となる。   If the variable magnification share of the second lens unit L2 decreases beyond the lower limit of conditional expression (6) and the variable magnification share of the third lens unit L3 increases too much, the third lens unit L3 moves during zooming. The amount increases and the mechanism becomes complicated. On the other hand, if the upper limit is exceeded, the variable power sharing of the second lens unit L2 increases, and it becomes difficult to correct spherical aberration fluctuations associated with zooming.

以上、本発明の好ましい実施例について説明したが、本発明はこれらの実施例に限定されないことはいうまでもなく、その要旨の範囲内で種々の変形及び変更が可能である。   The preferred embodiments of the present invention have been described above, but the present invention is not limited to these embodiments, and various modifications and changes can be made within the scope of the gist.

以下に、実施例1〜5に各々対応する数値実施例1〜5を示す。各数値実施例において、iは、物体側からの面又は部材の順番を示している。Riは第i番目の面(第i面)の曲率半径(単位:mm)、Diは第i面と第(i+1)面との間隔(単位:mm)である。Niはi番目の部材のd線に対する屈折率である。νiは以下の式で表されるd線を基準としたi番目の部材のアッベ数である。
νi=(Nd−1)/(NF−NC)
Nd:d線(波長587.6nm)に対する屈折率
NF:F線(波長486.1nm)に対する屈折率
NC:C線(波長656.3nm)に対する屈折率
fは焦点距離(単位:mm)、FnoはFナンバー、ωは半画角を表わす。前述の各条件式と数値実施例における諸数値との関係を表1に示す。
In the following, numerical examples 1 to 5 corresponding to the first to fifth examples will be described. In each numerical example, i indicates the order of the surface or member from the object side. Ri is a radius of curvature (unit: mm) of the i-th surface (i-th surface), and Di is a distance (unit: mm) between the i-th surface and the (i + 1) -th surface. Ni is a refractive index with respect to the d line of the i-th member. ν i is the Abbe number of the i-th member based on the d-line represented by the following equation.
νi = (Nd−1) / (NF-NC)
Nd: Refractive index for d-line (wavelength 587.6 nm) NF: Refractive index for F-line (wavelength 486.1 nm) NC: Refractive index for C-line (wavelength 656.3 nm) f is focal length (unit: mm), Fno Represents an F number, and ω represents a half angle of view. Table 1 shows the relationship between the above-described conditional expressions and various numerical values in the numerical examples.

(数値実施例1)
f= 18.60〜30.92〜49.00 Fno= 3.92〜4.71〜5.88 2ω=72.6〜47.7〜 31.1
R 1 = 95.000 D 1 = 3.40 N 1 = 1.516330 ν 1 = 64.1
R 2 = 1069.090 D 2 = 0.10
R 3 = 39.878 D 3 = 1.50 N 2 = 1.622992 ν 2 = 58.2
R 4 = 13.955 D 4 = 7.78
R 5 = -560.767 D 5 = 1.20 N 3 = 1.622992 ν 3 = 58.2
R 6 = 21.742 D 6 = 2.49
R 7 = 19.463 D 7 = 3.00 N 4 = 1.805181 ν 4 = 25.4
R 8 = 31.934 D 8 = 可変
R 9 = 36.679 D 9 = 2.30 N 5 = 1.517417 ν 5 = 52.4
R10 = -45.492 D10 = 1.19
R11 = 開口絞り D11 = 0.60
R12 = 17.763 D12 = 2.80 N 6 = 1.517417 ν 6 = 52.4
R13 = -62.193 D13 = 0.41
R14 = -30.185 D14 = 5.26 N 7 = 1.717362 ν 7 = 29.5
R15 = 17.203 D15 = 3.02
R16 = 44.174 D16 = 2.70 N 8 = 1.571351 ν 8 = 53.0
R17 = -19.655 D17 = 可変
R18 = ∞ D18 = 可変
R19 = -28.420 D19 = 1.00 N 9 = 1.516330 ν 9 = 64.1
R20 = 34.814 D20 = 0.59
R21 = 119.021 D21 = 3.10 N10 = 1.516330 ν10 = 64.1
R22 = -22.847 D22 =35.1

\焦点距離 18.60 30.92 49.00
可変間隔\
D 8 31.64 12.53 1.89
D17 0.00 0.00 0.00
D18 1.80 11.43 25.57

ズームレンズ群データ
群 始面 焦点距離
1 1 -27.39
2 9 26.41
3 19 -246.41
(Numerical example 1)
f = 18.60-30.92-49.00 Fno = 3.92-4.71-5.88 2ω = 72.6-47.7-31.1
R 1 = 95.000 D 1 = 3.40 N 1 = 1.516330 ν 1 = 64.1
R 2 = 1069.090 D 2 = 0.10
R 3 = 39.878 D 3 = 1.50 N 2 = 1.622992 ν 2 = 58.2
R 4 = 13.955 D 4 = 7.78
R 5 = -560.767 D 5 = 1.20 N 3 = 1.622992 ν 3 = 58.2
R 6 = 21.742 D 6 = 2.49
R 7 = 19.463 D 7 = 3.00 N 4 = 1.805181 ν 4 = 25.4
R 8 = 31.934 D 8 = Variable
R 9 = 36.679 D 9 = 2.30 N 5 = 1.517417 ν 5 = 52.4
R10 = -45.492 D10 = 1.19
R11 = Aperture stop D11 = 0.60
R12 = 17.763 D12 = 2.80 N 6 = 1.517417 ν 6 = 52.4
R13 = -62.193 D13 = 0.41
R14 = -30.185 D14 = 5.26 N 7 = 1.717362 ν 7 = 29.5
R15 = 17.203 D15 = 3.02
R16 = 44.174 D16 = 2.70 N 8 = 1.571351 ν 8 = 53.0
R17 = -19.655 D17 = variable
R18 = ∞ D18 = variable
R19 = -28.420 D19 = 1.00 N 9 = 1.516330 ν 9 = 64.1
R20 = 34.814 D20 = 0.59
R21 = 119.021 D21 = 3.10 N10 = 1.516330 ν10 = 64.1
R22 = -22.847 D22 = 35.1

\ Focal length 18.60 30.92 49.00
Variable interval \
D 8 31.64 12.53 1.89
D17 0.00 0.00 0.00
D18 1.80 11.43 25.57

Zoom lens group data group Start surface Focal length
1 1 -27.39
2 9 26.41
3 19 -246.41

(数値実施例2)
f= 18.60〜31.86〜51.32 Fno= 3.77〜4.62〜5.88 2ω=72.6〜46.4〜29.8
R 1 = 180.000 D 1 = 3.00 N 1 = 1.516330 ν 1 = 64.1
R 2 = -500.000 D 2 = 0.10
R 3 = 41.552 D 3 = 1.50 N 2 = 1.622992 ν 2 = 58.2
R 4 = 14.378 D 4 = 7.54
R 5 = 1027.760 D 5 = 1.20 N 3 = 1.603112 ν 3 = 60.6
R 6 = 21.235 D 6 = 2.26
R 7 = 19.209 D 7 = 3.00 N 4 = 1.805181 ν 4 = 25.4
R 8 = 31.407 D 8 = 可変
R 9 = 32.355 D 9 = 2.20 N 5 = 1.518229 ν 5 = 58.9
R10 = -51.429 D10 = 0.69
R11 = 絞り D11 = 0.60
R12 = 17.812 D12 = 2.80 N 6 = 1.517417 ν 6 = 52.4
R13 = -105.294 D13 = 0.41
R14 = -36.897 D14 = 5.59 N 7 = 1.717362 ν 7 = 29.5
R15 = 16.832 D15 = 2.75
R16 = 41.934 D16 = 2.70 N 8 = 1.571351 ν 8 = 53.0
R17 = -21.537 D17 = 可変
R18 = ∞ D18 = 可変
R19 = -25.966 D19 = 1.00 N 9 = 1.712995 ν 9 = 53.9
R20 = 46.725 D20 = 0.59
R21 = 126.642 D21 = 3.10 N10 = 1.712995 ν10 = 53.9
R22 = -22.451 D22 =34.88

\焦点距離 18.60 31.86 51.32
可変間隔\
D 8 32.34 12.31 1.66
D17 0.00 0.00 0.00
D18 1.80 12.37 27.88

ズームレンズ群データ
群 始面 焦点距離
1 1 -28.53
2 9 26.70
3 19 -529.65
(Numerical example 2)
f = 18.60 to 31.86 to 51.32 Fno = 3.77 to 4.62 to 5.88 2ω = 72.6 to 46.4 to 29.8
R 1 = 180.000 D 1 = 3.00 N 1 = 1.516330 ν 1 = 64.1
R 2 = -500.000 D 2 = 0.10
R 3 = 41.552 D 3 = 1.50 N 2 = 1.622992 ν 2 = 58.2
R 4 = 14.378 D 4 = 7.54
R 5 = 1027.760 D 5 = 1.20 N 3 = 1.603112 ν 3 = 60.6
R 6 = 21.235 D 6 = 2.26
R 7 = 19.209 D 7 = 3.00 N 4 = 1.805181 ν 4 = 25.4
R 8 = 31.407 D 8 = variable
R 9 = 32.355 D 9 = 2.20 N 5 = 1.518229 ν 5 = 58.9
R10 = -51.429 D10 = 0.69
R11 = Aperture D11 = 0.60
R12 = 17.812 D12 = 2.80 N 6 = 1.517417 ν 6 = 52.4
R13 = -105.294 D13 = 0.41
R14 = -36.897 D14 = 5.59 N 7 = 1.717362 ν 7 = 29.5
R15 = 16.832 D15 = 2.75
R16 = 41.934 D16 = 2.70 N 8 = 1.571351 ν 8 = 53.0
R17 = -21.537 D17 = variable
R18 = ∞ D18 = variable
R19 = -25.966 D19 = 1.00 N 9 = 1.712995 ν 9 = 53.9
R20 = 46.725 D20 = 0.59
R21 = 126.642 D21 = 3.10 N10 = 1.712995 ν10 = 53.9
R22 = -22.451 D22 = 34.88

\ Focal length 18.60 31.86 51.32
Variable interval \
D 8 32.34 12.31 1.66
D17 0.00 0.00 0.00
D18 1.80 12.37 27.88

Zoom lens group data group Start surface Focal length
1 1 -28.53
2 9 26.70
3 19 -529.65

(数値実施例3)
f= 18.60〜32.65〜53.28 Fno= 3.63〜4.55〜5.88 2ω=72.6〜45.4〜28.8
R 1 = 70.437 D 1 = 3.70 N 1 = 1.516330 ν 1 = 64.1
R 2 = 444.313 D 2 = 0.10
R 3 = 44.427 D 3 = 1.50 N 2 = 1.696797 ν 2 = 55.5
R 4 = 14.870 D 4 = 8.24
R 5 = -421.388 D 5 = 1.20 N 3 = 1.622992 ν 3 = 58.2
R 6 = 21.911 D 6 = 2.96
R 7 = 20.984 D 7 = 2.90 N 4 = 1.805181 ν 4 = 25.4
R 8 = 35.903 D 8 = 可変
R 9 = 38.649 D 9 = 2.30 N 5 = 1.517417 ν 5 = 52.4
R10 = -55.775 D10 = 0.80
R11 = 絞り D11 = 0.69
R12 = 20.793 D12 = 3.50 N 6 = 1.570989 ν 6 = 50.8
R13 = -83.812 D13 = 0.42
R14 = -33.915 D14 = 7.00 N 7 = 1.717362 ν 7 = 29.5
R15 = 18.467 D15 = 1.17
R16 = 37.923 D16 = 3.40 N 8 = 1.568832 ν 8 = 56.4
R17 = -20.900 D17 = 可変
R18 = ∞ D18 = 可変
R19 = -29.484 D19 = 1.00 N 9 = 1.603112 ν 9 = 60.6
R20 = 46.223 D20 = 0.50
R21 = 168.825 D21 = 3.10 N10 = 1.622992 ν10 = 58.2
R22 = -25.277 D22 =35.32

\焦点距離 18.60 32.65 53.28
可変間隔\
D 8 31.45 11.66 1.51
D17 0.00 6.50 16.04
D18 1.80 7.05 14.76

ズームレンズ群データ
群 始面 焦点距離
1 1 -26.75
2 9 26.75
3 19 -323.78
(Numerical Example 3)
f = 18.60 to 32.65 to 53.28 Fno = 3.63 to 4.55 to 5.88 2ω = 72.6 to 45.4 to 28.8
R 1 = 70.437 D 1 = 3.70 N 1 = 1.516330 ν 1 = 64.1
R 2 = 444.313 D 2 = 0.10
R 3 = 44.427 D 3 = 1.50 N 2 = 1.696797 ν 2 = 55.5
R 4 = 14.870 D 4 = 8.24
R 5 = -421.388 D 5 = 1.20 N 3 = 1.622992 ν 3 = 58.2
R 6 = 21.911 D 6 = 2.96
R 7 = 20.984 D 7 = 2.90 N 4 = 1.805181 ν 4 = 25.4
R 8 = 35.903 D 8 = Variable
R 9 = 38.649 D 9 = 2.30 N 5 = 1.517417 ν 5 = 52.4
R10 = -55.775 D10 = 0.80
R11 = Aperture D11 = 0.69
R12 = 20.793 D12 = 3.50 N 6 = 1.570989 ν 6 = 50.8
R13 = -83.812 D13 = 0.42
R14 = -33.915 D14 = 7.00 N 7 = 1.717362 ν 7 = 29.5
R15 = 18.467 D15 = 1.17
R16 = 37.923 D16 = 3.40 N 8 = 1.568832 ν 8 = 56.4
R17 = -20.900 D17 = variable
R18 = ∞ D18 = variable
R19 = -29.484 D19 = 1.00 N 9 = 1.603112 ν 9 = 60.6
R20 = 46.223 D20 = 0.50
R21 = 168.825 D21 = 3.10 N10 = 1.622992 ν10 = 58.2
R22 = -25.277 D22 = 35.32

\ Focal length 18.60 32.65 53.28
Variable interval \
D 8 31.45 11.66 1.51
D17 0.00 6.50 16.04
D18 1.80 7.05 14.76

Zoom lens group data group Start surface Focal length
1 1 -26.75
2 9 26.75
3 19 -323.78

(数値実施例4)
f= 19.60〜33.98〜55.08 Fno= 3.66〜4.53〜5.88 2ω=69.8〜43.8〜27.9
R 1 = 79.606 D 1 = 3.50 N 1 = 1.516330 ν 1 = 64.1
R 2 = 1027.285 D 2 = 0.10
R 3 = 49.550 D 3 = 1.50 N 2 = 1.696797 ν 2 = 55.5
R 4 = 14.954 D 4 = 7.07
R 5 = 210.970 D 5 = 1.20 N 3 = 1.622992 ν 3 = 58.2
R 6 = 23.077 D 6 = 3.04
R 7 = 20.183 D 7 = 3.40 N 4 = 1.805181 ν 4 = 25.4
R 8 = 30.868 D 8 = 可変
R 9 = 31.854 D 9 = 2.30 N 5 = 1.517417 ν 5 = 52.4
R10 = -50.924 D10 = 1.19
R11 = 絞り D11 = 0.60
R12 = 20.126 D12 = 2.90 N 6 = 1.517417 ν 6 = 52.4
R13 = -143.258 D13 = 0.50
R14 = -36.670 D14 = 6.94 N 7 = 1.717362 ν 7 = 29.5
R15 = 17.763 D15 = 2.10
R16 = 35.315 D16 = 2.90 N 8 = 1.571351 ν 8 = 53.0
R17 = -22.103 D17 = 可変
R18 = ∞ D18 = 可変
R19 = -25.048 D19 = 1.00 N 9 = 1.516330 ν 9 = 64.1
R20 = 37.975 D20 = 0.50
R21 = 122.123 D21 = 3.20 N10 = 1.516330 ν10 = 64.1
R22 = -21.330 D22 = 36.00

\焦点距離 19.60 33.98 55.08
可変間隔\
D 8 33.04 12.29 1.45
D17 0.00 6.09 15.04
D18 1.80 7.00 14.64

ズームレンズ群データ
群 始面 焦点距離
1 1 -28.62
2 9 27.48
3 19 -281.72
(Numerical example 4)
f = 19.60 to 33.98 to 55.08 Fno = 3.66 to 4.53 to 5.88 2ω = 69.8 to 43.8 to 27.9
R 1 = 79.606 D 1 = 3.50 N 1 = 1.516330 ν 1 = 64.1
R 2 = 1027.285 D 2 = 0.10
R 3 = 49.550 D 3 = 1.50 N 2 = 1.696797 ν 2 = 55.5
R 4 = 14.954 D 4 = 7.07
R 5 = 210.970 D 5 = 1.20 N 3 = 1.622992 ν 3 = 58.2
R 6 = 23.077 D 6 = 3.04
R 7 = 20.183 D 7 = 3.40 N 4 = 1.805181 ν 4 = 25.4
R 8 = 30.868 D 8 = variable
R 9 = 31.854 D 9 = 2.30 N 5 = 1.517417 ν 5 = 52.4
R10 = -50.924 D10 = 1.19
R11 = Aperture D11 = 0.60
R12 = 20.126 D12 = 2.90 N 6 = 1.517417 ν 6 = 52.4
R13 = -143.258 D13 = 0.50
R14 = -36.670 D14 = 6.94 N 7 = 1.717362 ν 7 = 29.5
R15 = 17.763 D15 = 2.10
R16 = 35.315 D16 = 2.90 N 8 = 1.571351 ν 8 = 53.0
R17 = -22.103 D17 = variable
R18 = ∞ D18 = variable
R19 = -25.048 D19 = 1.00 N 9 = 1.516330 ν 9 = 64.1
R20 = 37.975 D20 = 0.50
R21 = 122.123 D21 = 3.20 N10 = 1.516330 ν10 = 64.1
R22 = -21.330 D22 = 36.00

\ Focal length 19.60 33.98 55.08
Variable interval \
D 8 33.04 12.29 1.45
D17 0.00 6.09 15.04
D18 1.80 7.00 14.64

Zoom lens group data group Start surface Focal length
1 1 -28.62
2 9 27.48
3 19 -281.72

(数値実施例5)
f= 19.60〜34.72〜57.11 Fno= 3.59〜4.51〜5.88 2ω=69.8〜43.0〜26.9
R 1 = 59.605 D 1 = 4.00 N 1 = 1.487490 ν 1 = 70.2
R 2 = 286.120 D 2 = 0.10
R 3 = 47.898 D 3 = 1.50 N 2 = 1.696797 ν 2 = 55.5
R 4 = 15.199 D 4 = 7.37
R 5 = 293.913 D 5 = 1.20 N 3 = 1.622992 ν 3 = 58.2
R 6 = 22.827 D 6 = 3.04
R 7 = 20.502 D 7 = 3.30 N 4 = 1.805181 ν 4 = 25.4
R 8 = 32.048 D 8 = 可変
R 9 = 31.701 D 9 = 2.30 N 5 = 1.517417 ν 5 = 52.4
R10 = -59.397 D10 = 1.19
R11 = 絞り D11 = 0.70
R12 = 20.369 D12 = 2.90 N 6 = 1.517417 ν 6 = 52.4
R13 = -104.067 D13 = 0.50
R14 = -37.823 D14 = 7.39 N 7 = 1.717362 ν 7 = 29.5
R15 = 17.809 D15 = 2.18
R16 = 37.104 D16 = 2.90 N 8 = 1.571351 ν 8 = 53.0
R17 = -22.940 D17 = 可変
R18 = ∞ D18 = 可変
R19 = -28.827 D19 = 1.00 N 9 = 1.516330 ν 9 = 64.1
R20 = 44.985 D20 = 0.50
R21 = 122.123 D21 = 3.20 N10 = 1.516330 ν10 = 64.1
R22 = -24.409 D22 = 34.99

\焦点距離 19.60 34.72 57.11
可変間隔\
D 8 33.90 12.32 1.35
D17 0.00 6.95 17.15
D18 1.80 5.65 11.29

ズームレンズ群データ
群 始面 焦点距離
1 1 -29.67
2 9 28.33
3 19 -426.42
(Numerical example 5)
f = 19.60 to 34.72 to 57.11 Fno = 3.59 to 4.51 to 5.88 2ω = 69.8 to 43.0 to 26.9
R 1 = 59.605 D 1 = 4.00 N 1 = 1.487490 ν 1 = 70.2
R 2 = 286.120 D 2 = 0.10
R 3 = 47.898 D 3 = 1.50 N 2 = 1.696797 ν 2 = 55.5
R 4 = 15.199 D 4 = 7.37
R 5 = 293.913 D 5 = 1.20 N 3 = 1.622992 ν 3 = 58.2
R 6 = 22.827 D 6 = 3.04
R 7 = 20.502 D 7 = 3.30 N 4 = 1.805181 ν 4 = 25.4
R 8 = 32.048 D 8 = Variable
R 9 = 31.701 D 9 = 2.30 N 5 = 1.517417 ν 5 = 52.4
R10 = -59.397 D10 = 1.19
R11 = Aperture D11 = 0.70
R12 = 20.369 D12 = 2.90 N 6 = 1.517417 ν 6 = 52.4
R13 = -104.067 D13 = 0.50
R14 = -37.823 D14 = 7.39 N 7 = 1.717362 ν 7 = 29.5
R15 = 17.809 D15 = 2.18
R16 = 37.104 D16 = 2.90 N 8 = 1.571351 ν 8 = 53.0
R17 = -22.940 D17 = variable
R18 = ∞ D18 = variable
R19 = -28.827 D19 = 1.00 N 9 = 1.516330 ν 9 = 64.1
R20 = 44.985 D20 = 0.50
R21 = 122.123 D21 = 3.20 N10 = 1.516330 ν10 = 64.1
R22 = -24.409 D22 = 34.99

\ Focal length 19.60 34.72 57.11
Variable interval \
D 8 33.90 12.32 1.35
D17 0.00 6.95 17.15
D18 1.80 5.65 11.29

Zoom lens group data group Start surface Focal length
1 1 -29.67
2 9 28.33
3 19 -426.42

Figure 2009128693
Figure 2009128693

次に本発明のズームレンズを撮像装置に適用した実施例を図11を用いて説明する。   Next, an embodiment in which the zoom lens of the present invention is applied to an image pickup apparatus will be described with reference to FIG.

図11は一眼レフカメラの要部概略図である。図11において、10は実施例1〜5いずれかのズームレンズ1を有する撮影レンズである。ズームレンズ1は保持部材である鏡筒2に保持されている。20はカメラ本体である。3は撮影レンズ10からの光束を上方に反射するクイックリターンミラーである。4は撮影レンズ10の像形成位置に配置された焦点板である。5は焦点板4に形成された逆像を正立像に変換するペンタダハプリズムである。6は、その正立像を観察するための接眼レンズ6である。カメラ本体20は、これらクイックリターンミラー3、焦点板4、ペンタダハプリズム5、接眼レンズ6等によって構成されている。7は感光面であり、CCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)や銀塩フィルムが配置される。撮影時にはクイックリターンミラー3が光路から退避して、感光面7上に撮影レンズ10によって像が形成される。   FIG. 11 is a schematic diagram of a main part of a single-lens reflex camera. In FIG. 11, reference numeral 10 denotes a photographing lens having the zoom lens 1 according to any one of Examples 1 to 5. The zoom lens 1 is held by a lens barrel 2 that is a holding member. Reference numeral 20 denotes a camera body. A quick return mirror 3 reflects the light beam from the photographing lens 10 upward. Reference numeral 4 denotes a focusing screen disposed at an image forming position of the photographing lens 10. A penta roof prism 5 converts a reverse image formed on the focusing screen 4 into an erect image. Reference numeral 6 denotes an eyepiece 6 for observing the erect image. The camera body 20 includes the quick return mirror 3, the focusing screen 4, the penta roof prism 5, the eyepiece lens 6, and the like. Reference numeral 7 denotes a photosensitive surface on which a solid-state imaging device (photoelectric conversion device) such as a CCD sensor or a CMOS sensor or a silver salt film is disposed. At the time of photographing, the quick return mirror 3 is retracted from the optical path, and an image is formed on the photosensitive surface 7 by the photographing lens 10.

このように本発明のズームレンズを一眼レフカメラ用の交換レンズ等に適用することにより、高い光学性能を有した撮像装置が実現できる。   Thus, by applying the zoom lens of the present invention to an interchangeable lens for a single-lens reflex camera or the like, an imaging apparatus having high optical performance can be realized.

なお、本発明のズームレンズは、クイックリターンミラーのない一眼レフカメラにも同様に適用することができる。   The zoom lens of the present invention can be similarly applied to a single-lens reflex camera without a quick return mirror.

実施例1のズームレンズのレンズ断面図である。2 is a lens cross-sectional view of a zoom lens of Example 1. FIG. 実施例1のズームレンズの収差図である。FIG. 6 is an aberration diagram of the zoom lens according to Example 1; 実施例2のズームレンズのレンズ断面図である。6 is a lens cross-sectional view of a zoom lens according to Example 2. FIG. 実施例2のズームレンズの収差図である。FIG. 6 is an aberration diagram of the zoom lens according to Example 2; 実施例3のズームレンズのレンズ断面図である。5 is a lens cross-sectional view of a zoom lens according to Example 3. FIG. 実施例3のズームレンズの収差図である。FIG. 6 is an aberration diagram of the zoom lens according to Example 3; 実施例4のズームレンズのレンズ断面図である。6 is a lens cross-sectional view of a zoom lens according to Example 4. FIG. 実施例4のズームレンズの収差図である。FIG. 6 is an aberration diagram of the zoom lens according to Example 4; 実施例5のズームレンズのレンズ断面図である。10 is a lens cross-sectional view of a zoom lens according to Example 5. FIG. 実施例5のズームレンズの収差図である。FIG. 10 is an aberration diagram of the zoom lens according to Example 5; 一眼レフカメラの要部概略図である。It is the principal part schematic of a single-lens reflex camera.

符号の説明Explanation of symbols

L1 第1レンズ群
L2 第2レンズ群
L3 第3レンズ群
SP 開口絞り
FP フレアカット絞り
IP 像面
L1 First lens group L2 Second lens group L3 Third lens group SP Aperture stop FP Flare cut stop IP Image plane

Claims (7)

物体側より像側へ順に、負の屈折力の第1レンズ群、正の屈折力の第2レンズ群、負の屈折力の第3レンズ群を有し、広角端に比して望遠端で、前記第1レンズ群と第2レンズ群の間隔が減少し、前記第2レンズ群と第3レンズ群の間隔が増大するようにズーミングを行うズームレンズであって、
前記第2レンズ群は、物体側より像側へ順に、正の屈折力の第2Aレンズ群、開口絞り、そして正の屈折力の第2Bレンズ群より構成され、広角端における全系の焦点距離をfw、前記第1レンズ群、第2レンズ群、第3レンズ群の焦点距離を各々f1,f2,f3、前記第2Aレンズ群、第2Bレンズ群の焦点距離を各々f2A,f2Bとするとき、
−1.2< f2/f1 <−0.9
−0.2< fw/f3 <−0.01
0.5< f2A/f2B <1.1
なる条件を満足することを特徴とするズームレンズ。
In order from the object side to the image side, a first lens unit having a negative refractive power, a second lens group having a positive refractive power, and a third lens group having a negative refractive power are provided at the telephoto end as compared with the wide-angle end. A zoom lens that performs zooming so that the distance between the first lens group and the second lens group decreases and the distance between the second lens group and the third lens group increases;
The second lens group includes, in order from the object side to the image side, a second A lens group having a positive refractive power, an aperture stop, and a second B lens group having a positive refractive power, and the focal length of the entire system at the wide angle end. Fw, the focal lengths of the first lens group, the second lens group, and the third lens group are f1, f2, and f3, respectively, and the focal lengths of the second A lens group and the second B lens group are f2A and f2B, respectively. ,
-1.2 <f2 / f1 <-0.9
−0.2 <fw / f3 <−0.01
0.5 <f2A / f2B <1.1
A zoom lens characterized by satisfying the following conditions:
前記第2Aレンズ群は、1つの正レンズで構成されることを特徴とする請求項1のズームレンズ。   The zoom lens according to claim 1, wherein the second A lens group includes one positive lens. 前記第2Bレンズ群は、物体側から像側へ順に、正レンズ、負レンズ、正レンズで構成されることを特徴とする請求項1又は2のズームレンズ。   The zoom lens according to claim 1 or 2, wherein the second B lens group includes a positive lens, a negative lens, and a positive lens in order from the object side to the image side. 前記第2Aレンズ群と前記第2Bレンズ群の間隔をD2AB、前記第2レンズ群の最も物体側のレンズ面頂点から前記第2レンズ群の最も像側のレンズ面頂点までの距離をD2とするとき、
0.03< D2AB/D2 <0.3
なる条件を満足することを特徴とする請求項1〜3いずれかのズームレンズ。
The distance between the second A lens group and the second B lens group is D2AB, and the distance from the most object-side lens surface vertex of the second lens group to the most image-side lens surface vertex of the second lens group is D2. When
0.03 <D2AB / D2 <0.3
The zoom lens according to claim 1, wherein the following condition is satisfied.
広角端におけるバックフォーカスをbfwとするとき、
0.45< fw/bfw <0.9
なる条件を満足することを特徴とする請求項1〜4いずれかのズームレンズ。
When the back focus at the wide angle end is bfw,
0.45 <fw / bfw <0.9
The zoom lens according to claim 1, wherein the following condition is satisfied.
前記第1レンズ群は、正レンズを最も物体側に有することを特徴とする請求項1〜5いずれかのズームレンズ。   The zoom lens according to claim 1, wherein the first lens group includes a positive lens closest to the object side. 広角端における前記第2レンズ群の近軸横倍率をβ2w、望遠端における前記第2レンズ群の近軸横倍率をβ2t、望遠端における全系の焦点距離をftとするとき、
0.8< (β2t・fw)/(β2w・ft) <1.1
なる条件を満足することを特徴とする請求項1〜6いずれかのズームレンズ。
When the paraxial lateral magnification of the second lens group at the wide angle end is β2w, the paraxial lateral magnification of the second lens group at the telephoto end is β2t, and the focal length of the entire system at the telephoto end is ft,
0.8 <(β2t · fw) / (β2w · ft) <1.1
The zoom lens according to claim 1, wherein the following condition is satisfied.
JP2007304504A 2007-11-26 2007-11-26 Zoom lens Expired - Fee Related JP5072549B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007304504A JP5072549B2 (en) 2007-11-26 2007-11-26 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007304504A JP5072549B2 (en) 2007-11-26 2007-11-26 Zoom lens

Publications (3)

Publication Number Publication Date
JP2009128693A true JP2009128693A (en) 2009-06-11
JP2009128693A5 JP2009128693A5 (en) 2010-11-11
JP5072549B2 JP5072549B2 (en) 2012-11-14

Family

ID=40819664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007304504A Expired - Fee Related JP5072549B2 (en) 2007-11-26 2007-11-26 Zoom lens

Country Status (1)

Country Link
JP (1) JP5072549B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8649107B2 (en) 2011-02-17 2014-02-11 Sony Corporation Zoom lens and imaging apparatus

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138227A (en) * 1984-12-10 1986-06-25 Canon Inc Zoom lens
JPS61286813A (en) * 1985-06-14 1986-12-17 Canon Inc Rear focus type zoom lens
JPS61286812A (en) * 1985-06-14 1986-12-17 Canon Inc Zoom lens
JPS6243614A (en) * 1985-08-22 1987-02-25 Canon Inc Rear focus type zoom lens
JPH02158708A (en) * 1988-12-13 1990-06-19 Canon Inc Wide angle zoom lens
JPH0359626A (en) * 1989-07-28 1991-03-14 Canon Inc Camera system
JPH06230286A (en) * 1993-02-04 1994-08-19 Canon Inc Zoom lens
JPH06337352A (en) * 1993-05-26 1994-12-06 Canon Inc Zoom lens of wide angle of view
JPH0743609A (en) * 1993-07-29 1995-02-14 Canon Inc Zoom lens having flare diaphragm
JPH08327907A (en) * 1995-06-01 1996-12-13 Tochigi Nikon:Kk Zoom lens
JPH1026727A (en) * 1996-07-11 1998-01-27 Canon Inc Zoom lens
JPH1152245A (en) * 1997-08-04 1999-02-26 Canon Inc Zoom lens having vibration compensating function
JPH11211985A (en) * 1998-01-28 1999-08-06 Canon Inc Zoom lens
JP2002062477A (en) * 2000-08-18 2002-02-28 Mamiya Op Co Ltd Wide-angle zoom lens
JP2002196236A (en) * 2000-12-22 2002-07-12 Canon Inc Zoom lens and optical equipment using the same

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138227A (en) * 1984-12-10 1986-06-25 Canon Inc Zoom lens
JPS61286813A (en) * 1985-06-14 1986-12-17 Canon Inc Rear focus type zoom lens
JPS61286812A (en) * 1985-06-14 1986-12-17 Canon Inc Zoom lens
JPS6243614A (en) * 1985-08-22 1987-02-25 Canon Inc Rear focus type zoom lens
JPH02158708A (en) * 1988-12-13 1990-06-19 Canon Inc Wide angle zoom lens
JPH0359626A (en) * 1989-07-28 1991-03-14 Canon Inc Camera system
JPH06230286A (en) * 1993-02-04 1994-08-19 Canon Inc Zoom lens
JPH06337352A (en) * 1993-05-26 1994-12-06 Canon Inc Zoom lens of wide angle of view
JPH0743609A (en) * 1993-07-29 1995-02-14 Canon Inc Zoom lens having flare diaphragm
JPH08327907A (en) * 1995-06-01 1996-12-13 Tochigi Nikon:Kk Zoom lens
JPH1026727A (en) * 1996-07-11 1998-01-27 Canon Inc Zoom lens
JPH1152245A (en) * 1997-08-04 1999-02-26 Canon Inc Zoom lens having vibration compensating function
JPH11211985A (en) * 1998-01-28 1999-08-06 Canon Inc Zoom lens
JP2002062477A (en) * 2000-08-18 2002-02-28 Mamiya Op Co Ltd Wide-angle zoom lens
JP2002196236A (en) * 2000-12-22 2002-07-12 Canon Inc Zoom lens and optical equipment using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8649107B2 (en) 2011-02-17 2014-02-11 Sony Corporation Zoom lens and imaging apparatus

Also Published As

Publication number Publication date
JP5072549B2 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
JP5142829B2 (en) Zoom lens and imaging apparatus having the same
JP4819414B2 (en) Zoom lens and imaging apparatus having the same
JP5006634B2 (en) Zoom lens and imaging apparatus having the same
JP4902240B2 (en) Zoom lens and imaging apparatus having the same
JP4829586B2 (en) Zoom lens and imaging apparatus having the same
JP4921045B2 (en) Optical system and optical apparatus having the same
JP4776936B2 (en) Zoom lens and imaging apparatus having the same
JP2008281917A (en) Zoom lens and imaging apparatus equipped with same
JP2006208890A (en) Zoom lens and imaging apparatus having the same
JP2006285019A (en) Zoom lens and imaging apparatus equipped with the same
JP4898399B2 (en) Optical system and imaging apparatus having the same
JP2008070519A (en) Zoom lens and imaging apparatus having the same
JP2006293012A (en) Zoom lens and imaging apparatus equipped with the same
JP2006058584A (en) Zoom lens and imaging device incorporating it
JP2008310222A (en) Zoom lens and imaging apparatus having the same
JP2006171421A (en) Zoom lens and imaging apparatus having same
JP2010128145A (en) Zoom lens and image pickup apparatus having the same
JP5295339B2 (en) Zoom lens and imaging apparatus having the same
JP2009175509A (en) Zoom lens and image pickup apparatus including the same
JP2005157097A (en) Zoom lens and imaging apparatus equipped with same
JP2002196238A (en) Zoom lens and optical equipment using the same
JP4585796B2 (en) Zoom lens and imaging apparatus having the same
JP2004212612A (en) Zoom lens
JP2016014802A (en) Zoom lens
JP5072549B2 (en) Zoom lens

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100201

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100927

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120821

R151 Written notification of patent or utility model registration

Ref document number: 5072549

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees